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We give a q-analogue of the supercongruence (I.2) of Van Hamme. As a conclusion, we

confirm a recent conjecture of Swisher. We also give a q-analogue of the corresponding
π series (I.1) along with some similar results.

Keywords: Ramanujan; supercongruence; cyclotomic polynomials; q-Gamma function.

Mathematics Subject Classification 2010: 11A07, 11B65, 05A10

1. Introduction

In 1914, Ramanujan [17] listed 17 infinite series representations of 1/π (see also [3,
pp. 352–354]). All the 17 formulas are similar to the following identity due to Bauer
[4]:

∞∑

k=0

(−1)k(4k + 1)
( 1
2 )3k
k!3

=
2
π

, (1.1)

where we use the Pochhammer symbol (a)k = a(a + 1) · · · (a + k − 1).
In 1997, Van Hamme [20] conjectured that 13 Ramnujan-type series including

(1.1) admit nice p-adic analogues, such as
p−1
2∑

k=0

(−1)k(4k + 1)
( 1
2 )3k
k!3

≡ p(−1)
p−1
2 (mod p3), (1.2)

where p is an odd prime. All of the 13 supercongruences are called Ramanujan-type
supercongruences and have now been proved by using a variety of techniques (see
[16] for a historic remark on this). Nevertheless, we still have many things to do on
these supercongruences. Firstly, finding q-analogues of known supercongruences is
worthwhile and usually challenging, especially for Van Hamme’s 13 supercongru-
ences. Secondly, if there exists a q-analogue of a Ramanujan-type supercongruence,
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it is natural to wonder whether there exists a corresponding q-analogue of the
original Ramnujan-type series. Moreover, Swisher [18] has made many interesting
conjectures on generalizations of Van Hamme’s supercongruences.

Many authors have contributed to q-analogues of congruences (see, for example,
[2,5,7,9,10,11,12,13,19]). In particular, by establishing a complicated basic hyperge-
ometric series identity, the author and Zeng [12] gave a q-analogue of Van Hamme’s
supercongruence (H.2); Motivated by the work of Zudilin [21] and Ekhad and Zeil-
berger [6], the author [9,10] used the q-WZ method to obtain q-analogues of Van
Hamme’s supercongruences (B.2), (E.2), and (F.2); The author and Wang [11] used
a variation of the q-WZ method to prove a q-analogue of a theorem of Long [14,
Theorem 1.1], which modulo [p]3 reduces to a q-analogue of the supercongruence
(C.2).

In this paper we shall give a q-analogue of Van Hamme’s supercongruence (I.2)
(among the 13 supercongruences, Van Hamme [20] himself proved the cases (C.2),
(H.2) and (I.2)).

Entry (I.2) (Van Hamme [20]). Let p be an odd prime. Then
p−1
2∑

k=0

1
k + 1

( 1
2 )2k
k!2

≡ 2p2 (mod p3). (1.3)

Following the notation in [8], the q-shifted factorial is defined by (a; q)n = (1−
a)(1 − aq) · · · (1 − aqn−1) for n > 1 and (a; q)0 = 1. The q-integer is defined as
[n] = [n]q = 1 + q + · · · + qn−1. We shall also use the n-th cyclotomic polynomial
Φn(q), which may be defined by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − e2πi k
n ),

where i is the imaginary unit. It is well known that Φn(q) is an irreducible poly-
nomial with integer coefficients and Φp(q) = [p] for any prime p. Throughout the
paper, the polynomials are considered in the ring Q[q]. Since Φn(q) is irreducible,
the quotient ring Q[q]/Φn(q) is a field, and so any polynomial which is not divisible
by Φn(q) has an inverse in Q[q]/Φn(q). Thus, rational functions in Q(q) can be
interpreted modulo Φn(q) whenever they have an appropriate denominator.

Our q-analogue of the entry (I.2) can be stated as follows:

Theorem 1.1. Let n > 3 be a positive odd integer. Then
n−1

2∑

k=0

(1− q2)(q; q2)2kq2k

(q2; q2)k(q2; q2)k+1
≡ (1 + q)[n]2q

n+1
2 (mod [n]2Φn(q)). (1.4)

It is easy to see that when n = p and q → 1 the congruence (1.4) reduces to
(1.3). Moreover, letting n = pr be an odd prime power and q → 1 in (1.4), and
noticing Φpr (1) = p, we get the following result, which confirms a recent conjecture
of Swisher [18, (I.3)].
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Corollary 1.2. Let p be an odd prime and r a positive integer. Then

pr−1
2∑

k=0

1
k + 1

( 1
2 )2k
k!2

≡ 2p2r (mod p2r+1).

We also have the following result, which is similar to Theorem 1.1.

Theorem 1.3. Let n be positive odd integer. Then

n−1∑

k=0

(q−1; q2)2kq2k

(q2; q2)2k
≡ −(1 + 2q)[n]2 (mod [n]2Φn(q)). (1.5)

The n = pr and q → 1 case of (1.5) gives

Corollary 1.4. Let p be an odd prime and r a positive integer. Then

pr−1∑

k=0

(− 1
2 )2k

k!2
≡ −3p2r (mod p2r+1). (1.6)

Note that the corresponding π series (I.1) is
∞∑

k=0

1
k + 1

( 1
2 )2k
k!2

=
4
π

,

while the infinite series related to (1.6) is
∞∑

k=0

(− 1
2 )2k

k!2
=

4
π

. (1.7)

We have the following q-analogue of (I.1) and (1.7).

Theorem 1.5. For any complex number q with |q| < 1, we have
∞∑

k=0

(1− q2)(q; q2)2kq2k

(q2; q2)k(q2; q2)k+1
=

(1 + q)(q; q2)∞(q3; q2)∞
(q2; q2)2∞

, (1.8)

∞∑

k=0

(q−1; q2)2kq2k

(q2; q2)2k
=

2(q; q2)∞(q3; q2)∞
(q2; q2)2∞

, (1.9)

where (a; q)∞ = limn→∞(a; q)n.

2. Proof of the theorems

Recall that the q-binomial coefficients
[
n
k

]
are defined by

[
n

k

]
=





(qn−k+1; q)k

(q; q)k
if 0 6 k 6 n,

0 otherwise.
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It is easy to see that

(q; q2)k

(q2; q2)k
=

1
(−q; q)2k

[
2k

k

]
for k > 0. (2.1)

We first give a preliminary result.

Lemma 2.1. Let n be a positive odd integer. Then

(−q; q)2(n−1)/2 ≡ q
n2−1

8 (mod Φn(q)). (2.2)

Proof. By the q-binomial theorem (see [1, p. 36, (3.3.6)]), we have

(−q; q)n−1 =
n−1∑

k=0

[
n− 1

k

]
q(

k+1
2 ) ≡

n−1∑

k=0

(−1)k = 1 (mod Φn(q)), (2.3)

since
[
n− 1

k

]
=

k∏

j=1

1− qn−j

1− qj
≡

k∏

j=1

1− q−j

1− qj
= (−1)kq−(k+1

2 ) (mod Φn(q)). (2.4)

On the other hand, we have

(−q; q)n−1 = (−q; q)(n−1)/2

n−1
2∏

k=1

(1 + qn−k) ≡ (−q; q)(n−1)/2

n−1
2∏

k=1

(1 + q−k)

= (−q; q)2(n−1)/2q
1−n2

8 (mod Φn(q)).
(2.5)

Combining (2.3) and (2.4), we obtain (2.2).

Now we can prove our main results.

Proof of Theorem 1.1. It is easy to see by induction that
m−1∑

k=0

(1− q2)(q; q2)2kq2k

(q2; q2)k(q2; q2)k+1
= (1 + q)[2m]

(q; q2)2m
(q2; q2)2m

. (2.6)

In fact, for m = 1, both sides of (2.6) are equal to 1. Assume that (2.6) holds for
m. Then

m∑

k=0

(1− q2)(q; q2)2kq2k

(q2; q2)k(q2; q2)k+1
=

(1− q2)(q; q2)2mq2m

(q2; q2)m(q2; q2)m+1
+

m−1∑

k=0

(1− q2)(q; q2)2kq2k

(q2; q2)k(q2; q2)k+1

=
(1− q2)(q; q2)2mq2m

(q2; q2)m(q2; q2)m+1
+ (1 + q)[2m]

(q; q2)2m
(q2; q2)2m

=
(1 + q)(q; q2)2m+1

(1− q)(q2; q2)m(q2; q2)m+1

= (1 + q)[2m + 2]
(q; q2)2m+1

(q2; q2)2m+1

.
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Namely, the identity (2.6) is also true for m + 1.
Putting m = n+1

2 in (2.6), we get
n−1

2∑

k=0

(1− q2)(q; q2)2kq2k

(q2; q2)k(q2; q2)k+1
= (1 + q)[n + 1]

(q; q2)2(n+1)/2

(q2; q2)2(n+1)/2

=
(1 + q)[n]2

[n + 1](−q; q)4(n−1)/2

[
n− 1
n−1

2

]2

(by (2.1)). (2.7)

It is clear that gcd([n], [n + 1]) = 1 and [n + 1] ≡ 1 (mod Φn(q)). It is also not
difficult to see that gcd([n], (−q; q)(n−1)/2) = 1. Therefore, by (2.2) and (2.4), the
right-hand side of (2.7) modulo [n]2Φn(q) reduces to

(1 + q)[n]2

q
n2−1

4

q−2((n+1)/2
2 ) = (1 + q)[n]2q

1−n2
2 ≡ (1 + q)[n]2q

n+1
2 .

This completes the proof.

Proof of Theorem 1.3. By induction on n, we can prove that
n−1∑

k=0

(q−1; q2)2kq2k

(q2; q2)2k
=

(q; q2)2n−1

(q2; q2)2n−1

(2[2n− 2] + q2n−2). (2.8)

In fact, both sides of (2.8) are equal to 1 for n = 1. Suppose that (2.8) holds for n.
Then

n∑

k=0

(q−1; q2)2kq2k

(q2; q2)2k
=

(q−1; q2)2nq2n

(q2; q2)2n
+

n−1∑

k=0

(q−1; q2)2kq2k

(q2; q2)2k

=
(q−1; q2)2nq2n

(q2; q2)2n
+

(q; q2)2n−1

(q2; q2)2n−1

(2[2n− 2] + q2n−2)

=
(q; q2)2n
(q2; q2)2n

(2[2n] + q2n).

Namely, the identity (2.8) also holds for n + 1.
By (2.1), the right-hand side of (2.8) can be written as

[
2n− 2
n− 1

]2 (2[2n− 2] + q2n−2)
(−q; q)4n−1

=
[
2n− 2
n− 2

]2 (2[2n− 2] + q2n−2)[n]2

(−q; q)4n−1[n− 1]2
. (2.9)

It is easy see that [2n−2] ≡ −q−1−q−2 (mod Φn(q)), [n−1] ≡ −q−1 (mod Φn(q)),
and qn−1 ≡ q−1 (mod Φn(q)). It is also not difficult to see that gcd([n], [n−1]) = 1,
and gcd([n], (−q; q)n−1) = 1 for odd n. We can substitute these congruences and
(2.3) into the right-hand side of (2.9) to obtain the desired congruence (1.5).

Proof of Theorem 1.5. Letting m →∞ in (2.6) and noticing that

lim
m→∞

[m] =
1

1− q
,

we obtain (1.8). Similarly, letting n →∞ in (2.8), we are led to (1.9).



July 4, 2018 20:48 WSPC/INSTRUCTION FILE Guo-ijnt

6 V.J.W. GUO

3. Concluding remarks

It is not difficult to see that the left-hand side of (1.8) converges uniformly on the
interval [0, 1), and so

lim
q→1−

∞∑

k=0

(1− q2)(q; q2)2kq2k

(q2; q2)k(q2; q2)k+1
=

∞∑

k=0

1
k + 1

( 1
2 )2k
k!2

.

Recall that the q-Gamma function Γq(x) is defined by

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1.

It is easy to see that limq→1− Γq(x) = Γ(x) (see [8, p. 20]), and so

lim
q→1−

(1 + q)(q; q2)∞(q3; q2)∞
(q2; q2)2∞

= lim
q→1−

2
Γq2( 1

2 )Γq2( 3
2 )

=
2

Γ( 1
2 )Γ( 3

2 )
=

4
π

.

This means that (1.8) is indeed a q-analogue of (I.1). Similarly, the identity (1.9) is
a q-analogue of (1.7).

We point out that q-analogues of the series (B.1), (E.1), and (F.1) in Van
Hamme’s paper [20] can be easily deduced from Jackson’s 6φ5 summation (see
[8, Appendix (II.21)]).

However, for the series (H.1) in [20]:
∞∑

k=0

( 1
2 )3k
k!3

=
π

Γ( 3
4 )4

, (3.1)

we have not found such a q-analogue, though the author and Zeng [12, Corollary
1.2] proved that

p−1∑

k=0

(q; q2)2k(q2; q4)kq2k

(q2; q2)2k(q4; q4)k
≡ 0 (mod [p]2) for any prime p ≡ 3 (mod 4),

which provides us with a plausible choice for the q-analogue of the left-hand side of
(3.1).
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