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1. Introduction

In 1914, Ramanujan [17] listed 17 infinite series representations of 1/7 (see also [3,
pp. 352-354]). All the 17 formulas are similar to the following identity due to Bauer
[4]:
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where we use the Pochhammer symbol (a)x =a(a+1)---(a+k —1).
In 1997, Van Hamme [20] conjectured that 13 Ramnujan-type series including
(1.1) admit nice p-adic analogues, such as
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where p is an odd prime. All of the 13 supercongruences are called Ramanujan-type
supercongruences and have now been proved by using a variety of techniques (see
[16] for a historic remark on this). Nevertheless, we still have many things to do on
these supercongruences. Firstly, finding g-analogues of known supercongruences is
worthwhile and usually challenging, especially for Van Hamme’s 13 supercongru-
ences. Secondly, if there exists a g-analogue of a Ramanujan-type supercongruence,
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it is natural to wonder whether there exists a corresponding g-analogue of the
original Ramnujan-type series. Moreover, Swisher [18] has made many interesting
conjectures on generalizations of Van Hamme’s supercongruences.

Many authors have contributed to g-analogues of congruences (see, for example,
[2,5,7,9,10,11,12,13,19]). In particular, by establishing a complicated basic hyperge-
ometric series identity, the author and Zeng [12] gave a g-analogue of Van Hamme’s
supercongruence (H.2); Motivated by the work of Zudilin [21] and Ekhad and Zeil-
berger [6], the author [9,10] used the ¢-WZ method to obtain g-analogues of Van
Hamme’s supercongruences (B.2), (E.2), and (F.2); The author and Wang [11] used
a variation of the ¢-WZ method to prove a g-analogue of a theorem of Long [14,
Theorem 1.1], which modulo [p]® reduces to a g-analogue of the supercongruence
(C.2).

In this paper we shall give a g-analogue of Van Hamme’s supercongruence (1.2)
(among the 13 supercongruences, Van Hamme [20] himself proved the cases (C.2),
(H.2) and (1.2)).

Entry (I.2) (Van Hamme [20]). Let p be an odd prime. Then
1

kap:p (mod p~). (1.3)

Following the notation in [8], the g-shifted factorial is defined by (a;¢q), = (1 —
a)(l—aq)---(1— aq”fl) for n > 1 and (a;q)g = 1. The g-integer is defined as
n] = [n]ly =1+q+---+¢"'. We shall also use the n-th cyclotomic polynomial
®,,(g), which may be defined by

Q,(q) = H (q— 627” "),

1<k<n
ged(k,n)=1
where ¢ is the imaginary unit. It is well known that ®,,(¢) is an irreducible poly-
nomial with integer coefficients and ®,(¢q) = [p] for any prime p. Throughout the
paper, the polynomials are considered in the ring Q[g]. Since ®,(q) is irreducible,
the quotient ring Q[q]/®,(g) is a field, and so any polynomial which is not divisible
by ®,(q) has an inverse in Q[q]/®,(q). Thus, rational functions in Q(gq) can be
interpreted modulo ®,,(q) whenever they have an appropriate denominator.
Our g-analogue of the entry (I.2) can be stated as follows:

Theorem 1.1. Let n > 3 be a positive odd integer. Then

l—q ( G _
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=(1+q)[n*¢"  (mod [n]*®,(q)). (1.4)

M

It is easy to see that when n = p and ¢ — 1 the congruence (1.4) reduces to
(1.3). Moreover, letting n = p” be an odd prime power and ¢ — 1 in (1.4), and
noticing ®,- (1) = p, we get the following result, which confirms a recent conjecture
of Swisher [18, (I1.3)].



July 4, 2018 20:48 WSPC/INSTRUCTION FILE Guo-ijnt

A q-ANALOGUE OF THE (1.2) SUPERCONGRUENCE OF VAN HAMME 3

Corollary 1.2. Let p be an odd prime and v a positive integer. Then
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We also have the following result, which is similar to Theorem 1.1.

Theorem 1.3. Let n be positive odd integer. Then

i ((1(12‘1)'3‘1% =—(1+2¢)[n)* (mod [n]?®,(q)). (1.5)
k=0 q°;9q )k

The n = p” and ¢ — 1 case of (1.5) gives

Corollary 1.4. Let p be an odd prime and r a positive integer. Then

Note that the corresponding 7 series (I.1) is
)2
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while the infinite series related to (1.6) is
oo 7; 2
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We have the following g-analogue of (I.1) and (1.7).

Theorem 1.5. For any complex number q with |q| < 1, we have
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where (a;q)oo = limy,—00(a;q)n.-

2. Proof of the theorems
Recall that the g-binomial coefficients [Z] are defined by

n—k+1.
n u ifogkgn,
= (4:9)x

0 otherwise.
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It is easy to see that
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We first give a preliminary result.

] for k > 0. (2.1)

Lemma 2.1. Let n be a positive odd integer. Then

(mod B, (q)). (2.2)

n2—1
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Proof. By the ¢-binomial theorem (see [1, p. 36, (3.3.6)]), we have
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On the other hand, we have
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Combining (2.3) and (2.4), we obtain (2.2). O

Now we can prove our main results.

Proof of Theorem 1.1. It is easy to see by induction that

mi: (L= )@ PR _ g g (L) (2.6)
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In fact, for m = 1, both sides of (2.6) are equal to 1. Assume that (2.6) holds for

m. Then
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Namely, the identity (2.6) is also true for m + 1.
Putting m = 2L in (2.6), we get

—1

m 0@ o G e
= (0%0°)k(a% 4%)41
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It is clear that ged([n],[n +1]) = 1 and [n + 1] = 1 (mod @,(g)). It is also not

)
difficult to see that ged([n], (—¢; q)(n-1)/2) = 1. Therefore, by (2.2) and (2.4), the
right-hand side of (2.7) modulo [n]?®,(q) reduces to

"2 e en
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This completes the proof. O

Proof of Theorem 1.3. By induction on n, we can prove that

n—1 _ 2\2
(5 (6d%)n -2
= (2[2n — 2] + ¢*" 7). (2.8)
,;) @ ¢ (@)
In fact, both sides of (2.8) are equal to 1 for n = 1. Suppose that (2.8) holds for n.
Then
n _ _ n n—1 1.
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Namely, the identity (2.8) also holds for n + 1.
By (2.1), the right-hand side of (2.8) can be written as

[271 - 2} *(2f2n — 2]+ ¢*2) {Qn - 2] % (2[2n — 2] + ¢*"2)[n)?
(—eon,  In-2] (@i aln—1?

It is easy see that 2n—2] = —¢~ 1 —¢~2 (mod ®,(q)), [n—1] = —¢~! (mod ®,(q)),
and ¢"~! = ¢! (mod ®,,(q)). It is also not difficult to see that ged([n], [n—1]) = 1,
and ged([n], (=¢;¢)n—1) = 1 for odd n. We can substitute these congruences and
(2.3) into the right-hand side of (2.9) to obtain the desired congruence (1.5). O

. (2.9)

Proof of Theorem 1.5. Letting m — oo in (2.6) and noticing that

A ] = =5

we obtain (1.8). Similarly, letting n — oo in (2.8), we are led to (1.9). m|
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3. Concluding remarks

It is not difficult to see that the left-hand side of (1.8) converges uniformly on the
interval [0,1), and so

. °°(1—q2)( Jig*" (3)i
o jg; (4% a%)k(q? ZE: k-+ 1 k2

k+1

Recall that the ¢-Gamma function I'j(x) is defined by

(¢ 9)oo 1-
Ty(z)=—"(1—-¢q¢) 7" 0<gqg<]l.
It is easy to see that lim,_,,- I'y(z) = I'(x) (see [8, p. 20]), and so
1 .2 3. 2 9 2 4

hm ( +q)(q72q )2<X>2(q 7q )oo _ hm - - _ - . P

q—1- (0% 4%)3% a—1- T2 (5)l2(5)  D(5)I(5)
This means that (1.8) is indeed a g-analogue of (I.1). Similarly, the identity (1.9) is
a g-analogue of (1.7).

We point out that g-analogues of the series (B.1), (E.1), and (F.1) in Van
Hamme’s paper [20] can be easily deduced from Jackson’s g¢s summation (see
[8, Appendix (I1.21)]).

However, for the series (H.1) in [20]:

= (3)i ™
> R VENE (3.1)

we have not found such a g-analogue, though the author and Zeng [12, Corollary
1.2] proved that

p— 1( P2 e
Z %ZI qg) (q qk;] =0 (mod [p]?) for any prime p=3 (mod 4),

which provides us with a plausible choice for the g-analogue of the left-hand side of
(3.1).
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