A q-analogue of the (L.2) supercongruence of Van Hamme

Victor J. W. Guo
School of Mathematical Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's Republic of China
jwguo@hytc.edu.cn

Abstract

The (L.2) supercongruence of Van Hamme was proved by Swisher recently. In this paper we provide a conjectural q-analogue of the (L.2) supercongruence of Van Hamme and prove a weaker form of it by using the q-WZ method. In the same way, we prove a complete q-analogue of the following congruence

$$
\sum_{k=0}^{n}(6 k+1)\binom{2 k}{k}^{3}(-512)^{n-k} \equiv 0 \quad\left(\bmod 4(2 n+1)\binom{2 n}{n}\right)
$$

which was conjectured by Z.-W. Sun and confirmed by B. He. We also provide a conjectural q-analogue of another congruence proved by Swisher.

Keywords: q-binomial coefficients; q-WZ method; cyclotomic polynomials; q-Gamma function; Jackson's ${ }_{6} \phi_{5}$ summation.

2010 Mathematics Subject Classifications: 11B65 (Primary) 05A10, 05A30 (Secondary)

1. Introduction

In 1914, Ramanujan [18] discovered several infinite series for $1 / \pi$ that enable us to compute π very accurately. The most impressive one might be

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(1 / 4)_{k}(1 / 2)_{k}(3 / 4)_{k}}{k!^{3}}(1103+26390 k)(1 / 99)^{4 k+2}=\frac{1}{2 \sqrt{2} \pi} \tag{1.1}
\end{equation*}
$$

where $(a)_{k}=a(a+1) \cdots(a+k-1)$.
In 1997, Van Hamme [24] observed that 13 Ramanujan's or Ramanujan-like formulas
for $1 / \pi$, such as

$$
\begin{align*}
& \sum_{k=0}^{\infty}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3}}=\frac{2}{\pi} \tag{1.2}\\
& \sum_{k=0}^{\infty}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{3}\right)_{k}^{3}}{k!^{3}}=\frac{3 \sqrt{3}}{2 \pi} \tag{1.3}\\
& \sum_{k=0}^{\infty}(-1)^{k}(8 k+1) \frac{\left(\frac{1}{4}\right)_{k}^{3}}{k!^{3}}=\frac{2 \sqrt{2}}{\pi} \tag{1.4}\\
& \sum_{k=0}^{\infty}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}}=\frac{2 \sqrt{2}}{\pi} \tag{1.5}
\end{align*}
$$

have very nice p-adic analogues:

$$
\begin{align*}
& \sum_{k=0}^{\frac{p-1}{2}}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3}} \equiv p\left(\frac{-1}{p}\right) \quad\left(\bmod p^{3}\right), \tag{1.6}\\
& \sum_{k=0}^{\frac{p-1}{3}}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{3}\right)_{k}^{3}}{k!^{3}} \equiv p \quad\left(\bmod p^{3}\right), \quad \text { if } \quad p \equiv 1 \quad(\bmod 3), \tag{1.7}\\
& \sum_{k=0}^{\frac{p-1}{4}}(-1)^{k}(8 k+1) \frac{\left(\frac{1}{4}\right)_{k}^{3}}{k!^{3}} \equiv p\left(\frac{-2}{p}\right) \quad\left(\bmod p^{3}\right), \quad \text { if } \quad p \equiv 1 \quad(\bmod 4), \tag{1.8}\\
& \sum_{k=0}^{\frac{p-1}{2}}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \equiv p\left(\frac{-2}{p}\right) \quad\left(\bmod p^{3}\right), \tag{1.9}
\end{align*}
$$

where p is an odd prime and $\left(\frac{\dot{p}}{p}\right)$ is the Legendre symbol modulo p. Supercongruences of this type are called Ramanujan-type supercongruences. All of the 13 supercongruences have now been confirmed by different authors (see [16,22]). The supercongruence (1.6) was first proved by Mortenson [15] using a ${ }_{6} F_{5}$ transformation and a technical evaluation of a quotient of Gamma functions, and later reproved by Zudilin [27] via the Wilf-Zeilberger method $[25,26]$ (the WZ pair was borrowed from [3]) and by Long [14] using hypergeometric identities. Swisher [22] used Long's method to prove 4 supercongruences of Van Hamme, including (1.7)-(1.9). Chen, Xie, and He [2] reproved (1.9) modulo p^{2} via the WZ method again. He [11] has independently used Long's method to give a generalization of (1.7) and (1.8). Moreover, it is worth mentioning that the last supercongruence of Van Hamme was proved by Osburn and Zudilin [16] in 2016.

Motivated by Zudilin's work [27], the author [6, 7] uses the q-WZ method to obtain
q-analogues of (1.6)-(1.8): for any odd prime p,

$$
\begin{align*}
& \sum_{k=0}^{\frac{p-1}{2}}(-1)^{k} q^{k^{2}}[4 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{2} ; q^{2}\right)_{k}^{3}} \equiv[p] q^{\frac{(p-1)^{2}}{4}}(-1)^{\frac{p-1}{2}} \quad\left(\bmod [p]^{3}\right), \tag{1.10}\\
& \sum_{k=0}^{\frac{p-1}{3}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}}[6 k+1] \frac{\left(q ; q^{3}\right)_{k}^{3}}{\left(q^{3} ; q^{3}\right)_{k}^{3}} \equiv[p] q^{\frac{(p-1)(p-2)}{6}} \quad\left(\bmod [p]^{3}\right), \quad \text { if } p \equiv 1 \quad(\bmod 3), \tag{1.11}\\
& \sum_{k=0}^{\frac{p-1}{4}}(-1)^{k} q^{2 k^{2}+k}[8 k+1] \frac{\left(q ; q^{4}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}} \equiv[p] q^{\frac{(p-1)(p-3)}{8}}\left(\frac{-2}{p}\right) \quad\left(\bmod [p]^{3}\right) \quad \text { if } p \equiv 1 \quad(\bmod 4), \tag{1.12}
\end{align*}
$$

where $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ for $n \geqslant 1$ and $(a ; q)_{0}=1$, and $[n]=[n]_{q}=$ $1+q+\cdots+q^{n-1}$. Note that, for a polynomial $h(q)$ and two rational functions $f(q)$ and $g(q)$, we say that $f(q)$ is congruent to $g(q)$ modulo $h(q)$, denoted by $f(q) \equiv g(q)$ $(\bmod h(q))$, if the numerator of the reduced form of $f(q)-g(q)$ is divisible by $h(q)$. We point out that there are more general forms of (1.10)-(1.12) in $[6,7]$, and some other interesting q-congruences can be found in [13, 17, 19, 23].

Recall that the n-th cyclotomic polynomial $\Phi_{n}(q)$ is defined as

$$
\Phi_{n}(q):=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(q-e^{2 \pi i \frac{k}{n}}\right),
$$

where i is the imaginary unit. It is clear that $\Phi_{p}(q)=[p]$ for any prime p. This paper was motivated by the following conjectural q-analogue of (1.9) (i.e., the (L.2) supercongruence of Van Hamme [24]).

Conjecture 1.1. Let n be a positive odd integer. Then

$$
\begin{align*}
& \sum_{k=0}^{\frac{n-1}{2}}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}} \equiv[n](-q)^{-\frac{(n-1)(n+5)}{8}} \quad\left(\bmod [n] \Phi_{n}(q)^{2}\right), \tag{1.13}\\
& \sum_{k=0}^{n-1}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}} \equiv[n](-q)^{-\frac{(n-1)(n+5)}{8}} \quad\left(\bmod [n] \Phi_{n}(q)^{2}\right) . \tag{1.14}
\end{align*}
$$

Note that, when $n=p$ is an odd prime, the congruences (1.13) and (1.14) are equivalent to each other, since $\frac{\left(q ; q^{2}\right)_{k}}{\left(q^{4} ; q^{4}\right)_{k}} \equiv 0(\bmod [p])$ for $\frac{p+1}{2} \leqslant k \leqslant p-1$. But they are not equivalent in general.

The first aim of this paper is to prove the following weaker form of Conjecture 1.1.
Theorem 1.2. Let n be a positive odd integer. Then

$$
\begin{equation*}
\sum_{k=0}^{\frac{n-1}{2}}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}} \equiv 0 \quad(\bmod [n]) \tag{1.15}
\end{equation*}
$$

Moreover, if n is an odd prime power, then

$$
\begin{equation*}
\sum_{k=0}^{n-1}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}} \equiv[n](-q)^{-\frac{(n-1)(n+5)}{8}} \quad\left(\bmod [n] \Phi_{n}(q)\right) \tag{1.16}
\end{equation*}
$$

Letting $q \rightarrow 1$ in (1.16), we obtain
Corollary 1.3. Let p be an odd prime and r a positive integer. Then

$$
\sum_{k=0}^{p^{r}-1}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \equiv p\left(\frac{-2}{p}\right)^{r} \quad\left(\bmod p^{r+1}\right)
$$

On the other hand, Z.-W. Sun [20, Conjecture 5.1(i)] made the following conjecture

$$
\begin{equation*}
\sum_{k=0}^{n}(6 k+1)\binom{2 k}{k}^{3}(-512)^{n-k} \equiv 0 \quad\left(\bmod 4(2 n+1)\binom{2 n}{n}\right) \tag{1.17}
\end{equation*}
$$

which was later proved by He [11] using the WZ method. The second aim of this paper is to prove the following q-analogue of (1.17).

Theorem 1.4. Let n be a positive integer. Then

$$
\sum_{k=0}^{n}(-1)^{k}[6 k+1]\left[\begin{array}{c}
2 k \tag{1.18}\\
k
\end{array}\right]^{3} \frac{(-q ; q)_{n}^{6}\left(-q^{2} ; q^{2}\right)_{n}^{3}}{(-q ; q)_{k}^{6}\left(-q^{2} ; q^{2}\right)_{k}^{3}} \equiv 0 \quad\left(\bmod \left(1+q^{n}\right)^{2}[2 n+1]\left[\begin{array}{c}
2 n \\
n
\end{array}\right]\right),
$$

where the q-binomial coefficients $\left[\begin{array}{c}m \\ k\end{array}\right]$ are defined by

$$
\left[\begin{array}{l}
m \\
k
\end{array}\right]=\left[\begin{array}{l}
m \\
k
\end{array}\right]_{q}= \begin{cases}\frac{(q ; q)_{m}}{(q ; q)_{k}(q ; q)_{m-k}} & \text { if } 0 \leqslant k \leqslant m \\
0 & \text { otherwise }\end{cases}
$$

We shall prove Theorem 1.2 in Section 2 using some properties of q-factorials and a q-WZ pair. In Section 3, we shall prove Theorem 1.4 using the same q-WZ pair and some properties of q-binomial coefficients. In section 4, we provide several related conjectures, including one on a q-analogue of Ramanujan's series (1.5) and another one on a q-analogue of the congruence $2^{\frac{p-1}{2}} \equiv(-1)^{\frac{p^{2}-1}{8}}(\bmod p)$ for any odd prime p.

2. Proof of Theorem 1.2

We first require three preliminary results.
Lemma 2.1. If n is an odd prime power, then

$$
\begin{equation*}
\left(-q^{2} ; q^{2}\right)_{(n-1) / 2} \equiv(-1)^{\frac{n^{2}-1}{8}} q^{\frac{n^{2}-1}{8}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{2.1}
\end{equation*}
$$

Proof. By the q-binomial theorem (see [1, p. 36, (3.3.6)]), for any odd positive integer n, we have

$$
\left(-q^{2} ; q^{2}\right)_{n-1}=\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \tag{2.2}\\
k
\end{array}\right]_{q^{2}} q^{k^{2}+k} \equiv \sum_{k=0}^{n-1}(-1)^{k}=1 \quad\left(\bmod \Phi_{n}(q)\right),
$$

since

$$
\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q^{2}}=\prod_{j=1}^{k} \frac{1-q^{2 n-2 j}}{1-q^{2 j}} \equiv \prod_{j=1}^{k} \frac{1-q^{-2 j}}{1-q^{2 j}}=(-1)^{k} q^{-k^{2}-k} \quad\left(\bmod \Phi_{n}(q)\right)
$$

Note that

$$
\begin{align*}
\left(-q^{2} ; q^{2}\right)_{n-1}=\left(-q^{2} ; q^{2}\right)_{(n-1) / 2} \prod_{k=1}^{\frac{n-1}{2}}\left(1+q^{2 n-2 k}\right) & \equiv\left(-q^{2} ; q^{2}\right)_{(n-1) / 2} \prod_{k=1}^{\frac{n-1}{2}}\left(1+q^{-2 k}\right) \\
& =\left(-q^{2} ; q^{2}\right)_{(n-1) / 2}^{2} q^{\frac{1-n^{2}}{4}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{2.3}
\end{align*}
$$

Combining (2.2) and (2.3), we obtain $\left(-q^{2} ; q^{2}\right)_{(n-1) / 2}^{2} \equiv q^{\frac{n^{2}-1}{4}}\left(\bmod \Phi_{n}(q)\right)$. It follows that

$$
\begin{equation*}
\left(-q^{2} ; q^{2}\right)_{(n-1) / 2} \equiv \pm q^{\frac{n^{2}-1}{8}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{2.4}
\end{equation*}
$$

We now suppose that $n=p^{r}$ is an odd prime power. Then $2^{\frac{p^{r}-1}{2}} \equiv(-1)^{\frac{\left(p^{2}-1\right) r}{8}}=(-1)^{\frac{p^{2 r}-1}{8}}$ $(\bmod p)$ since $2^{\frac{p-1}{2}} \equiv\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}(\bmod p)$. Hence, letting $q=1$ in (2.4) and noticing that $\Phi_{p^{r}}(1)=p$, we are led to (2.1).

Lemma 2.2. Let n and k be positive integers with n odd. Then

$$
\begin{equation*}
\frac{\left(q ; q^{2}\right)_{(n-1) / 2+k}\left(q ; q^{2}\right)_{(n+1) / 2-k}^{2}}{\left(q^{2} ; q^{2}\right)_{(n-1) / 2}^{2}\left(q^{2} ; q^{2}\right)_{(n+1) / 2-k}} \equiv 0 \quad\left(\bmod 1-q^{n}\right) \tag{2.5}
\end{equation*}
$$

and for $1 \leqslant k \leqslant n$ with $k \neq \frac{n+1}{2}$ we have

$$
\begin{equation*}
\frac{\left(q ; q^{2}\right)_{n+k-1}\left(q ; q^{2}\right)_{n-k}^{2}}{\left(q^{2} ; q^{2}\right)_{n-1}^{2}\left(q^{2} ; q^{2}\right)_{n-k}} \equiv 0 \quad\left(\bmod \left(1-q^{n}\right) \Phi_{n}(q)\right) \tag{2.6}
\end{equation*}
$$

Proof. It is well known that

$$
q^{m}-1=\prod_{d \mid m} \Phi_{d}(q)
$$

and so

$$
\begin{align*}
\left(q^{2} ; q^{2}\right)_{m} & =(-1)^{m}\left(\prod_{d=1}^{m} \Phi_{2 d}(q)^{\left\lfloor\frac{m}{d}\right\rfloor}\right)\left(\prod_{d=1}^{m} \Phi_{2 d-1}(q)^{\left\lfloor\frac{m}{2 d-1}\right\rfloor}\right), \tag{2.7}\\
\left(q ; q^{2}\right)_{m} & =\frac{(q ; q)_{2 m}}{\left(q^{2} ; q^{2}\right)_{m}}=(-1)^{m} \prod_{d=1}^{m} \Phi_{2 d-1}(q)^{\left\lfloor\frac{2 m}{2 d-1}\right\rfloor-\left\lfloor\frac{m}{2 d-1}\right\rfloor}, \tag{2.8}
\end{align*}
$$

where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x. Therefore,

$$
\begin{equation*}
\frac{\left(q ; q^{2}\right)_{m+k}\left(q ; q^{2}\right)_{m-k+1}^{2}}{\left(q^{2} ; q^{2}\right)_{m}^{2}\left(q^{2} ; q^{2}\right)_{m-k+1}}=-\prod_{d=1}^{m+k} \frac{\Phi_{2 d-1}(q)^{\left\lfloor\frac{2 m+2 k}{2 d-1}\right\rfloor+2\left\lfloor\frac{2 m-2 k+2}{2 d-1}\right\rfloor-\left\lfloor\frac{m+k}{2 d-1}\right\rfloor-3\left\lfloor\frac{m-k+1}{2 d-1}\right\rfloor-2\left\lfloor\frac{m}{2 d-1}\right\rfloor}}{\Phi_{2 d}(q)^{2\left\lfloor\frac{m}{d}\right\rfloor+\left\lfloor\frac{m-k+1}{d}\right\rfloor}} . \tag{2.9}
\end{equation*}
$$

Applying the following properties

$$
\begin{equation*}
\lfloor 2 x\rfloor+\lfloor 2 y\rfloor \geqslant\lfloor x\rfloor+\lfloor y\rfloor+\lfloor x+y\rfloor, \quad\lfloor 2 y\rfloor \geqslant 2\lfloor y\rfloor, \tag{2.10}
\end{equation*}
$$

we see that the exponent of $\Phi_{2 d-1}(q)$ on the right-hand side of (2.9) is greater than or equal to

$$
\left\lfloor\frac{2 m+1}{2 d-1}\right\rfloor-2\left\lfloor\frac{m}{2 d-1}\right\rfloor,
$$

which is clearly non-negative.
If $m=\frac{n-1}{2}$ or $m=n-1$, then for any d with $2 d-1 \mid n$, we have $\left\lfloor\frac{2 m+1}{2 d-1}\right\rfloor-2\left\lfloor\frac{m}{2 d-1}\right\rfloor=1$, which means that the congruences (2.5) and (2.6) hold modulo $1-q^{n}$.

Furthermore, if $m=n-1$ and $1 \leqslant k \leqslant n$, then the exponent of $\Phi_{n}(q)$ on the right-hand side of (2.9) is equal to

$$
\left\lfloor\frac{2 n+2 k-2}{n}\right\rfloor+2\left\lfloor\frac{2 n-2 k}{n}\right\rfloor-\left\lfloor\frac{n+k-1}{n}\right\rfloor= \begin{cases}3, & \text { if } 1 \leqslant k \leqslant \frac{n-1}{2} \\ 2 & \text { if } \frac{n+3}{2} \leqslant k \leqslant n\end{cases}
$$

This proves (2.6).
Lemma 2.3. Let n be a positive odd integer. Then

$$
\begin{align*}
& \sum_{k=0}^{\frac{n-1}{2}}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}}=\sum_{k=1}^{\frac{n+1}{2}} \frac{(-1)^{\frac{n+1}{2}+k}\left(q ; q^{2}\right)_{(n-1) / 2+k}\left(q ; q^{2}\right)_{(n+1) / 2-k}^{2}}{(1-q)\left(q^{4} ; q^{4}\right)_{(n-1) / 2}^{2}\left(q^{4} ; q^{4}\right)_{(n+1) / 2-k}}, \tag{2.11}\\
& \sum_{k=0}^{n-1}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}}=\sum_{k=1}^{n} \frac{(-1)^{n+k}\left(q ; q^{2}\right)_{n+k-1}\left(q ; q^{2}\right)_{n-k}^{2}}{(1-q)\left(q^{4} ; q^{4}\right)_{n-1}^{2}\left(q^{4} ; q^{4}\right)_{n-k}} . \tag{2.12}
\end{align*}
$$

Proof. We define two rational functions in q :

$$
\begin{aligned}
& F(n, k)=(-1)^{n+k} \frac{[6 n-2 k+1]\left(q ; q^{2}\right)_{n+k}\left(q ; q^{2}\right)_{n-k}^{2}}{\left(q^{4} ; q^{4}\right)_{n}^{2}\left(q^{4} ; q^{4}\right)_{n-k}} \\
& G(n, k)=\frac{(-1)^{n+k}\left(q ; q^{2}\right)_{n+k-1}\left(q ; q^{2}\right)_{n-k}^{2}}{(1-q)\left(q^{4} ; q^{4}\right)_{n-1}^{2}\left(q^{4} ; q^{4}\right)_{n-k}}
\end{aligned}
$$

where we use the convention that $1 /\left(q^{4} ; q^{4}\right)_{m}=0$ for $m=-1,-2, \ldots$ The functions $F(n, k)$ and $G(n, k)$ satisfy the relation

$$
\begin{equation*}
F(n, k-1)-F(n, k)=G(n+1, k)-G(n, k) . \tag{2.13}
\end{equation*}
$$

Namely, they form a q-WZ pair. Indeed, we have the following expressions:

$$
\begin{aligned}
\frac{F(n, k-1)}{G(n, k)} & =-\frac{\left(1-q^{6 n-2 k+3}\right)\left(1-q^{2 n-2 k+1}\right)^{2}}{\left(1-q^{4 n-4 k+4}\right)\left(1-q^{4 n}\right)^{2}} \\
\frac{F(n, k)}{G(n, k)} & =\frac{\left(1-q^{6 n-2 k+1}\right)\left(1-q^{2 n+2 k-1}\right)}{\left(1-q^{4 n}\right)^{2}} \\
\frac{G(n+1, k)}{G(n, k)} & =-\frac{\left(1-q^{2 n+2 k-1}\right)\left(1-q^{2 n-2 k+1}\right)^{2}}{\left(1-q^{4 n}\right)^{2}\left(1-q^{4 n-4 k+4}\right)}
\end{aligned}
$$

Then it is routine to verify the identity

$$
\begin{aligned}
- & \frac{\left(1-q^{6 n-2 k+3}\right)\left(1-q^{2 n-2 k+1}\right)^{2}}{\left(1-q^{4 n-4 k+4}\right)\left(1-q^{4 n}\right)^{2}}-\frac{\left(1-q^{6 n-2 k+1}\right)\left(1-q^{2 n+2 k-1}\right)}{\left(1-q^{4 n}\right)^{2}} \\
& =-\frac{\left(1-q^{2 n+2 k-1}\right)\left(1-q^{2 n-2 k+1}\right)^{2}}{\left(1-q^{4 n}\right)^{2}\left(1-q^{4 n-4 k+4}\right)}-1,
\end{aligned}
$$

which is equivalent to (2.13) (dividing both sides by $G(n, k)$).
Let m be a positive odd integer. Summing (2.13) over $n=0,1, \ldots, \frac{m-1}{2}$, we obtain (via telescoping)

$$
\begin{equation*}
\sum_{n=0}^{\frac{m-1}{2}} F(n, k-1)-\sum_{n=0}^{\frac{m-1}{2}} F(n, k)=G\left(\frac{m+1}{2}, k\right) \tag{2.14}
\end{equation*}
$$

where we have used $G(0, k)=0$. Summing (2.14) over $k=1,2, \ldots, \frac{m+1}{2}$, we get

$$
\sum_{n=0}^{\frac{m-1}{2}} F(n, 0)=\sum_{n=0}^{\frac{m-1}{2}} F\left(n, \frac{m+1}{2}\right)+\sum_{k=1}^{\frac{m+1}{2}} G\left(\frac{m+1}{2}, k\right)=\sum_{k=1}^{\frac{m+1}{2}} G\left(\frac{m+1}{2}, k\right),
$$

where we have used $F(n, k)=0$ for $n<k$ because $\left(q^{4} ; q^{4}\right)_{n-k}$ is in the denominator. This proves that (2.11) holds for $n=m$.

Similarly, we have

$$
\sum_{n=0}^{m-1} F(n, 0)=\sum_{k=1}^{m} G(m, k)
$$

That is, the identity (2.12) is true for $n=m$.
Proof of Theorem 1.2. It is easy to see that

$$
\begin{aligned}
& \frac{\left(q ; q^{2}\right)_{(n-1) / 2+k}\left(q ; q^{2}\right)_{(n+1) / 2-k}^{2}}{(1-q)\left(q^{4} ; q^{4}\right)_{(n-1) / 2}^{2}\left(q^{4} ; q^{4}\right)_{(n+1) / 2-k}} \\
& \quad=\frac{\left(q ; q^{2}\right)_{(n-1) / 2+k}\left(q ; q^{2}\right)_{(n+1) / 2-k}^{2}}{(1-q)\left(q^{2} ; q^{2}\right)_{(n-1) / 2}^{2}\left(q^{2} ; q^{2}\right)_{(n+1) / 2-k}} \frac{1}{\left(-q^{2} ; q^{2}\right)_{(n-1) / 2}^{2}\left(-q^{2} ; q^{2}\right)_{(n+1) / 2-k}}
\end{aligned}
$$

By Lemma 2.2, we have

$$
\begin{equation*}
\frac{\left(q ; q^{2}\right)_{(n-1) / 2+k}\left(q ; q^{2}\right)_{(n+1) / 2-k}^{2}}{(1-q)\left(q^{2} ; q^{2}\right)_{(n-1) / 2}^{2}\left(q^{2} ; q^{2}\right)_{(n+1) / 2-k}} \equiv 0 \quad(\bmod [n]) . \tag{2.15}
\end{equation*}
$$

Moreover, we have $\operatorname{gcd}\left(\left(-q^{2} ; q^{2}\right)_{(n-1) / 2}^{2}\left(-q^{2} ; q^{2}\right)_{(n+1) / 2-k},[n]\right)=1$, since $\left(1-q^{n}, 1+q^{m}\right)=1$ holds for all positive integers m and n with n odd. The proof of (1.15) then follows from (2.11) and (2.15).

Similarly, by (2.6), for $1 \leqslant k \leqslant n$ with $k \neq \frac{n+1}{2}$ we have

$$
\frac{\left(q ; q^{2}\right)_{n+k-1}\left(q ; q^{2}\right)_{n-k}^{2}}{(1-q)\left(q^{4} ; q^{4}\right)_{n-1}^{2}\left(q^{4} ; q^{4}\right)_{n-k}} \equiv 0 \quad\left(\bmod [n] \Phi_{n}(q)\right)
$$

Therefore, modulo $[n] \Phi_{n}(q)$, the identity (2.12) reduces to

$$
\begin{align*}
& \sum_{k=0}^{n-1}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}} \\
& \quad \equiv \frac{(-1)^{n+\frac{n+1}{2}}\left(q ; q^{2}\right)_{(3 n-1) / 2}\left(q ; q^{2}\right)_{(n-1) / 2}^{2}}{(1-q)\left(q^{4} ; q^{4}\right)_{n-1}^{2}\left(q^{4} ; q^{4}\right)_{(n-1) / 2}} \\
& \quad=\frac{(-1)^{\frac{n-1}{2}}\left(q ; q^{2}\right)_{(n-1) / 2}[n]\left(q^{n+2} ; q^{2}\right)_{n-1}\left(q ; q^{2}\right)_{(n-1) / 2}^{2}}{\left(q^{4} ; q^{4}\right)_{n-1}^{2}\left(q^{4} ; q^{4}\right)_{(n-1) / 2}} \\
& \quad \equiv \frac{(-1)^{\frac{n-1}{2}}\left(q ; q^{2}\right)_{(n-1) / 2}[n]\left(q^{2} ; q^{2}\right)_{n-1}\left(q ; q^{2}\right)_{(n-1) / 2}^{2}}{\left(q^{4} ; q^{4}\right)_{n-1}^{2}\left(q^{4} ; q^{4}\right)_{(n-1) / 2}} \\
& \quad=\frac{(-1)^{\frac{n-1}{2}}[n]}{\left(-q^{2} ; q^{2}\right)_{n-1}^{2}\left(-q^{2} ; q^{2}\right)_{(n-1) / 2}(-q ; q)_{n-1}^{3}}\left[\begin{array}{c}
n-1 \\
\frac{n-1}{2}
\end{array}\right]_{q^{2}}^{2} \quad\left(\bmod [n] \Phi_{n}(q)\right), \tag{2.16}
\end{align*}
$$

where we have used the fact $\frac{A_{1}(q)[n]}{B_{1}(q)} \equiv \frac{A_{2}(q)[n]}{B_{2}(q)}\left(\bmod [n] \Phi_{n}(q)\right)$ if $\frac{A_{1}(q)}{B_{1}(q)} \equiv \frac{A_{2}(q)}{B_{2}(q)}\left(\bmod \Phi_{n}(q)\right)$ and the denominators of the reduced forms of $\frac{A_{1}(q)}{B_{1}(q)}$ and $\frac{A_{2}(q)}{B_{2}(q)}$ are both relatively prime to $[n]$. By the proof of (2.1), we have $(-q ; q)_{n-1} \equiv\left(-q^{2} ; q^{2}\right)_{n-1} \equiv 1\left(\bmod \Phi_{n}(q)\right)$ and $\left[\begin{array}{c}n-1 \\ \frac{n-1}{2}\end{array} q^{2}=(-1)^{\frac{n-1}{2}} q^{\frac{1-n^{2}}{4}}\left(\bmod \Phi_{n}(q)\right)\right.$. Thus, from (2.16) we obtain

$$
\begin{equation*}
\sum_{k=0}^{n-1}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}} \equiv \frac{(-1)^{\frac{n-1}{2}}[n] q^{\frac{1-n^{2}}{2}}}{\left(-q^{2} ; q^{2}\right)_{(n-1) / 2}} \quad\left(\bmod [n] \Phi_{n}(q)\right), \tag{2.17}
\end{equation*}
$$

which means that the congruence (1.14) modulo $[n]$ is true. If n is an odd prime power, then by Lemma 2.1 and noticing that $q^{\frac{3\left(1-n^{2}\right)}{8}} \equiv q^{-\frac{(n-1)(n+5)}{8}}\left(\bmod \Phi_{n}(q)\right)$, the congruence (2.17) is equivalent to (1.16).

3. Proof of Theorem 1.4

We need two divisibility results on q-binomial coefficients.
Lemma 3.1. [7, Lemma 4.1] Let n be a positive integer. Then

$$
(-q ; q)_{n}^{3}\left[\begin{array}{c}
4 n+1 \\
2 n
\end{array}\right] \equiv 0 \quad\left(\bmod \left(1+q^{n}\right)^{2}(-q ; q)_{2 n}\right)
$$

Lemma 3.2. Let n and k be positive integers with $k \leqslant n+1$. Then

$$
\frac{\left(q ; q^{2}\right)_{n+k}\left(q ; q^{2}\right)_{n-k+1}^{2}(-q ; q)_{n}^{6}}{(1-q)\left(q^{2} ; q^{2}\right)_{n}^{2}\left(q^{2} ; q^{2}\right)_{n-k+1}} \equiv 0 \quad\left(\bmod \left(1+q^{n}\right)^{2}[2 n+1]\left[\begin{array}{c}
2 n \tag{3.1}\\
n
\end{array}\right]\right)
$$

Proof. Since

$$
\left(1+q^{n}\right)^{2}[2 n+1]\left[\begin{array}{c}
2 n \\
n
\end{array}\right]=\frac{\left(1+q^{n}\right)^{2}(q ; q)_{2 n+1}}{(1-q)(q ; q)_{n}^{2}}
$$

to prove (3.1), it is equivalent to prove that

$$
\begin{equation*}
\frac{\left(q ; q^{2}\right)_{n+k}\left(q ; q^{2}\right)_{n-k+1}^{2}(-q ; q)_{n}^{2}(-q ; q)_{n-1}^{2}}{\left(q^{2} ; q^{2}\right)_{n-k+1}(q ; q)_{2 n+1}} \tag{3.2}
\end{equation*}
$$

is a polynomial in q with integer coefficients. Noticing (2.7), (2.8), and

$$
(-q ; q)_{n}=\frac{\left(q^{2} ; q^{2}\right)_{n}}{(q ; q)_{n}}=\prod_{d=1}^{n} \Phi_{2 d}(q)^{\left\lfloor\frac{n}{d}\right\rfloor-\left\lfloor\frac{n}{2 d}\right\rfloor}
$$

the expression (3.2) can be factorized into

$$
\begin{aligned}
& \left(\prod_{d=1}^{n} \Phi_{2 d}(q)^{2\left\lfloor\frac{n}{d}\right\rfloor+2\left\lfloor\frac{n-1}{d}\right\rfloor-2\left\lfloor\frac{n}{2 d}\right\rfloor-2\left\lfloor\frac{n-1}{2 d}\right\rfloor-\left\lfloor\frac{n-k+1}{d}\right\rfloor-\left\lfloor\frac{2 n+1}{2 d}\right\rfloor}\right) \\
& \quad \times\left(\prod_{d=2}^{n+k} \Phi_{2 d-1}(q)^{\left\lfloor\frac{2 n+2 k}{2 d-1}\right\rfloor+2\left\lfloor\frac{2 n-2 k+2}{2 d-1}\right\rfloor-\left\lfloor\left\lfloor\frac{n+k}{2 d-1}\right\rfloor-3\left\lfloor\frac{n-k+1}{2 d-1}\right\rfloor-\left\lfloor\frac{2 n+1}{2 d-1}\right\rfloor\right.}\right) .
\end{aligned}
$$

It is clear that $\left\lfloor\frac{n}{d}\right\rfloor-\left\lfloor\frac{n-k+1}{d}\right\rfloor \geqslant 0$ (since $\left.k \geqslant 1\right),\left\lfloor\frac{2 n+1}{2 d}\right\rfloor=\left\lfloor\frac{n}{d}\right\rfloor$, and

$$
\left\lfloor\frac{n-1}{d}\right\rfloor-\left\lfloor\frac{n}{2 d}\right\rfloor-\left\lfloor\frac{n-1}{2 d}\right\rfloor \geqslant 0
$$

So, the exponent of $\Phi_{2 d}(q)$ is non-negative. Moreover, by (2.10), we have

$$
\begin{aligned}
\left\lfloor\frac{2 n+2 k}{2 d-1}\right\rfloor+\left\lfloor\frac{2 n-2 k+2}{2 d-1}\right\rfloor & \geqslant\left\lfloor\frac{n+k}{2 d-1}\right\rfloor+\left\lfloor\frac{n-k+1}{2 d-1}\right\rfloor+\left\lfloor\frac{2 n+1}{2 d-1}\right\rfloor \\
\left\lfloor\frac{2 n-2 k+2}{2 d-1}\right\rfloor & \geqslant 2\left\lfloor\frac{n-k+1}{2 d-1}\right\rfloor
\end{aligned}
$$

This implies that the exponent of $\Phi_{2 d-1}(q)$ is also non-negative and therefore (3.2) is a product of cyclotomic polynomials.

Similarly as before, summing (2.13) over n from 0 to N, we obtain

$$
\begin{equation*}
\sum_{n=0}^{N} F(n, k-1)-\sum_{n=0}^{N} F(n, k)=G(N+1, k) \tag{3.3}
\end{equation*}
$$

Furthermore, summing (3.3) over k from 1 to N, we get

$$
\begin{equation*}
\sum_{n=0}^{N} F(n, 0)-\sum_{n=0}^{N} F(n, N)=\sum_{k=1}^{N} G(N+1, k) \tag{3.4}
\end{equation*}
$$

Since

$$
\begin{aligned}
\sum_{n=0}^{N} F(n, N)=F(N, N) & =[4 N+1] \frac{\left(q ; q^{2}\right)_{2 N}}{\left(q^{4} ; q^{4}\right)_{N}^{2}} \\
& =\frac{[4 N+1]}{\left(-q^{2} ; q^{2}\right)_{N}^{2}(-q ; q)_{2 N}(-q ; q)_{N}^{2}}\left[\begin{array}{c}
4 N \\
2 N
\end{array}\right]\left[\begin{array}{c}
2 N \\
N
\end{array}\right]
\end{aligned}
$$

by Lemma 3.1 we have

$$
\begin{aligned}
(-q ; q)_{N}^{6}\left(-q^{2} ; q^{2}\right)_{N}^{3} \sum_{n=0}^{N} F(n, N) & =(-q ; q)_{N}^{4}\left(-q^{2} ; q^{2}\right)_{N} \frac{[2 N+1]}{(-q ; q)_{2 N}}\left[\begin{array}{c}
4 N+1 \\
2 N
\end{array}\right]\left[\begin{array}{c}
2 N \\
N
\end{array}\right] \\
& \equiv 0 \quad\left(\bmod \left(1+q^{N}\right)^{2}[2 N+1]\left[\begin{array}{c}
2 N \\
N
\end{array}\right]\right)
\end{aligned}
$$

Additionally, by Lemma 3.2 , for $1 \leqslant k \leqslant N$, we have

$$
\begin{aligned}
(-q ; q)_{N}^{6}\left(-q^{2} ; q^{2}\right)_{N}^{3} G(N+1, k) & =\frac{\left(q ; q^{2}\right)_{N+k}\left(q ; q^{2}\right)_{N-k+1}^{2}(-q ; q)_{N}^{6}}{(1-q)\left(q^{2} ; q^{2}\right)_{N}^{2}\left(q^{2} ; q^{2}\right)_{N-k+1}} \frac{\left(-q^{2} ; q^{2}\right)_{N}}{\left(-q^{2} ; q^{2}\right)_{N-k+1}} \\
& \equiv 0 \quad\left(\bmod \left(1+q^{N}\right)^{2}[2 N+1]\left[\begin{array}{c}
2 N \\
N
\end{array}\right]\right)
\end{aligned}
$$

Therefore, from (3.4) we deduce that

$$
(-q ; q)_{N}^{6}\left(-q^{2} ; q^{2}\right)_{N}^{3} \sum_{n=0}^{N} F(n, 0) \equiv 0 \quad\left(\bmod \left(1+q^{N}\right)^{2}[2 N+1]\left[\begin{array}{c}
2 N \\
N
\end{array}\right]\right) .
$$

Namely, the congruence (1.18) holds for $n=N$ by noticing that

$$
\frac{\left(q ; q^{2}\right)_{k}}{\left(q^{4} ; q^{4}\right)_{k}}=\left[\begin{array}{c}
2 k \\
k
\end{array}\right] \frac{1}{(-q ; q)_{k}^{2}\left(-q^{2} ; q^{2}\right)_{k}} .
$$

4. Concluding remarks and open problems

It seems that the condition " n is an odd prime power" in Lemma 2.1 is not necessary. Namely, we have the following conjecture.

Conjecture 4.1. The congruence (2.1) holds for all positive odd integers n.
Pan $[17,(1.4)]$ has given a q-analogue of Fermat's little theorem: $\left(q^{m} ; q^{m}\right)_{p-1} /(q ; q)_{p-1} \equiv$ $1(\bmod [p])$ for any prime p and positive integer $m \operatorname{with} \operatorname{gcd}(p, m)=1$. More general, for all positive integers m and n with $\operatorname{gcd}(m, n)=1$, we have

$$
\frac{\left(q^{m} ; q^{m}\right)_{n-1}}{(q ; q)_{n-1}}=\prod_{j=1}^{n-1} \frac{1-q^{m j}}{1-q^{j}} \equiv 1 \quad\left(\bmod \Phi_{n}(q)\right) .
$$

We now suppose that n is a positive odd integer. Similarly to the proof of (2.1), we can show that

$$
\begin{equation*}
\left(q^{m} ; q^{m}\right)_{(n-1) / 2}^{2} /(q ; q)_{(n-1) / 2}^{2} \equiv q^{\frac{(m-1)\left(n^{2}-1\right)}{8}} \quad\left(\bmod \Phi_{n}(q)\right) . \tag{4.1}
\end{equation*}
$$

We have a generalization of Conjecture 4.1 as follows.
Conjecture 4.2. Let $m, n>1$ be positive integers with n odd and $\operatorname{gcd}(m, n)=1$. Then

$$
\frac{\left(q^{m} ; q^{m}\right)_{(n-1) / 2}}{(q ; q)_{(n-1) / 2}} \equiv \begin{cases}\left(\frac{m}{n}\right) q^{\frac{(m-1)\left(n^{2}-1\right)}{16}}\left(\bmod \Phi_{n}(q)\right), & \text { if } 16 \mid(m-1)\left(n^{2}-1\right) \tag{4.2}\\ \left(\frac{m}{n}\right) q^{\frac{(m-1)\left(n^{2}-1\right)+8 n}{16}}\left(\bmod \Phi_{n}(q)\right), & \text { if } 16 \nmid(m-1)\left(n^{2}-1\right),\end{cases}
$$

where $\left(\frac{m}{n}\right)$ is the Jacobi symbol.
Similarly as Lemma 2.1, we can prove the following result.
Theorem 4.3. Conjecture 4.2 is true for all odd prime powers n.

Proof. It is clear that (4.1) is equivalent to

$$
\begin{equation*}
\left(q^{m} ; q^{m}\right)_{(n-1) / 2}^{2} /(q ; q)_{(n-1) / 2}^{2} \equiv q^{\frac{(m-1)\left(n^{2}-1\right)}{8}+n} \quad\left(\bmod \Phi_{n}(q)\right) \tag{4.3}
\end{equation*}
$$

Moreover, if $(m-1)\left(n^{2}-1\right) / 8$ is odd, then $(m-1)\left(n^{2}-1\right) / 8+n$ is even. By (4.1) and (4.3), we know that

$$
\frac{\left(q^{m} ; q^{m}\right)_{(n-1) / 2}}{(q ; q)_{(n-1) / 2}} \equiv \begin{cases} \pm q^{\frac{(m-1)\left(n^{2}-1\right)}{16}}\left(\bmod \Phi_{n}(q)\right), & \text { if } 16 \mid(m-1)\left(n^{2}-1\right) \tag{4.4}\\ \pm q^{\frac{(m-1)\left(n^{2}-1\right)+8 n}{16}}\left(\bmod \Phi_{n}(q)\right), & \text { if } 16 \nmid(m-1)\left(n^{2}-1\right)\end{cases}
$$

It remains to determine the sign of the right-hand side of (4.4). We now assume that $n=p^{r}$ is an odd prime power. Then $m^{\frac{p-1}{2}} \equiv\left(\frac{m}{p}\right)(\bmod p)$ and, by the binomial theorem, $\left(p^{r}-1\right) / 2=\left(((p-1)+1)^{r}-1\right) / 2 \equiv(p-1) r / 2(\bmod p-1)$. Since $m^{p-1} \equiv 1(\bmod p)$, we conclude that $m^{\frac{p^{r}-1}{2}} \equiv m^{\frac{(p-1) r}{2}}=\left(\frac{m}{p}\right)^{r}=\left(\frac{m}{p^{r}}\right)=\left(\frac{m}{n}\right)(\bmod p)$. Therefore, taking $q=1$ in (4.4) and noticing that $\Phi_{p^{r}}(1)=p$, we deduce that the sign \pm in (4.4) must be $\left(\frac{m}{n}\right)$.

For any positive odd integer n, it is easy to see that $\Phi_{n}\left(q^{2}\right)=\Phi_{n}(q) \Phi_{n}(-q)$. Replacing q by q^{2} in (4.2) and noticing that $q^{n} \equiv 1\left(\bmod \Phi_{n}(q)\right)$, we obtain the following conjectural congruence:

$$
\frac{\left(q^{2 m} ; q^{2 m}\right)_{(n-1) / 2}}{\left(q^{2} ; q^{2}\right)_{(n-1) / 2}} \equiv\left(\frac{m}{n}\right) q^{\frac{(m-1)\left(n^{2}-1\right)}{8}} \quad\left(\bmod \Phi_{n}(q)\right)
$$

which reduces to (2.1) when $m=2$.
Let us turn back to Swisher's work [22, Corollary 1.4]. She proves the following interesting congruence:

$$
\sum_{k=0}^{\frac{p-1}{2}}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \sum_{j=1}^{k}\left(\frac{1}{(2 j-1)^{2}}-\frac{1}{16 j^{2}}\right) \equiv 0 \quad(\bmod p)
$$

We provide a q-analogue of this congruence as follows.
Conjecture 4.4. Let n be a positive odd integer. Then

$$
\sum_{k=0}^{\frac{n-1}{2}}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}} \sum_{j=1}^{k}\left(\frac{q^{2 j-1}}{[2 j-1]^{2}}-\frac{q^{4 j}}{[4 j]^{2}}\right) \equiv 0 \quad\left(\bmod \Phi_{n}(q)\right)
$$

Swisher [22] has made many interesting conjectural supercongruences on generalizations of Van Hamme's 13 Ramanujan-type supercongruences. For instance, She [22, (L.3)] conjectured that, for any odd prime p and positive integer r,

$$
\begin{equation*}
\sum_{k=0}^{\frac{p^{r}-1}{2}}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \equiv(-1)^{\frac{(p-1)(p+5)}{8}} p \sum_{k=0}^{\frac{p^{r-1}-1}{2}}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \quad\left(\bmod p^{3 r}\right) \tag{4.5}
\end{equation*}
$$

If the supercongruence (4.5) is true, then we can easily conclude that

$$
\sum_{k=0}^{\frac{p^{r}-1}{2}}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \equiv(-1)^{\frac{(p-1)(p+5) r}{8}} p^{r} \quad\left(\bmod p^{r+2}\right)
$$

which is the $n=p^{r}$ and $q=1$ case of our conjectural congruence (1.13) by noticing that $(-1)^{\frac{(p-1)(p+5) r}{8}}=(-1)^{\frac{\left(p^{r}-1\right)\left(p^{r}+5\right)}{8}}$. That is, the congruence (1.13) coincides with Swisher's Conjecture (L.3).

If the conjectural congruence (1.14) is true, then

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-1}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \equiv(-1)^{\frac{(p-1)(p+5) r}{8}} p^{r} \quad\left(\bmod p^{r+2}\right) \tag{4.6}
\end{equation*}
$$

Motivated by Swisher's Conjecture (L.3) and the conjectures of Z.-W. Sun [21], we would like to raise the following conjecture, which is a refinement of (4.6).
Conjecture 4.5. Let p be an odd prime and r a positive integer. Then

$$
\sum_{k=0}^{p^{r}-1}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \equiv(-1)^{\frac{(p-1)(p+5)}{8}} p \sum_{k=0}^{p^{r-1}-1}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \quad\left(\bmod p^{3 r}\right)
$$

Moreover, since the supercongruences (1.6)-(1.9) have very nice q-analogues, it is natural to ask whether their original π series (1.2)-(1.5) have similar q-analogues or not. This is true for (1.2)-(1.4). In fact, letting $n \rightarrow \infty, a=b=c=q$, and $q \rightarrow q^{2}, q^{3}, q^{4}$ in Jackson's ${ }_{6} \phi_{5}$ summation (see [4, Appendix (II.20)]):

$$
{ }_{6} \phi_{5}\left[\begin{array}{c}
a, q a^{\frac{1}{2}},-q a^{\frac{1}{2}}, b, c, d \\
a^{\frac{1}{2}},-a^{\frac{1}{2}}, a q / b, a q / c, a q / d
\end{array} ; q, \frac{a q}{b c d}\right]=\frac{(a q ; q)_{\infty}(a q / b c ; q)_{\infty}(a q / b d ; q)_{\infty}(a q / c d ; q)_{\infty}}{(a q / b ; q)_{\infty}(a q / c ; q)_{\infty}(a q / d ; q)_{\infty}(a q / b c d ; q)_{\infty}},
$$

where $(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}$ and the basic hypergeometric series ${ }_{r+1} \phi_{r}$ is defined as

$$
{ }_{r+1} \phi_{r}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{r}
\end{array} ; q, z\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1} ; q\right)_{k}\left(a_{2} ; q\right)_{k} \cdots\left(a_{r+1} ; q\right)_{k} z^{k}}{(q ; q)_{k}\left(b_{1} ; q\right)_{k}\left(b_{2} ; q\right)_{k} \cdots\left(b_{r} ; q\right)_{k}},
$$

we are led to the following q-series identities:

$$
\begin{align*}
& \sum_{k=0}^{\infty}(-1)^{k} q^{k^{2}}[4 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{2} ; q^{2}\right)_{k}^{3}}=\frac{\left(q ; q^{2}\right)_{\infty}\left(q^{3} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}, \\
& \sum_{k=0}^{\infty}(-1)^{k} q^{\frac{3 k^{2}+k}{2}[6 k+1] \frac{\left(q ; q^{3}\right)_{k}^{3}}{\left(q^{3} ; q^{3}\right)_{k}^{3}}=\frac{\left(q^{2} ; q^{3}\right)_{\infty}\left(q^{4} ; q^{3}\right)_{\infty}}{\left(q^{3} ; q^{3}\right)_{\infty}^{2}},} \\
& \sum_{k=0}^{\infty}(-1)^{k} q^{2 k^{2}+k}[8 k+1] \frac{\left(q ; q^{4}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}}=\frac{\left(q^{3} ; q^{4}\right)_{\infty}\left(q^{5} ; q^{4}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}^{2}}, \tag{4.7}
\end{align*}
$$

which are q-analogues of (1.2)-(1.4), respectively.
We have the following conjectural q-analogue of (1.5).

Conjecture 4.6. For any complex number q with $|q|<1$, there holds

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} q^{3 k^{2}}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}}=\frac{\left(q^{3} ; q^{4}\right)_{\infty}\left(q^{5} ; q^{4}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}^{2}} \tag{4.8}
\end{equation*}
$$

Note that the right-sides of (4.7) and (4.8) are the same. It is easy to see that the left-hand side of (4.8) converges uniformly on the interval $[0,1)$, and so

$$
\lim _{q \rightarrow 1^{-}} \sum_{k=0}^{\infty}(-1)^{k} q^{3 k^{2}}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}}=\sum_{k=0}^{\infty}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} .
$$

On the other hand, the q-Gamma function $\Gamma_{q}(x)$ is defined by

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}, \quad 0<q<1
$$

(see [4, p. 20]), and we have

$$
\lim _{q \rightarrow 1^{-}} \Gamma_{q}(x)=\Gamma(x) .
$$

It follows that

$$
\lim _{q \rightarrow 1^{-}} \frac{\left(q^{3} ; q^{4}\right)_{\infty}\left(q^{5} ; q^{4}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}^{2}}=\lim _{q \rightarrow 1^{-}} \frac{1}{\Gamma_{q^{4}}\left(\frac{3}{4}\right) \Gamma_{q^{4}}\left(\frac{5}{4}\right)}=\frac{1}{\Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{5}{4}\right)}=\frac{2 \sqrt{2}}{\pi} .
$$

This means that (4.8) is indeed a q-analogue of (1.5).
Remark. Conjecture 1.1 has recently been confirmed by Guo and Zudilin [10, Theorem 4.4], and Conjecture 4.6 has been proved by Guo and Liu [8], Hou, Krattenthaler, and Sun [12], and Guo and Zudilin [9]. It was pointed out by the editor that Conjecture 4.6 can also be deduced from the following terminating quadratic summation of Gessel and Stanton [5, (6.8)]:

$$
\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}\left(a ; q^{\frac{1}{2}}\right)_{k}\left(a q / c ; q^{\frac{1}{2}}\right)_{k}\left(c / a q^{\frac{1}{2}} ; q^{\frac{1}{2}}\right)_{k}\left(1-a q^{\frac{3 k}{2}}\right)}{\left(a q^{n+\frac{1}{2}} ; q^{\frac{1}{2}}\right)_{k}(q ; q)_{k}(c ; q)_{k}\left(a^{2} q^{\frac{3}{2}} / c ; q\right)_{k}(1-a)} q^{n k+\frac{k^{2}+k}{4}} a^{k}=\frac{\left(a q^{\frac{1}{2}} ; q^{\frac{1}{2}}\right)_{2 n}}{(c ; q)_{n}\left(a^{2} q^{\frac{3}{2}} c ; q\right)_{n}}
$$

by letting $n \rightarrow \infty, q \rightarrow q^{4}, c \rightarrow q^{4}$, and $a \rightarrow q$.
Acknowledgments. The author thanks the anonymous referee for many valuable comments and suggestions. This work was partially supported by the National Natural Science Foundation of China (grant 11771175).

References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[2] Y. Chen, X. Xie, B. He, On some congruences of certain binomial sums, Ramanujan J 40 (2016), 237-244.
[3] S.B. Ekhad, D. Zeilberger, A WZ proof of Ramanujan's formula for π, Geometry, Analysis, and Mechanics, J.M. Rassias (ed.), World Scientific, Singapore (1994), 107-108.
[4] G. Gasper, M. Rahman, Basic Hypergeometric Series, Second Edition, Encyclopedia of Mathematics and Its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
[5] I. Gessel, D. Stanton, Applications of q-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 (1983), 173-201.
[6] V.J.W. Guo, q-Analogues of the (E.2) and (F.2) supercongruences of Van Hamme, Ramanujan J., https://doi.org/10.1007/s11139-018-0021-z.
[7] V.J.W. Guo, A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients, J. Math. Anal. Appl. 458 (2018), 590-600.
[8] V.J.W. Guo, J.-C. Liu, q-Analogues of two Ramanujan-type formulas for $1 / \pi$, J. Difference Equ. Appl., https://doi.org/10.1080/10236198.2018.1485669.
[9] V.J.W. Guo, W. Zudilin, Ramanujan-type formulae for $1 / \pi$: q-analogues, Integral Transforms Spec. Funct. 29 (7) (2018), 505-517.
[10] V.J.W. Guo, W. Zudilin, A q-microscope for supercongruences, preprint, arXiv:1803.01830 [math.NT] (March 2018), 24 pp.
[11] B. He, On the divisibility properties concerning sums of binomial coefficients, Ramanujan J. 43 (2017), 313-326.
[12] Q.-H. Hou, C. Krattenthaler, Z.-W. Sun, On q-analogues of some series for π and π^{2}, preprint, arXiv: 1802.01506 v 2 [math.CO] (February 2018), 11 pp .
[13] J. Liu, H. Pan, Y. Zhang, A generalization of Morley's congruence, Adv. Differ. Equ. (2015) 2015:254.
[14] L. Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math. 249 (2011), 405-418.
[15] E. Mortenson, A p-adic supercongruence conjecture of van Hamme, Proc. Amer. Math. Soc. 136 (2008), 4321-4328.
[16] R. Osburn, W. Zudilin, On the (K.2) supercongruence of Van Hamme, J. Math. Anal. Appl. 433 (2016), 706-711.
[17] H. Pan, A q-analogue of Lehmer's congruence, Acta Arith. 128 (2007), 303-318.
[18] S. Ramanujan, Modular equations and approximations to π, Quart. J. Math. Oxford Ser. (2) 45 (1914), 350-372.
[19] A. Straub, A q-analog of Ljunggren's binomial congruence, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 897-902, Discrete Math. Theor. Comput. Sci. Proc., AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2011.
[20] Z.-W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011), 2509-2535.
[21] Z.-W. Sun, Supercongruences involving Lucas sequences, preprint, 2016, arXiv:1610.03384v7.
[22] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. (2015) 2:18.
[23] R. Tauraso, Some q-analogs of congruences for central binomial sums, Colloq. Math. 133 (2013), 133-143.
[24] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997, pp. 223-236.
[25] H.S. Wilf, D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and " q ") multisum/integral identities, Invent. Math. 108 (1992), 575-633.
[26] H.S. Wilf, D. Zeilberger, Rational function certification of multisum/integral/" q " identities, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 148-153.
[27] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009), 1848-1857.

