Some Results on Fibrations and Foliations

JUN LU

Department of Mathematics East China Normal University

2015. 11

▲ 同 ▶ ▲ 目

1. Definition of Foliation

 X: algebaic surface, *T_X*: tangent bundle of X. *L*⁻¹ ⊆ *T_X*: maximal sub-line bundle.

Foliation *F* is a section

 $s \in H^0(X, T_X \otimes \mathcal{L}).$

• Open covering $X = \bigcup_{\alpha} U_{\alpha}$,

$$s|_{U_{lpha}}=A(x_{lpha},y_{lpha})rac{\partial}{\partial x_{lpha}}+B(x_{lpha},y_{lpha})rac{\partial}{\partial y_{lpha}}, \quad (x_{lpha},y_{lpha})\in U_{lpha}.$$

•
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

1. Definition of Foliation

X: algebaic surface,
T_X: tangent bundle of X.
L⁻¹ ⊆ T_X: maximal sub-line bundle.

• Foliation \mathcal{F} is a section

 $s \in H^0(X, T_X \otimes \mathcal{L}).$

• Open covering $X = \bigcup_{\alpha} U_{\alpha}$,

$$s|_{U_lpha}=A(x_lpha,y_lpha)rac{\partial}{\partial x_lpha}+B(x_lpha,y_lpha)rac{\partial}{\partial y_lpha},\quad (x_lpha,y_lpha)\in U_lpha.$$

•
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

/□ ▶ < □ ▶ < □

1. Definition of Foliation

- X: algebaic surface,
 - T_X : tangent bundle of X.
 - $\mathcal{L}^{-1} \subseteq \mathcal{T}_X$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

 $s \in H^0(X, T_X \otimes \mathcal{L}).$

• Open covering $X = \cup_{\alpha} U_{\alpha}$,

$$s|_{U_{lpha}}=A(x_{lpha},y_{lpha})rac{\partial}{\partial x_{lpha}}+B(x_{lpha},y_{lpha})rac{\partial}{\partial y_{lpha}}, \quad (x_{lpha},y_{lpha})\in U_{lpha}.$$

•
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

 $\overrightarrow{ {\sf Foliations}} \\ {\sf Kodaira dimension of } {\cal F} \\$

1. Definition of Foliation

- X: algebaic surface,
 - T_X : tangent bundle of X.
 - $\mathcal{L}^{-1} \subseteq \mathcal{T}_X$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

 $s \in H^0(X, T_X \otimes \mathcal{L}).$

• Open covering $X = \bigcup_{\alpha} U_{\alpha}$,

$$oldsymbol{s}|_{U_{lpha}}=A(x_{lpha},y_{lpha})rac{\partial}{\partial x_{lpha}}+B(x_{lpha},y_{lpha})rac{\partial}{\partial y_{lpha}},\quad (x_{lpha},y_{lpha})\in U_{lpha}.$$

•
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

 $\overrightarrow{ {\sf Foliations}} \\ {\sf Kodaira dimension of } {\cal F} \\$

1. Definition of Foliation

- X: algebaic surface,
 - T_X : tangent bundle of X.
 - $\mathcal{L}^{-1} \subseteq \mathcal{T}_X$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

 $s \in H^0(X, T_X \otimes \mathcal{L}).$

• Open covering $X = \bigcup_{\alpha} U_{\alpha}$,

$$s|_{U_{\alpha}} = A(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial x_{\alpha}} + B(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial y_{\alpha}}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

•
$$s|_{U_{\alpha}} = \frac{g_{\alpha\beta}s}{|_{U_{\beta}}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

1. Definition of Foliations

- $T_{\mathcal{F}} := \mathcal{L}^{-1}$ tangent bundle of \mathcal{F} , $K_{\mathcal{F}} := \mathcal{L}$ canonical bundle of \mathcal{F} .
- Exact sequence

$$0 \to \mathcal{T}_{\mathcal{F}} \stackrel{\cdot s}{\to} \mathcal{T}_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{N}_{\mathcal{F}} \to 0,$$

 $N_{\mathcal{F}}$ line bundle, $\mathcal{I}_{Z(s)}$ ideal sheaf of Z(s) (zero set of s).

Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$

 Ω_X cotangent bundle of X, $N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F} .

/⊒ ► < ∃ ►

1. Definition of Foliations

- $T_{\mathcal{F}} := \mathcal{L}^{-1}$ tangent bundle of \mathcal{F} , $K_{\mathcal{F}} := \mathcal{L}$ canonical bundle of \mathcal{F} .
- Exact sequence

$$0 \to T_{\mathcal{F}} \stackrel{\cdot s}{\to} T_X \to \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \to 0,$$

 $N_{\mathcal{F}}$ line bundle, $\mathcal{I}_{Z(s)}$ ideal sheaf of Z(s) (zero set of s).

• Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$

 Ω_X cotangent bundle of X, $N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F} .

 $\begin{array}{c} \text{Foliations} \\ \text{Kodaira dimension of } \mathcal{F} \end{array}$

1. Definition of Foliations

- $T_{\mathcal{F}} := \mathcal{L}^{-1}$ tangent bundle of \mathcal{F} , $K_{\mathcal{F}} := \mathcal{L}$ canonical bundle of \mathcal{F} .
- Exact sequence

$$0 \to \mathcal{T}_{\mathcal{F}} \stackrel{\cdot s}{\to} \mathcal{T}_{X} \to \mathcal{I}_{Z(s)} \otimes \mathcal{N}_{\mathcal{F}} \to 0,$$

 $N_{\mathcal{F}}$ line bundle, $\mathcal{I}_{Z(s)}$ ideal sheaf of Z(s) (zero set of s).

• Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$

 Ω_X cotangent bundle of X, $N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F} .

 $\begin{array}{c} \text{Foliations} \\ \text{Kodaira dimension of } \mathcal{F} \end{array}$

1. Definition of Foliations

- $T_{\mathcal{F}} := \mathcal{L}^{-1}$ tangent bundle of \mathcal{F} , $K_{\mathcal{F}} := \mathcal{L}$ canonical bundle of \mathcal{F} .
- Exact sequence

$$0 \to \mathcal{T}_{\mathcal{F}} \stackrel{\cdot s}{\to} \mathcal{T}_{X} \to \mathcal{I}_{Z(s)} \otimes \mathcal{N}_{\mathcal{F}} \to 0,$$

 $N_{\mathcal{F}}$ line bundle, $\mathcal{I}_{Z(s)}$ ideal sheaf of Z(s) (zero set of s).

• Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$

 Ω_X cotangent bundle of X, $N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F} .

1. Definition of Foliation

Equivalently,

$$0 o N_{\mathcal{F}}^{-1} o \Omega_X o \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} o 0.$$

• The second definition of Foliation \mathcal{F} :

 $\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$

 $\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$

• $\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}, \ \mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}.$

/⊒ ► < ∃ ►

1. Definition of Foliation

• Equivalently,

$$0 \to \mathcal{N}_{\mathcal{F}}^{-1} \to \Omega_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{K}_{\mathcal{F}} \to 0.$$

• The second definition of Foliation \mathcal{F} :

 $\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$

 $\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$

• $\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}, \ \mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}.$

/⊒ ► < ∃ ►

1. Definition of Foliation

• Equivalently,

$$0 o N_{\mathcal{F}}^{-1} o \Omega_X o \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} o 0.$$

• The second definition of Foliation \mathcal{F} :

 $\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$

 $\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$

• $\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}, \ \mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}.$

1. Definition of Foliation

• Equivalently,

۲

$$0 o N_{\mathcal{F}}^{-1} o \Omega_X o \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} o 0.$$

• The second definition of Foliation \mathcal{F} :

 $\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

• $\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}, \ \mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}.$

1. Definition of Foliation

• Equivalently,

۲

$$0 o N_{\mathcal{F}}^{-1} o \Omega_X o \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} o 0.$$

• The second definition of Foliation \mathcal{F} :

 $\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

•
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}.$$

/⊒ ► < ∃ ►

• Fibration $f: X \to C$,

C smooth curve, f holomorphic and surjective.

• Fiber
$$F_t = f^{-1}(t), t \in C$$

Local equation

 $F_t: f(x,y) = t.$

Smooth (Singular) fiber $F_t \stackrel{def}{\iff} F_t$ smooth (singular) curve. • Foliation \mathcal{F} generated by f:

$$\omega = \frac{1}{\mu(f)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \quad \text{(local eq.)},$$
$$0 = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

 $\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$

• Fibration $f: X \to C$,

C smooth curve, f holomorphic and surjective.

• Fiber $F_t = f^{-1}(t), t \in C$.

Local equation

 $F_t: f(x,y) = t.$

Smooth (Singular) fiber $F_t \stackrel{def}{\iff} F_t$ smooth (singular) curve. • Foliation \mathcal{F} generated by f:

$$\omega = \frac{1}{\mu(f)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \quad \text{(local eq.)},$$
$$0 = \gcd\left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}\right)$$

 $\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$

/□ ▶ < 글 ▶ < 글

• Fibration $f: X \to C$,

C smooth curve, f holomorphic and surjective.

• Fiber
$$F_t = f^{-1}(t), t \in C$$

Local equation

 $F_t: f(x,y) = t.$

Smooth (Singular) fiber $F_t \stackrel{def}{\iff} F_t$ smooth (singular) curve.

• Foliation \mathcal{F} generated by f:

$$\omega = \frac{1}{\mu(f)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \quad \text{(local eq.)}$$

 $\mu(f) = \gcd(\tfrac{\partial f}{\partial x}, \tfrac{\partial f}{\partial y}).$

• Fibration $f: X \to C$,

C smooth curve, f holomorphic and surjective.

• Fiber
$$F_t = f^{-1}(t), t \in C$$

Local equation

 $F_t: f(x,y) = t.$

Smooth (Singular) fiber $F_t \stackrel{def}{\iff} F_t$ smooth (singular) curve.

• Foliation \mathcal{F} generated by f:

$$\omega = \frac{1}{\mu(f)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \quad \text{(local eq.)},$$
$$\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

where

• $\omega_{X/C} := \omega_X \otimes f^* \Omega_C^{-1}$ (relative canonical bundle)

• $D(f) := \sum_{t \in C} (F_t - F_{t, red})$ (zero divisor of df).

• Conormal bundle of \mathcal{F} :

$$N_{\mathcal{F}}^{-1} = f^* \Omega_C(D(f)).$$

∰ ▶ ∢ ≣ ▶

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

where

• $\omega_{X/C} := \omega_X \otimes f^* \Omega_C^{-1}$ (relative canonical bundle)

• $D(f) := \sum_{t \in C} (F_t - F_{t, red})$ (zero divisor of df).

• Conormal bundle of \mathcal{F} :

$$N_{\mathcal{F}}^{-1} = f^* \Omega_C(D(f)).$$

∄▶ ∢ ≣▶ ∢

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

where

- $\omega_{X/C} := \omega_X \otimes f^* \Omega_C^{-1}$ (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t, red})$ (zero divisor of df).

• Conormal bundle of \mathcal{F} :

$$N_{\mathcal{F}}^{-1} = f^* \Omega_C(D(f)).$$

@▶ ◀ ≞▶ ◀

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

where

- $\omega_{X/C} := \omega_X \otimes f^* \Omega_C^{-1}$ (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t, red})$ (zero divisor of df).

• Conormal bundle of \mathcal{F} :

$$N_{\mathcal{F}}^{-1} = f^* \Omega_C(D(f)).$$

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

where

- $\omega_{X/C} := \omega_X \otimes f^* \Omega_C^{-1}$ (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t, red})$ (zero divisor of df).
- Conormal bundle of \mathcal{F} :

 $N_{\mathcal{F}}^{-1} = f^* \Omega_{\mathcal{C}}(D(f)).$

• Foliation \mathcal{F} on \mathbb{C}^2 :

 $\omega = f(x, y)dx + g(x, y)dy$

• Extension of \mathcal{F} on \mathbb{P}^2 (Darboux): $[X, Y, Z] \in \mathbb{P}^2$,

 $\omega = F(X, Y, Z)dX + G(X, Y, Z)dY + H(X, Y, Z)dZ,$

 $\deg F = \deg G = \deg H = d.$

• Canonical bundle of \mathcal{F} : $K_{\mathcal{F}} = \mathcal{O}_X(d-2)$. Conormal bundle of \mathcal{F} : $N_{\mathcal{F}}^{-1} = \mathcal{O}_X(d-1)$.

/□ ▶ < 글 ▶ < 글

• Foliation \mathcal{F} on \mathbb{C}^2 :

 $\omega = f(x, y) dx + g(x, y) dy$

• Extension of \mathcal{F} on \mathbb{P}^2 (Darboux): $[X, Y, Z] \in \mathbb{P}^2$,

 $\omega = F(X, Y, Z)dX + G(X, Y, Z)dY + H(X, Y, Z)dZ,$

 $\deg F = \deg G = \deg H = d.$

• Canonical bundle of \mathcal{F} : $K_{\mathcal{F}} = \mathcal{O}_X(d-2)$. Conormal bundle of \mathcal{F} : $N_{\mathcal{F}}^{-1} = \mathcal{O}_X(d-1)$.

• Foliation \mathcal{F} on \mathbb{C}^2 :

 $\omega = f(x, y)dx + g(x, y)dy$

• Extension of \mathcal{F} on \mathbb{P}^2 (Darboux): $[X, Y, Z] \in \mathbb{P}^2$,

 $\omega = F(X, Y, Z)dX + G(X, Y, Z)dY + H(X, Y, Z)dZ,$

 $\deg F = \deg G = \deg H = d.$

• Canonical bundle of \mathcal{F} : $K_{\mathcal{F}} = \mathcal{O}_X(d-2)$. Conormal bundle of \mathcal{F} : $N_{\mathcal{F}}^{-1} = \mathcal{O}_X(d-1)$.

伺 ト く ヨ ト く ヨ ト

• Foliation $\mathcal F$ on $\mathbb C^2$:

 $\omega = f(x, y)dx + g(x, y)dy$

• Extension of \mathcal{F} on \mathbb{P}^2 (Darboux): $[X, Y, Z] \in \mathbb{P}^2$,

 $\omega = F(X, Y, Z)dX + G(X, Y, Z)dY + H(X, Y, Z)dZ,$

 $\deg F = \deg G = \deg H = d.$

• Canonical bundle of \mathcal{F} : $K_{\mathcal{F}} = \mathcal{O}_X(d-2)$. Conormal bundle of \mathcal{F} : $N_{\mathcal{F}}^{-1} = \mathcal{O}_X(d-1)$.

伺 ト く ヨ ト く ヨ ト

• \mathcal{F} foliation: $\{(U_{\alpha}, \omega_{\alpha})\}$ (or $\{(U_{\alpha}, s_{\alpha})\}$),

$$s_{lpha} = A_{lpha} rac{\partial}{\partial x_{lpha}} + B_{lpha} rac{\partial}{\partial y_{lpha}}$$

or

$$\omega_{\alpha}=B_{\alpha}dx_{\alpha}-A_{\alpha}dy_{\alpha}.$$

C ⊆ X curve defined by f_α = 0 on U_α.
C is *F*-invariant ^{def} ⇒
∀p ∈ C, vector s(p) is tangent to C at p

• \mathcal{F} foliation: $\{(U_{\alpha}, \omega_{\alpha})\}$ (or $\{(U_{\alpha}, s_{\alpha})\}$),

$$s_{\alpha} = A_{\alpha} \frac{\partial}{\partial x_{\alpha}} + B_{\alpha} \frac{\partial}{\partial y_{\alpha}}$$

or

$$\omega_{\alpha} = B_{\alpha} dx_{\alpha} - A_{\alpha} dy_{\alpha}.$$

C ⊆ X curve defined by f_α = 0 on U_α.
C is *F*-invariant ^{def} ⇒
∀p ∈ C, vector s(p) is tangent to C at p

• \mathcal{F} foliation: $\{(U_{\alpha}, \omega_{\alpha})\}$ (or $\{(U_{\alpha}, s_{\alpha})\}$),

$$s_{\alpha} = A_{\alpha} \frac{\partial}{\partial x_{\alpha}} + B_{\alpha} \frac{\partial}{\partial y_{\alpha}}$$

or

$$\omega_{\alpha} = B_{\alpha} dx_{\alpha} - A_{\alpha} dy_{\alpha}.$$

• $C \subseteq X$ curve defined by $f_{\alpha} = 0$ on U_{α} . C is \mathcal{F} -invariant $\stackrel{def}{\iff}$ $\forall p \in C$, vector s(p) is tangent to C at p.

3. \mathcal{F} -invariant curve

C is $\mathcal{F}\text{-invariant}$ iff

 $f_{\alpha} \mid s(f_{\alpha})$

• iff f_{α} is the solution of ODE

 $\omega_{\alpha} = 0.$

Example

Let \mathcal{F} be a foliation generated by a fibration $f : X \to C$. Then $C \subseteq X$ is \mathcal{F} -invariant iff C lies in the fibers of f.

- 4 同 🕨 - 4 目 🕨 - 4 目

3. \mathcal{F} -invariant curve

C is \mathcal{F} -invariant iff

 $f_{\alpha} \mid s(f_{\alpha})$

• iff f_{α} is the solution of ODE

 $\omega_{\alpha} = 0.$

Example

۲

Let \mathcal{F} be a foliation generated by a fibration $f : X \to C$. Then $C \subseteq X$ is \mathcal{F} -invariant iff C lies in the fibers of f.

- 4 同 ト 4 ヨ ト 4 ヨ

3. \mathcal{F} -invariant curve

C is *F*-invariant iff ●

 $f_{\alpha} \mid s(f_{\alpha})$

• iff f_{α} is the solution of ODE

 $\omega_{\alpha} = 0.$

Example

Let \mathcal{F} be a foliation generated by a fibration $f : X \to C$. Then $C \subseteq X$ is \mathcal{F} -invariant iff C lies in the fibers of f.

・ 同 ト ・ ヨ ト ・ ヨ

3. \mathcal{F} -invariant curve

C is \mathcal{F} -invariant iff

 $f_{\alpha} \mid s(f_{\alpha})$

• iff f_{α} is the solution of ODE

 $\omega_{\alpha} = 0.$

Example

۲

Let \mathcal{F} be a foliation generated by a fibration $f : X \to C$. Then $C \subseteq X$ is \mathcal{F} -invariant iff C lies in the fibers of f.

s := the number of irreducible compact \mathcal{F} -invariant curves.

- Question 1: When does $s = \infty$?
- \mathcal{F} generated by a fibration $\Longrightarrow s = \infty$.

Theorem (Jouanolou, 1978)

lf

$$s \ge h^0(X, K_F) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then \mathcal{F} is generated by a fibration.

• Question 2: How to determine all \mathcal{F} -invariant curves when $s < \infty$?

s := the number of irreducible compact \mathcal{F} -invariant curves.

- Question 1: When does $s = \infty$?
- \mathcal{F} generated by a fibration $\implies \mathbf{s} = \infty$.

Theorem (Jouanolou, 1978)

lf

 $s \ge h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2,$

then \mathcal{F} is generated by a fibration.

• Question 2: How to determine all \mathcal{F} -invariant curves when $s < \infty$?

s := the number of irreducible compact \mathcal{F} -invariant curves.

- Question 1: When does $s = \infty$?
- \mathcal{F} generated by a fibration $\Longrightarrow \mathbf{s} = \infty$.

Theorem (Jouanolou, 1978) If $s \ge h^0(X, K_F) + h^{1,1}(X) - h^{1,0}(X) + 2,$ then \mathcal{T} is generated by a fibration

• Question 2: How to determine all \mathcal{F} -invariant curves when $s < \infty$?

s := the number of irreducible compact \mathcal{F} -invariant curves.

- Question 1: When does $s = \infty$?
- \mathcal{F} generated by a fibration $\Longrightarrow \mathbf{s} = \infty$.

Theorem (Jouanolou, 1978)

lf

$$s \ge h^0(X, K_F) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then \mathcal{F} is generated by a fibration.

• Question 2: How to determine all \mathcal{F} -invariant curves when $s < \infty$?

s := the number of irreducible compact \mathcal{F} -invariant curves.

- Question 1: When does $s = \infty$?
- \mathcal{F} generated by a fibration $\Longrightarrow s = \infty$.

Theorem (Jouanolou, 1978)

lf

$$s \ge h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then \mathcal{F} is generated by a fibration.

Question 2: How to determine all *F*-invariant curves when s < ∞?

• Pseudo-effective divisor $D \stackrel{def}{\iff} DH \ge 0$, $\forall ample H$.

Theorem (Miyaoka,1985)

If $K_{\mathcal{F}}$ is not pseudo-effective, then \mathcal{F} is generated by a rational fibration.

۰

• (Zariski decomposition) $K_{\mathcal{F}}$ pseudo-effective \Longrightarrow

 $K_{\mathcal{F}}=P+N, \quad PN=0,$

Positive part *P*: nef Q-divisor. Negative part *N*: effective Q-divisor, *Supp*(*N*) negative curve.

• Pseudo-effective divisor $D \stackrel{def}{\iff} DH \ge 0$, $\forall ample H$.

Theorem (Miyaoka,1985)

If $K_{\mathcal{F}}$ is not pseudo-effective, then \mathcal{F} is generated by a rational fibration.

۰

• (Zariski decomposition) $K_{\mathcal{F}}$ pseudo-effective \Longrightarrow

 $K_{\mathcal{F}}=P+N, \quad PN=0,$

Positive part *P*: nef Q-divisor. Negative part *N*: effective Q-divisor, *Supp*(*N*) negative curve.

• Pseudo-effective divisor $D \stackrel{def}{\iff} DH \ge 0$, $\forall ample H$.

Theorem (Miyaoka, 1985)

If $K_{\mathcal{F}}$ is not pseudo-effective, then \mathcal{F} is generated by a rational fibration.

• (Zariski decomposition) $K_{\mathcal{F}}$ pseudo-effective \Longrightarrow

 $K_{\mathcal{F}}=P+N, \quad PN=0,$

Positive part *P*: nef Q-divisor. Negative part *N*: effective Q-divisor, *Supp*(*N*) negative curve.

• Pseudo-effective divisor $D \stackrel{def}{\iff} DH \ge 0$, $\forall ample H$.

Theorem (Miyaoka,1985)

If $K_{\mathcal{F}}$ is not pseudo-effective, then \mathcal{F} is generated by a rational fibration.

• (Zariski decomposition) $K_{\mathcal{F}}$ pseudo-effective \Longrightarrow

 $K_{\mathcal{F}}=P+N, \quad PN=0,$

Positive part *P*: nef \mathbb{Q} -divisor. Negative part *N*: effective \mathbb{Q} -divisor, Supp(N) negative curve.