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FURTHER q-SUPERCONGRUENCES FROM ANDREWS’
TERMINATING 4φ3 SUMMATION

Victor J. W. Guo

Abstract. Recently, Liu and Liu gave a q-supercongruence from An-
drews’ terminating q-analogue of Watson’s formula. In this paper, em-

ploying the method of creative microscoping devised by the author and
Zudilin in 2019, we deduce more q-supercongruences from Andrew’s sum-
mation.

1. Introduction

In 2003, Rodriguez-Villegas [12] observed several interesting supercongru-
ences between a truncated hypergeometric series associated to a Calabi–Yau
manifold at a prime p and the number of its Fp-points. In particular, he pro-
posed four conjectures on supercongruences related to elliptic curves, one of
which can be stated as follows: for any odd prime p,

(1)
p−1∑

k=0

(
2k

k

)2

16−k ≡ (−1)(p−1)/2 (mod p2),

which was first confirmed by Mortenson [11].
In 2014, the author and Zeng [7] gave a q-analogue of (1) as follows:

(2)
p−1∑

k=0

(q; q2)2k
(q2; q2)2k

q2k ≡ (−1)(p−1)/2q(p2−1)/4 (mod [p]2),

and a more general form of (2) was later given by the author, Pan, and Zhang
[5]. Here and in what follows, assuming that |q| < 1, the q-shifted factorial is
defined as (a; q)0 = 1 and (a; q)n = (1−a)(1−aq) . . . (1−aqn−1) for n > 1 or n =
∞. For simplicity, we will also use the shorthand notation (a1, . . . , am; q)n =
(a1; q)n . . . (am; q)n for n > 0 or n = ∞. The n-th cyclotomic polynomial Φn(q)
is defined by

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk),
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where ζ denotes an n-th primitive root of unity. Let [n] = [n]q = (1−qn)/(1−q)
be the q-integer. In addition, for two rational functions A(q) and B(q), and a
polynomial P (q) ∈ Z[q], the q-congruence A(q) ≡ B(q) (mod P (q)) is meant
that the numerator of A(q)− B(q) is divisible by P (q) in the polynomial ring
Z[q].

In 2011, Z.-W. Sun [15, Conjecture 5.5] raised the following conjecture: for
any odd prime p,

p−1∑

k=0

(
2k

k

)2

32−k ≡




2x− p

2x
, if p = x2 + y2 with x ≡ 1 (mod 4),

0, if p ≡ 3 (mod 4),
(3)

which was confirmed by Tauraso [16] and Z.-H. Sun [13,14].
The author and Zeng [7, Corollary 2.7] gave a q-analogue of (3) for the

second case as follows: for primes p ≡ 3 (mod 4),

p−1∑

k=0

(q; q2)2kq2k

(q2; q2)k(q4; q4)k
≡ 0 (mod [p]2).(4)

The author and Zudilin [8, eq. (54)] further generalized the above q-congruence
to the modulus Φn(q)2 case where n ≡ 3 (mod 4) is a positive integer. For
any rational number x and positive integer n satisfying the denominator of x
is coprime with n, we let 〈x〉n stand for the least non-negative residue of x
modulo n. Then a special case of [4, Theorem 1.3] implies the following result:
for positive integers d, r, and n such that gcd(d, n) = 1 and n ≡ 〈−r/d〉n ≡ 1
(mod 2),

n−1∑

k=0

(qr; qd)k(qd−r; qd)kqdk

(qd; qd)k(q2d; q2d)k
≡ 0 (mod Φn(q)2),(5)

which is clearly a generalization of (4).
Recently, Liu and Liu [10] gave a q-analogue of (3) for the first case as

follows: for any positive odd integer n ≡ 1 (mod 4),

n−1∑

k=0

(q; q2)2kq2k

(q2; q2)k(q4; q4)k
≡ (−1)(n−1)/4 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4
q(n−1)(n+3)/8 (mod Φn(q)2).

(6)

In this paper, we shall establish the following generalization of (6), which is
also a compliment to (5).

Theorem 1.1. Let d, r, n be positive integers such that gcd(d, n) = 1, n is odd,
and 〈−r/d〉n ≡ 0 (mod 2). Then, modulo Φn(q)2,

n−1∑

k=0

(qr; qd)k(qd−r; qd)k

(qd; qd)k(q2d; q2d)k
qdk
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≡ r2(−1)〈−r/d〉n/2(qd; q2d)〈−r/d〉n/2

(r1 + r2)(q2d; q2d)〈−r/d〉n/2
qd〈−r/d〉n(〈−r/d〉n+2)/4

+
r1(−1)〈(r−d)/d〉n/2(qd; q2d)〈(r−d)/d〉n/2

(r1 + r2)(q2d; q2d)〈(r−d)/d〉n/2
qd〈(r−d)/d〉n(〈(r−d)/d〉n+2)/4,(7)

where r1 = (r + d〈−r/d〉n)/n and r2 = (d− r + d〈(r − d)/d〉n)/n.

It is easy to see that when (d, r) = (2, 1), the q-congruence (7) reduces to
(6). Moreover, for (d, r) = (2, 3), (3, 1), (4, 1), (6, 1), we deduce the following
corollaries from Theorem 1.1.

Corollary 1.2. Let n ≡ 3 (mod 4) be a positive integer. Then, modulo Φn(q)2,
n−1∑

k=0

(q3; q2)k(q−1; q2)kq2k

(q2; q2)k(q4; q4)k
≡ (−1)(n−3)/4

2

{
(q2; q4)(n−3)/4

(q4; q4)(n−3)/4
q(n−3)(n+1)/8

− (q2; q4)(n+1)/4

(q4; q4)(n+1)/4
q(n+1)(n+5)/8

}
.(8)

Suppose that n is a prime. Letting q → 1 in (8) and multiplying both sides
by −1, we obtain the following supercongruence: for any prime p ≡ 3 (mod 4),
p−1∑

k=0

2k + 1
2k − 1

(
2k

k

)2

32−k

≡ (−1)(p−3)/4

2

{(
(p + 1)/2
(p + 1)/4

)
2−(p+1)/2 −

(
(p− 3)/2
(p− 3)/4

)
2−(p−3)/2

}
(mod p2).

Corollary 1.3. Let n ≡ 1 (mod 6) be a positive integer. Then, modulo Φn(q)2,
n−1∑

k=0

(q; q3)k(q2; q3)k

(q3; q3)k(q6; q6)k
q3k ≡ (−1)(n−1)/6 2(q3; q6)(n−1)/6

3(q6; q6)(n−1)/6
q(n−1)(n+5)/12

+
(q3; q6)(n−1)/3

3(q6; q6)(n−1)/3
q(n−1)(n+2)/3.(9)

Letting n be a prime and taking q → 1 in (9), we have the following super-
congruence: for any prime p ≡ 1 (mod 6),

p−1∑

k=0

( 1
3 )k( 2

3 )k

k!22k
≡ (−1)(p−1)/6 2( 1

2 )(p−1)/6

3(1)(p−1)/6
+

( 1
2 )(p−1)/3

3(1)(p−1)/3
(mod p2),

where (x)a = x(x + 1) . . . (x + a− 1) is the Pochhammer symbol.

Corollary 1.4. Let n ≡ 1 (mod 8) be a positive integer. Then, modulo Φn(q)2,
n−1∑

k=0

(q; q4)k(q3; q4)k

(q4; q4)k(q8; q8)k
q4k ≡ (−1)(n−1)/8

{
3(q4; q8)(n−1)/8

4(q8; q8)(n−1)/8
q(n−1)(n+7)/16
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+
(q4; q8)4(n−1)/8

4(q6; q6)3(n−1)/8
q(3n−3)(3n+5)/16

}
.(10)

Likewise, when n is a prime and q → 1 in (10), we get the following result:
for any prime p ≡ 1 (mod 8),

p−1∑

k=0

( 1
4 )k( 3

4 )k

k!22k
≡ (−1)(p−1)/8

(
3( 1

2 )(p−1)/8

4(1)(p−1)/8
+

( 1
2 )3(p−1)/8

4(1)3(p−1)/8

)
(mod p2).

Corollary 1.5. Let n ≡ 1 (mod 12) be a positive integer. Then, modulo
Φn(q)2,

n−1∑

k=0

(q; q6)k(q5; q6)k

(q6; q6)k(q12; q12)k
q6k ≡ (−1)(n−1)/12

{
5(q6; q12)(n−1)/12q

(n−1)(n+11)/24

6(q12; q12)(n−1)/12

+
(q6; q12)5(n−1)/12q

(5n−5)(5n+7)/24

6(q12; q12)5(n−1)/12

}
.(11)

Similarly as before, letting n be a prime and taking the limits as q → 1
in (11), we are led to the following supercongruence: for any prime p ≡ 1
(mod 12),

p−1∑

k=0

( 1
6 )k( 5

6 )k

k!22k
≡ (−1)(p−1)/12

(
5( 1

2 )(p−1)/12

6(1)(p−1)/12
+

( 1
2 )5(p−1)/12

6(1)5(p−1)/12

)
(mod p2).

We shall prove Theorem 1.1 by using the method of “creative microscoping”
introduced by the author and Zudilin [8] in 2019. For more recent work related
to this method, we refer the reader to [3, 6, 9, 17,18].

2. Proof of Theorem 1.1

Following Gasper and Rahman [2], the basic hypergeometric series r+1φr is
defined by

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1, a2, . . . , ar+1; q)kzk

(q, b1, . . . , br; q)k
.

We shall use Andrews’ terminating q-analogue of Watson’s formula (see [1] or
[2, (II.17)]):

4φ3

[
q−n, a2qn+1, b, −b

aq, −aq, b2 ; q, q
]

=





0, if n is odd,

bn(q, a2q2/b2; q2)n/2

(a2q2, b2q; q2)n/2
, if n is even.

(12)
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The b → 0 case of (12) reduces to

4φ3

[
q−n, a2qn+1, 0, 0

aq, −aq, 0 ; q, q
]

=





0, if n is odd,

(−1)n/2(q; q2)n/2

(a2q2; q2)n/2
anqn(n+2)/4, if n is even.

(13)

Theorem 2.1. Let d, r, n be positive integers such that gcd(d, n) = 1, n is
odd, and 〈−r/d〉n ≡ 0 (mod 2). Let a be an indeterminate. Then, modulo
(1− aqr1n)(a− qr2n),
n−1∑

k=0

(aqr; qd)k(qd−r/a; qd)k

(qd; qd)k(q2d; q2d)k
qdk

≡ (−1)〈−r/d〉n/2(qd; q2d)〈−r/d〉n/2(ar1+r2 − ar2qr1r2n)
(q2d; q2d)〈−r/d〉n/2(ar1+r2 − 1)

qd〈−r/d〉n(〈−r/d〉n+2)/4

+
(−1)〈(r−d)/d〉n/2(qd; q2d)〈(r−d)/d〉n/2(1− ar2qr1r2n)

(q2d; q2d)〈(r−d)/d〉n/2(1− ar1+r2)

× qd〈(r−d)/d〉n(〈(r−d)/d〉n+2)/4,

(14)

where r1 = (r + d〈−r/d〉n)/n and r2 = (d− r + d〈(r − d)/d〉n)/n.

Proof. For a = q−r1n, the left-hand side of (14) can be written as
〈−r/d〉n∑

k=0

(q−d〈−r/d〉n ; qd)k(qd+d〈−r/d〉n/a; qd)k

(qd; qd)k(q2d; q2d)k
qdk

= 4φ3

[
q−d〈−r/d〉n , qd+d〈−r/d〉n , 0, 0

qd, −qd, 0
; qd, qd

]
.(15)

Performing the parameter substitutions n 7→ 〈−r/d〉n, q 7→ qd, and a = 1 in
(13), since 〈−r/d〉n ≡ 0 (mod 2), we see that the right-hand side of (15) is
equal to

(−1)〈−r/d〉n/2(qd; q2d)〈−r/d〉n/2

(q2d; q2d)〈−r/d〉n/2
qd〈−r/d〉n(〈−r/d〉n+2)/4,

which is exactly the right-hand side of (14) with a = q−r1n. Namely, the
q-congruence (14) is true modulo 1− aqr1n.

Similarly, for a = qr2n, the left-hand side of (14) is equal to

(−1)〈(r−d)/d〉n/2(qd; q2d)〈(r−d)/d〉n/2

(q2d; q2d)〈(r−d)/d〉n/2
qd〈(r−d)/d〉n(〈(r−d)/d〉n+2)/4,

which is the value of the right-hand side of (14) at a = qr2n. This means that
the q-congruence (14) is true modulo a− qr2n.
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Since 1− aqr1n and a− qr2n are relatively prime polynomials in q, we finish
the proof of the theorem. ¤

Proof of Theorem 1.1. Observe that 1−ar2qr1r2n is divisible by 1−aqr1n, and
ar1 − qr1r2n is divisible by a− qr2n. In light of the identities

1 =
(ar2 − 1) + (1− ar2qr1r2n)

ar2(1− qr1r2n)
=

(1− ar1) + (ar1 − qr1r2n)
1− qr1r2n

,

we can rewrite (14) as follows: modulo (1− aqr1n)(a− qr2n),

n−1∑

k=0

(aqr; qd)k(qd−r/a; qd)k

(qd; qd)k(q2d; q2d)k
qdk

≡ (−1)〈−r/d〉n/2(qd; q2d)〈−r/d〉n/2(ar1 − qr1r2n)(ar2 − 1)
(q2d; q2d)〈−r/d〉n/2(ar1+r2 − 1)(1− qr1r2n)

qd〈−r/d〉n(〈−r/d〉n+2)/4

+
(−1)〈(r−d)/d〉n/2(qd; q2d)〈(r−d)/d〉n/2(1− ar2qr1r2n)(1− ar1)

(q2d; q2d)〈(r−d)/d〉n/2(1− ar1+r2)(1− qr1r2n)

× qd〈(r−d)/d〉n(〈(r−d)/d〉n+2)/4.

(16)

In view of qn ≡ 1 (mod Φn(q)), from the proof of Theorem 2.1 we conclude
that, modulo Φn(q),

(−1)〈−r/d〉n/2(qd; q2d)〈−r/d〉n/2

(q2d; q2d)〈−r/d〉n/2
qd〈−r/d〉n(〈−r/d〉n+2)/4

≡ (−1)〈(r−d)/d〉n/2(qd; q2d)〈(r−d)/d〉n/2

(q2d; q2d)〈(r−d)/d〉n/2
qd〈(r−d)/d〉n(〈(r−d)/d〉n+2)/4.

and so

(−1)〈−r/d〉n/2(qd; q2d)〈−r/d〉n/2(ar1 − qr1r2n)(ar2 − 1)
(q2d; q2d)〈−r/d〉n/2(ar1+r2 − 1)

qd〈−r/d〉n(〈−r/d〉n+2)/4

+
(−1)〈(r−d)/d〉n/2(qd; q2d)〈(r−d)/d〉n/2(1− ar2qr1r2n)(1− ar1)

(q2d; q2d)〈(r−d)/d〉n/2(1− ar1+r2)

× qd〈(r−d)/d〉n(〈(r−d)/d〉n+2)/4

≡ 0 (mod Φn(q)).

This implies that the denominator of (the reduced form of) the right-hand side
of (16) is coprime with Φn(q).

The limit of (1 − aqr1n)(a − qr2n) as a → 1 contains the factor Φn(q)2.
Therefore, taking a → 1 in (16) and applying L’Hôpital’s rule, we arrive at
(7). ¤
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