Factors of certain basic hypergeometric sums

Jian Cao ${ }^{1}$, Victor J. W. Guo ${ }^{2}$, Xiao Yu ${ }^{1 *}$
${ }^{1}$ School of Mathematics, Hangzhou Normal University, Hangzhou 311121
People's Republic of China
21caojian@hznu.edu.cn, yx@stu.hznu.edu.cn
${ }^{2}$ School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300
People's Republic of China
jwguo@math.ecnu.edu.cn

Abstract

We prove that certain truncated basic hypergeometric series contain the factor $\Phi_{n}(q)^{2}$, where $\Phi_{n}(q)$ is the n-th cyclotomic polynomial. This result may be regarded as a generalization of Theorem 1.1 in [J. Math. Anal. Appl. 476 (2019), 851-859].

Keywords: supercongruence; basic hypergeometric series; cyclotomic polynomials; q binomial theorem.

2010 Mathematics Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

Rodriguez-Villegas [11] numerically found a number of interesting supercongruences related to hypergeometric families of Calabi-Yau manifolds. The simplest one of his finds can be stated as follows: for any odd prime p,

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{\left(\frac{1}{2}\right)_{k}^{2}}{k!^{2}} \equiv(-1)^{(p-1) / 2} \quad\left(\bmod p^{2}\right) \tag{1.1}
\end{equation*}
$$

where $(a)_{n}=a(a+1) \cdots(a+n-1)$ denotes the rising factorial. The first proof of this supercongruence was given by Mortenson [9]. The second author and Zeng [7] established the following q-analogue of (1.1):

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{\left(q ; q^{2}\right)_{k}^{2}}{\left(q^{2} ; q^{2}\right)_{k}^{2}} q^{2 k} \equiv(-1)^{(p-1) / 2} q^{\left(p^{2}-1\right) / 4} \quad\left(\bmod [p]^{2}\right) \quad \text { for any odd prime } p \tag{1.2}
\end{equation*}
$$

Here and in what follows, for $n \geqslant 0,(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ is the q-shifted factorial, and $[n]=\left(1-q^{n}\right) /(1-q)$ is the q-integer. For convenience, we also adopt the abbreviatged notation $\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{m} ; q\right)_{n}$. The second author [4] obtained an extension of (1.1): Let $d \geqslant 2$ and $r \leqslant d-2$ be integers subject to

[^0]$\operatorname{gcd}(r, d)=1$. Then, for all positive integers n with $n \equiv-r(\bmod d)$ and $n \geqslant d-r$, there holds
\[

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q^{r} ; q^{d}\right)_{k}^{d} q^{d k}}{\left(q^{d} ; q^{d}\right)_{k}^{d}} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{2}\right) \tag{1.3}
\end{equation*}
$$

\]

Here $\Phi_{n}(q)$ denotes the n-th cyclotomic polynomial in q, which can be factorized as

$$
\Phi_{n}(q)=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(q-\zeta^{k}\right)
$$

where ζ is an n-th primitive root of unity. On the other hand, Deines et al. [2] gave another generalization of (1.1): for any integer $d>1$ and prime $p \equiv 1(\bmod d)$,

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{\left(\frac{d-1}{d}\right)_{k}^{d}}{k!^{d}} \equiv-\Gamma_{p}\left(\frac{1}{d}\right)^{d} \quad\left(\bmod p^{2}\right), \tag{1.4}
\end{equation*}
$$

where $\Gamma_{p}(x)$ denotes the p-adic Gamma function. Wang and Pan [13] further proved that, for $d \geqslant 3$, the supercongruence (1.4) also holds modulo p^{3}, confirming a conjecture in [2]. A q-analogue of (1.4) was given by the second author [5]. For more recent q supercongruences, we refer the reader to $[3,6,8,10,14]$.

The objective of this paper is to give a generalization of (1.3). Our first result is a generalization of (1.3) for $d=2$.

Theorem 1.1. Let r be a negative odd integer. Let n and s be integers satisfying $n \equiv-r$ $(\bmod 2), n \geqslant 2-r$, and $0 \leqslant s \leqslant(n-2+r) / 4$. Then

$$
\begin{equation*}
\sum_{k=s}^{n-s-1} \frac{\left(q^{r} ; q^{2}\right)_{k-s}\left(q^{r} ; q^{2}\right)_{k+s}}{\left(q^{2} ; q^{2}\right)_{k-s}\left(q^{2} ; q^{2}\right)_{k+s}} q^{2 k} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{2}\right) \tag{1.5}
\end{equation*}
$$

In particular, if p is a prime satisfying $p \equiv-r(\bmod 2), p \geqslant 2-r$ and $s \leqslant(p-2+r) / 4$, then

$$
\begin{equation*}
\sum_{k=s}^{p-s-1} \frac{\left(\frac{r}{2}\right)_{k-s}\left(\frac{r}{2}\right)_{k+s}}{(k-s)!(k+s)!} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{1.6}
\end{equation*}
$$

Our second result is the following generalization of (1.3) for $d=3$.
Theorem 1.2. Let $r \leqslant 1$ be an integer coprime with 3 . Let n and s be integers satisfying $n \equiv-r(\bmod 3), n \geqslant 3-r$, and $0 \leqslant s \leqslant(n-3+r) / 6$. Then

$$
\begin{equation*}
\sum_{k=s}^{n-s-1} \frac{\left(q^{r} ; q^{3}\right)_{k-s}\left(q^{r} ; q^{3}\right)_{k+s}\left(q^{r} ; q^{3}\right)_{k}}{\left(q^{3} ; q^{3}\right)_{k-s}\left(q^{3} ; q^{3}\right)_{k+s}\left(q^{3} ; q^{3}\right)_{k}} q^{2 k} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{2}\right) \tag{1.7}
\end{equation*}
$$

In particular, if p is a prime satisfying $p \equiv-r(\bmod 3), p \geqslant 3-r$ and $s \leqslant(p-3+r) / 6$, then

$$
\begin{equation*}
\sum_{k=s}^{p-s-1} \frac{\left(\frac{r}{3}\right)_{k-s}\left(\frac{r}{3}\right)_{k+s}\left(\frac{r}{3}\right)_{k}}{(k-s)!(k+s)!k!} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{1.8}
\end{equation*}
$$

The last result of ours is the following generalization of (1.3) for $d \geqslant 4$.
Theorem 1.3. Let $d \geqslant 4$ be an integer. Let $r \leqslant d-2$ be an integer such that $\operatorname{gcd}(r, d)=1$. Then, for all integers n and s with $n \equiv-r(\bmod d), n \geqslant d-r$ and $0 \leqslant s \leqslant(n-d+r) / d$,

$$
\begin{equation*}
\sum_{k=s}^{n-s-1} \frac{\left(q^{r} ; q^{d}\right)_{k-s}\left(q^{r} ; q^{d}\right)_{k+s}\left(q^{r} ; q^{d}\right)_{k}^{d-2}}{\left(q^{d} ; q^{d}\right)_{k-s}\left(q^{d} ; q^{d}\right)_{k+s}\left(q^{d} ; q^{d}\right)_{k}^{d-2}} q^{d k} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{2}\right) \tag{1.9}
\end{equation*}
$$

In particular, if p is a prime satisfying $p \equiv-r(\bmod d), p \geqslant d-r$ and $s \leqslant(p-d+r) / d$, then

$$
\begin{equation*}
\sum_{k=s}^{p-s-1} \frac{\left(\frac{r}{d}\right)_{k-s}\left(\frac{r}{d}\right)_{k+s}\left(\frac{r}{d}\right)_{k}^{d-2}}{(k-s)!(k+s)!k!!^{d-2}} \equiv 0 \quad\left(\bmod p^{2}\right) . \tag{1.10}
\end{equation*}
$$

We shall prove Theorems 1.1-1.3 by using the creative microscoping method devised by the second author and Zudilin [8]. More precisely, in order to prove the q-supercongruences (1.5), (1.7) and (1.9), we shall first establish their generalizations with an extra parameter a so that the generalized q-congruences hold modulo $\left(1-a q^{n}\right)\left(a-q^{n}\right)$, then the desired q-supercongruences follow by letting $a=1$ in these parametric q-congruences.

2. Proof of Theorem 1.1

We first establish the following parametric generalization of Theorem 1.1.
Theorem 2.1. Let r be a negative odd integer. Let n and s be integers satisfying $n \equiv-r$ $(\bmod 2), n \geqslant 2-r$, and $0 \leqslant s \leqslant(n-2+r) / 4$. Then

$$
\begin{equation*}
\sum_{k=s}^{n-s-1} \frac{\left(a q^{r} ; q^{2}\right)_{k-s}\left(q^{r} / a ; q^{2}\right)_{k+s}}{\left(q^{2} ; q^{2}\right)_{k-s}\left(q^{2} ; q^{2}\right)_{k+s}} q^{2 k} \equiv 0 \quad\left(\bmod \left(1-a q^{n}\right)\left(a-q^{n}\right)\right) . \tag{2.1}
\end{equation*}
$$

Proof. For $a=q^{-n}$, the left-hand side of (2.1) can be written as

$$
\begin{aligned}
& \sum_{k=0}^{n-2 s-1} \frac{\left(q^{r-n} ; q^{2}\right)_{k}\left(q^{r+n} ; q^{2}\right)_{k+2 s}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{k+2 s}} q^{2 k+2 s} \\
& \quad=\frac{\left(q^{r+n} ; q^{2}\right)_{2 s}}{\left(q^{2} ; q^{2}\right)_{2 s}} q^{2 s} \sum_{k=0}^{(n-r) / 2} \frac{\left(q^{r-n} ; q^{2}\right)_{k}\left(q^{4 s+r+n} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{4 s+2} ; q^{2}\right)_{k}} q^{2 k}
\end{aligned}
$$

where we have realized the fact that $\left(q^{r-n} ; q^{2}\right)_{k}=0$ for $k>(n-r) / 2$, and $0<(n-r) / 2 \leqslant$ $n-2 s-1$. Let

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

be the q-binomial coefficient. Then

$$
\frac{\left(q^{r-n} ; q^{2}\right)_{k} q^{2 k}}{\left(q^{2} ; q^{2}\right)_{k}}=(-1)^{k}\left[\begin{array}{c}
\left(\begin{array}{c}
n-r) / 2 \\
k
\end{array}\right]_{q^{2}} q^{2((n-r) / 2-k)-2\left(\left(_{2}^{(n-r) / 2}\right)\right.} . . ~
\end{array}\right.
$$

Moreover, we have

$$
\begin{equation*}
\frac{\left(q^{4 s+n+r} ; q^{2}\right)_{k}}{\left(q^{4 s+2} ; q^{2}\right)_{k}}=\frac{\left(q^{4 s+2+2 k} ; q^{2}\right)_{(n+r-2) / 2}}{\left(q^{4 s+2} ; q^{2}\right)_{(n+r-2) / 2}} \tag{2.2}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& \sum_{k=s}^{n-s-1} \frac{\left(q^{r-n} ; q^{2}\right)_{k-s}\left(q^{r+n} ; q^{2}\right)_{k+s}}{\left(q^{2} ; q^{2}\right)_{k-s}\left(q^{2} ; q^{2}\right)_{k+s}} q^{2 k} \\
& \quad=\frac{\left(q^{r+n} ; q^{2}\right)_{2 s}}{\left(q^{2} ; q^{2}\right)_{2 s}} q^{2 s} \sum_{k=0}^{(n-r) / 2}(-1)^{k}\left[\begin{array}{c}
(n-r) / 2 \\
k
\end{array}\right]_{q^{2}} q^{2\binom{(n-r) / 2-k}{2}-2\binom{(n-r) / 2}{2}} \frac{\left(q^{4 s+2+2 k} ; q^{2}\right)_{(n+r-2) / 2}}{\left(q^{4 s+2} ; q^{2}\right)_{(n+r-2) / 2}} . \tag{2.3}
\end{align*}
$$

Recall that the finite form of the q-binomial theorem (see, for instance, [1, p. 36]) can be written as

$$
\sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{\binom{k}{2}} z^{k}=(z ; q)_{n}
$$

Taking $z=q^{-j}$ and replacing k by $n-k$ in the above equation, we get

$$
\sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \tag{2.4}\\
k
\end{array}\right] q^{(n-k)+j k}=0 \quad \text { for } 0 \leqslant j \leqslant n-1
$$

Since $\left(q^{4 s+2+2 k} ; q^{2}\right)_{(n+r-2) / 2}$ is a polynomial in $q^{2 k}$ of degree $(n+r-2) / 2=(n-r) / 2-$ $(1-r) \leqslant(n-r) / 2-1$, we conclude that the right-hand side of (2.3) vanishes. This proves that the q-congruence (2.1) holds modulo $1-a q^{n}$.

For $a=q^{n}$, the left-hand side of (2.1) can be written as

$$
\begin{aligned}
& \sum_{k=0}^{n-2 s-1} \frac{\left(q^{r+n} ; q^{2}\right)_{k}\left(q^{r-n} ; q^{2}\right)_{k+2 s}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{k+2 s}} q^{2 k+2 s} \\
& \quad=\frac{\left(q^{r-n} ; q^{2}\right)_{2 s}}{\left(q^{2} ; q^{2}\right)_{2 s}} q^{2 s} \sum_{k=0}^{(n-r) / 2-2 s} \frac{\left(q^{r+n} ; q^{2}\right)_{k}\left(q^{4 s+r-n} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{4 s+2} ; q^{2}\right)_{k}} q^{2 k}
\end{aligned}
$$

where we have used the fact that $\left(q^{4 s+r-n} ; q^{2}\right)_{k}=0$ for $k>(n-r) / 2-2 s$, and $0<$ $(n-r) / 2-2 s \leqslant n-2 s-1$. Noticing that

$$
\frac{\left(q^{4 s+r-n} ; q^{2}\right)_{k} q^{2 k}}{\left(q^{2} ; q^{2}\right)_{k}}=(-1)^{k}\left[\begin{array}{c}
(n-r) / 2-2 s \\
k
\end{array}\right]_{q^{2}} q^{2((n-r) / 2-2 s-k)-2\left({ }_{2}^{(n-r) / 2-2 s}\right)}
$$

and

$$
\frac{\left(q^{r+n} ; q^{2}\right)_{k}}{\left(q^{4 s+2} ; q^{2}\right)_{k}}=\frac{\left(q^{4 s+2+2 k} ; q^{2}\right)_{(n+r-2) / 2-2 s}}{\left(q^{4 s+2} ; q^{2}\right)_{(n+r-2) / 2-2 s}}
$$

we have

$$
\begin{align*}
& \sum_{k=s}^{n-s-1} \frac{\left(q^{r+n} ; q^{2}\right)_{k-s}\left(q^{r-n} ; q^{2}\right)_{k+s}}{\left(q^{2} ; q^{2}\right)_{k-s}\left(q^{2} ; q^{2}\right)_{k+s}} q^{2 k} \\
& \quad=\frac{\left(q^{r-n} ; q^{2}\right)_{2 s}}{\left(q^{2} ; q^{2}\right)_{2 s}} q^{2 s} \sum_{k=0}^{(n-r) / 2-2 s} \frac{\left(q^{4 s+2+2 k} ; q^{2}\right)_{(n+r-2) / 2-2 s}}{\left(q^{4 s+2} ; q^{2}\right)_{(n+r-2) / 2-2 s}} \\
& \left.\quad \times(-1)^{k}\left[\begin{array}{c}
(n-r) / 2-2 s \\
k
\end{array}\right]_{q^{2}} q^{2\left({ }_{2}^{(n-r) / 2-2 s-k}\right)-2\left(\left(_{2-r) / 2-2 s}^{2 s}\right)\right.}\right) . \tag{2.5}
\end{align*}
$$

Since $\left(q^{4 s+2+2 k} ; q^{2}\right)_{(n+r-2) / 2-2 s}$ is a polynomial in $q^{2 k}$ of degree $(n+r-2) / 2-2 s \leqslant$ $(n-r) / 2-2 s-1$, by (2.4), we deduce that the right-hand side of (2.5) vanishes. This proves that (2.1) holds modulo $a-q^{n}$.

Noticing that $1-a q^{n}$ and $a-q^{n}$ are coprime polyinomials in q, we complete the proof of (2.1).

Proof of Theorem 1.1. When $a=1$, the polynomial $\left(1-a q^{n}\right)\left(a-q^{n}\right)=\left(1-q^{n}\right)^{2}$ has the factor $\Phi_{n}(q)^{2}$. Furthermore, the denominators of the left-hand side of (2.1) are all coprime with $\Phi_{n}(q)$. The proof of (1.5) then follows from taking $a=1$ in (2.1). Finally, letting $n=p$ be a prime, taking the limits as $q \rightarrow 1$ in both sides of (1.5), we arrive at (1.6).

3. Proof of Theorem 1.2

Similarly, we first give a parametric generalization of Theorem 1.2.
Theorem 3.1. Let $r \leqslant 1$ be an integer coprime with 3 . Let n and s be integers satisfying $n \equiv-r(\bmod 3), n \geqslant 3-r$, and $0 \leqslant s \leqslant(n-3+r) / 6$. Then

$$
\begin{equation*}
\sum_{k=s}^{n-s-1} \frac{\left(a^{2} q^{r} ; q^{3}\right)_{k-s}\left(q^{r} ; q^{3}\right)_{k+s}\left(q^{r} / a^{2} ; q^{3}\right)_{k}}{\left(q^{3} ; q^{3}\right)_{k-s}\left(a q^{3} ; q^{3}\right)_{k+s}\left(q^{3} / a ; q^{3}\right)_{k}} q^{3} \equiv 0 \quad\left(\bmod \left(1-a q^{n}\right)\left(a-q^{n}\right)\right) . \tag{3.1}
\end{equation*}
$$

Proof. For $a=q^{-n}$, the left-hand side of (3.1) can be written as

$$
\begin{aligned}
& \sum_{k=0}^{n-2 s-1} \frac{\left(q^{r-2 n} ; q^{3}\right)_{k}\left(q^{r} ; q^{3}\right)_{k+2 s}\left(q^{r+2 n} ; q^{3}\right)_{k+s}}{\left(q^{3} ; q^{3}\right)_{k}\left(q^{3-n} ; q^{3}\right)_{k+2 s}\left(q^{3+n} ; q^{3}\right)_{k+s}} q^{2 k+3 s} \\
& =\frac{\left(q^{r} ; q^{3}\right)_{2 s}\left(q^{r+2 n} ; q^{3}\right)_{s}}{\left(q^{3-n} ; q^{3}\right)_{2 s}\left(q^{3+n} ; q^{3}\right)_{s}} q^{3 s} \sum_{k=0}^{(2 n-r) / 3} \frac{\left(q^{r-2 n} ; q^{3}\right)_{k}\left(q^{6 s+r} ; q^{3}\right)_{k}\left(q^{3 s+r+2 n} ; q^{3}\right)_{k}}{\left(q^{3} ; q^{3}\right)_{k}\left(q^{6 s+3-n} ; q^{3}\right)_{k}\left(q^{3 s+3+n} ; q^{3}\right)_{k}} q^{2 k}
\end{aligned}
$$

where we have used the fact that $\left(q^{r-2 n} ; q^{3}\right)_{k}=0$ for $k>(2 n-r) / 3$, and $0<(2 n-r) / 3 \leqslant$ $n-2 s-1$. Using

$$
\left.\frac{\left(q^{r-2 n} ; q^{3}\right)_{k} q^{3 k}}{\left(q^{3} ; q^{3}\right)_{k}}=(-1)^{k}\left[\begin{array}{c}
(2 n-r) / 3 \\
k
\end{array}\right]_{q^{3}} q^{3((2 n-r) / 3-k)-3((2 n-r) / 3}\right),
$$

and relations similar to (2.2), we have

$$
\begin{align*}
& \sum_{k=s}^{n-s-1} \frac{\left(q^{r-2 n} ; q^{3}\right)_{k-s}\left(q^{r} ; q^{3}\right)_{k+s}\left(q^{r+2 n} ; q^{3}\right)_{k}}{\left(q^{3} ; q^{3}\right)_{k-s}\left(q^{3-n} ; q^{3}\right)_{k+s}\left(q^{3+n} ; q^{3}\right)_{k}} q^{3 k} \\
& \left.\quad=\frac{\left(q^{r} ; q^{3}\right)_{2 s}\left(q^{r+2 n} ; q^{3}\right)_{s}}{\left(q^{3-n} ; q^{3}\right)_{2 s}\left(q^{3+n} ; q^{3}\right)_{s}} q^{3 s} \sum_{k=0}^{(2 n-r) / 3}(-1)^{k}\left[\begin{array}{c}
(2 n-r) / 3 \\
k
\end{array}\right]_{q^{3}} q^{3((2 n-r) / 3-k}\right)-3\left({ }_{2}^{(2 n-r) / 3}\right) \\
& \quad \times \frac{\left(q^{3 s+3+n+3 k} ; q^{3}\right)_{(n+r-3) / 3}\left(q^{6 s+3-n+3 k} ; q^{3}\right)_{(n+r-3) / 3}}{\left(q^{3 s+3+n} ; q^{3}\right)_{(n+r-3) / 3}\left(q^{6 s+3-n} ; q^{3}\right)_{(n+r-3) / 3}} . \tag{3.2}
\end{align*}
$$

Since $\left(q^{3 s+3+n+3 k} ; q^{3}\right)_{(n+r-3) / 3}\left(q^{6 s+3-n+3 k} ; q^{3}\right)_{(n+r-3) / 3}$ is a polynomial in $q^{3 k}$ of degree $2(n+$ $r-3) / 3 \leqslant(2 n-r) / 3-1$. In view of (2.4), the right-hand side of (3.2) vanishes. This proves that the q-congruence (3.1) holds modulo $1-a q^{n}$.

Similarly, for $a=q^{n}$, the left-hand side of (3.1) can be written as

$$
\begin{align*}
& \sum_{k=0}^{n-2 s-1} \frac{\left(q^{r+2 n} ; q^{3}\right)_{k}\left(q^{r} ; q^{3}\right)_{k+2 s}\left(q^{r-2 n} ; q^{3}\right)_{k+s}}{\left(q^{3} ; q^{3}\right)_{k}\left(q^{3+n} ; q^{3}\right)_{k+2 s}\left(q^{3-n} ; q^{3}\right)_{k+s}} q^{3 k+3 s} \\
& \quad=\frac{\left(q^{r} ; q^{3}\right)_{2 s}\left(q^{r-2 n} ; q^{3}\right)_{s}}{\left(q^{3+n} ; q^{3}\right)_{2 s}\left(q^{3-n} ; q^{3}\right)_{s}} q^{3 s} \sum_{k=0}^{(2 n-r) / 3-s} \frac{\left(q^{r+2 n} ; q^{3}\right)_{k}\left(q^{6 s+r} ; q^{3}\right)_{k}\left(q^{3 s+r-2 n} ; q^{3}\right)_{k}}{\left(q^{3} ; q^{3}\right)_{k}\left(q^{6 s+3+n} ; q^{3}\right)_{k}\left(q^{3 s+3-n} ; q^{3}\right)_{k}} q^{3 k} \\
& \left.\left.\quad=\frac{\left(q^{r} ; q^{3}\right)_{2 s}\left(q^{r-2 n} ; q^{3}\right)_{s}}{\left(q^{3+n} ; q^{3}\right)_{2 s}\left(q^{3-n} ; q^{3}\right)_{s}} q^{3 s} \sum_{k=0}^{(2 n-r) / 3-s}(-1)^{k}\left[\begin{array}{c}
(2 n-r) / 3-s \\
k
\end{array}\right]_{q^{3}} q^{3((2 n-r) / 3-s-k}\right)-3\left({ }_{2}^{(2 n-r) / 3-s}\right)_{2}\right) \\
& \quad \times \frac{\left(q^{6 s+3+n+3 k} ; q^{3}\right)_{(n+r-3) / 3-2 s}\left(q^{3 s+3-n+3 k} ; q^{3}\right)_{(n+r-3) / 3+s}}{\left(q^{6 s+3+n} ; q^{3}\right)_{(n+r-3) / 3-2 s}\left(q^{3 s+3-n} ; q^{3}\right)_{(n+r-3) / 3+s}} . \tag{3.3}
\end{align*}
$$

Note that $\left(q^{6 s+3+n+3 k} ; q^{3}\right)_{(n+r-3) / 3-2 s}\left(q^{3 s+3-n+3 k} ; q^{3}\right)_{(n+r-3) / 3+s}$ is a polynomial in $q^{3 k}$ of degree $2(n+r-3) / 3-s \leqslant(2 n-r) / 3-s-1$. In view of (2.4), the right-hand side of (3.3) vanishes. This proves that the q-congruence (3.1) holds modulo $1-a q^{n}$.

Proof of Theorem 1.2. Letting $a=1$ in (3.1), we immediately obtain (1.7). Moreover, for $n=p$ a prime, taking the limits as $q \rightarrow 1$ in both sides of (1.7), we are led to (1.8).

4. Proof of Theorem 1.3

Like before, we need to establish a parametric generalization of Theorem 1.3. However, this time the parametric form is more complicated.

Theorem 4.1. Let d, r, n be given as in the conditions of Theorem 1.3. Then, modulo $\left(1-a q^{n}\right)\left(a-q^{n}\right)$,

$$
\begin{equation*}
\sum_{k=s}^{n-s-1} \frac{\left(q^{r} ; q^{d}\right)_{k-s}\left(a^{d-1} q^{r} ; q^{d}\right)_{k+s}\left(a^{d-3} q^{r}, \ldots, a^{2} q^{r} ; q^{d}\right)_{k}\left(a^{1-d} q^{r}, a^{3-d} q^{r}, \ldots, a^{-2} q^{r} ; q^{d}\right)_{k}}{\left(q_{k-s}^{d} a^{d-2} q^{d} ; q^{d}\right)_{k+s}\left(a^{d-4} q^{d}, \ldots, a q^{d} ; q^{d}\right)_{k}\left(a^{2-d} q^{d}, a^{4-d} q^{d}, \ldots, a^{-1} q^{d} ; q^{d}\right)_{k}} q^{d k} 0 \tag{4.1}
\end{equation*}
$$

if d is odd, and

$$
\begin{equation*}
\sum_{k=s}^{n-s-1} \frac{\left(a q^{r} ; q^{d}\right)_{k-s}\left(a^{3} q^{r} ; q^{d}\right)_{k+s}\left(a^{5} q^{r}, \ldots, a^{d-1} q^{r} ; q^{d}\right)_{k}\left(a^{1-d} q^{r}, a^{3-d} q^{r}, \ldots, a^{-1} q^{r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k-s}\left(a^{-2} q^{d} ; q^{d}\right)_{k+s}\left(a^{2-d} q^{d}, \ldots, a^{-4} q^{d} ; q^{d}\right)_{k}\left(a^{d-2} q^{d}, a^{d-4} q^{d}, \ldots, q^{d} ; q^{d}\right)_{k}} \equiv 0 \tag{4.2}
\end{equation*}
$$

if d is even.
Proof. Since $\operatorname{gcd}(r, d)=1$ and $n \equiv-r(\bmod d)$, we know that $\operatorname{gcd}(d, n)=1$. Thus, none of the numbers $d, 2 d, \ldots(n-1) d$ are divisible by n, and so the denominators of the left-hand sides of (4.1) and (4.2) do not have the factor $1-a q^{n}$ nor $1-a^{-1} q^{n}$. Hence, for $a=q^{-n}$, the left-hand side of (4.1) can be written as

$$
\begin{align*}
& \frac{\left(q^{r-(d-1) n} ; q^{d}\right)_{2 s}\left(q^{r-(d-3) n}, \ldots, q^{r-2 n} ; q^{d}\right)_{s}\left(q^{r-(1-d) n}, q^{r-(3-d) n}, \ldots, q^{r+2 n} ; q^{d}\right)_{s}}{\left(q^{d-(d-2) n} ; q^{d}\right)_{2 s}\left(q^{d-(d-4) n}, \ldots, q^{d-n} ; q^{d}\right)_{s}\left(q^{d-(2-d) n}, q^{d-(4-d) n}, \ldots, q^{d+n} ; q^{d}\right)_{s}} q^{d s} \\
& \left.\quad \times \sum_{k=0}^{\frac{d n-n-r}{d-}-2 s} \frac{\left(q^{r} ; q^{d}\right)_{k}\left(q^{2 d s+r-(d-1) n} ; q^{d}\right)_{k}\left(q^{d s+r-(d-3) n}, \ldots, q^{d s+r-2 n} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d s+d-(d-2) n} ; q^{d}\right)_{k}\left(q^{d s+d-(d-4) n}, \ldots, q^{d s+d-n} ; q^{d}\right)_{k}} q^{\left(q^{2 d}\right.}, \ldots, q^{d s+d+n} ; q^{d}\right)_{k}
\end{align*},
$$

where we have used the fact that $\left(q^{2 d s+r-(d-1) n} ; q^{d}\right)_{k}=0$ for $k>(d n-n-r) / d-2 s$, and $0<(d n-n-r) / d-2 s \leqslant n-1-2 s$. It is easy to see that

$$
\begin{align*}
& \frac{\left(q^{2 d s+r-(d-1) n} ; q^{d}\right)_{k} q^{d k}}{\left(q^{d} ; q^{d}\right)_{k}}=(-1)^{k}\left[\begin{array}{c}
(d n-n-r) / d-2 s \\
k
\end{array}\right]_{q^{d}} q^{d\binom{k}{2}+(2 d s+n+r-d n+d) k}, \tag{4.4}\\
& \frac{\left(q^{d s+r-(d-2 j-1) n} ; q^{d}\right)_{k}}{\left(q^{d s+d-(d-2 j) n} ; q^{d}\right)_{k}}=\frac{\left(q^{d s+d-(d-2 j) n+d k} ; q^{d}\right)_{(n+r-d) / d}}{\left(q^{d s+d-(d-2 j) n} ; q^{d}\right)_{(n+r-d) / d}} \text { for } 2 \leqslant j \leqslant \frac{d-3}{2} \tag{4.5}
\end{align*}
$$

$$
\begin{equation*}
\frac{\left(q^{d s+(d-2 j+1) n+r} ; q^{d}\right)_{k}}{\left(q^{d s+(d-2 j) n+d} ; q^{d}\right)_{k}}=\frac{\left(q^{d s+(d-2 j) n+d k+d} ; q^{d}\right)_{(n+r-d) / d}}{\left(q^{d s+(d-2 j) n+d} ; q^{d}\right)_{(n+r-d) / d}} \quad \text { for } 1 \leqslant j \leqslant \frac{d-1}{2}, \tag{4.6}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\left(q^{d s+r-(d-3) n} ; q^{d}\right)_{k}}{\left(q^{2 d s+d-(d-2) n} ; q^{d}\right)_{k}} & =\frac{\left(q^{2 d s+d-(d-2) n+d k} ; q^{d}\right)_{(n+r-d) / d-s}}{\left(q^{2 d s+d-(d-2) n} ; q^{d}\right)_{(n+r-d) / d-s}} \tag{4.7}\\
\frac{\left(q^{r} ; q^{d}\right)_{k}}{\left(q^{d s+d-n} ; q^{d}\right)_{k}} & =\frac{\left(q^{d s+d-n+d k} ; q^{d}\right)_{(n+r-d) / d-s}}{\left(q^{d s+d-n} ; q^{d}\right)_{(n+r-d) / d-s}} \tag{4.8}
\end{align*}
$$

Note that the right-hand sides of (4.5) and (4.6) are polynomials in $q^{d k}$ of degree $(n+$ $r-d) / d$, and the right-hand sides of (4.7) and (4.8) are polynomials in $q^{d k}$ of degree $(n+r-d) / d-s$, and
$d\binom{k}{2}+(2 d s+n+r-d n+d) k=d\binom{(d n-n-r) / d-2 s-k}{2}-d\binom{(d n-n-r) / d-2 s}{2}$.
We can write the summation in (4.3) as

$$
\sum_{k=0}^{(d n-n-r) / d-2 s}(-1)^{k} q^{d(d n-n-r) / d-2 s-k)-d\left({ }_{2}^{(d n-n-r) / d-2 s}\right)}\left[\begin{array}{c}
(d n-n-r) / d-2 s \tag{4.9}\\
k
\end{array}\right]_{q^{d}} P\left(q^{d k}\right)
$$

where $P\left(q^{d k}\right)$ is a polynomial in $q^{d k}$ of degree $(n+r-d)(d-3) / d+2(n+r-d-d s) / d=$ $(d n-n-r) / d-2 s-(d-r-1) \leqslant(d n-n-r) / d-2 s-1$. In light of (2.4), we conclude that (4.9) is equal to 0 and so is (4.3). This means that (4.1) is true modulo $1-a q^{n}$.

For $a=q^{n}$, the left-hand side of (4.1) can be written as

$$
\begin{align*}
& \frac{q^{d s}\left(q^{r+(d-1) n} ; q^{d}\right)_{2 s}\left(q^{r+(d-3) n}, \ldots, q^{r+2 n} ; q^{d}\right)_{s}\left(q^{r+(1-d) n}, q^{r+(3-d) n}, \ldots, q^{r-2 n} ; q^{d}\right)_{s}}{\left(q^{d+(d-2) n} ; q^{d}\right)_{2 s}\left(q^{d+(d-4) n}, \ldots, q^{d+n} ; q^{d}\right)_{s}\left(q^{d+(2-d) n}, q^{d+(4-d) n}, \ldots, q^{d-n} ; q^{d}\right)_{s}} \\
& \quad \times \sum_{k=0}^{\frac{d n-n-r}{d}-s} \frac{q^{d k}\left(q^{r} ; q^{d}\right)_{k}\left(q^{2 d s+r+(d-1) n} ; q^{d}\right)_{k}\left(q^{d s+r+(d-3) n}, \ldots, q^{d s+r+2 n} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d s+d+(d-2) n} ; q^{d}\right)_{k}\left(q^{d s+d+(d-4) n}, \ldots, q^{d s+d+n} ; q^{d}\right)_{k}} \\
& \quad \times \frac{\left.q^{d s+r+(1-d) n}, q^{d+r+(3-d) n}, \ldots, q^{d s+r-2 n} ; q^{d}\right)_{k}}{\left(q^{d s+d+(2-d) n}, q^{d s+d+(4-d) n}, \ldots, q^{d s+d-n} ; q^{d}\right)_{k}}, \tag{4.10}
\end{align*}
$$

where we have used $\left(q^{d s+r+(1-d) n} ; q^{d}\right)_{k}=0$ for $k>(d n-n-r) / d-s$, and $0<(d n-n-$ $r) / d-s \leqslant n-1-2 s$. Similarly as before, we have

$$
\begin{aligned}
& \frac{\left(q^{d s+r+(1-d) n} ; q^{d}\right)_{k} q^{d k}}{\left(q^{d} ; q^{d}\right)_{k}}=(-1)^{k}\left[\begin{array}{c}
(d n-n-r) / d-s \\
k
\end{array}\right]_{q^{d}} q^{d\binom{k}{2}+(d s+n+r-d n+d) k}, \\
& \frac{\left(q^{d s+r-(d-2 j-1) n} ; q^{d}\right)_{k}}{\left(q^{d s+d-(d-2 j) n} ; q^{d}\right)_{k}}=\frac{\left(q^{d s+d-(d-2 j) n+d k} ; q^{d}\right)_{(n+r-d) / d}}{\left(q^{d s+d-(d-2 j) n} ; q^{d}\right)_{(n+r-d) / d}} \quad \text { for } 1 \leqslant j \leqslant \frac{d-3}{2},
\end{aligned}
$$

$$
\frac{\left(q^{d s+r+(d-2 j+1) n} ; q^{d}\right)_{k}}{\left(q^{d s+d+(d-2 j) n} ; q^{d}\right)_{k}}=\frac{\left(q^{d s+d+(d-2 j) n+d k} ; q^{d}\right)_{(n+r-d) / d}}{\left(q^{d s+d+(d-2 j) n} ; q^{d}\right)_{(n+r-d) / d}} \quad \text { for } 2 \leqslant j \leqslant \frac{d-1}{2}
$$

and

$$
\begin{aligned}
\frac{\left(q^{2 d s+r+(d-1) n} ; q^{d}\right)_{k}}{\left(q^{2 d s+d+(d-2) n} ; q^{d}\right)_{k}} & =\frac{\left(q^{2 d s+d+(d-2) n+d k} ; q^{d}\right)_{(n+r-d) / d}}{\left(q^{2 d s+d+(d-2) n} ; q^{d}\right)_{(n+r-d) / d}} \\
\frac{\left(q^{r} ; q^{d}\right)_{k}}{\left(q^{d s+d-n} ; q^{d}\right)_{k}} & =\frac{\left(q^{d s+d-n+d k} ; q^{d}\right)_{(n+r-d) / d-s}}{\left(q^{d s+d-n} ; q^{d}\right)_{(n+r-d) / d-s}}, \\
d\binom{k}{2}+(d s+n+r-d n+d) k & =d\binom{(d n-n-r) / d-s-k}{2}-d\binom{(d n-n-r) / d-s}{2} .
\end{aligned}
$$

Therefore, the summation in (4.10) can be written as

$$
\sum_{k=0}^{(d n-n-r) / d-s}(-1)^{k} q^{d\binom{(d n-n-r) / d-s-k}{2}-d\left({ }_{2}^{(d n-n-r) / d-s}\right)}\left[\begin{array}{c}
(d n-n-r) / d-s \tag{4.11}\\
k
\end{array}\right]_{q^{d}} P\left(q^{d k}\right)
$$

where $P\left(q^{d k}\right)$ is a polynomial in $q^{d k}$ of degree $(n+r-d)(d-2) / d+(n+r-d s-d) / d=$ $(d n-n-r) / d-s-(d-r-1) \leqslant(d n-n-r) / d-s-1$. By (2.4), we conclude that (4.11) is equal to 0 and so is (4.10). This means that (4.1) is true modulo $a-q^{n}$.

In the same way, we can establish the q-congruence (4.2).

Proof of Theorem 1.3. It is well known that $\Phi_{n}(q)$ is a factor of $1-q^{m}$ if and only if n divides m. Thus, when $a=1$ the denominators of (4.1) and (4.2) are all coprime with $\Phi_{n}(q)$. On the other hand, when $a=1$, the polynomial $\left(1-a q^{n}\right)\left(a-q^{n}\right)=\left(1-q^{n}\right)^{2}$ contains the factor $\Phi_{n}(q)^{2}$. Therefore, the q-supercongruence (1.9) follows by taking $a=1$ in (4.1) and (4.2). Finally, assume that $n=p$ is a prime, taking the limits as $q \rightarrow 1$ in both sides of (1.9), we get (1.10).

Data Availability Statements. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[2] A. Deines, J.G. Fuselier, L. Long, H. Swisher, F.-T. Tu, Hypergeometric series, truncated hypergeometricseries, and Gaussian hypergeometric functions, Directions in Number Theory, vol. 3, Assoc. Women Math. Ser., Springer, New York, 2016, pp. 125-159.
[3] M. El Bachraoui, On supercongruences for truncated sums of squares of basic hypergeometric series, Ramanujan J. 54 (2021), 415-426.
[4] V.J.W. Guo, Factors of some truncated basic hypergeometric series, J. Math. Anal. Appl. 476 (2019), 851-859.
[5] V.J.W. Guo, Some q-supercongruences from Gasper's Karlsson-Minton type summation, Ramanujan J. 60 (2023), 825-835.
[6] V.J.W. Guo and M.J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx. 53 (2021), 155-200.
[7] V.J.W. Guo, J. Zeng, Some q-analogues of supercongruences of Rodriguez-Villegas, J. Number Theory 145 (2014), 301-316.
[8] V.J.W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[9] E. Mortenson, A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function, J. Number Theory 99 (2003), 139-147.
[10] H.-X. Ni and H. Pan, Some symmetric q-congruences modulo the square of a cyclotomic polynomial, J. Math. Anal. Appl. 481 (2020), Art. 123372.
[11] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, in: Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003, pp. 223-231.
[12] Z.-W. Sun, On sums of Apéry polynomials and related congruences, J. Number Theory 132 (2012), 2673-2690.
[13] C. Wang and H. Pan, Supercongruences concerning truncated hypergeometric series, Math. Z. 300 (2022), 161-177.
[14] C. Wei, A q-supercongruence from a q-analogue of Whipple's ${ }_{3} F_{2}$ summation formula, J. Combin. Theory Ser. A 194 (2023), Art. 105705.

[^0]: ${ }^{*}$ Corresponding author.

