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1. Definition of Foliation

e X: algebaic surface,
Tx: tangent bundle of X.
L1l c Tx: maximal sub-line bundle.
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1. Definition of Foliation

e X: algebaic surface,

Tx: tangent bundle of X.

L1l c Tx: maximal sub-line bundle.
e Foliation F is a section

se HYX, Tx ® L).
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Foliations

1. Definition of Foliation

e X: algebaic surface,
Tx: tangent bundle of X.
L1l c Tx: maximal sub-line bundle.

@ Foliation F is a section
se HYX, Tx ® L).

@ Open covering X = U, Uy,

0
+ B(Xaaya)i

5|Ua :A(Xaa)/a) 8)/ >

aTW (Xou}/a) € U,.
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1. Definition of Foliation

e X: algebaic surface,
Tx: tangent bundle of X.
L1l c Tx: maximal sub-line bundle.

@ Foliation F is a section
se HYX, Tx ® L).

@ Open covering X = U, Uy,

S|Ua = A(Xaaya) + B(Xaa}/a) (Xou}/a) € U,.

Oxa 0y’
® slu, = 8apslus, £ = {8ap}-
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Foliations

1. Definition of Foliations

o Tr:= £ tangent bundle of F,
Kz := L canonical bundle of F.
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1. Definition of Foliations

o Tr:= £ tangent bundle of F,
Kz := L canonical bundle of F.

@ Exact sequence
0 Tr S Tx = Iz ®Nrp— 0,

Nz line bundle,
T7(s) ideal sheaf of Z(s) (zero set of s).
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1. Definition of Foliations

o Tr:= £ tangent bundle of F,
Kz := L canonical bundle of F.

@ Exact sequence
0 Tr S Tx = Iz ®Nrp— 0,

Nz line bundle,
T7(s) ideal sheaf of Z(s) (zero set of s).

@ Canonical bundle
A2 _ -1
wx ‘= A Qx—K]:®NJ_-

Qx cotangent bundle of X,
N;-l conormal bundle of F.
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1. Definition of Foliation

o Equivalently,

0—>N;1—>QX —>IZ(S)®K]:—>0.
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1. Definition of Foliation

o Equivalently,

0—>N;1—>QX —>IZ(S)®K]:—>0.

@ The second definition of Foliation F:

w € HY(X,Qx ® Nx).
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1. Definition of Foliation

o Equivalently,

0—>N;1—>QX —>IZ(S)®K]:—>0.

@ The second definition of Foliation F:

w € HY(X,Qx ® Nx).

W‘Uu = B(Xaaya)dxa - A(Xm)/a)d}/m (XaaYa) € U,.
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1. Definition of Foliation

o Equivalently,

0—>N;1—>QX —>IZ(S)®K]:—>0.

@ The second definition of Foliation F:

w € HY(X,Qx ® Nx).

W‘Uu = B(Xaaya)dxa - A(Xm)/a)d}/m (XaaYa) € U,.

° wly, = fm?w|U/;v Nr = {fap}-
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2. Example (1): fibration

@ Fibration f : X — C,
C smooth curve, f holomorphic and surjective.
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2. Example (1): fibration

@ Fibration f : X — C,
C smooth curve, f holomorphic and surjective.
e Fiber F, = f~1(t), t € C.
Local equation
Fe: f(x,y)=t.

Smooth (Singular) fiber F; £ F, smooth (singular) curve.
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2. Example (1): fibration

@ Fibration f : X — C,
C smooth curve, f holomorphic and surjective.

e Fiber F, = f~1(t), t € C.
Local equation
Fe: f(x,y)=t
Smooth (Singular) fiber F; £ F, smooth (singular) curve.
@ Foliation F generated by f:

1 [of of
<8xd x + 8dy) (local eq.),
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2. Example (1): fibration
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2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where
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2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where

® Wx/c = wx® f*Q! (relative canonical bundle)
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2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where
® Wx/c = wx® f*Q! (relative canonical bundle)

e D(f):= ZC(Ft — Ft red) (zero divisor of df).
te
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2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where
® Wx/c = wx® f*Q! (relative canonical bundle)

@ D(f):= Y (Ft— Ftred) (zero divisor of df).
teC
@ Conormal bundle of F:

Nz = F*Qc(D(f)).
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2. Example (2): Foliations on P2
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2. Example (2): Foliations on P2

@ Foliation F on C2:

w = f(x,y)dx + g(x,y)dy
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2. Example (2): Foliations on P2

@ Foliation F on C2:

w = f(x,y)dx + g(x,y)dy

e Extension of F on P? (Darboux): [X, Y, Z] € P?,
w=F(X,Y,2)dX + G(X, Y, Z)dY + H(X, Y, Z)dZ,

deg F =deg G =deg H = d.
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2. Example (2): Foliations on P2

@ Foliation F on C2:

w = f(x,y)dx + g(x,y)dy

e Extension of F on P? (Darboux): [X, Y, Z] € P?,
w=F(X,Y,2)dX + G(X, Y, Z)dY + H(X, Y, Z)dZ,

deg F =deg G =deg H = d.
e Canonical bundle of F: Kr = Ox(d — 2).
Conormal bundle of F: N;' = Ox(d —1).
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3. F-invariant curve
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3. F-invariant curve

o F foliation: {(Uy,wa)} (or {(Uqs,sa)}),

0 0
— AL 4B
Sau o 9% + aaya
or
Wa = Badxy — Axdy,.
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3. F-invariant curve

o F foliation: {(Uy,wa)} (or {(Uqs,sa)}),

0 0
— AL 4B
Sau o 9% + aaya
or
Wa = Badxy — Axdy,.

@ C C X curve defined by f, =0 on U,.

C is F-invariant £
Vp € C, vector s(p) is tangent to C at p.
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3. F-invariant curve

C is F-invariant iff
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3. F-invariant curve

C is F-invariant iff

°
fo | s(fa)
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3. F-invariant curve

C is F-invariant iff

°
fo | s(fa)

o iff £, is the solution of ODE

W = 0.
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3. F-invariant curve

C is F-invariant iff

°
fo | s(fa)

o iff £, is the solution of ODE

W = 0.

Let F be a foliation generated by a fibrationf : X — C. Then
C C X is F-invariant iff C lies in the fibers of f.
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3. F-invariant curve

s := the number of irreducible compact F-invariant curves.
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3. F-invariant curve

s := the number of irreducible compact F-invariant curves.

@ Question 1: When does s = co?
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3. F-invariant curve

s := the number of irreducible compact F-invariant curves.
@ Question 1: When does s = co?

@ F generated by a fibration = s = oc.

Jun Lu Fibrations and Foliations



Foliations
3. F-invariant curve

s := the number of irreducible compact F-invariant curves.
@ Question 1: When does s = co?

@ F generated by a fibration = s = oc.

Theorem (Jouanolou, 1978)

If
s > (X, Kz) + htH(X) — hHO(X) + 2,

then F is generated by a fibration.
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3. F-invariant curve

s := the number of irreducible compact F-invariant curves.

@ Question 1: When does s = co?
@ F generated by a fibration = s = oc.

Theorem (Jouanolou, 1978)
If

s > ho(X, Kz) + hHH(X) — h1O(X) + 2,

then F is generated by a fibration.

@ Question 2: How to determine all F-invariant curves when

s < oo?
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Kodaira dimension of F

1. Canonical bundle Kz
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Kodaira dimension of F

1. Canonical bundle Kz

o Pseudo-effective divisor D <% DH >0, VampleH.
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Kodaira dimension of F

1. Canonical bundle Kz

o Pseudo-effective divisor D <% DH >0, VampleH.

Theorem (Miyaoka,1985)

If Kz is not pseudo-effective, then F is generated by a rational
fibration.
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Kodaira dimension of F
1. Canonical bundle Kz

o Pseudo-effective divisor D <& DH >0, VampleH.

Theorem (Miyaoka,1985)

If Kz is not pseudo-effective, then F is generated by a rational
fibration.

@ (Zariski decomposition) Kr pseudo-effective =
Kr=P+N, PN=0,

Positive part P: nef Q-divisor.
Negative part N: effective Q-divisor, Supp(/N) negative curve.
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