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Abstract. We give a new proof of a 4φ3 summation due to G.E. Andrews and confirm another
4φ3 summation conjectured by him recently. Some variations of these two 4φ3 summations are
also given.
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1 Introduction

Recall that the basic hypergeometric series r+1φr [3, p. 4] is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1, a2, . . . , ar+1; q)kz
k

(q, b1, b2, . . . , br; q)k

,

where (a1, . . . , am; q)n =
∏m

i=1((1− ai)(1− aiq) · · · (1− aiq
n−1)).

Recently, Andrews [1] gave a new 4φ3 summation formula as follows.

Theorem 1.1 (Andrews). For n ≥ 0, there holds

4φ3

[
q−2n, a, b, q1−2n/ab

q2−2n/a, q2−2n/b, abq
; q2, q2

]
=

q−n(a, b,−q; q)n(ab; q2)n

(ab; q)n(a, b; q2)n

. (1.1)

Andrews’ identity (1.1) is a deep extension of Shapilo’s identity (see [6, p. 123, (5.12)]
and [10, p. 31, Ex. 6.C.14])

n∑

k=0

C2kC2n−2k = 4nCn,

where Cn = 1
n+1

(
2n
n

)
are Catalan numbers.

At the end of his paper, Andrews [1] made the following conjecture:

Conjecture 1.2 (Andrews). For n ≥ 0, there holds

4φ3

[
q−2n, a, b, q3−2n/ab

q2−2n/a, q4−2n/b, abq
; q2, q2

]

=
(a,−q; q)n(b; q)n−1(ab; q2)n−1(abq2n−2(b− q2) + abqn−1(q − 1) + q − b)

qn+1(1− abq2n−1)(ab; q)n−1(a, b/q2; q2)n

. (1.2)

Andrews proved (1.1) by using the q-binomial theorem and two special cases of the
q-Pfaff-Saalschtütz summation formula [3, p. 13, (1.7.2)]. In this paper, we first give a
new proof of (1.1) along the lines of the proofs in [4,5]. Then we shall prove (1.2) similarly
by using (1.1). Some variations of (1.1) and (1.2) are given in the last section.
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2 A new proof of Theorem 1.1

For a = q2, the identity (1.1) reduces to

Lemma 2.1. For n ≥ 0, there holds

n∑

k=0

(b, q−1−2n/b; q2)k

(q2−2n/b, bq3; q2)k

q2k =
q−n(1− qn+1)(1− bq)(1− bq2n)

(1− q)(1− bqn)(1− bqn+1)
.

Proof. It is easy to verify that

(b, q−1−2n/b; q2)k

(q2−2n/b, bq3; q2)k

q2k +
(b, q−1−2n/b; q2)n−k

(q2−2n/b, bq3; q2)n−k

q2n−2k =
(b, q−1−2n/b; q2)k

(q2−2n/b, bq3; q2)k

(q2k + q4k−n)

= Hk −Hk+1, (2.1)

where

Hk =
qk−n(1− qn−2k+1)(1− bq)(1− bq2n)(b, bq2n−2k+3; q2)k

(1− q)(1− bqn)(1− bqn+1)(bq, bq2n−2k+2; q2)k

.

Summing (2.1) over k from 0 to n, we get

2
n∑

k=0

(b, q−1−2n/b; q2)k

(q2−2n/b, bq3; q2)k

q2k = H0 −Hn+1 = 2H0,

as desired.

Proof of Theorem 1.1. Since the 4φ3 series in (1.1) is terminating, it suffices to prove it
for a = q2m,m = 1, 2, . . . . The a = q2 case is true by Lemma 2.1. Let

Fk(n, a, b, q) =
(q−2n, a, b, q1−2n/ab; q2)k

(q2, q2−2n/a, q2−2n/b, abq; q2)k

q2k,

It is not difficult to verify that (or, see [5, (1.1)])

Fk(n, a, b, q)− Fk(n, a, b/q2, q) = αnFk−1(n− 2, aq2, b, q), (2.2)

where

αn =
(b/q2 − q1−2n/ab)(1− a)(1− aq)(1− q−2n)(1− q−2n+2)q2

(1− ab/q)(1− abq)(1− q2−2n/a)(1− q2−2n/b)(1− q4−2n/b)
.

Summing (2.2) over k from 0 to n gives

S(n− 2, aq2, b, q) = α−1
n

(
S(n, a, b, q)− S(n, a, b/q2, q)

)
, (2.3)

where

S(n, a, b, q) =
n∑

k=0

Fk(n, a, b, q) =

[
q−2n, a, b, q3−2n/ab

q2−2n/a, q4−2n/b, abq
; q2, q2

]
.
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Suppose that (1.1) is true for a = q2m. Then by (2.3) we have

S(n− 2, aq2, b, q) = α−1
n

(
q−n(a, b,−q; q)n(ab; q2)n

(ab; q)n(a, b; q2)n

− q−n(a, b/q2,−q; q)n(ab/q2; q2)n

(ab/q2; q)n(a, b/q2; q2)n

)

=
q2−n(aq2, b,−q; q)n−2(abq2; q2)n−2

(abq2; q)n−2(aq2, b; q2)n−2

.

Replacing n by n + 2, one sees that (1.1) is true for aq2 = q2m+2. This completes the
proof.

3 A proof of Conjecture 1.2

We first consider the a = q2 case of (1.2).

Lemma 3.1. For n ≥ 0, there holds
n∑

k=0

(b, q1−2n/b; q2)k

(q4−2n/b, bq3; q2)k

q2k

=
(1− qn+1)(1− bq)(1− bq2n−2)(bq2n(b− q2) + bqn+1(q − 1) + q − b)

qn+1(1− q)(1− b/q2)(1− bqn−1)(1− bqn)(1− bq2n+1)
. (3.1)

Proof. Observe that

(b, q1−2n/b; q2)k

(q4−2n/b, bq3; q2)k

q2k +
(b, q1−2n/b; q2)n−k

(q4−2n/b, bq3; q2)n−k

q2n−2k = Hk −Hk+1, (3.2)

where

Hk =
(1− qn−2k+1)(1− bq)(1− bq2n−2)(b2q2n−1 − bq2n−2k+1 + bqn(q − 1)− bq2k−1 + 1)

qn−k(1− q)(1− b/q2)(1− bqn−1)(1− bqn)(1− bq2n+1)

× (b/q2, bq2n−2k+3; q2)k

(bq, bq2n−2k; q2)k

.

Then summing (3.2) over k from 0 to n, we obtain (3.1).

Noticing that

(q3−2n/ab; q2)k

(q4−2n/b; q2)k

=
(1− 1/aq)

(1− q1−2n/ab)

(q1−2n/ab; q2)k

(q4−2n/b; q2)k

+
(1/aq − q1−2n/ab)

(1− q1−2n/ab)

(q1−2n/ab; q2)k

(q2−2n/b; q2)k

,

we have

4φ3

[
q−2n, a, b, q3−2n/ab

q2−2n/a, q4−2n/b, abq
; q2, q2

]

=
bq2n−2(1− aq)

(1− abq2n−1)

[
q−2n, a, b, q1−2n/ab

q2−2n/a, q4−2n/b, abq
; q2, q2

]

+
(1− bq2n−2)

(1− abq2n−1)

[
q−2n, a, b, q1−2n/ab

q2−2n/a, q2−2n/b, abq
; q2, q2

]
. (3.3)
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Here we mention that the relation (3.3) is in fact a special case of Krattenthaler [7, (2.10)].
By (3.3) and (1.1), one sees that (1.2) is equivalent to the following result.

Theorem 3.2. For n ≥ 0, there holds

4φ3

[
q−2n, a, b, q1−2n/ab

q2−2n/a, q4−2n/b, abq
; q2, q2

]

=
(a,−q; q)n(b; q)n−1(ab; q2)n−1(abq2n−2(b− q2) + abqn−1(q − 1) + q − b)

bq3n−1(1− aq)(ab; q)n−1(a, b/q2; q2)n

− (a, b,−q; q)n(ab; q2)n

bq3n−2(1− aq)(ab; q)n(a, q2)n(b; q2)n−1

. (3.4)

Proof. Let

Fk(n, a, b, q) =
(q−2n, a, b, q1−2n/ab; q2)k

(q2, q2−2n/a, q4−2n/b, abq; q2)k

q2k,

Similarly to (3.6), we have

Fk(n, a, b, q)− Fk(n, a/q2, b, q) = βnFk−1(n− 2, a, bq2, q), (3.5)

where

βn =
(a/q2 − q1−2n/ab)(1− b)(1− bq)(1− q−2n)(1− q−2n+2)q2

(1− ab/q)(1− abq)(1− q2−2n/a)(1− q4−2n/a)(1− q4−2n/b)
.

Summing (3.5) over k from 0 to n yields that

S(n, a, b, q)− S(n, a/q2, b, q) = βnS(n− 2, a, bq2, q), (3.6)

where S(n, a, b, q) denotes the left-hand side of (3.4).
It suffices to prove (3.4) for a = q2m,m = 1, 2, . . . . The a = q2 case is true by (3.3),

(1.1) and Lemma 3.1. We then can complete the proof of (3.4) by induction on n (firstly)
and m (secondly) by checking that the right-hand side of (3.4) also satisfies the relation
(3.6).

Remark. One may wonder, why not prove (1.2) directly by induction? The reason is that
we cannot find a simple recurrence relation like (3.6) for the 4φ3 series in (1.2).

4 Concluding remarks

Letting (a, b, q) → (a−1, b−1, q−1) in (1.1), we obtain the following variation

4φ3

[
q−2n, a, b, q1−2n/ab

q2−2n/a, q2−2n/b, abq
; q2, q4

]
=

(a, b,−q; q)n(ab; q2)n

(ab; q)n(a, b; q2)n

. (4.1)

Since

(q3−2n/ab; q2)k =
1

1− q1−2n/ab
(q1−2n/ab; q2)k − q1−2n+2k/ab

1− q1−2n/ab
(q1−2n/ab; q2)k,
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combining (1.1) and (4.1) leads to

4φ3

[
q−2n, a, b, q3−2n/ab

q2−2n/a, q2−2n/b, abq
; q2, q2

]
=

(a, b,−q; q)n(ab; q2)n

(1− abq2n−1)(ab; q)n−1(a, b; q2)n

.

Moreover, replacing b by bq2 in (1.2), we have

4φ3

[
q−2n, a, bq2, q1−2n/ab
q2−2n/a, q2−2n/b, abq3 ; q2, q2

]

=
(a,−q; q)n(bq2; q)n−1(abq2; q2)n−1(abq2n+1(b− 1) + abqn(q − 1) + 1− bq)

qn(1− abq2n+1)(abq2; q)n−1(a, b; q2)n

. (4.2)

Substituting (a, b, q) → (a−1, b−1, q−1) in (4.2), we get

4φ3

[
q−2n, a, bq2, q1−2n/ab
q2−2n/a, q2−2n/b, abq3 ; q2, q4

]

=
(a,−q; q)n(bq2; q)n−1(abq2; q2)n−1(abq2n(bq − 1) + bqn(1− q) + 1− b)

(1− abq2n+1)(abq2; q)n−1(a, b; q2)n

. (4.3)

Since

(aq2; q2)k =
(a; q2)k

1− a
− a(a; q2)kq

2k

1− a
,

combining (4.2) and (4.3) immediately yields that

4φ3

[
q−2n, aq2, bq2, q1−2n/ab
q2−2n/a, q2−2n/b, abq3 ; q2, q2

]
=

q−n(aq, bq,−q; q)n(abq2; q2)n

(1− abq2n+1)(abq2; q)n−1(a, b; q2)n

. (4.4)

Noticing that

(q−2n; q2)k

(q2; q2)k

=
(q−2n−2; q2)k

(q2; q2)k

+ q−2n−2 (q−2n; q2)k−1

(q2; q2)k−1

and (x; q)k = (1− x)(xq; q)k−1, we have

4φ3

[
q−2n, a, b, q−1−2n/ab
q−2n/a, q−2n/b, abq

; q2, q2

]

= 4φ3

[
q−2n−2, a, b, q−1−2n/ab

q−2n/a, q−2n/b, abq
; q2, q2

]

+
q−2n(1− a)(1− b)(1− q−1−2n/ab)

(1− q−2n/a)(1− q−2n/b)(1− abq)
4φ3

[
q−2n, aq2, bq2, q1−2n/ab
q2−2n/a, q2−2n/b, abq3 ; q2, q2

]
. (4.5)

Plugging the formulas (1.1) (n → n + 1) and (4.4) into (4.5), and making some simplifi-
cation, we obtain the following new neat 4φ3 summation formula:

4φ3

[
q−2n, a, b, q−1−2n/ab
q−2n/a, q−2n/b, abq

; q2, q2

]
=

(aq, bq,−q; q)n(abq2; q2)n

(abq; q)n(aq2, bq2; q2)n

. (4.6)
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Note that a computer proof of (1.2) and (4.6) has been given by Mu [8] based on the
q-Zeilberger algorithm [2,9, 11] after reading a previous version of this paper.
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