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Abstract. The (L.2) supercongruence of Van Hamme was proved by Swisher recently.
In this paper we provide a conjectural q-analogue of the (L.2) supercongruence of Van
Hamme and prove a weaker form of it by using the q-WZ method. In the same way, we
prove a complete q-analogue of the following congruence

n∑

k=0

(6k + 1)

(
2k

k

)3

(−512)n−k ≡ 0 (mod 4(2n + 1)

(
2n

n

)
),

which was conjectured by Z.-W. Sun and confirmed by B. He. We also provide a conjec-
tural q-analogue of another congruence proved by Swisher.

Keywords: q-binomial coefficients; q-WZ method; cyclotomic polynomials; q-Gamma func-
tion; Jackson’s 6φ5 summation.
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1. Introduction

In 1914, Ramanujan [18] discovered several infinite series for 1/π that enable us to compute
π very accurately. The most impressive one might be

∞∑

k=0

(1/4)k(1/2)k(3/4)k

k!3
(1103 + 26390k)(1/99)4k+2 =

1

2
√

2π
, (1.1)

where (a)k = a(a + 1) · · · (a + k − 1).
In 1997, Van Hamme [24] observed that 13 Ramanujan’s or Ramanujan-like formulas
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for 1/π, such as

∞∑

k=0

(−1)k(4k + 1)
(1

2
)3
k

k!3
=

2

π
, (1.2)

∞∑

k=0

(−1)k(6k + 1)
(1

3
)3
k

k!3
=

3
√

3

2π
, (1.3)

∞∑

k=0

(−1)k(8k + 1)
(1

4
)3
k

k!3
=

2
√

2

π
, (1.4)

∞∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
=

2
√

2

π
, (1.5)

have very nice p-adic analogues:

p−1
2∑

k=0

(−1)k(4k + 1)
(1

2
)3
k

k!3
≡ p

(−1

p

)
(mod p3), (1.6)

p−1
3∑

k=0

(−1)k(6k + 1)
(1

3
)3
k

k!3
≡ p (mod p3), if p ≡ 1 (mod 3), (1.7)

p−1
4∑

k=0

(−1)k(8k + 1)
(1

4
)3
k

k!3
≡ p

(−2

p

)
(mod p3), if p ≡ 1 (mod 4), (1.8)

p−1
2∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
≡ p

(−2

p

)
(mod p3), (1.9)

where p is an odd prime and
( ·

p

)
is the Legendre symbol modulo p. Supercongruences of

this type are called Ramanujan-type supercongruences. All of the 13 supercongruences
have now been confirmed by different authors (see [16,22]). The supercongruence (1.6) was
first proved by Mortenson [15] using a 6F5 transformation and a technical evaluation of a
quotient of Gamma functions, and later reproved by Zudilin [27] via the Wilf–Zeilberger
method [25, 26] (the WZ pair was borrowed from [3]) and by Long [14] using hypergeo-
metric identities. Swisher [22] used Long’s method to prove 4 supercongruences of Van
Hamme, including (1.7)–(1.9). Chen, Xie, and He [2] reproved (1.9) modulo p2 via the
WZ method again. He [11] has independently used Long’s method to give a generalization
of (1.7) and (1.8). Moreover, it is worth mentioning that the last supercongruence of Van
Hamme was proved by Osburn and Zudilin [16] in 2016.

Motivated by Zudilin’s work [27], the author [6, 7] uses the q-WZ method to obtain
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q-analogues of (1.6)–(1.8): for any odd prime p,

p−1
2∑

k=0

(−1)kqk2

[4k + 1]
(q; q2)3

k

(q2; q2)3
k

≡ [p]q
(p−1)2

4 (−1)
p−1
2 (mod [p]3), (1.10)

p−1
3∑

k=0

(−1)kq
3k2+k

2 [6k + 1]
(q; q3)3

k

(q3; q3)3
k

≡ [p]q
(p−1)(p−2)

6 (mod [p]3), if p ≡ 1 (mod 3), (1.11)

p−1
4∑

k=0

(−1)kq2k2+k[8k + 1]
(q; q4)3

k

(q4; q4)3
k

≡ [p]q
(p−1)(p−3)

8

(−2

p

)
(mod [p]3) if p ≡ 1 (mod 4),

(1.12)

where (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) for n > 1 and (a; q)0 = 1, and [n] = [n]q =
1 + q + · · · + qn−1. Note that, for a polynomial h(q) and two rational functions f(q)
and g(q), we say that f(q) is congruent to g(q) modulo h(q), denoted by f(q) ≡ g(q)
(mod h(q)), if the numerator of the reduced form of f(q)− g(q) is divisible by h(q). We
point out that there are more general forms of (1.10)–(1.12) in [6, 7], and some other
interesting q-congruences can be found in [13,17,19,23].

Recall that the n-th cyclotomic polynomial Φn(q) is defined as

Φn(q) :=
∏

16k6n
gcd(k,n)=1

(q − e2πi k
n ),

where i is the imaginary unit. It is clear that Φp(q) = [p] for any prime p. This paper was
motivated by the following conjectural q-analogue of (1.9) (i.e., the (L.2) supercongruence
of Van Hamme [24]).

Conjecture 1.1. Let n be a positive odd integer. Then

n−1
2∑

k=0

(−1)k[6k + 1]
(q; q2)3

k

(q4; q4)3
k

≡ [n](−q)−
(n−1)(n+5)

8 (mod [n]Φn(q)2), (1.13)

n−1∑

k=0

(−1)k[6k + 1]
(q; q2)3

k

(q4; q4)3
k

≡ [n](−q)−
(n−1)(n+5)

8 (mod [n]Φn(q)2). (1.14)

Note that, when n = p is an odd prime, the congruences (1.13) and (1.14) are equiv-

alent to each other, since (q;q2)k

(q4;q4)k
≡ 0 (mod [p]) for p+1

2
6 k 6 p − 1. But they are not

equivalent in general.
The first aim of this paper is to prove the following weaker form of Conjecture 1.1.

Theorem 1.2. Let n be a positive odd integer. Then

n−1
2∑

k=0

(−1)k[6k + 1]
(q; q2)3

k

(q4; q4)3
k

≡ 0 (mod [n]). (1.15)
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Moreover, if n is an odd prime power, then

n−1∑

k=0

(−1)k[6k + 1]
(q; q2)3

k

(q4; q4)3
k

≡ [n](−q)−
(n−1)(n+5)

8 (mod [n]Φn(q)). (1.16)

Letting q → 1 in (1.16), we obtain

Corollary 1.3. Let p be an odd prime and r a positive integer. Then

pr−1∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
≡ p

(−2

p

)r

(mod pr+1).

On the other hand, Z.-W. Sun [20, Conjecture 5.1(i)] made the following conjecture

n∑

k=0

(6k + 1)

(
2k

k

)3

(−512)n−k ≡ 0 (mod 4(2n + 1)

(
2n

n

)
), (1.17)

which was later proved by He [11] using the WZ method. The second aim of this paper
is to prove the following q-analogue of (1.17).

Theorem 1.4. Let n be a positive integer. Then

n∑

k=0

(−1)k[6k + 1]

[
2k

k

]3
(−q; q)6

n(−q2; q2)3
n

(−q; q)6
k(−q2; q2)3

k

≡ 0 (mod (1 + qn)2[2n + 1]

[
2n

n

]
), (1.18)

where the q-binomial coefficients
[
m
k

]
are defined by

[
m

k

]
=

[
m

k

]

q

=





(q; q)m

(q; q)k(q; q)m−k

if 0 6 k 6 m,

0 otherwise.

We shall prove Theorem 1.2 in Section 2 using some properties of q-factorials and a
q-WZ pair. In Section 3, we shall prove Theorem 1.4 using the same q-WZ pair and some
properties of q-binomial coefficients. In section 4, we provide several related conjectures,
including one on a q-analogue of Ramanujan’s series (1.5) and another one on a q-analogue

of the congruence 2
p−1
2 ≡ (−1)

p2−1
8 (mod p) for any odd prime p.

2. Proof of Theorem 1.2

We first require three preliminary results.

Lemma 2.1. If n is an odd prime power, then

(−q2; q2)(n−1)/2 ≡ (−1)
n2−1

8 q
n2−1

8 (mod Φn(q)). (2.1)
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Proof. By the q-binomial theorem (see [1, p. 36, (3.3.6)]), for any odd positive integer n,
we have

(−q2; q2)n−1 =
n−1∑

k=0

[
n− 1

k

]

q2

qk2+k ≡
n−1∑

k=0

(−1)k = 1 (mod Φn(q)), (2.2)

since

[
n− 1

k

]

q2

=
k∏

j=1

1− q2n−2j

1− q2j
≡

k∏
j=1

1− q−2j

1− q2j
= (−1)kq−k2−k (mod Φn(q)).

Note that

(−q2; q2)n−1 = (−q2; q2)(n−1)/2

n−1
2∏

k=1

(1 + q2n−2k) ≡ (−q2; q2)(n−1)/2

n−1
2∏

k=1

(1 + q−2k)

= (−q2; q2)2
(n−1)/2q

1−n2

4 (mod Φn(q)).

(2.3)

Combining (2.2) and (2.3), we obtain (−q2; q2)2
(n−1)/2 ≡ q

n2−1
4 (mod Φn(q)). It follows

that

(−q2; q2)(n−1)/2 ≡ ±q
n2−1

8 (mod Φn(q)). (2.4)

We now suppose that n = pr is an odd prime power. Then 2
pr−1

2 ≡ (−1)
(p2−1)r

8 = (−1)
p2r−1

8

(mod p) since 2
p−1
2 ≡ (

2
p

)
= (−1)

p2−1
8 (mod p). Hence, letting q = 1 in (2.4) and noticing

that Φpr(1) = p, we are led to (2.1). 2

Lemma 2.2. Let n and k be positive integers with n odd. Then

(q; q2)(n−1)/2+k(q; q
2)2

(n+1)/2−k

(q2; q2)2
(n−1)/2(q

2; q2)(n+1)/2−k

≡ 0 (mod 1− qn), (2.5)

and for 1 6 k 6 n with k 6= n+1
2

we have

(q; q2)n+k−1(q; q
2)2

n−k

(q2; q2)2
n−1(q

2; q2)n−k

≡ 0 (mod (1− qn)Φn(q)). (2.6)

Proof. It is well known that

qm − 1 =
∏

d|m
Φd(q),
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and so

(q2; q2)m = (−1)m

(
m∏

d=1

Φ2d(q)
bm

d
c
)(

m∏

d=1

Φ2d−1(q)
b m
2d−1

c
)

, (2.7)

(q; q2)m =
(q; q)2m

(q2; q2)m

= (−1)m

m∏

d=1

Φ2d−1(q)
b 2m
2d−1

c−b m
2d−1

c, (2.8)

where bxc denotes the greatest integer less than or equal to x. Therefore,

(q; q2)m+k(q; q
2)2

m−k+1

(q2; q2)2
m(q2; q2)m−k+1

= −
m+k∏

d=1

Φ2d−1(q)
b 2m+2k

2d−1
c+2b 2m−2k+2

2d−1
c−bm+k

2d−1
c−3bm−k+1

2d−1
c−2b m

2d−1
c

Φ2d(q)
2bm

d
c+bm−k+1

d
c . (2.9)

Applying the following properties

b2xc+ b2yc > bxc+ byc+ bx + yc, b2yc > 2byc, (2.10)

we see that the exponent of Φ2d−1(q) on the right-hand side of (2.9) is greater than or
equal to

⌊
2m + 1

2d− 1

⌋
− 2

⌊
m

2d− 1

⌋
,

which is clearly non-negative.
If m = n−1

2
or m = n− 1, then for any d with 2d− 1|n, we have b2m+1

2d−1
c− 2b m

2d−1
c = 1,

which means that the congruences (2.5) and (2.6) hold modulo 1− qn.
Furthermore, if m = n−1 and 1 6 k 6 n, then the exponent of Φn(q) on the right-hand

side of (2.9) is equal to

⌊
2n + 2k − 2

n

⌋
+ 2

⌊
2n− 2k

n

⌋
−

⌊
n + k − 1

n

⌋
=

{
3, if 1 6 k 6 n−1

2
,

2 if n+3
2

6 k 6 n.

This proves (2.6). 2

Lemma 2.3. Let n be a positive odd integer. Then

n−1
2∑

k=0

(−1)k[6k + 1]
(q; q2)3

k

(q4; q4)3
k

=

n+1
2∑

k=1

(−1)
n+1

2
+k(q; q2)(n−1)/2+k(q; q

2)2
(n+1)/2−k

(1− q)(q4; q4)2
(n−1)/2(q

4; q4)(n+1)/2−k

, (2.11)

n−1∑

k=0

(−1)k[6k + 1]
(q; q2)3

k

(q4; q4)3
k

=
n∑

k=1

(−1)n+k(q; q2)n+k−1(q; q
2)2

n−k

(1− q)(q4; q4)2
n−1(q

4; q4)n−k

. (2.12)
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Proof. We define two rational functions in q:

F (n, k) = (−1)n+k [6n− 2k + 1](q; q2)n+k(q; q
2)2

n−k

(q4; q4)2
n(q4; q4)n−k

,

G(n, k) =
(−1)n+k(q; q2)n+k−1(q; q

2)2
n−k

(1− q)(q4; q4)2
n−1(q

4; q4)n−k

,

where we use the convention that 1/(q4; q4)m = 0 for m = −1,−2, . . . . The functions
F (n, k) and G(n, k) satisfy the relation

F (n, k − 1)− F (n, k) = G(n + 1, k)−G(n, k). (2.13)

Namely, they form a q-WZ pair. Indeed, we have the following expressions:

F (n, k − 1)

G(n, k)
= −(1− q6n−2k+3)(1− q2n−2k+1)2

(1− q4n−4k+4)(1− q4n)2
,

F (n, k)

G(n, k)
=

(1− q6n−2k+1)(1− q2n+2k−1)

(1− q4n)2
,

G(n + 1, k)

G(n, k)
= −(1− q2n+2k−1)(1− q2n−2k+1)2

(1− q4n)2(1− q4n−4k+4)
.

Then it is routine to verify the identity

− (1− q6n−2k+3)(1− q2n−2k+1)2

(1− q4n−4k+4)(1− q4n)2
− (1− q6n−2k+1)(1− q2n+2k−1)

(1− q4n)2

= −(1− q2n+2k−1)(1− q2n−2k+1)2

(1− q4n)2(1− q4n−4k+4)
− 1,

which is equivalent to (2.13) (dividing both sides by G(n, k)).
Let m be a positive odd integer. Summing (2.13) over n = 0, 1, . . . , m−1

2
, we obtain

(via telescoping)

m−1
2∑

n=0

F (n, k − 1)−
m−1

2∑
n=0

F (n, k) = G

(
m + 1

2
, k

)
, (2.14)

where we have used G(0, k) = 0. Summing (2.14) over k = 1, 2, . . . , m+1
2

, we get

m−1
2∑

n=0

F (n, 0) =

m−1
2∑

n=0

F

(
n,

m + 1

2

)
+

m+1
2∑

k=1

G

(
m + 1

2
, k

)
=

m+1
2∑

k=1

G

(
m + 1

2
, k

)
,

where we have used F (n, k) = 0 for n < k because (q4; q4)n−k is in the denominator. This
proves that (2.11) holds for n = m.
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Similarly, we have

m−1∑
n=0

F (n, 0) =
m∑

k=1

G (m, k) .

That is, the identity (2.12) is true for n = m. 2

Proof of Theorem 1.2. It is easy to see that

(q; q2)(n−1)/2+k(q; q
2)2

(n+1)/2−k

(1− q)(q4; q4)2
(n−1)/2(q

4; q4)(n+1)/2−k

=
(q; q2)(n−1)/2+k(q; q

2)2
(n+1)/2−k

(1− q)(q2; q2)2
(n−1)/2(q

2; q2)(n+1)/2−k

1

(−q2; q2)2
(n−1)/2(−q2; q2)(n+1)/2−k

By Lemma 2.2, we have

(q; q2)(n−1)/2+k(q; q
2)2

(n+1)/2−k

(1− q)(q2; q2)2
(n−1)/2(q

2; q2)(n+1)/2−k

≡ 0 (mod [n]). (2.15)

Moreover, we have gcd((−q2; q2)2
(n−1)/2(−q2; q2)(n+1)/2−k, [n]) = 1, since (1−qn, 1+qm) = 1

holds for all positive integers m and n with n odd. The proof of (1.15) then follows from
(2.11) and (2.15).

Similarly, by (2.6), for 1 6 k 6 n with k 6= n+1
2

we have

(q; q2)n+k−1(q; q
2)2

n−k

(1− q)(q4; q4)2
n−1(q

4; q4)n−k

≡ 0 (mod [n]Φn(q)).

Therefore, modulo [n]Φn(q), the identity (2.12) reduces to

n−1∑

k=0

(−1)k[6k + 1]
(q; q2)3

k

(q4; q4)3
k

≡
(−1)n+n+1

2 (q; q2)(3n−1)/2(q; q
2)2

(n−1)/2

(1− q)(q4; q4)2
n−1(q

4; q4)(n−1)/2

=
(−1)

n−1
2 (q; q2)(n−1)/2[n](qn+2; q2)n−1(q; q

2)2
(n−1)/2

(q4; q4)2
n−1(q

4; q4)(n−1)/2

≡
(−1)

n−1
2 (q; q2)(n−1)/2[n](q2; q2)n−1(q; q

2)2
(n−1)/2

(q4; q4)2
n−1(q

4; q4)(n−1)/2

=
(−1)

n−1
2 [n]

(−q2; q2)2
n−1(−q2; q2)(n−1)/2(−q; q)3

n−1

[
n− 1

n−1
2

]2

q2

(mod [n]Φn(q)), (2.16)

8



where we have used the fact A1(q)[n]
B1(q)

≡ A2(q)[n]
B2(q)

(mod [n]Φn(q)) if A1(q)
B1(q)

≡ A2(q)
B2(q)

(mod Φn(q))

and the denominators of the reduced forms of A1(q)
B1(q)

and A2(q)
B2(q)

are both relatively prime

to [n]. By the proof of (2.1), we have (−q; q)n−1 ≡ (−q2; q2)n−1 ≡ 1 (mod Φn(q)) and[
n−1
n−1

2

]
q2
≡ (−1)

n−1
2 q

1−n2

4 (mod Φn(q)). Thus, from (2.16) we obtain

n−1∑

k=0

(−1)k[6k + 1]
(q; q2)3

k

(q4; q4)3
k

≡ (−1)
n−1

2 [n]q
1−n2

2

(−q2; q2)(n−1)/2

(mod [n]Φn(q)), (2.17)

which means that the congruence (1.14) modulo [n] is true. If n is an odd prime power,

then by Lemma 2.1 and noticing that q
3(1−n2)

8 ≡ q−
(n−1)(n+5)

8 (mod Φn(q)), the congruence
(2.17) is equivalent to (1.16). 2

3. Proof of Theorem 1.4

We need two divisibility results on q-binomial coefficients.

Lemma 3.1. [7, Lemma 4.1] Let n be a positive integer. Then

(−q; q)3
n

[
4n + 1

2n

]
≡ 0 (mod (1 + qn)2(−q; q)2n).

Lemma 3.2. Let n and k be positive integers with k 6 n + 1. Then

(q; q2)n+k(q; q
2)2

n−k+1(−q; q)6
n

(1− q)(q2; q2)2
n(q2; q2)n−k+1

≡ 0 (mod (1 + qn)2[2n + 1]

[
2n

n

]
). (3.1)

Proof. Since

(1 + qn)2[2n + 1]

[
2n

n

]
=

(1 + qn)2(q; q)2n+1

(1− q)(q; q)2
n

,

to prove (3.1), it is equivalent to prove that

(q; q2)n+k(q; q
2)2

n−k+1(−q; q)2
n(−q; q)2

n−1

(q2; q2)n−k+1(q; q)2n+1

(3.2)

is a polynomial in q with integer coefficients. Noticing (2.7), (2.8), and

(−q; q)n =
(q2; q2)n

(q; q)n

=
n∏

d=1

Φ2d(q)
bn

d
c−b n

2d
c,

the expression (3.2) can be factorized into
(

n∏

d=1

Φ2d(q)
2bn

d
c+2bn−1

d
c−2b n

2d
c−2bn−1

2d
c−bn−k+1

d
c−b 2n+1

2d
c
)

×
(

n+k∏

d=2

Φ2d−1(q)
b 2n+2k

2d−1
c+2b 2n−2k+2

2d−1
c−b n+k

2d−1
c−3bn−k+1

2d−1
c−b 2n+1

2d−1
c
)

.
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It is clear that bn
d
c − bn−k+1

d
c > 0 (since k > 1), b2n+1

2d
c = bn

d
c, and

⌊
n− 1

d

⌋
−

⌊ n

2d

⌋
−

⌊
n− 1

2d

⌋
> 0.

So, the exponent of Φ2d(q) is non-negative. Moreover, by (2.10), we have
⌊

2n + 2k

2d− 1

⌋
+

⌊
2n− 2k + 2

2d− 1

⌋
>

⌊
n + k

2d− 1

⌋
+

⌊
n− k + 1

2d− 1

⌋
+

⌊
2n + 1

2d− 1

⌋
,

⌊
2n− 2k + 2

2d− 1

⌋
> 2

⌊
n− k + 1

2d− 1

⌋
,

This implies that the exponent of Φ2d−1(q) is also non-negative and therefore (3.2) is a
product of cyclotomic polynomials. 2

Similarly as before, summing (2.13) over n from 0 to N , we obtain

N∑
n=0

F (n, k − 1)−
N∑

n=0

F (n, k) = G (N + 1, k) . (3.3)

Furthermore, summing (3.3) over k from 1 to N , we get

N∑
n=0

F (n, 0)−
N∑

n=0

F (n,N) =
N∑

k=1

G (N + 1, k) . (3.4)

Since

N∑
n=0

F (n,N) = F (N,N) = [4N + 1]
(q; q2)2N

(q4; q4)2
N

=
[4N + 1]

(−q2; q2)2
N(−q; q)2N(−q; q)2

N

[
4N

2N

][
2N

N

]
,

by Lemma 3.1 we have

(−q; q)6
N(−q2; q2)3

N

N∑
n=0

F (n,N) = (−q; q)4
N(−q2; q2)N

[2N + 1]

(−q; q)2N

[
4N + 1

2N

][
2N

N

]

≡ 0 (mod (1 + qN)2[2N + 1]

[
2N

N

]
).

Additionally, by Lemma 3.2, for 1 6 k 6 N , we have

(−q; q)6
N(−q2; q2)3

NG(N + 1, k) =
(q; q2)N+k(q; q

2)2
N−k+1(−q; q)6

N

(1− q)(q2; q2)2
N(q2; q2)N−k+1

(−q2; q2)N

(−q2; q2)N−k+1

≡ 0 (mod (1 + qN)2[2N + 1]

[
2N

N

]
).
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Therefore, from (3.4) we deduce that

(−q; q)6
N(−q2; q2)3

N

N∑
n=0

F (n, 0) ≡ 0 (mod (1 + qN)2[2N + 1]

[
2N

N

]
).

Namely, the congruence (1.18) holds for n = N by noticing that

(q; q2)k

(q4; q4)k

=

[
2k

k

]
1

(−q; q)2
k(−q2; q2)k

.

2

4. Concluding remarks and open problems

It seems that the condition “n is an odd prime power” in Lemma 2.1 is not necessary.
Namely, we have the following conjecture.

Conjecture 4.1. The congruence (2.1) holds for all positive odd integers n.

Pan [17, (1.4)] has given a q-analogue of Fermat’s little theorem: (qm; qm)p−1/(q; q)p−1 ≡
1 (mod [p]) for any prime p and positive integer m with gcd(p,m) = 1. More general, for
all positive integers m and n with gcd(m,n) = 1, we have

(qm; qm)n−1

(q; q)n−1

=
n−1∏
j=1

1− qmj

1− qj
≡ 1 (mod Φn(q)).

We now suppose that n is a positive odd integer. Similarly to the proof of (2.1), we can
show that

(qm; qm)2
(n−1)/2/(q; q)

2
(n−1)/2 ≡ q

(m−1)(n2−1)
8 (mod Φn(q)). (4.1)

We have a generalization of Conjecture 4.1 as follows.

Conjecture 4.2. Let m,n > 1 be positive integers with n odd and gcd(m,n) = 1. Then

(qm; qm)(n−1)/2

(q; q)(n−1)/2

≡





(m

n

)
q

(m−1)(n2−1)
16 (mod Φn(q)), if 16 | (m− 1)(n2 − 1),

(m

n

)
q

(m−1)(n2−1)+8n
16 (mod Φn(q)), if 16 - (m− 1)(n2 − 1),

(4.2)

where
(

m
n

)
is the Jacobi symbol.

Similarly as Lemma 2.1, we can prove the following result.

Theorem 4.3. Conjecture 4.2 is true for all odd prime powers n.

11



Proof. It is clear that (4.1) is equivalent to

(qm; qm)2
(n−1)/2/(q; q)

2
(n−1)/2 ≡ q

(m−1)(n2−1)
8

+n (mod Φn(q)). (4.3)

Moreover, if (m− 1)(n2 − 1)/8 is odd, then (m− 1)(n2 − 1)/8 + n is even. By (4.1) and
(4.3), we know that

(qm; qm)(n−1)/2

(q; q)(n−1)/2

≡




±q

(m−1)(n2−1)
16 (mod Φn(q)), if 16 | (m− 1)(n2 − 1),

±q
(m−1)(n2−1)+8n

16 (mod Φn(q)), if 16 - (m− 1)(n2 − 1).

(4.4)

It remains to determine the sign of the right-hand side of (4.4). We now assume that

n = pr is an odd prime power. Then m
p−1
2 ≡ (

m
p

)
(mod p) and, by the binomial theorem,

(pr−1)/2 = (((p−1)+1)r−1)/2 ≡ (p−1)r/2 (mod p−1). Since mp−1 ≡ 1 (mod p), we

conclude that m
pr−1

2 ≡ m
(p−1)r

2 =
(

m
p

)r
=

(
m
pr

)
=

(
m
n

)
(mod p). Therefore, taking q = 1

in (4.4) and noticing that Φpr(1) = p, we deduce that the sign ± in (4.4) must be
(

m
n

)
. 2

For any positive odd integer n, it is easy to see that Φn(q2) = Φn(q)Φn(−q). Replacing
q by q2 in (4.2) and noticing that qn ≡ 1 (mod Φn(q)), we obtain the following conjectural
congruence:

(q2m; q2m)(n−1)/2

(q2; q2)(n−1)/2

≡
(m

n

)
q

(m−1)(n2−1)
8 (mod Φn(q)),

which reduces to (2.1) when m = 2.
Let us turn back to Swisher’s work [22, Corollary 1.4]. She proves the following

interesting congruence:

p−1
2∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k

k∑
j=1

(
1

(2j − 1)2
− 1

16j2

)
≡ 0 (mod p).

We provide a q-analogue of this congruence as follows.

Conjecture 4.4. Let n be a positive odd integer. Then

n−1
2∑

k=0

(−1)k[6k + 1]
(q; q2)3

k

(q4; q4)3
k

k∑
j=1

(
q2j−1

[2j − 1]2
− q4j

[4j]2

)
≡ 0 (mod Φn(q)).

Swisher [22] has made many interesting conjectural supercongruences on generaliza-
tions of Van Hamme’s 13 Ramanujan-type supercongruences. For instance, She [22, (L.3)]
conjectured that, for any odd prime p and positive integer r,

pr−1
2∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
≡ (−1)

(p−1)(p+5)
8 p

pr−1−1
2∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
(mod p3r). (4.5)
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If the supercongruence (4.5) is true, then we can easily conclude that

pr−1
2∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
≡ (−1)

(p−1)(p+5)r
8 pr (mod pr+2),

which is the n = pr and q = 1 case of our conjectural congruence (1.13) by noticing that

(−1)
(p−1)(p+5)r

8 = (−1)
(pr−1)(pr+5)

8 . That is, the congruence (1.13) coincides with Swisher’s
Conjecture (L.3).

If the conjectural congruence (1.14) is true, then

pr−1∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
≡ (−1)

(p−1)(p+5)r
8 pr (mod pr+2). (4.6)

Motivated by Swisher’s Conjecture (L.3) and the conjectures of Z.-W. Sun [21], we would
like to raise the following conjecture, which is a refinement of (4.6).

Conjecture 4.5. Let p be an odd prime and r a positive integer. Then

pr−1∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
≡ (−1)

(p−1)(p+5)
8 p

pr−1−1∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
(mod p3r).

Moreover, since the supercongruences (1.6)–(1.9) have very nice q-analogues, it is
natural to ask whether their original π series (1.2)–(1.5) have similar q-analogues or not.
This is true for (1.2)–(1.4). In fact, letting n → ∞, a = b = c = q, and q → q2, q3, q4 in
Jackson’s 6φ5 summation (see [4, Appendix (II.20)]):

6φ5

[
a, qa

1
2 , −qa

1
2 , b, c, d

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d

; q,
aq

bcd

]
=

(aq; q)∞(aq/bc; q)∞(aq/bd; q)∞(aq/cd; q)∞
(aq/b; q)∞(aq/c; q)∞(aq/d; q)∞(aq/bcd; q)∞

,

where (a; q)∞ = limn→∞(a; q)n and the basic hypergeometric series r+1φr is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1; q)k(a2; q)k · · · (ar+1; q)kz
k

(q; q)k(b1; q)k(b2; q)k · · · (br; q)k

,

we are led to the following q-series identities:

∞∑

k=0

(−1)kqk2

[4k + 1]
(q; q2)3

k

(q2; q2)3
k

=
(q; q2)∞(q3; q2)∞

(q2; q2)2∞
,

∞∑

k=0

(−1)kq
3k2+k

2 [6k + 1]
(q; q3)3

k

(q3; q3)3
k

=
(q2; q3)∞(q4; q3)∞

(q3; q3)2∞
,

∞∑

k=0

(−1)kq2k2+k[8k + 1]
(q; q4)3

k

(q4; q4)3
k

=
(q3; q4)∞(q5; q4)∞

(q4; q4)2∞
, (4.7)

which are q-analogues of (1.2)–(1.4), respectively.
We have the following conjectural q-analogue of (1.5).
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Conjecture 4.6. For any complex number q with |q| < 1, there holds

∞∑

k=0

(−1)kq3k2

[6k + 1]
(q; q2)3

k

(q4; q4)3
k

=
(q3; q4)∞(q5; q4)∞

(q4; q4)2∞
. (4.8)

Note that the right-sides of (4.7) and (4.8) are the same. It is easy to see that the
left-hand side of (4.8) converges uniformly on the interval [0, 1), and so

lim
q→1−

∞∑

k=0

(−1)kq3k2

[6k + 1]
(q; q2)3

k

(q4; q4)3
k

=
∞∑

k=0

(−1)k(6k + 1)
(1

2
)3
k

k!38k
.

On the other hand, the q-Gamma function Γq(x) is defined by

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1

(see [4, p. 20]), and we have
lim

q→1−
Γq(x) = Γ(x).

It follows that

lim
q→1−

(q3; q4)∞(q5; q4)∞
(q4; q4)2∞

= lim
q→1−

1

Γq4(3
4
)Γq4(5

4
)

=
1

Γ(3
4
)Γ(5

4
)

=
2
√

2

π
.

This means that (4.8) is indeed a q-analogue of (1.5).

Remark. Conjecture 1.1 has recently been confirmed by Guo and Zudilin [10, Theo-
rem 4.4], and Conjecture 4.6 has been proved by Guo and Liu [8], Hou, Krattenthaler,
and Sun [12], and Guo and Zudilin [9]. It was pointed out by the editor that Conjecture 4.6
can also be deduced from the following terminating quadratic summation of Gessel and
Stanton [5, (6.8)]:

n∑

k=0

(q−n; q)k(a; q
1
2 )k(aq/c; q

1
2 )k(c/aq

1
2 ; q

1
2 )k(1− aq

3k
2 )

(aqn+ 1
2 ; q

1
2 )k(q; q)k(c; q)k(a2q

3
2 /c; q)k(1− a)

qnk+ k2+k
4 ak =

(aq
1
2 ; q

1
2 )2n

(c; q)n(a2q
3
2 /c; q)n

by letting n →∞, q → q4, c → q4, and a → q.
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