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1. Introduction

Rodriguez-Villegas [11] numerically found a number of interesting supercongruences re-
lated to hypergeometric families of Calabi–Yau manifolds. The simplest one of his finds
can be stated as follows: for any odd prime p,

p−1∑

k=0

(1
2
)2
k

k!2
≡ (−1)(p−1)/2 (mod p2), (1.1)

where (a)n = a(a + 1) · · · (a + n − 1) denotes the rising factorial. The first proof of this
supercongruence was given by Mortenson [9]. The second author and Zeng [7] established
the following q-analogue of (1.1):

p−1∑

k=0

(q; q2)2
k

(q2; q2)2
k

q2k ≡ (−1)(p−1)/2q(p2−1)/4 (mod [p]2) for any odd prime p. (1.2)

Here and in what follows, for n > 0, (a; q)n = (1−a)(1−aq) · · · (1−aqn−1) is the q-shifted
factorial, and [n] = (1 − qn)/(1 − q) is the q-integer. For convenience, we also adopt
the abbreviatged notation (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n. The second
author [4] obtained an extension of (1.1): Let d > 2 and r 6 d− 2 be integers subject to

*Corresponding author.

1



gcd(r, d) = 1. Then, for all positive integers n with n ≡ −r (mod d) and n > d− r, there
holds

n−1∑

k=0

(qr; qd)d
kq

dk

(qd; qd)d
k

≡ 0 (mod Φn(q)2). (1.3)

Here Φn(q) denotes the n-th cyclotomic polynomial in q, which can be factorized as

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. On the other hand, Deines et al. [2] gave
another generalization of (1.1): for any integer d > 1 and prime p ≡ 1 (mod d),

p−1∑

k=0

(d−1
d

)d
k

k!d
≡ −Γp(

1
d
)d (mod p2), (1.4)

where Γp(x) denotes the p-adic Gamma function. Wang and Pan [13] further proved
that, for d > 3, the supercongruence (1.4) also holds modulo p3, confirming a conjecture
in [2]. A q-analogue of (1.4) was given by the second author [5]. For more recent q-
supercongruences, we refer the reader to [3, 6, 8, 10,14].

The objective of this paper is to give a generalization of (1.3). Our first result is a
generalization of (1.3) for d = 2.

Theorem 1.1. Let r be a negative odd integer. Let n and s be integers satisfying n ≡ −r
(mod 2), n > 2− r, and 0 6 s 6 (n− 2 + r)/4. Then

n−s−1∑

k=s

(qr; q2)k−s(q
r; q2)k+s

(q2; q2)k−s(q2; q2)k+s

q2k ≡ 0 (mod Φn(q)2). (1.5)

In particular, if p is a prime satisfying p ≡ −r (mod 2), p > 2− r and s 6 (p− 2 + r)/4,
then

p−s−1∑

k=s

( r
2
)k−s(

r
2
)k+s

(k − s)!(k + s)!
≡ 0 (mod p2). (1.6)

Our second result is the following generalization of (1.3) for d = 3.

Theorem 1.2. Let r 6 1 be an integer coprime with 3. Let n and s be integers satisfying
n ≡ −r (mod 3), n > 3− r, and 0 6 s 6 (n− 3 + r)/6. Then

n−s−1∑

k=s

(qr; q3)k−s(q
r; q3)k+s(q

r; q3)k

(q3; q3)k−s(q3; q3)k+s(q3; q3)k

q3k ≡ 0 (mod Φn(q)2). (1.7)
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In particular, if p is a prime satisfying p ≡ −r (mod 3), p > 3− r and s 6 (p− 3 + r)/6,
then

p−s−1∑

k=s

( r
3
)k−s(

r
3
)k+s(

r
3
)k

(k − s)!(k + s)!k!
≡ 0 (mod p2). (1.8)

The last result of ours is the following generalization of (1.3) for d > 4.

Theorem 1.3. Let d > 4 be an integer. Let r 6 d−2 be an integer such that gcd(r, d) = 1.
Then, for all integers n and s with n ≡ −r (mod d), n > d−r and 0 6 s 6 (n−d+r)/d,

n−s−1∑

k=s

(qr; qd)k−s(q
r; qd)k+s(q

r; qd)d−2
k

(qd; qd)k−s(qd; qd)k+s(qd; qd)d−2
k

qdk ≡ 0 (mod Φn(q)2). (1.9)

In particular, if p is a prime satisfying p ≡ −r (mod d), p > d− r and s 6 (p− d+ r)/d,
then

p−s−1∑

k=s

( r
d
)k−s(

r
d
)k+s(

r
d
)d−2
k

(k − s)!(k + s)!k!d−2
≡ 0 (mod p2). (1.10)

We shall prove Theorems 1.1–1.3 by using the creative microscoping method devised by
the second author and Zudilin [8]. More precisely, in order to prove the q-supercongruences
(1.5), (1.7) and (1.9), we shall first establish their generalizations with an extra parameter
a so that the generalized q-congruences hold modulo (1− aqn)(a− qn), then the desired
q-supercongruences follow by letting a = 1 in these parametric q-congruences.

2. Proof of Theorem 1.1

We first establish the following parametric generalization of Theorem 1.1.

Theorem 2.1. Let r be a negative odd integer. Let n and s be integers satisfying n ≡ −r
(mod 2), n > 2− r, and 0 6 s 6 (n− 2 + r)/4. Then

n−s−1∑

k=s

(aqr; q2)k−s(q
r/a; q2)k+s

(q2; q2)k−s(q2; q2)k+s

q2k ≡ 0 (mod (1− aqn)(a− qn)). (2.1)

Proof. For a = q−n, the left-hand side of (2.1) can be written as

n−2s−1∑

k=0

(qr−n; q2)k(q
r+n; q2)k+2s

(q2; q2)k(q2; q2)k+2s

q2k+2s

=
(qr+n; q2)2s

(q2; q2)2s

q2s

(n−r)/2∑

k=0

(qr−n; q2)k(q
4s+r+n; q2)k

(q2; q2)k(q4s+2; q2)k

q2k,
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where we have realized the fact that (qr−n; q2)k = 0 for k > (n−r)/2, and 0 < (n−r)/2 6
n− 2s− 1. Let [

n

k

]
=

[
n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

be the q-binomial coefficient. Then

(qr−n; q2)kq
2k

(q2; q2)k

= (−1)k

[
(n− r)/2

k

]

q2

q2((n−r)/2−k
2 )−2((n−r)/2

2 ).

Moreover, we have

(q4s+n+r; q2)k

(q4s+2; q2)k

=
(q4s+2+2k; q2)(n+r−2)/2

(q4s+2; q2)(n+r−2)/2

. (2.2)

It follows that

n−s−1∑

k=s

(qr−n; q2)k−s(q
r+n; q2)k+s

(q2; q2)k−s(q2; q2)k+s

q2k

=
(qr+n; q2)2s

(q2; q2)2s

q2s

(n−r)/2∑

k=0

(−1)k

[
(n− r)/2

k

]

q2

q2((n−r)/2−k
2 )−2((n−r)/2

2 ) (q4s+2+2k; q2)(n+r−2)/2

(q4s+2; q2)(n+r−2)/2

.

(2.3)

Recall that the finite form of the q-binomial theorem (see, for instance, [1, p. 36]) can
be written as

n∑

k=0

(−1)k

[
n

k

]
q(

k
2)zk = (z; q)n.

Taking z = q−j and replacing k by n− k in the above equation, we get

n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )+jk = 0 for 0 6 j 6 n− 1. (2.4)

Since (q4s+2+2k; q2)(n+r−2)/2 is a polynomial in q2k of degree (n + r − 2)/2 = (n − r)/2−
(1 − r) 6 (n − r)/2 − 1, we conclude that the right-hand side of (2.3) vanishes. This
proves that the q-congruence (2.1) holds modulo 1− aqn.

For a = qn, the left-hand side of (2.1) can be written as

n−2s−1∑

k=0

(qr+n; q2)k(q
r−n; q2)k+2s

(q2; q2)k(q2; q2)k+2s

q2k+2s

=
(qr−n; q2)2s

(q2; q2)2s

q2s

(n−r)/2−2s∑

k=0

(qr+n; q2)k(q
4s+r−n; q2)k

(q2; q2)k(q4s+2; q2)k

q2k,
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where we have used the fact that (q4s+r−n; q2)k = 0 for k > (n − r)/2 − 2s, and 0 <
(n− r)/2− 2s 6 n− 2s− 1. Noticing that

(q4s+r−n; q2)kq
2k

(q2; q2)k

= (−1)k

[
(n− r)/2− 2s

k

]

q2

q2((n−r)/2−2s−k
2 )−2((n−r)/2−2s

2 ),

and

(qr+n; q2)k

(q4s+2; q2)k

=
(q4s+2+2k; q2)(n+r−2)/2−2s

(q4s+2; q2)(n+r−2)/2−2s

,

we have

n−s−1∑

k=s

(qr+n; q2)k−s(q
r−n; q2)k+s

(q2; q2)k−s(q2; q2)k+s

q2k

=
(qr−n; q2)2s

(q2; q2)2s

q2s

(n−r)/2−2s∑

k=0

(q4s+2+2k; q2)(n+r−2)/2−2s

(q4s+2; q2)(n+r−2)/2−2s

× (−1)k

[
(n− r)/2− 2s

k

]

q2

q2((n−r)/2−2s−k
2 )−2((n−r)/2−2s

2 ). (2.5)

Since (q4s+2+2k; q2)(n+r−2)/2−2s is a polynomial in q2k of degree (n + r − 2)/2 − 2s 6
(n− r)/2− 2s− 1 , by (2.4), we deduce that the right-hand side of (2.5) vanishes. This
proves that (2.1) holds modulo a− qn.

Noticing that 1−aqn and a− qn are coprime polyinomials in q, we complete the proof
of (2.1). 2

Proof of Theorem 1.1. When a = 1, the polynomial (1 − aqn)(a − qn) = (1 − qn)2 has
the factor Φn(q)2. Furthermore, the denominators of the left-hand side of (2.1) are all
coprime with Φn(q). The proof of (1.5) then follows from taking a = 1 in (2.1). Finally,
letting n = p be a prime, taking the limits as q → 1 in both sides of (1.5), we arrive at
(1.6). 2

3. Proof of Theorem 1.2

Similarly, we first give a parametric generalization of Theorem 1.2.

Theorem 3.1. Let r 6 1 be an integer coprime with 3. Let n and s be integers satisfying
n ≡ −r (mod 3), n > 3− r, and 0 6 s 6 (n− 3 + r)/6. Then

n−s−1∑

k=s

(a2qr; q3)k−s(q
r; q3)k+s(q

r/a2; q3)k

(q3; q3)k−s(aq3; q3)k+s(q3/a; q3)k

q3k ≡ 0 (mod (1− aqn)(a− qn)). (3.1)
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Proof. For a = q−n, the left-hand side of (3.1) can be written as

n−2s−1∑

k=0

(qr−2n; q3)k(q
r; q3)k+2s(q

r+2n; q3)k+s

(q3; q3)k(q3−n; q3)k+2s(q3+n; q3)k+s

q3k+3s

=
(qr; q3)2s(q

r+2n; q3)s

(q3−n; q3)2s(q3+n; q3)s

q3s

(2n−r)/3∑

k=0

(qr−2n; q3)k(q
6s+r; q3)k(q

3s+r+2n; q3)k

(q3; q3)k(q6s+3−n; q3)k(q3s+3+n; q3)k

q3k,

where we have used the fact that (qr−2n; q3)k = 0 for k > (2n−r)/3, and 0 < (2n−r)/3 6
n− 2s− 1. Using

(qr−2n; q3)kq
3k

(q3; q3)k

= (−1)k

[
(2n− r)/3

k

]

q3

q3((2n−r)/3−k
2 )−3((2n−r)/3

2 ),

and relations similar to (2.2), we have

n−s−1∑

k=s

(qr−2n; q3)k−s(q
r; q3)k+s(q

r+2n; q3)k

(q3; q3)k−s(q3−n; q3)k+s(q3+n; q3)k

q3k

=
(qr; q3)2s(q

r+2n; q3)s

(q3−n; q3)2s(q3+n; q3)s

q3s

(2n−r)/3∑

k=0

(−1)k

[
(2n− r)/3

k

]

q3

q3((2n−r)/3−k
2 )−3((2n−r)/3

2 )

× (q3s+3+n+3k; q3)(n+r−3)/3(q
6s+3−n+3k; q3)(n+r−3)/3

(q3s+3+n; q3)(n+r−3)/3(q6s+3−n; q3)(n+r−3)/3

. (3.2)

Since (q3s+3+n+3k; q3)(n+r−3)/3(q
6s+3−n+3k; q3)(n+r−3)/3 is a polynomial in q3k of degree 2(n+

r − 3)/3 6 (2n − r)/3 − 1. In view of (2.4), the right-hand side of (3.2) vanishes. This
proves that the q-congruence (3.1) holds modulo 1− aqn.

Similarly, for a = qn, the left-hand side of (3.1) can be written as

n−2s−1∑

k=0

(qr+2n; q3)k(q
r; q3)k+2s(q

r−2n; q3)k+s

(q3; q3)k(q3+n; q3)k+2s(q3−n; q3)k+s

q3k+3s

=
(qr; q3)2s(q

r−2n; q3)s

(q3+n; q3)2s(q3−n; q3)s

q3s

(2n−r)/3−s∑

k=0

(qr+2n; q3)k(q
6s+r; q3)k(q

3s+r−2n; q3)k

(q3; q3)k(q6s+3+n; q3)k(q3s+3−n; q3)k

q3k,

=
(qr; q3)2s(q

r−2n; q3)s

(q3+n; q3)2s(q3−n; q3)s

q3s

(2n−r)/3−s∑

k=0

(−1)k

[
(2n− r)/3− s

k

]

q3

q3((2n−r)/3−s−k
2 )−3((2n−r)/3−s

2 )

× (q6s+3+n+3k; q3)(n+r−3)/3−2s(q
3s+3−n+3k; q3)(n+r−3)/3+s

(q6s+3+n; q3)(n+r−3)/3−2s(q3s+3−n; q3)(n+r−3)/3+s

. (3.3)

Note that (q6s+3+n+3k; q3)(n+r−3)/3−2s(q
3s+3−n+3k; q3)(n+r−3)/3+s is a polynomial in q3k of

degree 2(n + r − 3)/3 − s 6 (2n − r)/3 − s − 1. In view of (2.4), the right-hand side of
(3.3) vanishes. This proves that the q-congruence (3.1) holds modulo 1− aqn. 2
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Proof of Theorem 1.2. Letting a = 1 in (3.1), we immediately obtain (1.7). Moreover, for
n = p a prime, taking the limits as q → 1 in both sides of (1.7), we are led to (1.8). 2

4. Proof of Theorem 1.3

Like before, we need to establish a parametric generalization of Theorem 1.3. However,
this time the parametric form is more complicated.

Theorem 4.1. Let d, r, n be given as in the conditions of Theorem 1.3. Then, modulo
(1− aqn)(a− qn),

n−s−1∑

k=s

(qr; qd)k−s(a
d−1qr; qd)k+s(a

d−3qr, . . . , a2qr; qd)k(a
1−dqr, a3−dqr, . . . , a−2qr; qd)k

(qd; qd)k−s(ad−2qd; qd)k+s(ad−4qd, . . . , aqd; qd)k(a2−dqd, a4−dqd, . . . , a−1qd; qd)k

qdk ≡ 0,

(4.1)

if d is odd, and

n−s−1∑

k=s

(aqr; qd)k−s(a
3qr; qd)k+s(a

5qr, . . . , ad−1qr; qd)k(a
1−dqr, a3−dqr, . . . , a−1qr; qd)k

(qd; qd)k−s(a−2qd; qd)k+s(a2−dqd, . . . , a−4qd; qd)k(ad−2qd, ad−4qd, . . . , qd; qd)k

qdk ≡ 0,

(4.2)

if d is even.

Proof. Since gcd(r, d) = 1 and n ≡ −r (mod d), we know that gcd(d, n) = 1. Thus,
none of the numbers d, 2d, . . . (n− 1)d are divisible by n, and so the denominators of the
left-hand sides of (4.1) and (4.2) do not have the factor 1− aqn nor 1− a−1qn. Hence, for
a = q−n, the left-hand side of (4.1) can be written as

(qr−(d−1)n; qd)2s(q
r−(d−3)n, . . . , qr−2n; qd)s(q

r−(1−d)n, qr−(3−d)n, . . . , qr+2n; qd)s

(qd−(d−2)n; qd)2s(qd−(d−4)n, . . . , qd−n; qd)s(qd−(2−d)n, qd−(4−d)n, . . . , qd+n; qd)s

qds

×
dn−n−r

d
−2s∑

k=0

(qr; qd)k(q
2ds+r−(d−1)n; qd)k(q

ds+r−(d−3)n, . . . , qds+r−2n; qd)k

(qd; qd)k(q2ds+d−(d−2)n; qd)k(qds+d−(d−4)n, . . . , qds+d−n; qd)k

qdk

× (qds+r−(1−d)n, qds+r−(3−d)n, . . . , qds+r+2n; qd)k

(qds+d−(2−d)n, qds+d−(4−d)n, . . . , qds+d+n; qd)k

, (4.3)

where we have used the fact that (q2ds+r−(d−1)n; qd)k = 0 for k > (dn− n− r)/d− 2s, and
0 < (dn− n− r)/d− 2s 6 n− 1− 2s. It is easy to see that

(q2ds+r−(d−1)n; qd)kq
dk

(qd; qd)k

= (−1)k

[
(dn− n− r)/d− 2s

k

]

qd

qd(k
2)+(2ds+n+r−dn+d)k, (4.4)

(qds+r−(d−2j−1)n; qd)k

(qds+d−(d−2j)n; qd)k

=
(qds+d−(d−2j)n+dk; qd)(n+r−d)/d

(qds+d−(d−2j)n; qd)(n+r−d)/d

for 2 6 j 6 d− 3

2
, (4.5)
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(qds+(d−2j+1)n+r; qd)k

(qds+(d−2j)n+d; qd)k

=
(qds+(d−2j)n+dk+d; qd)(n+r−d)/d

(qds+(d−2j)n+d; qd)(n+r−d)/d

for 1 6 j 6 d− 1

2
, (4.6)

and

(qds+r−(d−3)n; qd)k

(q2ds+d−(d−2)n; qd)k

=
(q2ds+d−(d−2)n+dk; qd)(n+r−d)/d−s

(q2ds+d−(d−2)n; qd)(n+r−d)/d−s

, (4.7)

(qr; qd)k

(qds+d−n; qd)k

=
(qds+d−n+dk; qd)(n+r−d)/d−s

(qds+d−n; qd)(n+r−d)/d−s

, (4.8)

Note that the right-hand sides of (4.5) and (4.6) are polynomials in qdk of degree (n +
r − d)/d, and the right-hand sides of (4.7) and (4.8) are polynomials in qdk of degree
(n + r − d)/d− s, and

d

(
k

2

)
+(2ds+n+r−dn+d)k = d

(
(dn− n− r)/d− 2s− k

2

)
−d

(
(dn− n− r)/d− 2s

2

)
.

We can write the summation in (4.3) as

(dn−n−r)/d−2s∑

k=0

(−1)kqd((dn−n−r)/d−2s−k
2 )−d((dn−n−r)/d−2s

2 )
[
(dn− n− r)/d− 2s

k

]

qd

P (qdk), (4.9)

where P (qdk) is a polynomial in qdk of degree (n+ r− d)(d− 3)/d+2(n+ r− d− ds)/d =
(dn−n− r)/d− 2s− (d− r− 1) 6 (dn−n− r)/d− 2s− 1. In light of (2.4), we conclude
that (4.9) is equal to 0 and so is (4.3). This means that (4.1) is true modulo 1− aqn.

For a = qn, the left-hand side of (4.1) can be written as

qds(qr+(d−1)n; qd)2s(q
r+(d−3)n, . . . , qr+2n; qd)s(q

r+(1−d)n, qr+(3−d)n, . . . , qr−2n; qd)s

(qd+(d−2)n; qd)2s(qd+(d−4)n, . . . , qd+n; qd)s(qd+(2−d)n, qd+(4−d)n, . . . , qd−n; qd)s

×
dn−n−r

d
−s∑

k=0

qdk(qr; qd)k(q
2ds+r+(d−1)n; qd)k(q

ds+r+(d−3)n, . . . , qds+r+2n; qd)k

(qd; qd)k(q2ds+d+(d−2)n; qd)k(qds+d+(d−4)n, . . . , qds+d+n; qd)k

× qds+r+(1−d)n, qds+r+(3−d)n, . . . , qds+r−2n; qd)k

(qds+d+(2−d)n, qds+d+(4−d)n, . . . , qds+d−n; qd)k

, (4.10)

where we have used (qds+r+(1−d)n; qd)k = 0 for k > (dn− n− r)/d− s, and 0 < (dn− n−
r)/d− s 6 n− 1− 2s. Similarly as before, we have

(qds+r+(1−d)n; qd)kq
dk

(qd; qd)k

= (−1)k

[
(dn− n− r)/d− s

k

]

qd

qd(k
2)+(ds+n+r−dn+d)k,

(qds+r−(d−2j−1)n; qd)k

(qds+d−(d−2j)n; qd)k

=
(qds+d−(d−2j)n+dk; qd)(n+r−d)/d

(qds+d−(d−2j)n; qd)(n+r−d)/d

for 1 6 j 6 d− 3

2
,
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(qds+r+(d−2j+1)n; qd)k

(qds+d+(d−2j)n; qd)k

=
(qds+d+(d−2j)n+dk; qd)(n+r−d)/d

(qds+d+(d−2j)n; qd)(n+r−d)/d

for 2 6 j 6 d− 1

2
,

and

(q2ds+r+(d−1)n; qd)k

(q2ds+d+(d−2)n; qd)k

=
(q2ds+d+(d−2)n+dk; qd)(n+r−d)/d

(q2ds+d+(d−2)n; qd)(n+r−d)/d

,

(qr; qd)k

(qds+d−n; qd)k

=
(qds+d−n+dk; qd)(n+r−d)/d−s

(qds+d−n; qd)(n+r−d)/d−s

,

d

(
k

2

)
+ (ds + n + r − dn + d)k = d

(
(dn− n− r)/d− s− k

2

)
− d

(
(dn− n− r)/d− s

2

)
.

Therefore, the summation in (4.10) can be written as

(dn−n−r)/d−s∑

k=0

(−1)kqd((dn−n−r)/d−s−k
2 )−d((dn−n−r)/d−s

2 )
[
(dn− n− r)/d− s

k

]

qd

P (qdk), (4.11)

where P (qdk) is a polynomial in qdk of degree (n + r− d)(d− 2)/d + (n + r− ds− d)/d =
(dn − n − r)/d − s − (d − r − 1) 6 (dn − n − r)/d − s − 1. By (2.4), we conclude that
(4.11) is equal to 0 and so is (4.10). This means that (4.1) is true modulo a− qn.

In the same way, we can establish the q-congruence (4.2). 2

Proof of Theorem 1.3. It is well known that Φn(q) is a factor of 1 − qm if and only if n
divides m. Thus, when a = 1 the denominators of (4.1) and (4.2) are all coprime with
Φn(q). On the other hand, when a = 1, the polynomial (1 − aqn)(a − qn) = (1 − qn)2

contains the factor Φn(q)2. Therefore, the q-supercongruence (1.9) follows by taking a = 1
in (4.1) and (4.2). Finally, assume that n = p is a prime, taking the limits as q → 1 in
both sides of (1.9), we get (1.10). 2

Data Availability Statements. Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.
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