Combinatorial proofs of a kind of binomial and q-binomial coefficient identities*

Victor J. W. Guo ${ }^{\text {a }}$ and Jing Zhang ${ }^{\text {b }}$
Department of Mathematics, East China Normal University
Shanghai 200062, People's Republic of China
${ }^{\text {a }}$ jwguo@math.ecnu.edu.cn, http://math.ecnu.edu.cn/~${ }^{\text {jwguo }}{ }^{\text {b }}$ jzhang1984@yahoo.cn

Abstract. We give combinatorial proofs of some binomial and q-binomial identities in the literature, such as

$$
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{\left(9 k^{2}+3 k\right) / 2}\left[\begin{array}{c}
2 n \\
n+3 k
\end{array}\right]=\left(1+q^{n}\right) \prod_{k=1}^{n-1}\left(1+q^{k}+q^{2 k}\right) \quad(n \geq 1)
$$

and

$$
\sum_{k=0}^{\infty}\binom{3 n}{2 k}(-3)^{k}=(-8)^{n} .
$$

Two related conjectures are proposed at the end of this paper.

1 Introduction

There are many different q-analogues of the following binomial coefficient identity

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}(-1)^{k}\binom{2 n}{n+2 k}=2^{n} \tag{1.1}
\end{equation*}
$$

[^0]in the literature. Here is a list of such identities:
\[

$$
\begin{align*}
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{2 k^{2}}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] & =\left(-q ; q^{2}\right)_{n}, \tag{1.2}\\
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{2 k^{2}+k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] & =\left(1+q^{n}\right)\left(-q^{2} ; q^{2}\right)_{n-1}, \tag{1.3}\\
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{2 k^{2}+2 k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] & =(1+q)\left(-q ; q^{2}\right)_{n-1} q^{n-1}, \tag{1.4}\\
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{3 k^{2}+k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] & =(-q ; q)_{n}, \tag{1.5}\\
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{\left(5 k^{2}+k\right) / 2}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] & =\sum_{k=0}^{\infty} q^{k^{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right], \tag{1.6}\\
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] & =\sum_{k=0}^{\infty} q^{n k}\left[\begin{array}{l}
n \\
k
\end{array}\right], \tag{1.7}
\end{align*}
$$
\]

where the q-shifted factorials are defined by $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ and the q-binomial coefficients are defined as

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, & \text { if } 0 \leq k \leq n \\
0, & \text { otherwise }\end{cases}
$$

Identities (1.2)-(1.4) can be proved by using the q-binomial theorem and $\mathrm{i}^{2}=-1$ or other methods. For (1.2), see Ismail, Kim and Stanton [5, Proposition 2(2)], Berkovich and Warnaar [2, §7], and Sills [6, (3.3)]. For (1.3), see [5, Proposition 2(3)]. The identity (1.5) corresponds to Slater's Bailey pair $C(1)$. Identities (1.6) and (1.7) were discovered by Bressoud [3, (1.1) and (1.5)], and the former is usually known as a finite form of the first Rogers-Ramanujan identity.

For each of the identities (1.2)-(1.7), one can change q to q^{-1} to find a new identity of the same type. The identities (1.2)-(1.4) are "self-dual", (1.6) and (1.7) are dual, and the dual of (1.5) is as follows:

$$
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k^{2}+k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right]=q^{\binom{n}{2}}(-q ; q)_{n}
$$

This identity is known as the Bailey pair $C(5)$ in Slater's list.
An identity similar to (1.1) is

$$
\sum_{k=-\infty}^{\infty}(-1)^{k}\binom{2 n}{n+3 k}= \begin{cases}1, & \text { if } n=0 \tag{1.8}\\ 2 \cdot 3^{n-1}, & \text { if } n \geq 1\end{cases}
$$

which also has two different q-analogues as follows:

$$
\begin{align*}
& \sum_{k=-\infty}^{\infty}(-1)^{k} q^{\left(9 k^{2}+3 k\right) / 2}\left[\begin{array}{c}
2 n \\
n+3 k
\end{array}\right]= \begin{cases}1, & \text { if } n=0, \\
\left(1+q^{n}\right) \frac{\left(q^{3} ; q^{3}\right)_{n-1}}{(q ; q)_{n-1}}, & \text { if } n \geq 1,\end{cases} \tag{1.9}\\
& \sum_{k=-\infty}^{\infty}(-1)^{k} q^{\left(9 k^{2}+9 k\right) / 2}\left[\begin{array}{c}
2 n \\
n+3 k
\end{array}\right]= \begin{cases}1, & \text { if } n=0 \\
1+q, & \text { if } n=1, \\
\left(1+q+q^{2}\right)\left(1+q^{n}\right) \frac{\left(q^{3} ; q^{3}\right)_{n-2}}{(q ; q)_{n-2} q^{n-2},} & \text { if } n \geq 2\end{cases} \tag{1.10}
\end{align*}
$$

Like (1.2)-(1.4), Identities (1.9) and (1.10) can be proved by the q-binomial theorem. Identity (1.9) is equivalent to the Bailey pair $J(2)$ in [8], and can also be found in [5, Proposition 2(5)]. This identity was utilized by Berkovich and Warnaar [2] to prove a 'perfect' Rogers-Ramanujan identity.

There exists another not-so-famous binomial coefficient identity similar to (1.1) and (1.8) as follows:

$$
\sum_{k=0}^{\infty}\binom{n}{2 k}(-3)^{k}=\left\{\begin{array}{lll}
(-2)^{n}, & \text { if } n \equiv 0 & (\bmod 3) \tag{1.11}\\
(-2)^{n-1}, & \text { if } n \equiv 1 & (\bmod 3) \\
(-2)^{n-1}, & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

The main purpose of this paper is to give combinatorial proofs of the identities (1.1)(1.4), (1.8)-(1.11), and some of their companions which appeared in the literature, such as

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}(-1)^{k}\binom{2 n+1}{n+3 k}=3^{n} \tag{1.12}
\end{equation*}
$$

However, we are unable to give combinatorial proofs of (1.5)-(1.7).

2 Proofs of (1.1)-(1.4)

Proof of (1.1). Let $S=\left\{a_{1}, \ldots, a_{2 n}\right\}$ be a set of $2 n$ elements, and let

$$
\begin{aligned}
\mathscr{F} & =\{A \subseteq S: \# A \equiv n \quad(\bmod 2)\} \\
\mathscr{G} & =\left\{A \subseteq S: \#\left(A \cap\left\{a_{2 i-1}, a_{2 i}\right\}\right)=1 \text { for all } i=1, \ldots, n\right\} .
\end{aligned}
$$

It is easy to see that $\mathscr{G} \subseteq \mathscr{F}$ and $\# \mathscr{G}=2^{n}$. For any $A \in \mathscr{F}$, we associate A with a sign $\operatorname{sgn}(A)=(-1)^{(\# A-n) / 2}$. It is clear that

$$
\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{2 n}{n+2 k}=\sum_{A \in \mathscr{F}} \operatorname{sgn}(A)=\sum_{A \in \mathscr{F} \backslash \mathscr{G}} \operatorname{sgn}(A)+\sum_{A \in \mathscr{G}} \operatorname{sgn}(A) .
$$

Clearly, $\operatorname{sgn}(A)=1$ for $A \in \mathscr{G}$. What remains is to construct a sign-reversing involution on the set $\mathscr{F} \backslash \mathscr{G}$.

For any $A \in \mathscr{F} \backslash \mathscr{G}$, choose the first number i such that $\#\left(A \cap\left\{a_{2 i-1}, a_{2 i}\right\}\right) \neq 1$, i.e., A contains both $a_{2 i-1}$ and $a_{2 i}$ or none of them. Let A^{\prime} be a subset of S obtained from A as follows:

$$
A^{\prime}= \begin{cases}A \cup\left\{a_{2 i-1}, a_{2 i}\right\}, & \text { if }\left\{a_{2 i-1}, a_{2 i}\right\} \cap A=\emptyset \tag{2.1}\\ A \backslash\left\{a_{2 i-1}, a_{2 i}\right\}, & \text { if }\left\{a_{2 i-1}, a_{2 i}\right\} \subseteq A\end{cases}
$$

It is obvious that $A^{\prime} \in \mathscr{F} \backslash \mathscr{G}$, and $A \mapsto A^{\prime}$ is the desired involution.
For $A \in S$, we associate it with a weight $\|A\|=\sum_{a \in A} a$. By the q-binomial theorem (cf. Andrews [1, Theorem 3.3])

$$
(z ; q)_{N}=\sum_{j=0}^{N}\left[\begin{array}{c}
N \\
j
\end{array}\right](-1)^{j} z^{j} q^{\left(\frac{j}{2}\right)}
$$

we have

$$
\sum_{\substack{A \subset[n] \tag{2.2}\\
\# A=k}} q^{\|A\|}=\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{\binom{k+1}{2}}
$$

Here and in what follows $[n]:=\{1, \ldots, n\}$. Now we can give proofs of (1.2)-(1.4).
Proof of (1.2). Let $\left\{a_{2 i-1}, a_{2 i}\right\}=\{-(2 i-1) / 2,(2 i-1) / 2\}$ for $i=1, \ldots, n$. Since $a_{2 i-1}+a_{2 i}=0$, the involution in the proof of (1.1) is indeed weight-preserving and signreversing. It follows that

$$
\begin{equation*}
\sum_{A \in \mathscr{F}} \operatorname{sgn}(A) q^{\|A\|}=\sum_{A \in \mathscr{F} \backslash \mathscr{G}} \operatorname{sgn}(A) q^{\|A\|}+\sum_{A \in \mathscr{G}} \operatorname{sgn}(A) q^{\|A\|}=\sum_{A \in \mathscr{G}} \operatorname{sgn}(A) q^{\|A\|} . \tag{2.3}
\end{equation*}
$$

It is easy to see that S is obtained from $[2 n]$ by a shift $-(2 n+1) / 2$. By (2.2), the left-hand of (2.3) equals

$$
\left.\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor} \sum_{\substack{A \subseteq S \\
\# A=n+2 k}} \operatorname{sgn}(A) q^{\|A\|}=\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] q^{(n+2 k+1}{ }_{2}\right) q^{-(n+2 k)(2 n+1) / 2} .
$$

On the other hand, the right-hand side of (2.3) is given by

$$
\prod_{i=1}^{n}\left(q^{-(2 i-1) / 2}+q^{(2 i-1) / 2}\right)=\left(-q ; q^{2}\right)_{n} q^{-n^{2} / 2}
$$

After simplification, we obtain (1.2).

Proof of (1.3). Note that the index i in (2.1) is always less than n. Otherwise, $\#(A \cap$ $\left.\left\{a_{2 i-1}, a_{2 i}\right\}\right)=1$ for $i=1, \ldots, n-1$ and $\#\left(A \cap\left\{a_{2 n-1}, a_{2 n}\right\}\right) \neq 1$, which is contradictory to the condition $\# A \equiv n(\bmod 2)$. Thus, if we take $\left\{a_{2 i-1}, a_{2 i}\right\}=\{-i, i\}$ for $i=1, \ldots, n-1$ and $\left\{a_{2 n-1}, a_{2 n}\right\}=\{0, n\}$, then the involution in the proof of (1.1) is also weight-preserving and sign-reversing, and (2.3) still holds. Similarly as before, we obtain

$$
\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] q^{(n+2 k+1)} q^{-n(n+2 k)}=\left(q^{0}+q^{n}\right) \prod_{i=1}^{n-1}\left(q^{-i}+q^{i}\right),
$$

which is equivalent to (1.3).
Proof of (1.4). Let $\left\{a_{2 i-1}, a_{2 i}\right\}=\{-(2 i-1) / 2,(2 i-1) / 2\}$ for $i=1, \ldots, n-1$ and $\left\{a_{2 n-1}, a_{2 n}\right\}=\{(2 n-1) / 2,(2 n+1) / 2\}$. Then $S=\{i-(2 n-1) / 2: i \in[2 n]\}$ and the previous involution yields

$$
\begin{aligned}
& \sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] q^{\left({ }^{(+2 k+1}\right)} q^{-(n+2 k)(2 n-1) / 2} \\
& \quad=\left(q^{(2 n-1) / 2}+q^{(2 n+1) / 2}\right) \prod_{i=1}^{n-1}\left(q^{-(2 i-1) / 2}+q^{(2 i-1) / 2}\right),
\end{aligned}
$$

which, after simplification, leads to (1.4).
Similarly, if we set $S=\left\{a_{1}, \ldots, a_{2 n+1}\right\}$ be a set of $2 n+1$ elements, and again let

$$
\begin{aligned}
\mathscr{F} & =\{A \subseteq S: \# A \equiv n \quad(\bmod 2)\} \\
\mathscr{G} & =\left\{A \subseteq S: \#\left(A \cap\left\{a_{2 i-1}, a_{2 i}\right\}\right)=1 \text { for all } i=1, \ldots, n\right\} .
\end{aligned}
$$

then the same argument implies that

$$
\sum_{k=-\infty}^{\infty}(-1)^{k}\binom{2 n+1}{n+2 k}=2^{n}
$$

Furthermore, letting $\left\{a_{2 i-1}, a_{2 i}\right\}=\{-(2 i-1) / 2,(2 i-1) / 2\}, i=1, \ldots, n$, and $a_{2 n+1}=$ $(2 n+1) / 2$, we obtain

$$
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{2 k^{2}}\left[\begin{array}{l}
2 n+1 \tag{2.4}\\
n+2 k
\end{array}\right]=\left(-q ; q^{2}\right)_{n}
$$

(see [5, Propositon 2(2)]); while letting $\left\{a_{2 i-1}, a_{2 i}\right\}=\{-i, i\}, i=1, \ldots, n$, and $a_{2 n+1}=0$, we obtain

$$
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{2 k^{2}-k}\left[\begin{array}{l}
2 n+1 \\
n+2 k
\end{array}\right]=\left(-q^{2} ; q^{2}\right)_{n}
$$

Moreover, replacing q by q^{-1} in (2.4) and using the relation

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q^{-1}}=q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]
$$

yields

$$
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{2 k^{2}-2 k}\left[\begin{array}{l}
2 n+1 \\
n+2 k
\end{array}\right]=\left(-q ; q^{2}\right)_{n} q^{n} .
$$

3 Proofs (1.8)-(1.10)

Recall that the symmetric difference of two sets A and B, denoted by $A \Delta B$, is the set of elements belonging to one but not both of A and B (cf. [4, p. 3]). In other words,

$$
A \Delta B:=A \cup B \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A) .
$$

It is easy to see that $(A \Delta B) \Delta B=A$. Here we shall use the notation $A \Delta B$ to polish our description of certain involution.
Proof of (1.8). Let $S=\left\{a_{1}, \ldots, a_{2 n}\right\}(n \geq 1)$, and let

$$
\begin{equation*}
\mathscr{P}:=\{A \subseteq S: \# A \equiv n \quad(\bmod 3)\} . \tag{3.1}
\end{equation*}
$$

For any $A \in \mathscr{P}$, we associate A with a $\operatorname{sign} \operatorname{sgn}(A)=(-1)^{(\# A-n) / 3}$. Then

$$
\sum_{k=-\lfloor n / 3\rfloor}^{\lfloor n / 3\rfloor}(-1)^{k}\binom{2 n}{n+3 k}=\sum_{A \in \mathscr{P}} \operatorname{sgn}(A) .
$$

We define a subset of $\mathscr{Q} \subseteq \mathscr{P}$ as follows:

$$
\begin{equation*}
\mathscr{Q}:=\left\{A \in \mathscr{P}: \#\left(A \cap\left\{a_{1}, \ldots, a_{2 i+1}\right\}\right) \notin\{i-1, i+2\} \text { for } i=1, \ldots, n-1\right\} . \tag{3.2}
\end{equation*}
$$

We will show that the elements of $\mathscr{P} \backslash \mathscr{Q}$ cancel pairwise, i.e.,

$$
\begin{equation*}
\sum_{A \in \mathscr{P} \backslash \mathscr{2}} \operatorname{sgn}(A)=0 . \tag{3.3}
\end{equation*}
$$

For any $A \in \mathscr{P} \backslash \mathscr{Q}$, there exist some numbers $i \leq n-1$ such that $\#\left(A \cap\left\{a_{1}, \ldots, a_{2 i+1}\right\}\right) \in$ $\{i-1, i+2\}$. Choose the smallest such i and let

$$
\begin{equation*}
A^{\prime}=A \Delta\left\{a_{1}, \ldots, a_{2 i+1}\right\} . \tag{3.4}
\end{equation*}
$$

Then $\# A^{\prime}=\# A \pm 3$ and $A^{\prime} \in \mathscr{P} \backslash \mathscr{Q}$. It is easy to see that $A \mapsto A^{\prime}$ is a sign-reversing involution, and therefore (3.3) holds. It remains to evaluate the following summation

$$
\sum_{A \in \mathscr{Q}} \operatorname{sgn}(A) .
$$

For any $A \in \mathscr{Q}$, we claim that

$$
\begin{equation*}
\#\left(A \cap\left\{a_{1}, \ldots, a_{2 i+1}\right\} \in\{i, i+1\}, \text { for all } i=1, \ldots, n-1 .\right. \tag{3.5}
\end{equation*}
$$

Indeed, by definition, the statement (3.5) is obviously true for $i=1$. Suppose it holds for $i-1$, i.e.,

$$
\#\left(A \cap\left\{a_{1}, \ldots, a_{2 i-1}\right\}\right) \in\{i-1, i\},
$$

Then

$$
\#\left(A \cap\left\{a_{1}, \ldots, a_{2 i+1}\right\}\right) \in\{i-1, i, i+1, i+2\} .
$$

By (3.2), we confirm our claim. In particular,

$$
\begin{equation*}
\#\left(A \cap\left\{a_{1}, \ldots, a_{2 n-1}\right\}\right) \in\{n-1, n\} . \tag{3.6}
\end{equation*}
$$

Thus by (3.1), we must have $\# A=n$ and so $\operatorname{sgn}(A)=1$. Note that we have 2 possible choices for $A \cap\left\{a_{1}\right\}$. By (3.5), we have 3 possible choices for each $A \cap\left\{a_{2 i}, a_{2 i+1}\right\}$, $i=1, \ldots, n-1$. Finally, we only have one choice for $A \cap\left\{a_{2 n}\right\}$ according to (3.6) and $\# A=n$. This proves that $\# \mathscr{Q}=2 \cdot 3^{n}$ and therefore completes the proof of (1.8).

For $A \in S$, recall that its weight is defined by $\|A\|=\sum_{a \in A} a$. In order to prove (1.9) and (1.10), we need to consider the following weighted sum

$$
\sum_{A \in \mathscr{P}} \operatorname{sgn}(A) q^{\|A\|}
$$

on a particular \mathscr{P}. As one might have seen, the involution $A \mapsto A^{\prime}$ in (3.4) is in general not weight-preserving. Nevertheless, a little modification will fix this problem. For any $A \in \mathscr{P} \backslash \mathscr{Q}$, choose the same i as in (3.4), and let $A^{\prime \prime}$ be constructed as follows:

- $a_{1} \in A^{\prime \prime}$ if and only if $a_{1} \notin A$;
- $a_{2 j}, a_{2 j+1} \in A^{\prime \prime}$ if $a_{2 j}, a_{2 j+1} \notin A(j=1, \ldots, i-1)$;
- $a_{2 j}, a_{2 j+1} \notin A^{\prime \prime}$ if $a_{2 j}, a_{2 j+1} \in A(j=1, \ldots, i-1)$;
- $a_{2 j} \in A^{\prime \prime}$ and $a_{2 j+1} \notin A^{\prime \prime}$ if $a_{2 j} \in A$ and $a_{2 j+1} \notin A(j=1, \ldots, i-1)$;
- $a_{2 j} \notin A^{\prime \prime}$ and $a_{2 j+1} \in A^{\prime \prime}$ if $a_{2 j} \notin A$ and $a_{2 j+1} \in A(j=1, \ldots, i-1)$;
- $a_{k} \in A^{\prime \prime}$ if and only if $a_{k} \in A(2 i+2 \leq k \leq 2 n)$.

It is clear that $\# A^{\prime \prime}=\# A^{\prime}=\# A \pm 3$. Furthermore, if we putting $a_{1}=a_{2 j}+a_{2 j+1}=0$ then $A \mapsto A^{\prime \prime}$ is a weight-preserving and sign-reversing involution. Now we can give proofs of (1.9) and (1.10) by selecting the set $\left\{a_{1}, \ldots, a_{2 n}\right\}$ properly.

Proof of (1.9). Let $a_{1}=0, a_{2 n}=n$ and $\left\{a_{2 i}, a_{2 i+1}\right\}=\{-i, i\}$ for $i=1, \ldots, n-1$. Then the above involution $A \mapsto A^{\prime \prime}$ gives

$$
\sum_{A \in \mathscr{P} \backslash \mathscr{2}} \operatorname{sgn}(A) q^{\|A\|}=0,
$$

or

$$
\begin{equation*}
\sum_{A \in \mathscr{P}} \operatorname{sgn}(A) q^{\|A\|}=\sum_{A \in \mathscr{Q}} \operatorname{sgn}(A) q^{\|A\|} \tag{3.7}
\end{equation*}
$$

By (2.2), the left-hand of (3.7) may be written as

$$
\left.\sum_{k=-\lfloor n / 3\rfloor}^{\lfloor n / 3\rfloor} \sum_{\substack{A \subseteq S \\
\# A=n+3 k}} \operatorname{sgn}(A) q^{\|A\|}=\sum_{k=-\lfloor n / 3\rfloor}^{\lfloor n / 3\rfloor}(-1)^{k}\left[\begin{array}{c}
2 n \\
n+3 k
\end{array}\right] q^{(n+3 k+1}\right) q^{-(n+3 k) n}
$$

Let

$$
\mathscr{Q}^{*}:=\left\{A \subseteq\left\{a_{1}, \ldots, a_{2 n-1}\right\}: \#\left(A \cap\left\{a_{1}, \ldots, a_{2 i+1}\right\}\right) \notin\{i-1, i+2\}, i=1, \ldots, n-1\right\} .
$$

Then (3.5) also holds for $A \in \mathscr{Q}^{*}$. Moreover, for $i=1, \ldots, n-1$, we have three choices for each $A \cap\left\{a_{2 i}, a_{2 i+1}\right\}$, namely, $\left\{a_{2 i}\right\},\left\{a_{2 i+1}\right\},\left\{a_{2 i}, a_{2 i+1}\right\}$ if $\#\left(A \cap\left\{a_{1}, \ldots, a_{2 i-1}\right\}\right)=i-1$, and $\emptyset,\left\{a_{2 i}\right\},\left\{a_{2 i+1}\right\}$ if $\#\left(A \cap\left\{a_{1}, \ldots, a_{2 i-1}\right\}\right)=i$. Noticing that $a_{2 i}+a_{2 i+1}=0$, we have

$$
\sum_{A \in \mathscr{Q}^{*}} q^{\|A\|}=\sum_{\substack{A \in \mathscr{Q}^{*} \\ \# A=n-1}} q^{\|A\|}+\sum_{\substack{A \in \mathscr{Q}^{*} \\ \# A=n}} q^{\|A\|}=2 \prod_{i=1}^{n-1}\left(q^{i}+q^{-i}+q^{0}\right)
$$

It is not hard to image that there should exist a bijection from $\left\{A \in \mathscr{Q}^{*}: \# A=n-1\right\}$ to $\left\{A \in \mathscr{Q}^{*}: \# A=n\right\}$ which preserves the weight. Indeed, our definition of the involution $A \mapsto A^{\prime \prime}$ on $\mathscr{P} \backslash \mathscr{Q}$ can be simultaneously applied to \mathscr{Q}^{*}, which yields the desired bijection. It follows that

$$
\sum_{\substack{A \in \mathscr{Q}^{*} \\ \# A=n-1}} q^{\|A\|}=\sum_{\substack{A \in \mathscr{Q}^{*} \\ \# A=n}} q^{\|A\|}=\prod_{i=1}^{n-1}\left(q^{i}+q^{-i}+q^{0}\right)
$$

Since

$$
\mathscr{Q}=\left\{A \in \mathscr{Q}^{*}: \# A=n\right\} \biguplus\left\{A \cup\left\{a_{2 n}\right\}: A \in \mathscr{Q}^{*}, \# A=n-1\right\}
$$

$\left(a_{2 n}=n\right.$ in this proof $)$, the right-hand of (3.7) equals

$$
\sum_{A \in \mathscr{Q}} q^{\|A\|}=\sum_{\substack{A \in \mathscr{Q}^{*} \\ \# A=n}} q^{\|A\|}+q^{n} \sum_{\substack{A \in \mathscr{Q}^{*} \\ \# A=n-1}} q^{\|A\|}=\left(1+q^{n}\right) \prod_{i=1}^{n-1}\left(q^{i}+q^{-i}+q^{0}\right)
$$

The proof then follows after simplification.
Proof of (1.10). Suppose $n \geq 3$. Let $a_{1}=0, a_{2 n-2}=n-1, a_{2 n-1}=n, a_{2 n}=n+1$ and $\left\{a_{2 i}, a_{2 i+1}\right\}=\{-i, i\}$ for $i=1, \ldots, n-2$. For any $A \in \mathscr{P} \backslash \mathscr{Q}$, we claim that

$$
\#\left(A \cap\left\{a_{1}, \ldots, a_{2 n-1}\right\}\right) \notin\{n-2, n+1\} .
$$

Otherwise, we have

$$
\# A \in\{n-2, n-1, n+1, n+2\}
$$

which is contrary to the definition (3.1). Therefore, the index i we choose for (3.4) is indeed less than $n-1$. Since $a_{2 i}+a_{2 i+1}=0(1 \leq i \leq n-2)$ here, the previous involution $A \mapsto A^{\prime \prime}$ is still weight-preserving and sign-reversing, and thus (3.7) holds again. In this case, the left-hand of (3.7) equals

$$
\left.\sum_{k=-\lfloor n / 3\rfloor}^{\lfloor n / 3\rfloor}(-1)^{k}\left[\begin{array}{c}
2 n \\
n+3 k
\end{array}\right] q^{(n+3 k+1}{ }_{2}\right) q^{-(n+3 k)(n-1)} .
$$

To evaluate the right-hand side of (3.7), we introduce

$$
\mathscr{Q}^{\star}:=\left\{A \subseteq\left\{a_{1}, \ldots, a_{2 n-3}\right\}: \#\left(A \cap\left\{a_{1}, \ldots, a_{2 i+1}\right\}\right) \notin\{i-1, i+2\}, i=1, \ldots, n-2\right\} .
$$

Then the same argument as \mathscr{Q}^{*} implies that

$$
\begin{equation*}
\sum_{A \in \mathscr{Q}^{\star}} q^{\|A\|}=\sum_{\substack{A \in \mathscr{Q}^{\star} \\ \# A=n-1}} q^{\|A\|}+\sum_{\substack{A \in \mathscr{Q}^{\star} \\ \# A=n-2}} q^{\|A\|}=2 \prod_{i=1}^{n-2}\left(q^{i}+q^{-i}+q^{0}\right) . \tag{3.8}
\end{equation*}
$$

Moreover, our definition for the involution $A \mapsto A^{\prime \prime}$ on $\mathscr{P} \backslash \mathscr{Q}$ can also be applied to \mathscr{Q}^{\star}, and we have

$$
\begin{equation*}
\sum_{\substack{A \in \mathscr{Q}^{\star} \\ \# A=n-1}} q^{\|A\|}=\sum_{\substack{A \in \mathscr{Q}^{\star} \\ \# A=n-2}} q^{\|A\|}=\prod_{i=1}^{n-2}\left(q^{i}+q^{-i}+q^{0}\right) . \tag{3.9}
\end{equation*}
$$

It is easy to see that the right-hand of (3.7) equals

$$
\begin{aligned}
\sum_{A \in \mathscr{Q}} q^{\|A\|}= & \sum_{\substack{A \in \mathscr{Q} \star \\
\# A=n-1}} q^{\|A\|}\left(q^{a_{2 n-2}}+q^{a_{2 n-1}}+q^{a_{2 n}}\right) \\
& +\sum_{\substack{A \in \mathscr{Q}^{\star} \\
\# A=n-2}} q^{\|A\|}\left(q^{a_{2 n-2}+a_{2 n-1}}+q^{a_{2 n-2}+a_{2 n}}+q^{a_{2 n-1}+a_{2 n}}\right) .
\end{aligned}
$$

Substituting (3.8) and $\left\{a_{2 n-2}, a_{2 n-1}, a_{2 n}\right\}=\{n-1, n, n+1\}$ into the above equation, we complete the proof of (1.10).

No doubt that we may define the involution $A \mapsto A^{\prime \prime}$ on the set $\left\{a_{1}, \ldots, a_{2 n+1}\right\}$. Let $\left\{a_{1}, \ldots, a_{2 n}\right\}$ be as in the proof of (1.9). Then putting $a_{2 n+1}=-n$ we obtain

$$
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{\left(9 k^{2}-3 k\right) / 2}\left[\begin{array}{c}
2 n+1 \tag{3.10}\\
n+3 k
\end{array}\right]=\frac{\left(q^{3} ; q^{3}\right)_{n}}{(q ; q)_{n}},
$$

while putting $a_{2 n+1}=n+1$ we get

$$
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{\left(9 k^{2}+3 k\right) / 2}\left[\begin{array}{l}
2 n+1 \tag{3.11}\\
n+3 k
\end{array}\right]=\frac{\left(q^{3} ; q^{3}\right)_{n-1}}{(q ; q)_{n-1}}\left(1+q^{n}+q^{n+1}\right) \quad(n \geq 1)
$$

Both (3.10) and (3.11) are q-analogues of (1.12). Finally, we point out that the following two identities:

$$
\begin{aligned}
& \sum_{k=-\infty}^{\infty}(-1)^{k} q^{\left(9 k^{2}+9 k\right) / 2}\left[\begin{array}{c}
2 n \\
n+3 k+1
\end{array}\right]=\frac{\left(q^{3} ; q^{3}\right)_{n-1}}{(q ; q)_{n-1}} q^{n-1} \chi(n>0), \\
& \sum_{k=-\infty}^{\infty}(-1)^{k} q^{\left(9 k^{2}+3 k\right) / 2}\left[\begin{array}{c}
2 n+1 \\
n+3 k+1
\end{array}\right]=\frac{\left(q^{3} ; q^{3}\right)_{n}}{(q ; q)_{n}}
\end{aligned}
$$

appearing in [5] can also be proved in the same way.

4 Proofs of (1.11)

First Proof. By the binomial theorem, we have

$$
\begin{align*}
(\sqrt{3}+\mathrm{i})^{n} & =\sum_{k=0}^{\infty}\binom{n}{k} 3^{k / 2} \mathrm{i}^{n-k} \\
& =\mathrm{i}^{n} \sum_{k=0}^{\infty}\binom{n}{2 k}(-3)^{k}+\mathrm{i}^{n-1} \sqrt{3} \sum_{k=0}^{\infty}\binom{n}{2 k+1}(-3)^{k} . \tag{4.1}
\end{align*}
$$

On the other hand, there holds

$$
\begin{equation*}
(\sqrt{3}+\mathrm{i})^{n}=2^{n}\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right)^{n}=2^{n}\left(\cos \frac{n \pi}{6}+\mathrm{i} \sin \frac{n \pi}{6}\right) . \tag{4.2}
\end{equation*}
$$

Comparing (4.1) and (4.2), we immediately get (1.11) and its companion

$$
\sum_{k=0}^{\infty}\binom{n}{2 k+1}(-3)^{k}=\left\{\begin{array}{lll}
0, & \text { if } n \equiv 0 & (\bmod 3) \tag{4.3}\\
(-2)^{n-1}, & \text { if } n \equiv 1 & (\bmod 3) \\
(-1)^{n} 2^{n-1}, & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

Second Proof. Let $\Gamma=\{a, b, c, d, e\}$ denote an alphabet. For a word $w=w_{1} \cdots w_{n} \in \Gamma^{*}$, its length n is denoted by $|w|$. For any $x \in \Gamma$, let $|w|_{x}$ be the number of x 's appearing in the word w. Let W_{n} denote the set of words $w=w_{1} \cdots w_{n} \in \Gamma^{*}$ satisfying the following conditions:
(i) $|w|_{a}+|w|_{b}+|w|_{c}=|w|_{d}$.
(ii) If we remove all e 's from w, then each d is in the even position.

It is easy to see that there are $\binom{n}{2 k} 3^{k}$ words $w \in W_{n}$ such that $|w|_{d}=k$, and so

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k}(-3)^{k}=\sum_{w \in W_{n}}(-1)^{|w|_{d}} .
$$

We call $(-1)^{|w|_{d}}$ the sign of the word w. In what follows, we shall construct an involution on W_{n} which is sign-reversing for all non-fixed points.

For any word $w=w_{1} \cdots w_{n} \in W_{n}$, let $u_{i}=w_{3 i-2} w_{3 i-1} w_{3 i}, i=1, \ldots,\lfloor n / 3\rfloor$. According to the conditions (i) and (ii), the subwords u_{i} have at most 43 cases. Let us classify them into three types as follows:

$$
\begin{aligned}
& X: \text { ade, } b d e, c d e, \text { aed, bed, ced, ead, ebd; } \\
& Y: \text { eee, aee, bee, cee, eae, ebe, ece, eea, eeb, eec, dee, ede, eed, } \\
& \quad e c d, a d a, a d b, a d c, b d a, b d b, b d c, c d a, c d b, c d c, d a d, d b d, d c d ; \\
& Z: \text { eda, edb, edc, dea, deb, dec, dae, dbe, dce. }
\end{aligned}
$$

We claim that all the words in W_{n} with a u_{i} of type Y cancel pairwise. Indeed, for such a word w, choose the smallest number i such that u_{i} is of type Y. Then we obtain a word w^{\prime} by replacing u_{i} by u_{i}^{\prime}, where $u_{i} \longleftrightarrow u_{i}^{\prime}$ is determined by the following table:

eee \longleftrightarrow ecd	aee $\longleftrightarrow a d a$	bee $\longleftrightarrow a d b$	cee $\longleftrightarrow a d c$	eae $\longleftrightarrow b d a$
ebe $\longleftrightarrow b d b$	ece $\longleftrightarrow b d c$	eea $\longleftrightarrow c d a$	eeb $\longleftrightarrow c d b$	$e e c \longleftrightarrow c d c$
dee $\longleftrightarrow d a d$	ede $\longleftrightarrow d b d$	eed $\longleftrightarrow d c d$		

It is clear that $w^{\prime} \in W_{n},\left|w^{\prime}\right|_{d}=|w|_{d} \pm 1$, and hence $w \mapsto w^{\prime}$ is a sign-reversing involution.
On the other hand, for any word $w \in W_{n}$, we claim that if no u_{i} in w is of type Y, then no u_{i} in w is of type Z. In fact, by the definition of w, u_{1} must be of type X or Y. By the condition (ii), none of $d d$, ded, deed can appear in w and therefore no u_{i} of type X in w can be followed by a u_{j} of type Z. This proves the claim. It follows that the remained words in W_{n} are just those all u_{i} are of type X, and vice versa. Namely,

$$
\begin{equation*}
\sum_{w \in W_{n}}(-1)^{|w|_{d}}=\sum_{\substack{w \in W_{n} \\ \text { all } \\ u_{i} \text { is of type } X}}(-1)^{|w|_{d}} . \tag{4.4}
\end{equation*}
$$

Consider the right-hand side of (4.4) ($R H S\left(4.4\right.$) for short). Note that each u_{i} has 8 possible choices. We have the following three cases:

- If $n \equiv 0(\bmod 3)$, then $|w|_{d}=n / 3$ and $\operatorname{RHS}(4.4)=(-8)^{n / 3}$.
- If $n \equiv 1(\bmod 3)$, then w must be ended by a letter $e,|w|_{d}=(n-1) / 3$, and RHS $(4.4)=(-8)^{(n-1) / 3}$.
- If $n \equiv 2(\bmod 3)$, then w may be ended by $e e, a d, b d$, or $c d$, and

$$
\operatorname{RHS}(4.4)=(-8)^{(n-2) / 3}+3(-1)^{(n+1) / 3} 8^{(n-2) / 3}=(-2)^{n-1} .
$$

This completes the proof.
The combinatorial proof of (4.3) is exactly analogous. We need only to replace the condition (i) by $|w|_{a}+|w|_{b}+|w|_{c}=|w|_{d}-1$, and change "even" to "odd" in the condition (ii).

It is difficult to find q-analogues of (1.11) and (4.3). However, the mathematics software Maple hints us to propose the following two interesting conjectures.

Conjecture 4.1 Let $l, m, n \geq 0$ and $\epsilon \in\{0,1\}$. Then

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 l k^{2}+2 m k}\left[\begin{array}{c}
n \\
2 k+\epsilon
\end{array}\right]\left(1+q+q^{2}\right)^{k}
$$

is divisible by $(1+q)^{\lfloor(n+2) / 4\rfloor}\left(1+q^{2}\right)^{\lfloor(n+4) / 8\rfloor}$.
Conjecture 4.2 Let $m, n \geq 0$ and $\epsilon \in\{0,1\}$. Then

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 k^{2}+2 m k}\left[\begin{array}{c}
n \\
2 k+\epsilon
\end{array}\right]\left(1+q+q^{2}\right)^{k}
$$

is divisible by $(1+q)^{\lfloor n / 2\rfloor}\left(1+q^{2}\right)^{\lfloor n / 4\rfloor}$.

References

[1] G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[2] A. Berkovich and S.O. Warnaar, Positivity preserving transformations for q-binomial coefficients, Trans. Amer. Math. Soc. 357 (2005), 2291-2351.
[3] D. M. Bressoud, Some identities for terminating q-series, Math. Proc. Cambridge Philos. Soc. 89 (1981), 211-223.
[4] J. W. Harris, and H. Stocker, Handbook of Mathematics and Computational Science, New York, Springer-Verlag, 1998.
[5] M. E. H. Ismail, D. Kim, and D. Stanton, Lattice paths and positive trigonometric sums, Constr. Approx. 15 (1999), 69-81.
[6] A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), \#R13.
[7] L. J. Slater, A new proof of Rogers's transformations of infinite series, Proc. London Math. Soc. (2) 53 (1951), 460-475.
[8] L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167.

[^0]: *This work was supported in part by Shanghai "Chenguang" Project (\#2007CG29) and the National Science Foundation of China (\#10801054).

