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In 2019, the author and Zudilin gave a parametric q-supercongruence, which is a common

generalization of the (B.2) and (C.2) supercongruences of Van Hamme. In this paper,
we further give a generalization of this q-supercongruence. As a corollary, we obtain

the following supercongruence: for any prime p > 2, positive integer r, and nonnegative

integer s 6 min{10, (pr − 1)/4},

(pr−1)/2+s∑
k=s

4k + 1

(−64)k

(2k − 2s

k − s

)(2k + 2s

k + s

)(2k

k

)
≡ pr(−1)(p−1)r/2+s (mod pr+2).
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1. Introduction

In 1914, Ramanujan [15] published 17 representations of 1/π. A Ramanujan-type

formula already in the literature is the following identity

∞∑
k=0

4k + 1

(−64)k

(
2k

k

)3

=
2

π
, (1.1)

which was found by Bauer [1] in 1859. Van Hamme [18] observed that many

Ramanujan-type formulas for 1/π, like (1.1), have nice p-adic analogues (p is an

odd prime), such as

(p−1)/2∑
k=0

4k + 1

(−64)k

(
2k

k

)3

≡ p(−1)(p−1)/2 (mod p3), (1.2)

(p−1)/2∑
k=0

4k + 1

256k

(
2k

k

)4

≡ p (mod p3) (1.3)

1
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(tagged (B.2) and (C.2) respectively in Van Hamme’s list). The supercongruence

(1.2) was first confirmed by Mortenson [14] employing a 6F5 transformation formula,

and later reproved by Zudilin [21] through the WZ pair in [3]. The supercongruence

(1.3) was established by Van Hamme [18] himself, and Long [13, Theorem 1.1]

further showed that it is true modulo p4 for primes p > 3.

Using the q-WZ method, the author [6] gave a q-analogue of (1.2) as follows: for

positive odd integers n,

(n−1)/2∑
k=0

(−1)k[4k + 1]
(q; q2)3k
(q2; q2)3k

qk
2

≡ (−q)(n−1)
2/4[n] (mod [n]Φn(q)2). (1.4)

Using the same method, the author and Wang [9] established a q-analogue of [13,

Theorem 1.1 with r = 1]: for positive odd integers n,

(n−1)/2∑
k=0

[4k + 1]
(q; q2)4k
(q2; q2)4k

≡ q(1−n)/2[n] +
(n2 − 1)(1− q)2

24
q(1−n)/2[n]3 (mod [n]Φn(q)3),

which modulo [n]Φn(q)2 reduces to the following q-analogue of (1.3):

(n−1)/2∑
k=0

[4k + 1]
(q; q2)4k
(q2; q2)4k

≡ q(1−n)/2[n] (mod [n]Φn(q)2). (1.5)

Here and in what follows, (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) is the q-shifted

factorial, and [n] = 1 + q+ · · ·+ qn−1 is the q-integer, and Φn(q) stands for the n-th

cyclotomic polynomial in q, which can be written as

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. For convenience, we will also adopt the

abbreviated notation (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n.

Employing the so-called ‘creative microscoping’ method, the author and Zudilin

[9, Theorem 4.2 with a = 1] gave a generalization of (1.4) and (1.5) as follows: for

odd n,

(n−1)/2∑
k=0

[4k + 1]
(q; q2)2k(q/c; q2)k(q; q2)k

(q2; q2)2k(cq2; q2)k(q2; q2)k
ck

≡
(c/q)(n−1)/2(q2/c; q2)(n−1)/2

(cq2; q2)(n−1)/2
[n] (mod [n]Φn(q)2). (1.6)

It is clear that the c→ 0 case of (1.6) reduces to (1.4), and the c = 1 case of (1.6)

reduces to (1.5). Moreover, when c = −1, the q-supercongruence (1.6) gives

(n−1)/2∑
k=0

(−1)k[4k + 1]
(q; q2)2k(q2; q4)k
(q2; q2)2k(q4; q4)k

≡ (−q)(1−n)/2[n] (mod [n]Φn(q)2), (1.7)
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which is another q-analogue of (1.2). For some other recent work on q-

supercongruences, we refer the reader to [5,2,11,12,19,20].

In this paper, we shall give the following further generalization of (1.6).

Theorem 1.1. Let n > 1 be an odd integer and let 0 6 s 6 (n− 1)/4. Then

(n−1)/2+s∑
k=s

[4k + 1]
(q; q2)k−s(q; q

2)k+s(q/c; q
2)k(q; q2)k

(q2; q2)k−s(q2; q2)k+s(cq2; q2)k(q2; q2)k
ck

≡
cs(c/q)(n−1)/2(q/c; q2)s(q

2/c; q2)(n−1)/2

(cq; q2)s(cq2; q2)(n−1)/2
[n] (mod Φn(q)3). (1.8)

Furthermore, if s 6 10, then (1.8) also holds modulo [n]Φn(q)2.

We now give some particular cases of (1.8). Letting c→ 0 in (1.8), we have the

following corollary.

Corollary 1.2. Let n > 1 be an odd integer and let 0 6 s 6 (n− 1)/4. Then

(n−1)/2+s∑
k=s

(−1)k[4k + 1]
(q; q2)k−s(q; q

2)k+s(q; q
2)kq

k2

(q2; q2)k−s(q2; q2)k+s(q2; q2)k
≡ (−q)(n−1)

2/4+s2 [n] (mod Φn(q)3).

Letting c = 1 in (1.8), we get the following result due to Tang [17].

Corollary 1.3. Let n > 1 be an odd integer and let 0 6 s 6 (n− 1)/4. Then

(n−1)/2+s∑
k=s

[4k + 1]
(q; q2)k−s(q; q

2)k+s(q; q
2)2k

(q2; q2)k−s(q2; q2)k+s(q2; q2)2k
≡ q(1−n)/2[n] (mod Φn(q)3).

Moreover, taking c = −1 in (1.8), we are led to the conclusion.

Corollary 1.4. Let n > 1 be an odd integer and let 0 6 s 6 (n− 1)/4. Then

(n−1)/2+s∑
k=s

(−1)k[4k + 1]
(q; q2)k−s(q; q

2)k+s(q
2; q4)k

(q2; q2)k−s(q2; q2)k+s(q4; q4)k
≡ (−1)s(−q)(1−n)/2[n] (mod Φn(q)3).

It is easy to see that the above three q-supercongruences are generalizations

of (1.4), (1.5), and (1.7), respectively. For n = pr, letting q → 1 in these three

q-supercongruences, we arrive at the following generalization of (1.2): for any odd

prime p, positive integer r, and nonnegative integer s 6 (pr − 1)/4,

(pr−1)/2+s∑
k=s

4k + 1

(−64)k

(
2k − 2s

k − s

)(
2k + 2s

k + s

)(
2k

k

)
≡ pr(−1)(p−1)r/2+s (mod p3).

(1.9)

Moreover, if s 6 10, then (1.9) also holds modulo pr+2.
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2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need two lemmas on q-congruences. The first

one is a simple q-congruence modulo Φn(q).

Lemma 2.1. Let n > 1 be an odd integer and let 0 6 s 6 (n− 1)/4. Then

(n−1)/2+s∑
k=s

[4k + 1]
(aq; q2)k−s(q; q

2)k+s(q/c; q
2)k(q/a; q2)k

(q2; q2)k−s(q2/a; q2)k+s(cq2; q2)k(aq2; q2)k
ck ≡ 0 (mod Φn(q)).

(2.1)

Proof. The author and Schlosser [8, Lemma 3.1] gave the simple q-congruence: for

0 6 k 6 (n− 1)/2,

(aq; q2)(n−1)/2−k

(q2/a; q2)(n−1)/2−k
≡ (−a)(n−1)/2−2k

(aq; q2)k
(q2/a; q2)k

q(n−1)
2/4+k (mod Φn(q)). (2.2)

It follows that, for s 6 k 6 (n− 1)/2− s,

(aq; q2)(n−1)/2−k−s

(q2/a; q2)(n−1)/2−k+s

=
(aq; q2)(n−1)/2−k−s/(q

2/a; q2)(n−1)/2−k−s

(1− qn+1−2k−2s/a)(1− qn+3−2k−2s/a) · · · (1− qn+2s−1−2k/a)

≡ (−a)(n−1)/2−2k−2s(aq; q2)k+sq
(n−1)2/4+k+s

(q2/a; q2)k+s(1− q1−2k−2s/a)(1− q3−2k−2s/a) · · · (1− q2s−1−2k/a)

= (−a)(n−1)/2−2k
(aq; q2)k−s

(q2/a; q2)k+s
q(n−1)

2/4+4ks+k+s (mod Φn(q)), (2.3)

where we have used the fact that qn ≡ 1 (mod Φn(q)), and similarly, modulo Φn(q),

(aq; q2)(n−1)/2−k+s

(q2/a; q2)(n−1)/2−k−s
≡ (−a)(n−1)/2−2k

(aq; q2)k+s
(q2/a; q2)k−s

q(n−1)
2/4−4ks+k−s. (2.4)

Using the q-congruences (2.2)–(2.4), we can easily verify that, for N = (n−1)/2

and s 6 k 6 N − s,

[4(N − k) + 1]
(aq; q2)N−k−s(q; q

2)N−k+s(q/c; q
2)N−k(q/a; q2)N−k

(q2; q2)N−k−s(q2/a; q2)N−k+s(cq2; q2)N−k(aq2; q2)N−k
cN−k

≡ −[4k + 1]
(aq; q2)k−s(q; q

2)k+s(q/c; q
2)k(q/a; q2)k

(q2; q2)k−s(q2/a; q2)k+s(cq2; q2)k(aq2; q2)k
ck (mod Φn(q)).

This indicates that the partial sum of the left-hand side of (2.1) truncated at k =

(n − 1)/2 − s is congruent to 0 modulo Φn(q). Furthermore, for k satisfying (n −
1)/2− s < k 6 (n− 1)/2 + s, the q-shifted factorial (q; q2)k+s has the factor 1− qn
and so each term indexed by k on the left-hand side of (2.1) is congruent to 0

modulo Φn(q). This proves the desired q-congruence (2.1).
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Following the monograph [4], the basic hypergeometric series r+1φr is defined

by (see [4])

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑
k=0

(a1; q)k(a2; q)k · · · (ar+1; q)k
(q; q)k(b1; q)k · · · (br; q)k

zk.

Then a classical very-well-poised 6φ5 summation formula of Jackson (see [4, Ap-

pendix (II.21)]) can be written as follows:

6φ5

[
a, qa

1
2 , −qa 1

2 , b, c, q−n

a
1
2 , −a 1

2 , aq/b, aq/c, aqn+1 ; q,
aqn+1

bc

]
=

(aq; q)n(aq/bc; q)n
(aq/b; q)n(aq/c; q)n

. (2.5)

We also require two q-congruences on the left-hand side of (2.1) modulo 1−aqn
and a− qn, respectively.

Lemma 2.2. Let n > 1 be an odd integer and let 0 6 s 6 (n− 1)/2. Then, modulo

(1− aqn)(a− qn),

(n−1)/2+s∑
k=s

[4k + 1]
(aq; q2)k−s(q; q

2)k+s(q/c; q
2)k(q/a; q2)k

(q2; q2)k−s(q2/a; q2)k+s(cq2; q2)k(aq2; q2)k
ck

≡ cs(c/q)(n−1)/2
(q/a, q/c; q2)s(q

2/c; q2)(n−1)/2

(cq/a, q; q2)s(cq2; q2)(n−1)/2
[n]. (2.6)

Proof. For a = q−n, the left-hand side of (2.6) is equal to

(n−1)/2+s∑
k=s

[4k + 1]
(q1−n; q2)k−s(q; q

2)k+s(q/c; q
2)k(q1+n; q2)k

(q2; q2)k−s(q2+n; q2)k+s(cq2; q2)k(q2−n; q2)k
ck

=

(n−1)/2∑
k=0

[4k + 4s+ 1]
(q1−n; q2)k(q; q2)k+2s(q/c; q

2)k+s(q
1+n; q2)k+s

(q2; q2)k(q2+n; q2)k+2s(cq2; q2)k+s(q2−n; q2)k+s
ck+s

= [4s+ 1]
(q/c; q2)s(q

1+n; q2)s(q; q
2)2s

(cq2; q2)s(q2−n; q2)s(q2+n; q2)2s
cs

× 6φ5

[
q4s+1,q2s+

5
2 ,−q2s+ 5

2 ,q2s+1/c,q2s+1+n, q1−n

q2s+
1
2 ,−q2s+ 1

2 , cq2s+2, q2s+2−n,q4s+2+n ; q2, c

]
. (2.7)

Making the parameter substitutions q 7→ q2, a = q4s+1, b 7→ q2s+1/c, c = q2s+1+n,

and n 7→ (n − 1)/2 in Jackson’s 6φ5 summation formula (2.5), we see that the
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right-hand side of (2.7) can be written as

[4s+ 1]
(q/c; q2)s(q

1+n; q2)s(q; q
2)2sc

s

(cq2; q2)s(q2−n; q2)s(q2+n; q2)2s

(q4s+3, cq1−n; q2)(n−1)/2

(cq2s+2, q2s+2−n; q2)(n−1)/2

= cs[n+ 4s]
(q/c, q1+n; q2)s(cq

1−n; q2)(n−1)/2(q; q2)(n−1)/2+2s

(q2+n; q2)2s(cq2, q2−n; q2)(n−1)/2+s

= cs
(q/c, q1+n; q2)s(cq

1−n; q2)(n−1)/2(q; q2)(n−1)/2

(cq1+n, q; q2)s(cq2, q2−n; q2)(n−1)/2
[n]

= cs(c/q)(n−1)/2
(q/c, q1+n; q2)s(q

2/c; q2)(n−1)/2

(cq1+n, q; q2)s(cq2; q2)(n−1)/2
[n],

which is just the a = q−n case of the right-hand side of (2.6). Namely, the q-

congruence (2.6) is true modulo 1− aqn.

For a = qn, the left-hand side of (2.6) is equal to

(n−1)/2+s∑
k=s

[4k + 1]
(q1+n; q2)k−s(q; q

2)k+s(q/c; q
2)k(q1−n; q2)k

(q2; q2)k−s(q2−n; q2)k+s(cq2; q2)k(q2+n; q2)k
ck

=

(n−1)/2∑
k=0

[4k + 4s+ 1]
(q1+n; q2)k(q; q2)k+2s(q/c; q

2)k+s(q
1−n; q2)k+s

(q2; q2)k(q2−n; q2)k+2s(cq2; q2)k+s(q2+n; q2)k+s
ck+s

= [4s+ 1]
(q/c; q2)s(q

1−n; q2)s(q; q
2)2s

(cq2; q2)s(q2+n; q2)s(q2−n; q2)2s
cs

× 6φ5

[
q4s+1,q2s+

5
2 ,−q2s+ 5

2 ,q2s+1/c, q1+n, q2s+1−n

q2s+
1
2 ,−q2s+ 1

2 , cq2s+2, q4s+2−n,q2s+2+n ; q2, c

]
. (2.8)

Making the parameter substitutions q 7→ q2, a = q4s+1, b 7→ q2s+1/c, c = q1+n,

and n 7→ (n − 1)/2 − s in (2.5), we find that the right-hand side of (2.8) can be

simplified as

[4s+ 1]
(q/c; q2)s(q

1−n; q2)s(q; q
2)2sc

s

(cq2; q2)s(q2+n; q2)s(q2−n; q2)2s

(q4s+3, cq2s+1−n; q2)(n−1)/2−s

(cq2s+2, q4s+2−n; q2)(n−1)/2−s

= cs[n+ 2s]
(q/c, q1−n; q2)s(cq

2s+1−n; q2)(n−1)/2−s(q; q
2)(n−1)/2+s

(q2+n; q2)s(cq2; q2)(n−1)/2(q2−n; q2)(n−1)/2+s

= cs
(q/c, q1−n; q2)s(cq

1−n; q2)(n−1)/2(q; q2)(n−1)/2

(cq1−n; q2)s(cq2, q2−n; q2)(n−1)/2(q; q2)s
[n]

= cs(c/q)(n−1)/2
(q/c, q1−n; q2)s(q

2/c; q2)(n−1)/2

(cq1−n; q2)s(cq2; q2)(n−1)/2(q; q2)s
[n]

which is the a = q−n case of the right-hand side of (2.6). Namely, the desired q-

congruence (2.6) is true modulo a − qn. Since 1 − aqn is coprime with a − qn, we

complete the proof of (2.6).

Proof of Theorem 1.1. Note that Φn(q) and (1 − aqn)(a − qn) are coprime

polynomials in q. Moreover, the right-hand sides of (2.6) is congruent to 0 modulo
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Φn(q). Thus, we conclude that (2.6) holds modulo Φn(q)(1 − aqn)(a − qn) for 0 6
s 6 (n − 1)/4. Letting a = 1 in this q-congruence yields that (1.8) is true modulo

Φn(q)3.

In what follows, we shall prove that (1.8) is also true modulo [n] for s 6 10.

Namely,

(n−1)/2+s∑
k=s

[4k + 1]
(aq; q2)k−s(q; q

2)k+s(q/c; q
2)k(q/a; q2)k

(q2; q2)k−s(q2/a; q2)k+s(cq2; q2)k(aq2; q2)k
ck ≡ 0 (mod [n]),

or, equivalently,

(n−1)/2∑
k=0

[4k + 4s+ 1]
(aq; q2)k(q; q2)k+2s(q/c; q

2)k+s(q/a; q2)k+s
(q2; q2)k(q2/a; q2)k+2s(cq2; q2)k+s(aq2; q2)k+s

ck+s ≡ 0 (mod [n]).

(2.9)

The proof is analogous to that of [8, Theorem 12.9] (or [10, Theorem 4.2]). For the

reader’s convenience, we give a detailed proof here.

Let ζ 6= 1 denote an n-th root of unity, not necessarily primitive. In other words,

ζ is a primitive root of unity of degree d for some d | n. Let cq(k) stand for the

k-th summand on the left-hand side of (2.9). With the help of the mathematical

software Maple, we can verify that (2.9) holds modulo Φn(q) for all non-negative

integers s 6 10 and positive odd integers n 6 4s − 1. This, together with (1.8),

means that the q-congruence (1.8) is true modulo Φn(q) for all 0 6 s 6 10 and odd

n > 1. The q-congruence is also true when the left-hand side is summing over k up

to n − 1, because each summand is congruent to 0 modulo Φn(q) for k satisfying

(n− 1)/2 < k 6 n− 1. Taking n = d leads to

(d−1)/2∑
k=0

cζ(k) =

d−1∑
k=0

cζ(k) = 0.

Observing that

cζ(`d+ k)

cζ(`d)
= lim
q→ζ

cq(`d+ k)

cq(`d)
=
cζ(k)

cζ(0)
,

we obtain

(n−1)/2∑
k=0

cζ(k) =

(n/d−3)/2∑
`=0

d−1∑
k=0

cζ(`d+ k) +

(d−1)/2∑
k=0

cζ((n− d)/2 + k)

=
1

cζ(0)

(n/d−3)/2∑
`=0

cζ(`d)

d−1∑
k=0

cζ(k) +

(d−1)/2∑
k=0

cζ((n− d)/2 + k)

= 0.

This proves that
∑(n−1)/2
k=0 cq(k) is congruent to 0 modulo Φd(q). Since every cyclo-

tomic polynomial Φd(q) is irreducible in the ring Z[q], we deduce that the left-hand
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side of (2.9) is congruent to 0 modulo∏
d|n, d>1

Φd(q) = [n].

Therefore, the q-congruence (1.8) holds modulo [n]. Noticing that the least common

multiple of Φn(q)3 and [n] is [n]Φn(q)2, we accomplish the proof.

3. Concluding remarks

It is natural to suspect that the condition s 6 10 for (1.8) holding modulo [n]Φn(q)2

is not necessary. Namely, we believe that the following stronger version of Theorem

1.1 should be true.

Conjecture 3.1. The q-supercongruence (1.8) holds modulo [n]Φn(q)2. In partic-

ular, the supercongruence (1.9) holds modulo pr+2.

In light of the proof the second part of Theorem 1.1, to prove Conjecture 3.1, it

suffices to show the following q-congruence: for any non-negative integer s and odd

integer n > 1,

(n−1)/2+s∑
k=s

[4k + 1]
(q; q2)k−s(q; q

2)k+s(q/c; q
2)k(q; q2)k

(q2; q2)k−s(q2; q2)k+s(cq2; q2)k(q2; q2)k
ck ≡ 0 (mod Φn(q)).

In 2012, using the WZ method, Sun [16] obtained the following refinement of

(1.2): for any prime p > 3,

(p−1)/2∑
k=0

(−1)k(4k + 1)
( 1
2 )3k
k!3
≡ p(−1)(p−1)/2 + p3Ep−3 (mod p4), (3.1)

where Ep−3 is the (p− 3)th Euler number, which may be defined by

2

ex + e−x
=

∞∑
k=0

Ek
xk

k!
.

Recently, a q-analogue of (3.1) was given by the author [7]. We do not know wether

the supercongruence (1.9) for r = 1 can be generalized to the modulus p4 case for

general s. However, we find that the following refinement of (1.9) for s = (pr−1)/6

seems to be true.

Conjecture 3.2. Let p be an odd prime and r > 1 with pr ≡ 1 (mod 6), and let

s = (pr − 1)/6. Then

(pr−1)/2+s∑
k=s

4k + 1

(−64)k

(
2k − 2s

k − s

)(
2k + 2s

k + s

)(
2k

k

)
≡ pr(−1)(p−1)r/2+s (mod pr+3).

It is worth mentioning that we cannot expect that the previous q-analogue of

(1.9) hold modulo [n]Φn(q)3 for s = (n − 1)/6. We hope that an interested reader

can make progress on Conjecture 3.2 at least for the r = 1 case.
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