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Abstract. We give combinatorial proofs of some binomial and q-binomial identities in
the literature, such as

∞∑

k=−∞
(−1)kq(9k2+3k)/2

[
2n

n + 3k

]
= (1 + qn)

n−1∏

k=1

(1 + qk + q2k) (n ≥ 1),

and ∞∑

k=0

(
3n

2k

)
(−3)k = (−8)n.

Two related conjectures are proposed at the end of this paper.

1 Introduction

There are many different q-analogues of the following binomial coefficient identity

∞∑

k=−∞
(−1)k

(
2n

n + 2k

)
= 2n, (1.1)

*This work was supported in part by Shanghai “Chenguang” Project (#2007CG29) and the National
Science Foundation of China (#10801054).
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in the literature. Here is a list of such identities:

∞∑

k=−∞
(−1)kq2k2

[
2n

n + 2k

]
= (−q; q2)n, (1.2)

∞∑

k=−∞
(−1)kq2k2+k

[
2n

n + 2k

]
= (1 + qn)(−q2; q2)n−1, (1.3)

∞∑

k=−∞
(−1)kq2k2+2k

[
2n

n + 2k

]
= (1 + q)(−q; q2)n−1q

n−1, (1.4)

∞∑

k=−∞
(−1)kq3k2+k

[
2n

n + 2k

]
= (−q; q)n, (1.5)

∞∑

k=−∞
(−1)kq(5k2+k)/2

[
2n

n + 2k

]
=

∞∑

k=0

qk2

[
n

k

]
, (1.6)

∞∑

k=−∞
(−1)kq(3k2+k)/2

[
2n

n + 2k

]
=

∞∑

k=0

qnk

[
n

k

]
, (1.7)

where the q-shifted factorials are defined by (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) and
the q-binomial coefficients are defined as

[
n

k

]
=





(q; q)n

(q; q)k(q; q)n−k

, if 0 ≤ k ≤ n,

0, otherwise.

Identities (1.2)–(1.4) can be proved by using the q-binomial theorem and i2 = −1 or other
methods. For (1.2), see Ismail, Kim and Stanton [5, Proposition 2(2)], Berkovich and
Warnaar [2, §7], and Sills [6, (3.3)]. For (1.3), see [5, Proposition 2(3)]. The identity (1.5)
corresponds to Slater’s Bailey pair C(1). Identities (1.6) and (1.7) were discovered by
Bressoud [3, (1.1) and (1.5)], and the former is usually known as a finite form of the first
Rogers-Ramanujan identity.

For each of the identities (1.2)–(1.7), one can change q to q−1 to find a new identity
of the same type. The identities (1.2)–(1.4) are “self-dual”, (1.6) and (1.7) are dual, and
the dual of (1.5) is as follows:

∞∑

k=−∞
(−1)kqk2+k

[
2n

n + 2k

]
= q(

n
2)(−q; q)n.

This identity is known as the Bailey pair C(5) in Slater’s list.
An identity similar to (1.1) is

∞∑

k=−∞
(−1)k

(
2n

n + 3k

)
=

{
1, if n = 0,

2 · 3n−1, if n ≥ 1,
(1.8)
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which also has two different q-analogues as follows:

∞∑

k=−∞
(−1)kq(9k2+3k)/2

[
2n

n + 3k

]
=





1, if n = 0,

(1 + qn)
(q3; q3)n−1

(q; q)n−1

, if n ≥ 1,
(1.9)

∞∑

k=−∞
(−1)kq(9k2+9k)/2

[
2n

n + 3k

]
=





1, if n = 0,

1 + q, if n = 1,

(1 + q + q2)(1 + qn)
(q3; q3)n−2

(q; q)n−2

qn−2, if n ≥ 2.

(1.10)

Like (1.2)–(1.4), Identities (1.9) and (1.10) can be proved by the q-binomial theorem.
Identity (1.9) is equivalent to the Bailey pair J(2) in [8], and can also be found in [5,
Proposition 2(5)]. This identity was utilized by Berkovich and Warnaar [2] to prove a
‘perfect’ Rogers-Ramanujan identity.

There exists another not-so-famous binomial coefficient identity similar to (1.1) and
(1.8) as follows:

∞∑

k=0

(
n

2k

)
(−3)k =





(−2)n, if n ≡ 0 (mod 3),

(−2)n−1, if n ≡ 1 (mod 3),

(−2)n−1, if n ≡ 2 (mod 3).

(1.11)

The main purpose of this paper is to give combinatorial proofs of the identities (1.1)–
(1.4), (1.8)–(1.11), and some of their companions which appeared in the literature, such
as

∞∑

k=−∞
(−1)k

(
2n + 1

n + 3k

)
= 3n. (1.12)

However, we are unable to give combinatorial proofs of (1.5)–(1.7).

2 Proofs of (1.1)–(1.4)

Proof of (1.1). Let S = {a1, . . . , a2n} be a set of 2n elements, and let

F = {A ⊆ S : #A ≡ n (mod 2)},
G = {A ⊆ S : #(A ∩ {a2i−1, a2i}) = 1 for all i = 1, . . . , n}.

It is easy to see that G ⊆ F and #G = 2n. For any A ∈ F , we associate A with a sign
sgn(A) = (−1)(#A−n)/2. It is clear that

bn/2c∑

k=−bn/2c
(−1)k

(
2n

n + 2k

)
=

∑

A∈F

sgn(A) =
∑

A∈F\G
sgn(A) +

∑

A∈G

sgn(A).
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Clearly, sgn(A) = 1 for A ∈ G . What remains is to construct a sign-reversing involution
on the set F \ G .

For any A ∈ F \ G , choose the first number i such that #(A ∩ {a2i−1, a2i}) 6= 1, i.e.,
A contains both a2i−1 and a2i or none of them. Let A′ be a subset of S obtained from A
as follows:

A′ =

{
A ∪ {a2i−1, a2i}, if {a2i−1, a2i} ∩ A = ∅,
A \ {a2i−1, a2i}, if {a2i−1, a2i} ⊆ A.

(2.1)

It is obvious that A′ ∈ F \ G , and A 7→ A′ is the desired involution. 2

For A ∈ S, we associate it with a weight ||A|| =
∑

a∈A a. By the q-binomial theorem
(cf. Andrews [1, Theorem 3.3])

(z; q)N =
N∑

j=0

[
N

j

]
(−1)jzjq(

j
2),

we have

∑

A⊆[n]
#A=k

q||A|| =
[
n

k

]
q(

k+1
2 ). (2.2)

Here and in what follows [n] := {1, . . . , n}. Now we can give proofs of (1.2)–(1.4).

Proof of (1.2). Let {a2i−1, a2i} = {−(2i − 1)/2, (2i − 1)/2} for i = 1, . . . , n. Since
a2i−1 + a2i = 0, the involution in the proof of (1.1) is indeed weight-preserving and sign-
reversing. It follows that

∑

A∈F

sgn(A)q||A|| =
∑

A∈F\G
sgn(A)q||A|| +

∑

A∈G

sgn(A)q||A|| =
∑

A∈G

sgn(A)q||A||. (2.3)

It is easy to see that S is obtained from [2n] by a shift −(2n+1)/2. By (2.2), the left-hand
of (2.3) equals

bn/2c∑

k=−bn/2c

∑
A⊆S

#A=n+2k

sgn(A)q||A|| =
bn/2c∑

k=−bn/2c
(−1)k

[
2n

n + 2k

]
q(

n+2k+1
2 )q−(n+2k)(2n+1)/2.

On the other hand, the right-hand side of (2.3) is given by

n∏
i=1

(q−(2i−1)/2 + q(2i−1)/2) = (−q; q2)nq
−n2/2.

After simplification, we obtain (1.2). 2
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Proof of (1.3). Note that the index i in (2.1) is always less than n. Otherwise, #(A ∩
{a2i−1, a2i}) = 1 for i = 1, . . . , n−1 and #(A∩{a2n−1, a2n}) 6= 1, which is contradictory to
the condition #A ≡ n (mod 2). Thus, if we take {a2i−1, a2i} = {−i, i} for i = 1, . . . , n−1
and {a2n−1, a2n} = {0, n}, then the involution in the proof of (1.1) is also weight-preserving
and sign-reversing, and (2.3) still holds. Similarly as before, we obtain

bn/2c∑

k=−bn/2c
(−1)k

[
2n

n + 2k

]
q(

n+2k+1
2 )q−n(n+2k) = (q0 + qn)

n−1∏
i=1

(q−i + qi),

which is equivalent to (1.3). 2

Proof of (1.4). Let {a2i−1, a2i} = {−(2i − 1)/2, (2i − 1)/2} for i = 1, . . . , n − 1 and
{a2n−1, a2n} = {(2n − 1)/2, (2n + 1)/2}. Then S = {i − (2n − 1)/2: i ∈ [2n]} and the
previous involution yields

bn/2c∑

k=−bn/2c
(−1)k

[
2n

n + 2k

]
q(

n+2k+1
2 )q−(n+2k)(2n−1)/2

= (q(2n−1)/2 + q(2n+1)/2)
n−1∏
i=1

(q−(2i−1)/2 + q(2i−1)/2),

which, after simplification, leads to (1.4). 2

Similarly, if we set S = {a1, . . . , a2n+1} be a set of 2n + 1 elements, and again let

F = {A ⊆ S : #A ≡ n (mod 2)},
G = {A ⊆ S : #(A ∩ {a2i−1, a2i}) = 1 for all i = 1, . . . , n}.

then the same argument implies that

∞∑

k=−∞
(−1)k

(
2n + 1

n + 2k

)
= 2n.

Furthermore, letting {a2i−1, a2i} = {−(2i − 1)/2, (2i − 1)/2}, i = 1, . . . , n, and a2n+1 =
(2n + 1)/2, we obtain

∞∑

k=−∞
(−1)kq2k2

[
2n + 1

n + 2k

]
= (−q; q2)n (2.4)

(see [5, Propositon 2(2)]); while letting {a2i−1, a2i} = {−i, i}, i = 1, . . . , n, and a2n+1 = 0,
we obtain

∞∑

k=−∞
(−1)kq2k2−k

[
2n + 1

n + 2k

]
= (−q2; q2)n.
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Moreover, replacing q by q−1 in (2.4) and using the relation
[
n

k

]

q−1

= qk(k−n)

[
n

k

]

yields

∞∑

k=−∞
(−1)kq2k2−2k

[
2n + 1

n + 2k

]
= (−q; q2)nq

n.

3 Proofs (1.8)–(1.10)

Recall that the symmetric difference of two sets A and B, denoted by A∆B, is the set of
elements belonging to one but not both of A and B (cf. [4, p. 3]). In other words,

A∆B := A ∪B \ (A ∩B) = (A \B) ∪ (B \ A).

It is easy to see that (A∆B)∆B = A. Here we shall use the notation A∆B to polish our
description of certain involution.

Proof of (1.8). Let S = {a1, . . . , a2n} (n ≥ 1), and let

P := {A ⊆ S : #A ≡ n (mod 3)}. (3.1)

For any A ∈ P, we associate A with a sign sgn(A) = (−1)(#A−n)/3. Then

bn/3c∑

k=−bn/3c
(−1)k

(
2n

n + 3k

)
=

∑

A∈P

sgn(A).

We define a subset of Q ⊆ P as follows:

Q := {A ∈ P : #(A ∩ {a1, . . . , a2i+1}) /∈ {i− 1, i + 2} for i = 1, . . . , n− 1}. (3.2)

We will show that the elements of P \Q cancel pairwise, i.e.,
∑

A∈P\Q
sgn(A) = 0. (3.3)

For any A ∈ P \Q, there exist some numbers i ≤ n−1 such that #(A∩{a1, . . . , a2i+1}) ∈
{i− 1, i + 2}. Choose the smallest such i and let

A′ = A∆{a1, . . . , a2i+1}. (3.4)

Then #A′ = #A ± 3 and A′ ∈ P \Q. It is easy to see that A 7→ A′ is a sign-reversing
involution, and therefore (3.3) holds. It remains to evaluate the following summation

∑

A∈Q

sgn(A).

6



For any A ∈ Q, we claim that

#(A ∩ {a1, . . . , a2i+1} ∈ {i, i + 1}, for all i = 1, . . . , n− 1. (3.5)

Indeed, by definition, the statement (3.5) is obviously true for i = 1. Suppose it holds for
i− 1, i.e.,

#(A ∩ {a1, . . . , a2i−1}) ∈ {i− 1, i},
Then

#(A ∩ {a1, . . . , a2i+1}) ∈ {i− 1, i, i + 1, i + 2}.
By (3.2), we confirm our claim. In particular,

#(A ∩ {a1, . . . , a2n−1}) ∈ {n− 1, n}. (3.6)

Thus by (3.1), we must have #A = n and so sgn(A) = 1. Note that we have 2 possible
choices for A ∩ {a1}. By (3.5), we have 3 possible choices for each A ∩ {a2i, a2i+1},
i = 1, . . . , n − 1. Finally, we only have one choice for A ∩ {a2n} according to (3.6) and
#A = n. This proves that #Q = 2 · 3n and therefore completes the proof of (1.8). 2

For A ∈ S, recall that its weight is defined by ||A|| = ∑
a∈A a. In order to prove (1.9)

and (1.10), we need to consider the following weighted sum
∑

A∈P

sgn(A)q||A||

on a particular P. As one might have seen, the involution A 7→ A′ in (3.4) is in general
not weight-preserving. Nevertheless, a little modification will fix this problem. For any
A ∈ P \Q, choose the same i as in (3.4), and let A′′ be constructed as follows:

• a1 ∈ A′′ if and only if a1 /∈ A;

• a2j, a2j+1 ∈ A′′ if a2j, a2j+1 /∈ A (j = 1, . . . , i− 1);

• a2j, a2j+1 /∈ A′′ if a2j, a2j+1 ∈ A (j = 1, . . . , i− 1);

• a2j ∈ A′′ and a2j+1 /∈ A′′ if a2j ∈ A and a2j+1 /∈ A (j = 1, . . . , i− 1);

• a2j /∈ A′′ and a2j+1 ∈ A′′ if a2j /∈ A and a2j+1 ∈ A (j = 1, . . . , i− 1);

• ak ∈ A′′ if and only if ak ∈ A (2i + 2 ≤ k ≤ 2n).

It is clear that #A′′ = #A′ = #A ± 3. Furthermore, if we putting a1 = a2j + a2j+1 = 0
then A 7→ A′′ is a weight-preserving and sign-reversing involution. Now we can give proofs
of (1.9) and (1.10) by selecting the set {a1, . . . , a2n} properly.

Proof of (1.9). Let a1 = 0, a2n = n and {a2i, a2i+1} = {−i, i} for i = 1, . . . , n− 1. Then
the above involution A 7→ A′′ gives

∑

A∈P\Q
sgn(A)q||A|| = 0,
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or
∑

A∈P

sgn(A)q||A|| =
∑

A∈Q

sgn(A)q||A||. (3.7)

By (2.2), the left-hand of (3.7) may be written as

bn/3c∑

k=−bn/3c

∑
A⊆S

#A=n+3k

sgn(A)q||A|| =
bn/3c∑

k=−bn/3c
(−1)k

[
2n

n + 3k

]
q(

n+3k+1
2 )q−(n+3k)n.

Let

Q∗ := {A ⊆ {a1, . . . , a2n−1} : #(A ∩ {a1, . . . , a2i+1}) /∈ {i− 1, i + 2}, i = 1, . . . , n− 1}.
Then (3.5) also holds for A ∈ Q∗. Moreover, for i = 1, . . . , n−1, we have three choices for
each A ∩ {a2i, a2i+1}, namely, {a2i}, {a2i+1}, {a2i, a2i+1} if #(A ∩ {a1, . . . , a2i−1}) = i− 1,
and ∅, {a2i}, {a2i+1} if #(A ∩ {a1, . . . , a2i−1}) = i. Noticing that a2i + a2i+1 = 0, we have

∑

A∈Q∗
q||A|| =

∑

A∈Q∗
#A=n−1

q||A|| +
∑

A∈Q∗
#A=n

q||A|| = 2
n−1∏
i=1

(qi + q−i + q0).

It is not hard to image that there should exist a bijection from {A ∈ Q∗ : #A = n−1} to
{A ∈ Q∗ : #A = n} which preserves the weight. Indeed, our definition of the involution
A 7→ A′′ on P\Q can be simultaneously applied to Q∗, which yields the desired bijection.
It follows that

∑

A∈Q∗
#A=n−1

q||A|| =
∑

A∈Q∗
#A=n

q||A|| =
n−1∏
i=1

(qi + q−i + q0).

Since
Q = {A ∈ Q∗ : #A = n}

⊎
{A ∪ {a2n} : A ∈ Q∗, #A = n− 1}

(a2n = n in this proof), the right-hand of (3.7) equals

∑

A∈Q

q||A|| =
∑

A∈Q∗
#A=n

q||A|| + qn
∑

A∈Q∗
#A=n−1

q||A|| = (1 + qn)
n−1∏
i=1

(qi + q−i + q0).

The proof then follows after simplification. 2

Proof of (1.10). Suppose n ≥ 3. Let a1 = 0, a2n−2 = n − 1, a2n−1 = n, a2n = n + 1 and
{a2i, a2i+1} = {−i, i} for i = 1, . . . , n− 2. For any A ∈ P \Q, we claim that

#(A ∩ {a1, . . . , a2n−1}) /∈ {n− 2, n + 1}.
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Otherwise, we have

#A ∈ {n− 2, n− 1, n + 1, n + 2},

which is contrary to the definition (3.1). Therefore, the index i we choose for (3.4) is
indeed less than n− 1. Since a2i + a2i+1 = 0 (1 ≤ i ≤ n− 2) here, the previous involution
A 7→ A′′ is still weight-preserving and sign-reversing, and thus (3.7) holds again. In this
case, the left-hand of (3.7) equals

bn/3c∑

k=−bn/3c
(−1)k

[
2n

n + 3k

]
q(

n+3k+1
2 )q−(n+3k)(n−1).

To evaluate the right-hand side of (3.7), we introduce

Q? := {A ⊆ {a1, . . . , a2n−3} : #(A ∩ {a1, . . . , a2i+1}) /∈ {i− 1, i + 2}, i = 1, . . . , n− 2}.

Then the same argument as Q∗ implies that

∑

A∈Q?

q||A|| =
∑

A∈Q?

#A=n−1

q||A|| +
∑

A∈Q?

#A=n−2

q||A|| = 2
n−2∏
i=1

(qi + q−i + q0). (3.8)

Moreover, our definition for the involution A 7→ A′′ on P \Q can also be applied to Q?,
and we have

∑

A∈Q?

#A=n−1

q||A|| =
∑

A∈Q?

#A=n−2

q||A|| =
n−2∏
i=1

(qi + q−i + q0). (3.9)

It is easy to see that the right-hand of (3.7) equals

∑

A∈Q

q||A|| =
∑

A∈Q?

#A=n−1

q||A|| (qa2n−2 + qa2n−1 + qa2n)

+
∑

A∈Q?

#A=n−2

q||A||
(
qa2n−2+a2n−1 + qa2n−2+a2n + qa2n−1+a2n

)
.

Substituting (3.8) and {a2n−2, a2n−1, a2n} = {n− 1, n, n + 1} into the above equation, we
complete the proof of (1.10). 2

No doubt that we may define the involution A 7→ A′′ on the set {a1, . . . , a2n+1}. Let
{a1, . . . , a2n} be as in the proof of (1.9). Then putting a2n+1 = −n we obtain

∞∑

k=−∞
(−1)kq(9k2−3k)/2

[
2n + 1

n + 3k

]
=

(q3; q3)n

(q; q)n

, (3.10)
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while putting a2n+1 = n + 1 we get

∞∑

k=−∞
(−1)kq(9k2+3k)/2

[
2n + 1

n + 3k

]
=

(q3; q3)n−1

(q; q)n−1

(1 + qn + qn+1) (n ≥ 1). (3.11)

Both (3.10) and (3.11) are q-analogues of (1.12). Finally, we point out that the following
two identities:

∞∑

k=−∞
(−1)kq(9k2+9k)/2

[
2n

n + 3k + 1

]
=

(q3; q3)n−1

(q; q)n−1

qn−1χ(n > 0),

∞∑

k=−∞
(−1)kq(9k2+3k)/2

[
2n + 1

n + 3k + 1

]
=

(q3; q3)n

(q; q)n

appearing in [5] can also be proved in the same way.

4 Proofs of (1.11)

First Proof. By the binomial theorem, we have

(√
3 + i

)n

=
∞∑

k=0

(
n

k

)
3k/2in−k

= in
∞∑

k=0

(
n

2k

)
(−3)k + in−1

√
3

∞∑

k=0

(
n

2k + 1

)
(−3)k. (4.1)

On the other hand, there holds

(√
3 + i

)n

= 2n
(
cos

π

6
+ i sin

π

6

)n

= 2n
(
cos

nπ

6
+ i sin

nπ

6

)
. (4.2)

Comparing (4.1) and (4.2), we immediately get (1.11) and its companion

∞∑

k=0

(
n

2k + 1

)
(−3)k =





0, if n ≡ 0 (mod 3),

(−2)n−1, if n ≡ 1 (mod 3),

(−1)n2n−1, if n ≡ 2 (mod 3).

(4.3)

2

Second Proof. Let Γ = {a, b, c, d, e} denote an alphabet. For a word w = w1 · · ·wn ∈ Γ∗,
its length n is denoted by |w|. For any x ∈ Γ, let |w|x be the number of x’s appearing in
the word w. Let Wn denote the set of words w = w1 · · ·wn ∈ Γ∗ satisfying the following
conditions:

(i) |w|a + |w|b + |w|c = |w|d.

10



(ii) If we remove all e’s from w, then each d is in the even position.

It is easy to see that there are
(

n
2k

)
3k words w ∈ Wn such that |w|d = k, and so

bn/2c∑

k=0

(
n

2k

)
(−3)k =

∑
w∈Wn

(−1)|w|d .

We call (−1)|w|d the sign of the word w. In what follows, we shall construct an involution
on Wn which is sign-reversing for all non-fixed points.

For any word w = w1 · · ·wn ∈ Wn, let ui = w3i−2w3i−1w3i, i = 1, . . . , bn/3c. According
to the conditions (i) and (ii), the subwords ui have at most 43 cases. Let us classify them
into three types as follows:

X : ade, bde, cde, aed, bed, ced, ead, ebd;

Y : eee, aee, bee, cee, eae, ebe, ece, eea, eeb, eec, dee, ede, eed,

ecd, ada, adb, adc, bda, bdb, bdc, cda, cdb, cdc, dad, dbd, dcd;

Z : eda, edb, edc, dea, deb, dec, dae, dbe, dce.

We claim that all the words in Wn with a ui of type Y cancel pairwise. Indeed, for
such a word w, choose the smallest number i such that ui is of type Y . Then we obtain
a word w′ by replacing ui by u′i, where ui ←→ u′i is determined by the following table:

eee ←→ ecd aee ←→ ada bee ←→ adb cee ←→ adc eae ←→ bda
ebe ←→ bdb ece ←→ bdc eea ←→ cda eeb ←→ cdb eec ←→ cdc
dee ←→ dad ede ←→ dbd eed ←→ dcd

It is clear that w′ ∈ Wn, |w′|d = |w|d±1, and hence w 7→ w′ is a sign-reversing involution.
On the other hand, for any word w ∈ Wn, we claim that if no ui in w is of type Y ,

then no ui in w is of type Z. In fact, by the definition of w, u1 must be of type X or
Y . By the condition (ii), none of dd, ded, deed can appear in w and therefore no ui of
type X in w can be followed by a uj of type Z. This proves the claim. It follows that the
remained words in Wn are just those all ui are of type X, and vice versa. Namely,

∑
w∈Wn

(−1)|w|d =
∑

w∈Wn
all ui is of type X

(−1)|w|d . (4.4)

Consider the right-hand side of (4.4) (RHS(4.4) for short). Note that each ui has 8
possible choices. We have the following three cases:

• If n ≡ 0 (mod 3), then |w|d = n/3 and RHS(4.4) = (−8)n/3.

• If n ≡ 1 (mod 3), then w must be ended by a letter e, |w|d = (n − 1)/3, and
RHS(4.4) = (−8)(n−1)/3.
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• If n ≡ 2 (mod 3), then w may be ended by ee, ad, bd, or cd, and

RHS(4.4) = (−8)(n−2)/3 + 3(−1)(n+1)/38(n−2)/3 = (−2)n−1.

This completes the proof. 2

The combinatorial proof of (4.3) is exactly analogous. We need only to replace the
condition (i) by |w|a + |w|b + |w|c = |w|d−1, and change “even” to “odd” in the condition
(ii).

It is difficult to find q-analogues of (1.11) and (4.3). However, the mathematics soft-
ware Maple hints us to propose the following two interesting conjectures.

Conjecture 4.1 Let l, m, n ≥ 0 and ε ∈ {0, 1}. Then

bn/2c∑

k=0

(−1)kq2lk2+2mk

[
n

2k + ε

]
(1 + q + q2)k

is divisible by (1 + q)b(n+2)/4c(1 + q2)b(n+4)/8c.

Conjecture 4.2 Let m,n ≥ 0 and ε ∈ {0, 1}. Then

bn/2c∑

k=0

(−1)kq2k2+2mk

[
n

2k + ε

]
(1 + q + q2)k

is divisible by (1 + q)bn/2c(1 + q2)bn/4c.
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