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FURTHER ¢-SUPERCONGRUENCES FROM ANDREWS’
TERMINATING 4¢3 SUMMATION

VicTor J. W. Guo

ABSTRACT. Recently, Liu and Liu gave a g-supercongruence from An-
drews’ terminating g-analogue of Watson’s formula. In this paper, em-
ploying the method of creative microscoping devised by the author and
Zudilin in 2019, we deduce more g-supercongruences from Andrew’s sum-
mation.

1. Introduction

In 2003, Rodriguez-Villegas [12] observed several interesting supercongru-
ences between a truncated hypergeometric series associated to a Calabi—Yau
manifold at a prime p and the number of its F,-points. In particular, he pro-
posed four conjectures on supercongruences related to elliptic curves, one of
which can be stated as follows: for any odd prime p,

(1) 3 (2:> 167 = (1) (mod p?),
k=0

which was first confirmed by Mortenson [11].
In 2014, the author and Zeng [7] gave a g-analogue of (1) as follows:

= (4:4°)7 2k (p—1)/2,,(p?—1)/4 2

2 TR g = (1) P g mod [p]©),

(2) kzzo(qz;qg)% (1) (mod [p]”)

and a more general form of (2) was later given by the author, Pan, and Zhang
[5]. Here and in what follows, assuming that |¢| < 1, the g-shifted factorial is
defined as (a; q)o = 1 and (a;q),, = (1—a)(1—aq) ... (1—ag" ') forn > lorn =
oo. For simplicity, we will also use the shorthand notation (ai,...,am;q)n =
(a1;Q)n - - - (@m; @)n for n = 0 or n = co. The n-th cyclotomic polynomial ®,(q)
is defined by

o.(0)= [ (@—¢b,
1<k<n
ged(n,k)=1
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where ¢ denotes an n-th primitive root of unity. Let [n] = [n], = (1—¢")/(1—q)
be the g-integer. In addition, for two rational functions A(g) and B(q), and a
polynomial P(q) € Z[q], the g-congruence A(q) = B(g) (mod P(q)) is meant
that the numerator of A(q) — B(q) is divisible by P(g) in the polynomial ring
Z|q)-

In 2011, Z.-W. Sun [15, Conjecture 5.5] raised the following conjecture: for
any odd prime p,

p—1 2 p
2k 2r — —,
3 327k = 2z
(3) g:@ ( k)

0, if p=3 (mod 4),

ifp=22+y? withz=1 (mod 4),

which was confirmed by Tauraso [16] and Z.-H. Sun [13,14].
The author and Zeng [7, Corollary 2.7] gave a g-analogue of (3) for the
second case as follows: for primes p =3 (mod 4),

e 2
(4) ;—(qQ;q2)k(q4;q4)k =0 (mod [p]*).

The author and Zudilin [8, eq. (54)] further generalized the above g-congruence
to the modulus ®,(q)? case where n = 3 (mod 4) is a positive integer. For
any rational number = and positive integer n satisfying the denominator of x
is coprime with n, we let (x), stand for the least non-negative residue of x
modulo n. Then a special case of [4, Theorem 1.3] implies the following result:
for positive integers d, r, and n such that ged(d,n) = 1 and n = (—r/d),, =1
(mod 2),

()

n—1
(" qM)r(q* " ") eg™ 2
=0 (mod ®, ,
kZ:O (% ah)i(a®*; ¢ ( (@)

which is clearly a generalization of (4).

Recently, Liu and Liu [10] gave a g-analogue of (3) for the first case as
follows: for any positive odd integer n =1 (mod 4),

(6)

n—1
Z (¢ q2)iq2k = (_1>(n—1)/4 (q2§ q4)(n71)/4 q(n—l)(n+3)/8 (mod ® (q)g).
= (% a®)k(ah a)n (4% 4 (n-1)/a

In this paper, we shall establish the following generalization of (6), which is
also a compliment to (5).

Theorem 1.1. Let d,r,n be positive integers such that ged(d,n) = 1, n is odd,
and (—r/d), =0 (mod 2). Then, modulo ®,(q)?,

sqD (@ aN e an

q
« (a% q") k(a5
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= ”(_1)<7T/d>"/2(qd'qzd)< P/ d)n/2 d(=r/dya((~r/d)n+2)/4
(r1 +72)(¢*% 6% (—r/ay,. /2

Tl(—l)((r_d)/d)”m(q vq2d)<(r7d)/d>n/2 U =D/ n({(r=d)/d)n+2) /4

7
® (r1 +12) (% P (r-a) )2
where ry = (r + d{—r/d),)/n and ro = (d —r + d{(r — d)/d),) /n.
It is easy to see that when (d,r) = (2,1), the g-congruence (7) reduces to

(6). Moreover, for (d,r) = (2,3),(3,1),(4,1),(6,1), we deduce the following
corollaries from Theorem 1.1.

Corollary 1.2. Letn =3 (mod 4) be a positive integer. Then, modulo ®,(q)?,

n—1

3 (% k(g g™ _ ()94 {( q") (n-3)/4 B 1)/
= (0%a?)e(a* q* ) 2 (@5 nsyya”

(8) _ (q2§ q4)(n+1)/4 (n4+1)(n+5)/8
(4% ¢%) ! '
) (n+1)/4

Suppose that n is a prime. Letting ¢ — 1 in (8) and multiplying both sides
by —1, we obtain the following supercongruence: for any prime p = 3 (mod 4),

2
2k 41 (20",
2% —1\ k

(*1)(;”3)/4 {(Eiﬂiﬁ)g(m)/z <E§ 2%?1)2 (o- 3)/2} (mod p?).

Corollary 1.3. Letn =1 (mod 6) be a positive integer. Then, modulo ®,(q)?,

g
o =

Z_: 4;q )k 3k _ = (- )(n 1)/6 2(¢° )("_1)/6q(n71)(n+5)/12
(4% ¢%)k (g% %) 3(¢%6%) (n-1)/6
(9) n (@% %) (n-1)/3 gD nt2)/3,

3(‘16; qﬁ)(n—l)/?)

Letting n be a prime and taking ¢ — 1 in (9), we have the following super-
congruence: for any prime p =1 (mod 6),

pz_f :13) = 1)(17—1)/62(%)” D/6 ()13 (mod p?)
kv22k 3116 3(1)p-1)3 ’

k=
where (z), = z(x +1)...(z + a — 1) is the Pochhammer symbol.
b

Corollary 1.4. Letn =1 (mod 8) be a positive integer. Then, modulo ®,,(¢)?,
i aVk o _ = (-1 )(n 1)/8 { (q" )(n 1)/8 (n 1)(n+7)/16
k=0 q q ) 4((] yq )(n 1)/8
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(10) I (@% ¢%)an-1)/8 q(3n—3)(3n+5)/16}.
4(q% q6)3(n71)/8

Likewise, when n is a prime and ¢ — 1 in (10), we get the following result:
for any prime p =1 (mod 8),

N

p—1 1)

35 -1/ | (3)3p-1)/8
@k _ _qyo-1ys o1/ | 230 (mod p?).
— k122k 418 4D)3p-1y/8

Corollary 1.5. Let n = 1 (mod 12) be a positive integer. Then, modulo
(I)n(q)Q’

n—1

(¢:4°) q q ) 6k — (n—1)/12 5(q6;q12)(n—1)/12q(”71)
Z " =(-1) 12. 12
— (4% %)k (¢ 4" )i 6(¢%;¢') (n—1)/12

5(n 1)/12(](571 5)(5n+7)/24
6(q'%; ¢'%)5(n-1)/12 '

(n+11)/24

(11) +(q6;q12)

Similarly as before, letting n be a prime and taking the limits as ¢ —

n (11), we are led to the following supercongruence: for any prime
(mod 12),

1
1

p—1 1)

6 . 1)(p_1)/12 5(%)(;; 1)/12 n (%) 5(p—1)/12 (mod p?).
k'22k 6(1)p-1/12  6(1)s50p-1)/12

=0

We shall prove Theorem 1.1 by using the method of “creative microscoping”
introduced by the author and Zudilin [8] in 2019. For more recent work related
to this method, we refer the reader to [3,6,9,17,18].

2. Proof of Theorem 1.1

Following Gasper and Rahman [2], the basic hypergeometric series ,1¢, is
defined by

e k
A1,02, .., Ar41 (alaa2a~'~7ar+1;Q)kz
1q, 2| = E .
T+1¢T[ bibo,... by T } Pt (¢, b1y, br; Q)

We shall use Andrews’ terminating g-analogue of Watson’s formula (see [1] or

[2, (IL17))):

a2 b, —b 0, if n is odd,
(12) 4¢3 [ ag, —agq, b> P (J] =9 b"(q,a*¢* /% ¢%)n 2

, if n is even.
(a2q2, b%¢; ¢2)n )2
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The b — 0 case of (12) reduces to
(13)
if n is odd,

—n 2 n+1 ’
qg ", a7q"", 0,0 _ 2 o
493 |: aq, —agq, 0 4,9 = (_1) / (q,q )n/2anqn(n_i_Q)/él7

if n is even.
(a%4?;G%)n)2

Theorem 2.1. Let d,r,n be positive integers such that ged(d,n) = 1, n is
odd, and (—r/d), = 0 (mod 2). Let a be an indeterminate. Then, modulo

(I —ag"™")(a—q""),
n—1 . _r
3 (aq”; q")k(q* /a;qd)kqdk
(g% )k (q; ¢*4)y
(—]_)<77"/d>n/2(qd; qzd)<_r/d>n/2(ar1+r2 _ arzqmrzn)
(¢4¢%) (—r/ay, j2(amF2 = 1)
(—1)<(T_d)/d>n/2(qd; q2d)((r7d)/d)n/2(1 — ar2gniream)
(% ) ((r—a) jdy, j2(1 — a™1772)

k=0

U=/ dn((=r/d)n+2)/4

+

(14)
x g =)/ dn((r=d) /dyn+2)/4

where 1y = (r +d{—r/d),)/n and ro = (d — r + d{(r — d)/d),)/n.
Proof. For a = g~ ™", the left-hand side of (14) can be written as
(=r/d)n  _q(—r —r
(@~ (@D Jai g g
2 (% 4 (% P

— 13 { T
q, —q-, 0

(15) sq %

Performing the parameter substitutions n + (—r/d),, ¢ — ¢, and a = 1 in
(13), since (—r/d),, = 0 (mod 2), we see that the right-hand side of (15) is
equal to

(—1) =/ dn/2(gds g2dy o g A (=r/dy+2) /2

(2% 6*) (—r/dy,, /2
which is exactly the right-hand side of (14) with a = ¢=™". Namely, the

g-congruence (14) is true modulo 1 — ag™™.
Similarly, for a = ¢"", the left-hand side of (14) is equal to

(_1)<(r7d)/d>n/2(qd; q2d)

((r—d)/d)n/2 qd<(r—d)/d>n(((r—d)/d)n+2)/4

(%4¢%) ((r—d)/dyn /2 7
which is the value of the right-hand side of (14) at a = ¢"2"™. This means that
the g-congruence (14) is true modulo a — ¢"2".
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Since 1 — ag¢"™™ and a — ¢"" are relatively prime polynomials in ¢, we finish
the proof of the theorem. O

Proof of Theorem 1.1. Observe that 1 —a"¢""2" is divisible by 1 —ag™", and
a™ — ¢""" is divisible by a — ¢"*". In light of the identities
(a7 = 1)+ (L= aqnmn) (1= an) + (@ — )

1= am(l _ qurgn) = 1— qurgn ’

we can rewrite (14) as follows: modulo (1 — ag™™)(a — ¢™"),

Z_: aq”; q qt” ’”/a q )kqdk

e

k=0

(=)D 2 (g% 6*) (v yay, p2(a™ — 72" (a2 — 1)qd<—T'/d>n((—7'/d)n+2)/4
(q2d; q2d)<_r/d>n/2(a7‘1+r2 — 1)(1 _ qurgn)
+ (_1)((r—d)/d)n/2(qd, q2d)((r d)/d>n/2(1 — amqrwzn)(l _ a“)
(qzd )((r d)/d)n /2(1 —artr2)(1 — griran)

(16)
U=/ d)n((r=d)/d)nt2)/4

In view of ¢" = 1 (mod ®,(q)), from the proof of Theorem 2.1 we conclude
that, modulo ®,(q),

(=1 dm /2 (g @) =r/d)n /2 g U/ D (v d)n+2) /4
(@ 6*) (v )ay,. 2
_ (=)= Dnl2(qs g2) iy ay, 2 U= /) ((r=d) d)t2) /4.
(@24 ¢%4) ((r—d) jdyn /2

and so

(=12 (g 32‘1)<7r/d>n/2(a“ —a")@ ) aerjaar/da 2/

(®%q )< /d) 2(amtrz —1)
n (=)= Du/2(gs g20) gy sy, (1 — a™2g™ ™2 (1 — a™)
(¢*% )<<r d)/dy,/2(1 —amtr2)

x qUr=d)/d)n({(r= d)/d)n+2)/4
=0 (mod ®,(q)).

This implies that the denominator of (the reduced form of) the right-hand side
of (16) is coprime with @, (q).

The limit of (1 — ag™")(a — ¢"") as a — 1 contains the factor ®,(q)%.
Therefore, taking ¢ — 1 in (16) and applying L’Hopital’s rule, we arrive at
(7). O
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