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In 2019, the author and Zudilin gave a parametric g-supercongruence, which is a common
generalization of the (B.2) and (C.2) supercongruences of Van Hamme. In this paper,
we further give a generalization of this g-supercongruence. As a corollary, we obtain
the following supercongruence: for any prime p > 2, positive integer r, and nonnegative
integer s < min{10, (p" — 1)/4},
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1. Introduction

In 1914, Ramanujan [15] published 17 representations of 1/7. A Ramanujan-type
formula already in the literature is the following identity

00 3

et
k=0
which was found by Bauer [1] in 1859. Van Hamme [18] observed that many
Ramanujan-type formulas for 1/, like (1.1), have nice p-adic analogues (p is an
odd prime), such as

(p—1)/2 3
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(—64)F ( k) = p(_1>(p 2 (mod p3), (1.2)
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k=0
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(tagged (B.2) and (C.2) respectively in Van Hamme’s list). The supercongruence
(1.2) was first confirmed by Mortenson [14] employing a ¢ F5 transformation formula,
and later reproved by Zudilin [21] through the WZ pair in [3]. The supercongruence
(1.3) was established by Van Hamme [18] himself, and Long [13, Theorem 1.1]
further showed that it is true modulo p* for primes p > 3.

Using the ¢-WZ method, the author [6] gave a g-analogue of (1.2) as follows: for
positive odd integers n,

—1\E[4k (Q;q2)i K2 \(n—1)%?/4 2

(=1)"[4k + 1] 75—554" = (—q) [n]  (mod [n]®n(q)).  (1.4)
— (4% %)

Using the same method, the author and Wang [9] established a g-analogue of [13,
Theorem 1.1 with r = 1]: for positive odd integers n,

(n—1)/2 .
Z [4k + 1](((17612)%4 = q(l—”)/Q[n] + wq(l—”)/Q[n]3 (mod [n}(I)n(q)S),

2. 42
Pt 4% 24

which modulo [n]®,,(¢)? reduces to the following g-analogue of (1.3):

(n—1)/2 L o4
3 [4k4-1y§§232555q07"V2p4 (mod [n]®,,(q)?). (1.5)
= (% ¢*);
Here and in what follows, (a;q), = (1 —a)(1 —aq)--- (1 — ag"™!) is the g-shifted
factorial, and [n] = 1+q+---+¢" ! is the g-integer, and ®,,(q) stands for the n-th
cyclotomic polynomial in g, which can be written as

eug)= [ (a—¢M)
1<k<n
ged(k,n)=1

where ( is an n-th primitive root of unity. For convenience, we will also adopt the
abbreviated notation (a1, az,...,am;¢)n = (@1;Q)n(a2;@)n - (@m; Qn-

Employing the so-called ‘creative microscoping’ method, the author and Zudilin
[9, Theorem 4.2 with a = 1] gave a generalization of (1.4) and (1.5) as follows: for
odd n,

(n—1)/2
S k4] (3 4°)i(a/ 3 4° ) (9 4Dk
(¢%0*)2(ca® ®)(a? a*)k
(c/q) " V2(¢%/c; @*)(n-1)/2 9
= n] (mod [n|®,(q)7). 1.6
P ) (mod [} (0)) (1.6
It is clear that the ¢ — 0 case of (1.6) reduces to (1.4), and the ¢ =1 case of (1.6)
reduces to (1.5). Moreover, when ¢ = —1, the g-supercongruence (1.6) gives

k=0

(n—1)/2 22 (2. o
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which is another g-analogue of (1.2). For some other recent work on g¢-
supercongruences, we refer the reader to [5,2,11,12,19,20].
In this paper, we shall give the following further generalization of (1.6).

Theorem 1.1. Let n > 1 be an odd integer and let 0 < s < (n —1)/4. Then
(n—1)/2+s
S [kt (5 4%) s (5 4* )45 (/¢ )@ )k i
— (%5 0% )k—s(a; @*)its (ca?; ¢*)i (%5 4%k
_ (e/a)" P (q/ e ) (@ /68 -y o

= n mo 3. .
S @@ Py @)1

Furthermore, if s < 10, then (1.8) also holds modulo [n]®,,(q)?.

We now give some particular cases of (1.8). Letting ¢ — 0 in (1.8), we have the
following corollary.

Corollary 1.2. Let n > 1 be an odd integer and let 0 < s < (n—1)/4. Then

(n—1)/2+4s

ok (@ =@ Prrs (@ Prd” _ o1y 211 (o 3
kz:s (=1)%[4k + 1] (@ ) ks (23 ks (0% @)k =(—q) * [n]  (mod ®,(q)°).

Letting ¢ = 1 in (1.8), we get the following result due to Tang [17].

Corollary 1.3. Let n > 1 be an odd integer and let 0 < s < (n—1)/4. Then

(n—1)/2+s

(436 k—s(2: 4 )5 (a5 4°)3 1-n)/2 3
4k +1 =q¢"""2n]  (mod ®,(q)%).
kZ:S | ](q2; 0 k-5 (0% 4 )krs (0% 4°) ¢ (@)
Moreover, taking ¢ = —1 in (1.8), we are led to the conclusion.

Corollary 1.4. Let n > 1 be an odd integer and let 0 < s < (n—1)/4. Then

(n—1)/2+4s

.2 .2 2. 4
o TR i o
k’:S ) S b) S )

It is easy to see that the above three g-supercongruences are generalizations
of (1.4), (1.5), and (1.7), respectively. For n = p”, letting ¢ — 1 in these three
g-supercongruences, we arrive at the following generalization of (1.2): for any odd
prime p, positive integer r, and nonnegative integer s < (p" — 1)/4,

(pr_lz):/Z"rS 4]{ + ]_ 2k — 28 2]€ + 28 2k _ pr(_l)(p_l)r/2+s (mod pg)
(—64)k\ k—s k+s k) '
k=s
(1.9)

Moreover, if s < 10, then (1.9) also holds modulo p"*2.
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2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need two lemmas on g-congruences. The first
one is a simple g-congruence modulo ®,,(q).

Lemma 2.1. Let n > 1 be an odd integer and let 0 < s < (n—1)/4. Then

(n—1)/2+s
(aq; ) e—s (@ ) ers(@/c; Pula/a; )k 4,
4k +1 =0 (mod ®,(q)).
; | ](qz:q2)kfs(q2/a;q2)k+s(cq2;q2)k(aq2;q2)k ( (@)

(2.1)

Proof. The author and Schlosser [8, Lemma 3.1] gave the simple g-congruence: for
0<k<(n—1)/2

(ag;4°)(n—1)/2-k 1y ook (@G Gk (1)
@i Bonias = O it med 8a(a): (22

It follows that, for s < k< (n—1)/2 —s,

(ag; q2)(n71)/27k75
(¢%/a; q2)(n—1)/2—k+s
B (aq; ) (n-1)/2—k—s/(@* /0 @) (n-1) j2—k—s
(1 — 1225 /q)(1 — qn+3-2k—25 /q) ... (1 — qnt2s—1-2k Jq)
(—a) (P D/2-2k=25 (qg: %) gD /At
(¢%/a;¢*)k+s(1 — g*=2k725 fa)(1 — g3=2F=25 /a) - (1 — g*~172F /a)

n— — (aq;qz)k*S n—1)2 S S
_ (_a)( 1)/2 2kmq( 1)2/4+4dks+k+ (mod ®,,(q)), (2.3)

where we have used the fact that ¢" = 1 (mod ®,,(¢)), and similarly, modulo ®,(q),

(a(I§ q2)(n—1)/2—k+s
(q2/a; q2)(n71)/27k75

(n—1)/2—2k (aq; ¢ )hvs (n—1)%/4—4ks+k—s (2.4)
(/a; P)p_s | ' '

Using the g-congruences (2.2)—(2.4), we can easily verify that, for N = (n—1)/2
and s < k< N —s,

= (—a)

WV — )+ 1] (aq; )N —k—s(6: )N —rrs(@/ PN -r(@/a; )Nk Nk
2. 2 2/ .2 2. 2 2. 2 ¢
(% ®)N—k—s(a®/a; ) N—kts(ca®; ¢®) N—r(aq?; ¢®) Nk

(aq; *)k—s(a; ) ets(a/¢; *)i(a/a; ¢k y
(0% a®)k—s(4%/a; ¢*) kv s(ca?; 4%k (ag?; ¢2)r

= —[4k + 1] (mod @,(q)).

This indicates that the partial sum of the left-hand side of (2.1) truncated at k =
(n —1)/2 — s is congruent to 0 modulo ®,(q). Furthermore, for k satisfying (n —
1)/2 —s <k < (n—1)/2+ s, the g-shifted factorial (¢; ¢?)r+s has the factor 1 — "
and so each term indexed by k on the left-hand side of (2.1) is congruent to 0
modulo ®,,(¢). This proves the desired g-congruence (2.1). O
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Following the monograph [4], the basic hypergeometric series 41, is defined

by (see [4])

o0
A1,42, ..., 0r41 7 } :Z(a1§q)k(a2§Q)k"'(ar+1§Q)kzk.

T T 3 z
. { bbby = (G @k (br; )k

Then a classical very-well-poised g¢s summation formula of Jackson (see [4, Ap-

pendix (I1.21)]) can be written as follows:

1
_qaia b» C, qi
, aq/b, aq/c, aq

a, qa

" [ ~a w3 T | T (ag/brq)aaafeia)n

Nj= =

gl T O

We also require two g-congruences on the left-hand side of (2.1) modulo 1 — ag”

and a — ¢, respectively.

Lemma 2.2. Let n > 1 be an odd integer and let 0 < s < (n—1)/2. Then, modulo
(1 —ag”)(a—q"),

n—1)/2+s
( i Wk +1] (aq; ¢*)k—s(a; ¢ krs(a/c; ) e(a/a; ¢*)k &
P (0% ¢*)k—s(a%/a; 4 )i+ (ca?; ¢*)r(ag?; @)k
. o2 2 .2
(Q/a,Q/C,q )G(q /qu )(n—l)/Q nl. (26)

— .S (n—1)/2
=c"(c/q
(/a) (cq/a,q;4?)s(cq?;G*) (n-1)/2

Proof. For a = ¢~ ", the left-hand side of (2.6) is equal to

(n—1)/2+s —n n
(@™ @) k—s (@ 0 krs(a/c; a)uld T ¢k o

4k +1
,;5 | ](q2;qQ)IH(qH”;q2)k+s(0q2;q2)k(q2‘”;q2)k

(n—1)/2 _n
(@ ¢k (q a4 kr2s(a/c 6% kvs (gt

.2
) i k+s ks

= [4k + 4s + 1]
kz:;) (625 0%)k(@*T; 0% kt25(ca?; 4 it s (@273 4%t s

st 1] (0/¢:0%)s(¢' " 0%)s (4 8%)2s s
(e ¢)s(4*7754%)s(@°F %) s
< o 4s+1’q23+g’_q25+g,q25+1/c7q2s+1+n’ g .
6%5 q28+%’7q25+%,cq28+2’q28+27n’q48+2+n’

n

P cl. (2.7)

Making the parameter substitutions ¢ — ¢%, a = ¢***1, b+ ¢®*t1/c, ¢ = ¢g>T1Hn,
and n — (n — 1)/2 in Jackson’s g¢5 summation formula (2.5), we see that the
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right-hand side of (2.7) can be written as

(¢/c;0%)s(@ 5 0%)s(36P)2se® (672 cd" 0% (1)
(ca% 0 (@ @) s (77 6%)2s (g2, 27 %) (1) 12
(a/c,a* ™5 4%)s(ca* ™™ %) (n-1)2(@; ) (n—1) /2425
(@T754%)25(cq?, 427 4%) (n—1) /245
_ slafe 0% s (cd " ) (n-1)2(65. 4 (n—1) /2 ]
(cq™m, q;42)s(cq®, ™5 6) (n—1) 2
— Cs(c/q)(n—l)/Q ((I/Ca q1+n; q2)5<q2/0; q2)(n71)/2 n
(cq™, 45 42)s(ca?; %) (n—1) 2
which is just the a = g™ case of the right-hand side of (2.6). Namely, the ¢-
congruence (2.6) is true modulo 1 — ag™.
For a = ¢", the left-hand side of (2.6) is equal to

[4s + 1]

= ¢’[n + 4s]

)

(n—1)/2+s _
S k1] (073 4% k(03 4*Dhts(9/ ¢ 4°)1(a" "5 %)k
P (03 @*)k—s (@775 ) rts (€% 4%k (@75 %)k
(n—1)/2 _
_ kb as o 11T 0005 0 k26 (005 0 has (@1 0 kb gt
= Z [4k + 45 + ]( 2. 2\ (2—mn. 2 2. 2 29 n. 2 ¢
prs @5 @) k(@77 )25 (€q% 45 (T 0% D rs
_ s 4 1) 9/C 0)s(0' 7" 4%)s (40725 s
(cq?; 4%)s(@*T56%) s (275 ¢2) 2s
4s+1,q25+g,_q23+g7q25+1/6’ g, q2s+1fn.
X 695 P s tE s t2 ghst2n 2sk2dn) qc|. (2.8)

Making the parameter substitutions ¢ — ¢, a = ¢***1, b — ¢***1/c, ¢ = ¢**7,
and n — (n —1)/2 — s in (2.5), we find that the right-hand side of (2.8) can be
simplified as

4s5+3 2s+1—n.
)

(a/c:0%)s(a" ™ 0%)s (a5 4%)2sc” (@7, cq ) n-1)/2-s
(ca®:0?)s(@®50%)s (0277 6%)2s (cq®* T2, ¢* 2775 ¢2) (1) j2—s
(a/c,q" ™ 02)s(cd® T %) -1y j2— (6 4%) (n—1) j2+
(@ 42)s(cq?; 6%) (n—1)/2(® 7™ 42) (n—1) /245

@/ d D) s (e T 6 (1) 2(@ 6P (n-1) 2 .
B (ca' =" ¢2)s(ca?, 5 4%) (n—1)2(a; 4%)s

(0/c; "™ 4%)s (6% ) 6 @) 1) 2
(ca'="36%)s(ca?; ¢%) (n—1)/2(: ¢*)s
which is the a = ¢~™ case of the right-hand side of (2.6). Namely, the desired g-
congruence (2.6) is true modulo a — ¢"™. Since 1 — aq™ is coprime with a — ¢, we
complete the proof of (2.6). O

[4s 4+ 1]

= c’[n + 2s]

= (/)2

Proof of Theorem 1.1. Note that ®,(¢) and (1 — a¢™)(a — ¢") are coprime
polynomials in ¢g. Moreover, the right-hand sides of (2.6) is congruent to 0 modulo
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®,,(q). Thus, we conclude that (2.6) holds modulo ®,(¢)(1 — ag"™)(a — ¢™) for 0 <
s < (n—1)/4. Letting a = 1 in this ¢g-congruence yields that (1.8) is true modulo
D, (q)°.

In what follows, we shall prove that (1.8) is also true modulo [n] for s < 10.
Namely,

(n—1)/2+s 2 2 2 .2

S k) (Zaq,Qq )kfs(;],q )§+s(q/c,2q )zk(q/a;q )2k F=0 (mod [n]),
(6% 4%)k—s(a%/a; ¢*)k+5(ca®; ) (ag?; ¢*)r.

k=s

or, equivalently,

(n—1)/2 2 2 2 2
(aq; )@ 4% ) hr25(0/ 6 G ) kv s (@)@ @ ) kts oy
4k +4s + 1 "™ =0 (mod [n]).
,; | ](qz;q2)k(q2/a;q2)k+2s(cq2;q2)k+s(aq2;q2)k+s tmod )
(2.9)

The proof is analogous to that of [8, Theorem 12.9] (or [10, Theorem 4.2]). For the
reader’s convenience, we give a detailed proof here.

Let ¢ # 1 denote an n-th root of unity, not necessarily primitive. In other words,
¢ is a primitive root of unity of degree d for some d | n. Let ¢,(k) stand for the
k-th summand on the left-hand side of (2.9). With the help of the mathematical
software Maple, we can verify that (2.9) holds modulo ®,(q) for all non-negative
integers s < 10 and positive odd integers n < 4s — 1. This, together with (1.8),
means that the g-congruence (1.8) is true modulo ®,(q) for all 0 < s < 10 and odd
n > 1. The g-congruence is also true when the left-hand side is summing over k up
to m — 1, because each summand is congruent to 0 modulo ®,(q) for k satisfying
(n—1)/2 < k <n—1. Taking n = d leads to

(d—1)/2 d—1
> cclk) = cc(k)=0.
k=0 k=0

Observing that

cc(bd + k) — lim cq(ld + k) _ cc(k)
cc(td)  a¢ cq(td) cc(0)’

we obtain
(n—1)/2 (n/d—3)/2d—1 (d-1)/2
Sooek)y= D Detd+k)+ D c((n—d)/2+k)
k=0 (=0 k=0 k=0
1 (n/d—3)/2 d—1 (d—1)/2
= ST ecld)d eck)+ D ecl(n—d)/2+k)
CC(O) =0 k=0 k=0

This proves that Z,(::_Ol)/ 2 cq(k) is congruent to 0 modulo ®4(gq). Since every cyclo-
tomic polynomial ®4(q) is irreducible in the ring Z[g|, we deduce that the left-hand
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side of (2.9) is congruent to 0 modulo
[ @u@)=n.
d|n,d>1

Therefore, the g-congruence (1.8) holds modulo [n]. Noticing that the least common
multiple of ®,,(¢)? and [n] is [n]®,(q)?, we accomplish the proof. O

3. Concluding remarks

It is natural to suspect that the condition s < 10 for (1.8) holding modulo [n]®,,(q)?
is not necessary. Namely, we believe that the following stronger version of Theorem
1.1 should be true.

Conjecture 3.1. The g-supercongruence (1.8) holds modulo [n]®,,(q)?. In partic-
ular, the supercongruence (1.9) holds modulo p™*2.

In light of the proof the second part of Theorem 1.1, to prove Conjecture 3.1, it
suffices to show the following g-congruence: for any non-negative integer s and odd
integer n > 1,

(n—1)/2+s 9 2 9 9
(030 )k—s(a: 0 )i+s(a/c: 076 )k
4k +1 c 0 (mod ®,(q)).
2. | | (% @®)k—s(0% 4%kt (cq®; %) k(%5 4%k ( @)

k=s
In 2012, using the WZ method, Sun [16] obtained the following refinement of
(1.2): for any prime p > 3,

(p—1)/2 (l)3
> (-DF(Ek+1) ;lg’f =p(-1)P V2 L p3E, 5 (mod p?), (3.1)
k=0 ’

where E,_3 is the (p — 3)th Euler number, which may be defined by
2 = zk
—_— = E Er—.
et fer Ll "l

Recently, a g-analogue of (3.1) was given by the author [7]. We do not know wether
the supercongruence (1.9) for r = 1 can be generalized to the modulus p* case for
general s. However, we find that the following refinement of (1.9) for s = (p" —1)/6
seems to be true.

Conjecture 3.2. Let p be an odd prime and r > 1 with p" = 1 (mod 6), and let
s=(p" —1)/6. Then
(P"—=1)/2+s
4 1 /2k—2 2 2 2
Z k+ - ( k 3) < k + S) ( k) Epr(_l)(p—l)r/2+s (HlOd pr+3).
— (—64) k—s k+s k
It is worth mentioning that we cannot expect that the previous g-analogue of
(1.9) hold modulo [n]®,,(¢)® for s = (n — 1)/6. We hope that an interested reader
can make progress on Conjecture 3.2 at least for the r = 1 case.
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