Proof of Andrews’ conjecture on a 4¢3 summation
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Abstract. We give a new proof of a 4¢3 summation due to G.E. Andrews and confirm another
4¢3 summation conjectured by him recently. Some variations of these two 4¢3 summations are
also given.
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1 Introduction

Recall that the basic hypergeometric series ,,1¢, [3, p. 4] is defined as

0 k
Q1,02 ..., Qr41 (al,GQ,...,CLT+1;Q)kZ
; ) z - 9
T+1¢T |: b17b27...,br a :| ; (q,bl,bg,...,br;q)k

where (a1, ..., am; Q)0 = [T (1 — @) (1 — aiq) - (1 — a;g™™1)).
Recently, Andrews [1] gave a new 4¢3 summation formula as follows.
Theorem 1.1 (Andrews). Forn > 0, there holds
¢ q_an a, ba q1—2n/ab L2 2 — q—n<a7 b7 _q7Q)n(ab7 q2)n (1 1)
B a, > /b, abg (ab;@)n(a,b;¢%)n '

Andrews’ identity (1.1) is a deep extension of Shapilo’s identity (see [6, p. 123, (5.12)]
and [10, p. 31, Ex. 6.C.14])

Y CoCang, = 4"Ch,
k=0
where C), = — +1 (2”) are Catalan numbers.
At the end of his paper, Andrews [1] made the following conjecture:

Conjecture 1.2 (Andrews). Forn > 0, there holds

g2 a, b, 37 ab
4¢3 2 2n/a q4 2n/b Cbbq 7(] q
_ (a, —¢; D (b; Qo1 (ab; ¢*)n—1(abg® (b — ¢*) + abg" (¢ — 1) + ¢ — b) (1.2)
¢+ (1 — abg® ") (ab; q)n-1(a, b/q% ¢*)n ' '
Andrews proved (1.1) by using the g-binomial theorem and two special cases of the
g-Pfaff-Saalschtiitz summation formula [3, p. 13, (1.7.2)]. In this paper, we first give a
new proof of (1.1) along the lines of the proofs in [4,5]. Then we shall prove (1.2) similarly
by using (1.1). Some variations of (1.1) and (1.2) are given in the last section.
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2 A new proof of Theorem 1.1

For a = ¢?, the identity (1.1) reduces to

Lemma 2.1. Forn > 0, there holds

~ (b, /b e (L= q" (1 = bg)(1 — bg*")
2 (@200 @)k~ (1= q)(1—bg")(1—bg")

k=0
Proof. 1t is easy to verify that
(g /b e oy G /Y G Ik e (B0 O e by
(¢*72/b, b ¢ (@®=2" /b, b4%; ¢ ) (¢*72"/b,bg% ¢*)x
:Hk_Hk—‘rl) (21)

where
qkfn<1 _ qn72k+1)(1 _ bQ)(l _ bq2n)(b’ bq2n72k+3; q2)k

(1= q)(1 = bg™)(1 — bgm*+1)(bq, bg®> —2k+2; g2),,

Summing (2.1) over k£ from 0 to n, we get

Hy =

(g 7" /b ) o
22 2 Qn/b bq q ) q HO_H’rH-l :2H07

as desired. 1

Proof of Theorem 1.1. Since the 4¢3 series in (1.1) is terminating, it suffices to prove it
for a = ¢®",m =1,2,.... The a = ¢* case is true by Lemma 2.1. Let

(g%, a,b,¢" 2" Jab; ¢*)y 2
(¢%,¢* 2" /a,¢*"2"/b,abq; ¢?) "~

It is not difficult to verify that (or, see [5, (1.1)])

Fk(n7a7b7 Q) =

Fi(n,a,b,q) — Fi(n,a,b/¢*,q) = anFi_1(n — 2,04, b, q), (2.2)
where
o = b/ =g /ab)(1 —a)(1 —ag)(1 — g~*")(1 — ¢~*"**)g”
" 0= ) = aba) (L= 2 a)(1 = =1 — /b

Summing (2.2) over k from 0 to n gives

S(n—2,a¢%b,q) = o;," (S(n,a,b,q) — S(n,a,b/¢*,q)), (2.3)
where

a, b, ¢2"/ab
S(n,a,b,q) = ZFknabq {gzn/aq4qzn/b/abq,qq
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Suppose that (1.1) is true for a = ¢*™. Then by (2.3) we have
S(n—2.a?.b.q) = o=t (q‘"(a, b —q;@)n(ab;¢*)n  ¢"(a,b/q* —q;q)n(ab/q*; q%)
" ab; q)n(a, b; ¢*)n (ab/q*; q)n(a, b/q% ¢*)n
_ ¢*"(ag*, b, —q; @)n—2(abg*; ¢*) 2
 (abg% Qno(ag? b s
Replacing n by n + 2, one sees that (1.1) is true for ag® = q . This completes the
proof. |

2m+2

3 A proof of Conjecture 1.2

We first consider the a = ¢* case of (1.2).
Lemma 3.1. For n > 0, there holds

i (b, q" %" /b; ¢*)k 2
— (q* " /b, bg% ¢
_ (1=g"") (A = bg)(1 — bg**) (bg™ (b — ¢*) + bg" (¢ — 1) + ¢ — b) (3.1)
¢"t1(1—q)(1 —b/q*)(1 — bg"1)(1 — bg")(1 — bg*"+1) ' '
Proof. Observe that
(b, q" " /b; 4" )i 2 (0,¢" " /b; ¢
(q*2"/b,bg®; ¢* ). (q* 27 /b, b¢3; ¢ )

q2n—2k = Hk — Hk—i—la (32)

where
(1= ¢ (1 = bg) (1 = bg> ) (B?¢*" 1 — bg>" M1 + bg"(q — 1) — bg** ™" + 1)
¢" (1= q)(1 = b/q*)(1 = bg"")(1 = bg™)(1 — bg***1)
(b/qQ, qun_2k+3; q2)k
(bq, bg>"=2*; ¢%)
Then summing (3.2) over k from 0 to n, we obtain (3.1). ]

Noticing that
(@* " /ab;®) (1 —1/aq) (¢"7*"/abig®)x  (1/ag—q'*"/ab) (¢"~*"/ab; ¢*)s

(@2 /bi®)e  (L—=q"2"/ab) (¢*/biq®)e — (L—q'72"/ab)  (¢*>"/big*)x

we have

Hy =

—2n 3—2n
q y a, b> q /Clb L2 2
403 [ q2—2n/a’ q4—2n/b7 abq yq 5 4 ]

_ bq2n—2(1 _ (ZQ) q—Qn’ a, b, q1—2n/ab 9
(1 — abg® 1) 2" /a, ¢*~ /b, abq q 9

(1 _ qun—Z) q72n, a, b7 q172n/ab 5 )
(1 —abg> 1) | ¢ 2"/a, ¢*~ /b, abg qTq (3.3)




Here we mention that the relation (3.3) is in fact a special case of Krattenthaler [7, (2.10)].
By (3.3) and (1.1), one sees that (1.2) is equivalent to the following result.

Theorem 3.2. For n > 0, there holds
—2n 1—2n
q , a, ba q /CLb L2 2
4¢3 q2—2n/a, q4—2n/b’ (Ibq 4, 4
_ (4, =q@)n(b; Q)n-1(ab; ¢*)n-1(abg® (b — ¢*) + abg" (¢ —1) + ¢ — b)
bg* (1 — aq)(ab; q)n-1(a,b/¢* ¢*)n
(a,b, —q; @)n(ab; ¢*)n

— . 3.4
b7 21— ag) ab: )0, 4%) (b5 7)o 34
Proof. Let
F b,q) =
Mt @:0,9) = om0, ¢35, abgs P
Similarly to (3.6), we have
Fk(n7 a, b7 Q) - Fk<n7 a/q27 b7 q) = 6an—1(n - 27 a, bq27 q)a (35)
where 2 _ 1-2 2 42y 2
5, = (a/q" —q ~"/ab)(1 = b)(1 —bg)(1 —¢~*")(1 — ¢ *"")q
"7 )1 ab) (1~ @ a1 gt fa) (L - D)
Summing (3.5) over k from 0 to n yields that
S(n’ a? b’ Q) - S(”’ a/q2’ b7 Q) = 5715(” - 27 a? bq2’ q)? (3'6)

where S(n,a,b, q) denotes the left-hand side of (3.4).

It suffices to prove (3.4) for a = ¢*",m = 1,2,.... The a = ¢* case is true by (3.3),
(1.1) and Lemma 3.1. We then can complete the proof of (3.4) by induction on n (firstly)
and m (secondly) by checking that the right-hand side of (3.4) also satisfies the relation
(3.6). ]

Remark. One may wonder, why not prove (1.2) directly by induction? The reason is that
we cannot find a simple recurrence relation like (3.6) for the 4¢3 series in (1.2).

4 Concluding remarks
Letting (a,b,q) — (a=*,0671,¢7!) in (1.1), we obtain the following variation

¢, a,b, ¢ ab 5 4 (a,b,—q q)n(ab; ¢*)y

— 4.1
193 | ponfa, 2 abg P10 4 (ab; q)n(a, b; ¢*)n (4.1)
Since
- 1 - q1—2n+2k/ab -
39/ 7. 2\ 1-2n /7. 2\ 1-2n/ 7. 2
(q /a’bﬂ q )k - 1 _ ql_Qn/ab (q /ab7 q )k 1 _ q1_2"/ab (q /a/b7 q )k?



combining (1.1) and (4.1) leads to

4¢ |: q—2n7 a, bu q3—2n/ab ,q2 q2:| — (a’ubv_ ) ) (a’ba q2)n
L@ a, ¢ /b, abg T (1 — abg® 1) (ab; q)n_1(a,b; ¢*)n

Moreover, replacing b by bg? in (1.2), we have

) 1-2
q 2", a, bg?, ¢*7*"/ab
4¢3[ 22n/a q2 2n/b abq3’q CJ}

_ (av —q;q )n(bq aQ)n—l(a’bq yq )n—l(aqunJrl(b - 1) + abqn(q - 1) + 1-— bg) (4 2)
q"(1 — abg®+1)(abg?; q)n-1(a, b; ¢*), ' '

Substituting (a,b,q) — (7!, b7, ¢7) in (4.2), we get

{ g, a, bg?, ¢~ /ab ]
493

2— 2n/a q2 2n/b abq3 aq q
(a; = O)n(b6%; @)n—1(abg?; ¢*)n—1(abg®™ (bg — 1) + bg™(1 —¢g+1-0)

_ 4.3
(T — abg® ) (abe® Q@ bi ) 4
Since (a2 ?) (e
2. 2y _ \@&;q7 )k ala;q”)rq
(aq7Q)k_ 1—a 1—a ’
combining (4.2) and (4.3) immediately yields that
by | O aa% be ¢ fab 5 o) a7 (ad, b, —¢; @)n(abg®; ¢*)n (1.4)
493 q272n/a’ quzn/b’ abq3 4 (1 _ abq2”+1)(abq2;q)n_1(a, b; q2)n' ’
Noticing that
)" _ (q_Qn %Pk 4 (" 4% )k—1
(4% ) (% )k (% ¢*)k—1
and (z;q)r = (1 — x)(xq; q¢)k—_1, we have
g, a, b, ¢ 72" /ab
4¢3|: 277,/& q 2n/b &bq 7q q
—2n—2 —1—-2n
. q , a, b) q /a’b L2 2
- 4¢3 |: q72n/a’ q72n/b, abq 145 q :|
—2n —1—-2n 1—2n
¢ "(1—a)d-b(1—g "/ab) ,ag’, bg?, gt ab o
; 4.
+ (1 _ q—2n/a)(1 _ q—2n/b)(1 _ abq)4¢3 2 2n/a q2 2n/b abq 45 q ( 5)

Plugging the formulas (1.1) (n — n + 1) and (4.4) into (4.5), and making some simplifi-
cation, we obtain the following new neat 4¢3 summation formula:

” { q " a, b, g2 ab 2} _ (ag,bq, —¢; @)n(abg*; ¢*)n (4.6)
“Loaa, g7 b abg 7T (abg; q)n(ag?,0g% ¢*)n '



Note that a computer proof of (1.2) and (4.6) has been given by Mu [8] based on the
q-Zeilberger algorithm (2,9, 11] after reading a previous version of this paper.
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