On certain multi-variable rational identities derived from the rigidity of signature of manifolds

Victor J. W. Guo1 and Fei Han2

1School of Mathematical Sciences, Huaiyin Normal University, Huai’an, Jiangsu 223300, People’s Republic of China
2Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076
1jwguo@hytc.edu.cn, 2mathanf@nus.edu.sg

Abstract. Song derives certain multi-variable rational identities by studying torus actions on some homogeneous manifolds and applying the Atiyah-Bott-Segal-Singer Lefschetz fixed point theorem. In this paper, we give a direct proof of these rational identities by using the q-Lucas theorem. Moreover, we also give a similar new rational identity.

Keywords: signature; rigidity; fixed point theorem; q-Lucas theorem

2000 Mathematics Subject Classifications:

1 Introduction

Let M be a $4m$ dimensional closed (compact and without boundary) oriented smooth manifold. Let $H^{2m}(M, \mathbb{R})$ denote the middle cohomology group of M with real coefficients. One can introduce a bilinear form

$$B(x, y) = \langle x \cup y, [M] \rangle, \quad x, y \in V = H^{2m}(M, \mathbb{R}).$$

This is a symmetric bilinear form on V. By the Poincare duality, it is non-degenerate. Let p_+ and p_- be the number of positive and negative eigenvalues of B respectively. Define

$$\sigma(M) = p_+ - p_-.$$

When the dimension of M is not divisible by 4, we define $\sigma(M)$ to be 0.

As cohomology is a homotopy invariant of M and $\sigma(M)$ is determined by cohomology, it is a homotopy invariant. Moreover, Thom [15] has shown that $\sigma(M)$ is also a bordism invariant of M. The integer $\sigma(M)$ is called the signature of M. This topological number plays a significant role in the geometry and topology of manifolds. To cite some examples, it was used to construct 4 dimensional topological manifolds, which do not admit smooth structures; it was used to construct Milnor’s 7 dimensional exotic sphere, i.e., smooth manifolds that are homeomorphic, but not diffeomorphic, to S^7; it appears in surgery theory, which provides important tools for classification of high-dimensional manifolds.

The signature has profound and rich links to various mathematical theories. The Hirzebruch signature theorem [8] asserts that $\sigma(M)$ is equal to the L-genus of M, which
is constructed as a polynomial of Pontryagin classes in a way associated to the power series \(\frac{x}{\tanh x} \) and therefore relates signature to the theory of characteristic classes. Moreover, by equipping the manifold \(M \) with a Riemannian metric \(g \), one finds that \(\sigma(M) \) is equal to the index of a first-order elliptic differential operator \(d_s \), called the signature operator of the Riemannian manifold \((M, g) \) and therefore relates the signature to differential geometry and analysis on manifolds. The celebrated Atiyah-Singer index theorem asserts that the index of the operator \(d_s \) is equal to the \(L \)-genus of \(M \), making the Hirzebruch signature theorem a corollary of the Atiyah-Singer index theorem.

In this paper, we study some links of signature to combinatorics. More precisely, we study some combinatorics derived from the signature of certain homogeneous manifolds.

Let \(G_k(C^n) \) denote the Grassmannian manifold of \(k \) dimensional complex linear subspaces of \(C^n \). Then \(G_k(C^n) \) is compact and of complex dimension \(k(n-k) \) or real dimension \(2k(n-k) \). It is a homogenous manifold, which can be identified with \(U(n)/U(k) \times U(n-k) \). The signature of \(G_k(C^n) \) is known to be

\[
\sigma(G_k(C^n)) = \begin{cases}
0 & \text{if } k(n-k) \text{ is odd}, \\
\left(\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{k}{2} \right\rfloor \right) & \text{if } k(n-k) \text{ is even}.
\end{cases}
\]

There are several approaches to compute the signature of \(G_k(C^n) \). The first method is using the Hodge theory (see [8]). The second method is using the Schubert calculus (see [5]). Other methods use various kinds of fixed point formulas and the rigidity of the signature. Let \(M \) be a compact smooth manifold with an action of a connected Lie group \(G \). Let \(E \) and \(F \) be two vector bundles on \(M \) with the lifted \(G \)-actions. Let \(P : \Gamma(E) \to \Gamma(F) \) be an elliptic operator commuting with the \(G \)-action. The equivariant index of \(P \) is defined to be

\[
\text{ind}(P, h) = \text{tr}(h|_{\ker P}) - \text{tr}(h|_{\text{coker} P}), \forall h \in G,
\]

which is a class function on \(G \). The operator \(P \) is called rigid if \(\text{ind}(P, h) \) is a constant independent of \(h \in G \). The signature operator \(d_s \) is rigid and therefore

\[
\sigma(M) = \text{ind}(d_s, \text{id}) = \text{ind}(d_s, h), \forall h \in G.
\]

The fixed point theorems then express the right-hand side of the above identity by the data on the fixed point sets of \(h \), and therefore provide tools to compute \(\sigma(M) \). In [12], a self-mapping \(f : G_k(C^n) \to G_k(C^n) \), which is homotopic to the identity map, is constructed and then the Atiyah-Bott Lefschetz fixed point formula [1] is applied to the signature complex (in this case also called the Atiyah-Singer \(G \)-signature theorem [2]) to get \(\sigma(G_k(C^n)) \). In [9], Hirzebruch and Slodowy consider involutions on homogeneous manifolds and express the signature of the homogeneous manifold as the signature of self-intersection submanifold of the involution when it is homotopic to the identity. This provides another method to compute \(\sigma(G_k(C^n)) \). In [13], Song considers the torus action on homogeneous manifold \(G/H \) with the torus being the common maximal torus of \(G \).
and H, and analyzes the fixed points of this action and writes down the signature of G/H by the data on the fixed pint sets using the Atiya-Bott-Segal-Singer Lefschetz fixed point theorem. When applied to $G_k(\mathbb{C}^n)$, the author writes down

$$
\sigma(G_k(\mathbb{C}^n)) = \frac{1}{k!(n-k)!} \sum_{\sigma \in S_n} \prod_{1 \leq i < j \leq n} \frac{x_{\sigma(i)} + x_{\sigma(j)}}{x_{\sigma(i)} - x_{\sigma(j)}},
$$

where x_1, \ldots, x_n are indeterminates, S_n is the set of all permutations of the set $[n] := \{1, \ldots, n\}$, and $1 \leq k < n$. Combining the known result of $\sigma(G_k(\mathbb{C}^n))$, the author concludes the following result in the case where n is even:

Theorem 1.1. Let x_1, \ldots, x_n be indeterminates and let $1 \leq k < n$. Then

$$
\frac{1}{k!(n-k)!} \sum_{\sigma \in S_n} \prod_{1 \leq i < j \leq n} \frac{x_{\sigma(i)} + x_{\sigma(j)}}{x_{\sigma(i)} - x_{\sigma(j)}} = \begin{cases}
0 & \text{if } n \equiv 0 \text{ and } k \equiv 1 \pmod{2}, \\
\left(\frac{n}{2}\right) & \text{otherwise.}
\end{cases}
$$

The complex quadric Q_n is the complex hypersurface in $\mathbb{C}P^{2n-1}$ which is defined by the equation

$$
z_1^2 + \cdots + z_{2n}^2 = 0,
$$

where z_1, \ldots, z_{2n} are homogeneous coordinates on $\mathbb{C}P^{2n-1}$. The complex quadric Q_n is a homogeneous manifold, which can be identified with $SO(2n)/SO(2) \times SO(2n-2)$. Similarly, in [13], the following is written down

$$
\sigma(Q_n) = \frac{1}{2^{n-1}(n-1)!} \sum_{\sigma \in B_n} \prod_{2 \leq i \leq n} \frac{(x_{\sigma(1)} + x_{\sigma(i)})(x_{\sigma(1)}x_{\sigma(i)} + 1)}{(x_{\sigma(1)} - x_{\sigma(i)})(x_{\sigma(1)}x_{\sigma(i)} - 1)},
$$

where $x_{-n}, \ldots, x_{-1}, x_1, \ldots, x_n$ are indeterminates and B_n is the n-th hyperoctahedral group consisting of all signed permutations of $[n]$. Combining the known result of $\sigma(Q_n)$ ($= 0$ or 2 for n even or odd respectively, see [9]), the author concludes

Theorem 1.2. Let x_1, \ldots, x_n be indeterminates. Then

$$
\frac{1}{2^n(n-1)!} \sum_{\sigma \in B_n} \prod_{2 \leq i \leq n} \frac{(x_{\sigma(1)} + x_{\sigma(i)})(x_{\sigma(1)}x_{\sigma(i)} + 1)}{(x_{\sigma(1)} - x_{\sigma(i)})(x_{\sigma(1)}x_{\sigma(i)} - 1)} = \begin{cases}
1 & \text{if } n \text{ is odd,} \\
0 & \text{if } n \text{ is even.}
\end{cases}
$$

In this paper, we shall give a direct proof of Theorems 1.1 and 1.2. Combining (1.1) and (1.3), our proof can be viewed as another approach to compute the signature of complex Grassmannians and complex quadrics. Actually, motivated by more general rigidity, the Witten rigidity [4, 10, 14], Song [13] also derives some deep identities involving theta functions. We will study those identities in a forthcoming project.

Inspired by the proof of Theorems 1.1 and 1.2, we shall also give a new rational identity as follows.
Theorem 1.3. Let x_1, \ldots, x_n be indeterminates and let $1 \leq k < n$. Then

$$\frac{1}{k!(n-k)!} \sum_{\sigma \in S_n} \prod_{1 \leq i < j \leq n} \frac{(x_{\sigma(i)} + x_{\sigma(j)}) (x_{\sigma(i)} x_{\sigma(j)} + 1)}{(x_{\sigma(i)} - x_{\sigma(j)}) (x_{\sigma(i)} x_{\sigma(j)} - 1)}$$

$$= \begin{cases}
0 & \text{if } n \equiv 0 \text{ and } k \equiv 1 \pmod{2}, \\
\left(\frac{n}{2} \right) \left(\frac{k}{2} \right) & \text{otherwise.}
\end{cases} (1.5)$$

In the next section, we will give a proof of Theorems 1.1–1.3. Our proof will use a combinatorial interpretation of the q-binomial coefficients and a special case of the q-Lucas theorem.

2 Proof of the identities

In this section, we give direct proof of the identities mentioned in the introduction.

Proof of Theorem 1.1. For any $\sigma \in S_n$, let $X_\sigma = \{\sigma(1), \ldots, \sigma(k)\}$. Then, for $\sigma, \tau \in S_n$,

$$\prod_{1 \leq i < j \leq n} \frac{x_{\sigma(i)} + x_{\sigma(j)}}{x_{\sigma(i)} - x_{\sigma(j)}} = \prod_{1 \leq i < j \leq n} \frac{x_{\tau(i)} + x_{\tau(j)}}{x_{\tau(i)} - x_{\tau(j)}}$$

if and only if $X_\sigma = X_\tau$. It is clear that there are $k!(n-k)!$ different permutations σ having the same X_σ. Hence, the left-hand side of (1.2) can be simply written as

$$\sum_{X \subseteq [n]} \prod_{i \in X, j \in [n] \setminus X} \frac{x_i + x_j}{x_i - x_j}. (2.1)$$

For any non-empty subset X of $[n]$, denote by $\text{inv}(X, n)$ the number of pairs (i, j) such that $i \in X$, $j \in [n] \setminus X$ and $i > j$. Consider the following polynomial

$$\prod_{1 \leq u < v \leq n} (x_u - x_v) \sum_{X \subseteq [n]} \prod_{|X|=k} \prod_{i \in X} \prod_{j \in [n] \setminus X} \frac{x_i + x_j}{x_i - x_j}$$

$$= \sum_{X \subseteq [n]} (-1)^{\text{inv}(X, n)} \prod_{i \in X} (x_i + x_j) \prod_{i \in X, j \in [n] \setminus X} (x_i - x_j) \prod_{i \in [n] \setminus X} (x_i - x_j). (2.2)$$

Let $x_r = x_s$ for some $1 \leq r < s \leq n$ and suppose $r \in X$, $s \notin X$, and $X' = X \setminus \{r\} \cup \{s\}$.
Then
\[
\prod_{i \in X'} (x_i + x_j) = \prod_{i \in X, j \in [n] \setminus X} (x_i + x_j),
\]
\[
\prod_{i,j \in [n] \setminus X} (x_i - x_j) = (-1)^{s-r} \prod_{i,j \in X} (x_i - x_j) \prod_{i,j \in [n] \setminus X} (x_i - x_j),
\]
which means that the non-zero summands in (2.2) cancel pairwise, and so the polynomial (2.2) reduces to 0. Thus, we have proved that, for any 1 \leq r < s \leq n, the term \((x_r - r_s)\) is a factor of (2.2), and therefore (2.1) is a constant independent of \(x_1, \ldots, x_n\).

Now, taking \(x_i = q^i\) (1 \leq i \leq n) and letting \(q \to 0\), we see that the sum (2.1) is equal to
\[
\sum_{X \subseteq [n]} \prod_{i \in X} q_i + q_j = \sum_{X \subseteq [n]} (-1)^{\text{inv}(X,n)}.
\]
The proof then follows from the identity (see [3, Theorem 3.6])
\[
\sum_{X \subseteq [n]} q^{\text{inv}(X,n)} = \left[n \atop k \right]_q := \frac{(q; q)_n}{(q; q)_k(q; q)_{n-k}},
\]
where \((q; q)_n = (1 - q) \cdots (1 - q^n)\), and the \(q\)-Lucas theorem (see, for example, [6, 7, 11]):
\[
\left[n \atop k \right]_{-1} = \begin{cases} 0 & \text{if } n \equiv 0 \text{ and } k \equiv 1 \pmod{2}, \\ \left(\left[\frac{n}{2} \right] \left[\frac{k}{2} \right] \right) & \text{otherwise}. \end{cases}
\]

Proof of Theorem 1.2. We shall prove
\[
\frac{1}{(n-1)!} \sum_{\sigma \in S_n} \prod_{2 \leq i \leq n} \frac{(x_{\sigma(1)} + x_{\sigma(i)})(x_{\sigma(1)}x_{\sigma(i)} + 1)}{(x_{\sigma(1)} - x_{\sigma(i)})(x_{\sigma(1)}x_{\sigma(i)} - 1)} = \begin{cases} 1 & \text{if } n \text{ is odd}, \\ 0 & \text{if } n \text{ is even}. \end{cases}
\]
For \(\sigma, \tau \in S_n\), we have
\[
\frac{(x_{\sigma(1)} + x_{\sigma(i)})(x_{\sigma(1)}x_{\sigma(i)} + 1)}{(x_{\sigma(1)} - x_{\sigma(i)})(x_{\sigma(1)}x_{\sigma(i)} - 1)} = \frac{(x_{\tau(1)} + x_{\tau(i)})(x_{\tau(1)}x_{\tau(i)} + 1)}{(x_{\tau(1)} - x_{\tau(i)})(x_{\tau(1)}x_{\tau(i)} - 1)}
\]
Proof of Theorem 1.3. The proof is similar to that of Theorem 1.1. Firstly, the left-hand side of (1.5) can be simplified as

\[
\sum_{i=1}^{n} \prod_{j \in [n] \setminus \{i\}} \frac{(x_i + x_j)(x_i x_j + 1)}{(x_i - x_j)(x_i x_j - 1)}. \tag{2.6}
\]

Similarly to the proof of Theorem 1.1, we can show that (2.6) is also a constant independent of \(x_1, \ldots, x_n\). Then, letting \(x_i = q^i\) and \(q \to 0\), one sees that (2.6) equals

\[
\sum_{i=1}^{n} (-1)^{i-1},
\]

as claimed. Since \(B_n\) is the wreath product of \(S_n\) and \(\mathbb{Z}_2^2\), the identity (1.4) follows immediately from (2.5). \(\Box\)

Proof of Theorem 1.3. The proof is similar to that of Theorem 1.1. Firstly, the left-hand side of (1.5) can be simplified as

\[
\sum_{X \subseteq [n]} \prod_{i \in X \setminus \{j\}} \frac{(x_i + x_j)(x_i x_j + 1)}{(x_i - x_j)(x_i x_j - 1)}.
\]

Secondly, for any non-empty subset \(X\) of \([n]\), let \(\text{inv}(X, n)\) be defined as before. Consider the following polynomial

\[
\prod_{1 \leq u < v \leq n} (x_u - x_v)(x_u x_v - 1) \sum_{X \subseteq [n]} \prod_{i \in X \setminus \{j\}} \frac{(x_i + x_j)(x_i x_j + 1)}{(x_i - x_j)(x_i x_j - 1)}
\]

\[
= \sum_{X \subseteq [n]} (-1)^{\text{inv}(X, n)} \prod_{i \in X \setminus \{j\}} (x_i + x_j)(x_i x_j + 1) \prod_{i,j \in X \setminus \{j\}} (x_i - x_j)(x_i x_j - 1)
\]

\[
\times \prod_{i,j \in [n] \setminus X, i < j} (x_i - x_j)(x_i x_j - 1). \tag{2.7}
\]

Let \(x_r = x_s\) (or \(x_r x_s = 1\)) for some \(1 \leq r < s \leq n\). Suppose that \(r \in X\), \(s \not\in X\), and \(X' = X \setminus \{r\} \cup \{s\}\). Then

\[
\text{inv}(X', n) = \text{inv}(X, n) + s - r + 1,
\]

\[
\prod_{i \in X \setminus \{j\}} (x_i + x_j)(x_i x_j + 1) = \prod_{i \in X' \setminus \{j\}} (x_i + x_j)(x_i x_j + 1),
\]

\[
\prod_{i,j \in X'} (x_i - x_j)(x_i x_j - 1) \prod_{i,j \in [n] \setminus X'} (x_i - x_j)(x_i x_j - 1)
\]

\[
= (-1)^{s-r} \prod_{i,j \in X \setminus \{j\}} (x_i - x_j)(x_i x_j - 1) \prod_{i,j \in [n] \setminus X} (x_i - x_j)(x_i x_j - 1),
\]

if and only if \(\tau(1) = \sigma(1)\). It is clear that there are \((n - 1)!\) different \(\tau\) having the same \(\tau(1)\). Therefore, the left-hand side of (2.5) can be simply written as
which implies that the non-zero summands in (2.7) cancel pairwise, and therefore the polynomial (2.7) reduces to 0. Namely, we have shown that, for any $1 \leq r < s \leq n$, the term $(x_r - r_s)(x_r x_s - 1)$ is a factor of (2.7). This proves that the expression (2.1) is a constant independent of x_1, \ldots, x_n.

Finally, taking $x_i = q^i$ ($1 \leq i \leq n$) and letting $q \to \infty$, we know that (2.1) is equal to

$$\sum_{X \subseteq [n]} \prod_{i \in X} \lim_{q \to \infty} \frac{(q^i + q^j)(q^{i+j} + 1)}{(q^i - q^j)(q^{i+j} - 1)} = \sum_{X \subseteq [n]} (-1)^{\text{inv}(X,n)},$$

where $\overline{X} = [n] \setminus X$. The proof then follows from (2.3) and (2.4).

\begin{acknowledgments}
The first author was partially sponsored by the Natural Science Foundation of Jiangsu Province (grant BK20161304) and the Qing Lan Project of Education Committee of Jiangsu Province. The second author was partially supported by Singapore AcRF (grant R-146-000-218-112).
\end{acknowledgments}

\begin{thebibliography}{15}

\end{thebibliography}