Factors of certain basic hypergeometric sums
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Abstract. We prove that certain truncated basic hypergeometric series contain the factor
®,(q)?, where ®,(q) is the n-th cyclotomic polynomial. This result may be regarded as a
generalization of Theorem 1.1 in [J. Math. Anal. Appl. 476 (2019), 851-859].
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1. Introduction

Rodriguez-Villegas [11] numerically found a number of interesting supercongruences re-
lated to hypergeometric families of Calabi—Yau manifolds. The simplest one of his finds
can be stated as follows: for any odd prime p,
~ (3}

~2k = ()12 (mod p?), (1.1)

k!?
0

bS]
|
DO =

b
Il

where (a), = a(a+1)---(a+mn — 1) denotes the rising factorial. The first proof of this
supercongruence was given by Mortenson [9]. The second author and Zeng [7] established
the following g-analogue of (1.1):

p=lo o 2)2
%q% = (—1)P=D2¢*=D/* (1nod [p]?)  for any odd prime p. (1.2)

—~ (¢% ¢°)

Here and in what follows, for n > 0, (a;q), = (1—a)(1—aq) - -- (1 —ag"™") is the g-shifted

factorial, and [n] = (1 — ¢")/(1 — q) is the g-integer. For convenience, we also adopt

the abbreviatged notation (a1, as, ..., am;q)n = (a1;¢)n(a2;¢)n - (@m; q)n. The second

author [4] obtained an extension of (1.1): Let d > 2 and r < d — 2 be integers subject to
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ged(r,d) = 1. Then, for all positive integers n with n = —r (mod d) and n > d —r, there
holds

> U =0 (mod 0, (0)) (13)
k=0 !

Here ®,,(¢q) denotes the n-th cyclotomic polynomial in g, which can be factorized as

buq)= [ (a—¢)

1<k<n
ged(k,n)=1

where ¢ is an n-th primitive root of unity. On the other hand, Deines et al. [2] gave
another generalization of (1.1): for any integer d > 1 and prime p = 1 (mod d),
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where I')(x) denotes the p-adic Gamma function. Wang and Pan [13] further proved
that, for d > 3, the supercongruence (1.4) also holds modulo p?, confirming a conjecture
in [2]. A g-analogue of (1.4) was given by the second author [5]. For more recent g-
supercongruences, we refer the reader to [3,6,8,10,14].

The objective of this paper is to give a generalization of (1.3). Our first result is a
generalization of (1.3) for d = 2.

Theorem 1.1. Let r be a negative odd integer. Let n and s be integers satisfying n = —r
(mod 2),n>2—r,and 0 < s< (n—2+r)/4. Then
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In particular, if p is a prime satisfyingp = —r (mod 2), p>2—r and s < (p—2+71)/4,
then

; (k(g—)ks_)s'gl%)j—t)' =0 (mod p?). (1.6)

Our second result is the following generalization of (1.3) for d = 3.

Theorem 1.2. Let r < 1 be an integer coprime with 3. Let n and s be integers satisfying
n=-r (mod3),n>=>3—r, and0< s < (n—3+71)/6. Then
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¢** =0 (mod ®,(q)%). (1.7)



In particular, if p is a prime satisfying p = —r (mod 3), p 23 —r and s < (p—3+71)/6,
then

pi (§>k_s(%)k+8§)k =0 (mod p?). (1.8)

The last result of ours is the following generalization of (1.3) for d > 4

Theorem 1.3. Let d > 4 be an integer. Letr < d—2 be an integer such that ged(r,d) = 1.
Then, for all integers n and s withn = —r (mod d), n > d—r and0 < s < (n—d+r)/d,

_z: (qr;qd)k*5<qr;qd)kJrs(qT;qd)g_g qdk = O (mod Cbn(Q)Q) (19)
— (g% q%)i—s (% Vs (g% q)

In particular, if p is a prime satisfying p = —r (mod d), p>d—1r and s < (p—d+r)/d,
then

,; </(fik;§_(</3i(>!2’?d_2 =0 (mod p°). (1.10)

We shall prove Theorems 1.1-1.3 by using the creative microscoping method devised by
the second author and Zudilin [8]. More precisely, in order to prove the g-supercongruences
(1.5), (1.7) and (1.9), we shall first establish their generalizations with an extra parameter
a so that the generalized g-congruences hold modulo (1 — ag")(a — ¢"), then the desired
g-supercongruences follow by letting @ = 1 in these parametric g-congruences.

2. Proof of Theorem 1.1

We first establish the following parametric generalization of Theorem 1.1.

Theorem 2.1. Let r be a negative odd integer. Let n and s be integers satisfying n = —r
(mod 2),n>2—r,and 0 < s< (n—2+r)/4. Then
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]; (@ ) rs (0% s ¢ =0 (mod (1—aq")(a—q")). (2.1)

Proof. For a = ¢~ ", the left-hand side of (2.1) can be written as
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where we have realized the fact that (¢"";¢*);, = 0 for k > (n—r)/2,and 0 < (n—71)/2 <

n—2s—1. Let P o
M N Mq " (¢ q)ZEZ; Z)n—k

be the q-binomial coefficient. Then

q=;q7 )k q?
Moreover, we have
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It follows that
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Recall that the finite form of the g-binomial theorem (see, for instance, [1, p. 36]) can
be written as

if“ HICEETe

Taking z = ¢~/ and replacing k by n — k in the above equation, we get

S ()t m g2 =0 for0<j<n—1. (2.4)
k=0
Since (¢**7272%; ¢?) (1 4r—2)/2 1s a polynomial in ¢?* of degree (n+r —2)/2 = (n—1r)/2 —

(1—7) < (n—r7)/2—1, we conclude that the right-hand side of (2.3) vanishes. This
proves that the g-congruence (2.1) holds modulo 1 — ag".
For a = ¢", the left-hand side of (2.1) can be written as
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where we have used the fact that (¢**7" " ¢?), = 0 for k > (n —r)/2 — 25, and 0 <
(n—1)/2 —2s <n—2s— 1. Noticing that
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Since (¢*™2%2*; ¢2) (1 4r—2)/2-25 is a polynomial in ¢** of degree (n +r —2)/2 — 2s <

(n—r)/2—2s—1, by (2.4), we deduce that the right-hand side of (2.5) vanishes. This
proves that (2.1) holds modulo a — ¢".

Noticing that 1 —aq™ and a — ¢" are coprime polyinomials in ¢, we complete the proof
of (2.1). O

Proof of Theorem 1.1. When a = 1, the polynomial (1 — aq™)(a — ¢") = (1 — ¢™)? has
the factor ®,(¢)?. Furthermore, the denominators of the left-hand side of (2.1) are all
coprime with ®,(¢q). The proof of (1.5) then follows from taking a = 1 in (2.1). Finally,

letting n = p be a prime, taking the limits as ¢ — 1 in both sides of (1.5), we arrive at
(1.6). O

3. Proof of Theorem 1.2

Similarly, we first give a parametric generalization of Theorem 1.2.

Theorem 3.1. Let r < 1 be an integer coprime with 3. Let n and s be integers satisfying
n=-r (mod3),n>3—7r, and 0 < s < (n—3+7r)/6. Then

n—s—1
(aq"; @) r—s(0": @ )irs (/0% P s
=0 (mod (1 —ag™)(a—qg"™)). 3.1
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Proof. For a = ¢q~™, the left-hand side of (3.1) can be written as
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where we have used the fact that (g
n —2s — 1. Using

r—2n.
)

) =0fork > (2n—r)/3,and 0 < (2n—7)/3 <
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and relations similar to (2.2), we have
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Since (¢T3 H3%: 43 i3y /3(¢% 7T ¢%) (nir—3) 3 1s a polynomial in ¢** of degree 2(n+

r—3)/3 < (2n—1)/3 — 1. In view of (2.4), the right-hand side of (3.2) vanishes. This
proves that the ¢g-congruence (3.1) holds modulo 1 — ag".
Similarly, for a = ¢", the left-hand side of (3.1) can be written as
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Note that (g8T3+H3%: %) 15y /5 05 (¢* 373 %) (1 _3)/3+5 1S a polynomial in ¢3* of

degree 2(n +r —3)/3—s < (2n—1r)/3 —s — 1. In view of (2

4), the right-hand side of

(3.3) vanishes. This proves that the ¢-congruence (3.1) holds modulo 1 — ag". 0



Proof of Theorem 1.2. Letting a = 1 in (3.1), we immediately obtain (1.7). Moreover, for
n = p a prime, taking the limits as ¢ — 1 in both sides of (1.7), we are led to (1.8). O

4. Proof of Theorem 1.3

Like before, we need to establish a parametric generalization of Theorem 1.3. However,
this time the parametric form is more complicated.

Theorem 4.1. Let d,r,n be given as in the conditions of Theorem 1.3. Then, modulo
(1 —aq")(a—q"),

i (q d k—s(ad_lqr;qd)k ( d— 3q'r’“.7a2qr;qd) ( 1— dq'r CL dqr7"_’a—2qr;qd)k "
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if d is even.

Proof. Since ged(r,d) = 1 and n = —r (mod d), we know that ged(d,n) = 1. Thus,
none of the numbers d, 2d, ... (n — 1)d are divisible by n, and so the denominators of the
left-hand sides of (4.1) and (4.2) do not have the factor 1 — ag™ nor 1 —a~!¢™. Hence, for
a = q", the left-hand side of (4.1) can be written as

(g0 gT)ag (g7, . " q%)s(q ¢ ,q SO s g
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dn—n—r _ s
y dz (qr qd) (q2ds+7’ (d=1)n 1q ) (qu+r—(d—3)n7 o ’qu—&-r 2n7 q )k "
< (q %) (A5 Hd=(d=2n; gd), (gdstd—(d=dn " gdstd—n, gd) q
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where we have used the fact that (¢**+" (=1 ¢4), =0 for k > (dn —n —r)/d — 2s, and
0<(dn—n—r)/d—2s<n—1-2s. It is easy to see that

(g2dstr—(d=D)n, gy, qdk 1y (dn—n—r)/d—2s qd(’;)+(2ds+n+7«_dn+d)k (4.4)
(g% ¢®)x k p ;
ds+r—(d—2j—1)n. ,d ds+d—(d—2j)n+dk. ,d . d—3
(qd d—(d—2) 7g)k:<q dst+d—(d—2j ’Uzq)(Jr D/ for2< )< ——, (4.5)
(qistd—(d=2j)n; gd), (qdstd—(d=25)n. g )(n+r_d)/d 9

7



<qu+(d72j+‘1)n+r;qd)k _ (qd”(d’mé”ﬂd; ") (n+r—a)/d for 1 <j < -1 (4.6)
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Note that the right-hand sides of (4.5) and (4.6) are polynomials in ¢% of degree (n +
r — d)/d, and the right-hand sides of (4.7) and (4.8) are polynomials in ¢% of degree
(n+r—d)/d— s, and

d(];) +(2ds+n+r—dn+d)k = d((dn T T;/d T k) —d<<d" - —;)/d N 25).

We can write the summation in (4.3) as

(dn nzr)/d 28(_1)kqd((dn_n_,«%/d_Qs_k>_d((dn—n—2r)/d—25> [(dn —-n —kT)/d — 28:| P(qdk), (49)
k=0 q?
where P(q%) is a polynomial in ¢% of degree (n+7r—d)(d—3)/d+2(n+r—d—ds)/d =
(dn—n—r)/d—2s—(d—r—1) < (dn—n—r)/d—2s—1. In light of (2.4), we conclude
that (4.9) is equal to 0 and so is (4.3). This means that (4.1) is true modulo 1 — ag™.
For a = ¢, the left-hand side of (4.1) can be written as
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where we have used (q#+™+1=dn. ¢d), =0 for k > (dn —n —71)/d — s, and 0 < (dn —n —
r)/d —s <n—1—2s. Similarly as before, we have
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(qu+r+(d72j+'l)n; 7 _ (qu+d+(d—2j)é+dk; qd)(nﬂid)/d for 2 < j < E
(qds+a+(d=2)n; gd), (qds+d+(d=27)n, qd)(n+r—d)/d 92
and
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Therefore, the summation in (4.10) can be written as

S (g () {W e } P, @1

where P(¢%) is a polynomial in ¢ of degree (n +r —d)(d —2)/d+ (n+r —ds —d)/d =
(dn—n—-r)/Jd—s—(d—r—1) < (dn—n—r)/d—s—1. By (2.4), we conclude that
(4.11) is equal to 0 and so is (4.10). This means that (4.1) is true modulo a — ¢™.

In the same way, we can establish the g-congruence (4.2). O

Proof of Theorem 1.3. Tt is well known that ®,(q) is a factor of 1 — ¢™ if and only if n
divides m. Thus, when a = 1 the denominators of (4.1) and (4.2) are all coprime with
®,(q). On the other hand, when a = 1, the polynomial (1 — ag")(a — ¢") = (1 — ¢")?
contains the factor ®,,(¢)%. Therefore, the g-supercongruence (1.9) follows by taking a = 1
in (4.1) and (4.2). Finally, assume that n = p is a prime, taking the limits as ¢ — 1 in
both sides of (1.9), we get (1.10). O
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