Some Results on Fibrations and Foliations

JUN LU

Department of Mathematics
East China Normal University

2015. 11

1. Definition of Foliation

- X: algebaic surface, T_{X} : tangent bundle of X. $\mathcal{L}^{-1} \subseteq T_{X}:$ maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,

$$
s \left\lvert\, u_{\alpha}=A\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial x_{\alpha}}+B\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial y_{\alpha}}\right., \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha}
$$

$$
\text { es|}{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}
$$

1. Definition of Foliation

- X : algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Open covering $X=\cup_{\alpha} U_{\alpha}$,
- s|$U_{\alpha}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$.

1. Definition of Foliation

- X : algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,
- $\left.s\right|_{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X : algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,

$$
\left.s\right|_{U_{\alpha}}=A\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial x_{\alpha}}+B\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial y_{\alpha}}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.s\right|_{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X : algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,

$$
\left.s\right|_{U_{\alpha}}=A\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial x_{\alpha}}+B\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial y_{\alpha}}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- s| $\left.\right|_{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$.

1. Definition of Foliations

- Exact sequence

$$
0 \rightarrow T_{\mathcal{F}} \xrightarrow{\cdot s} T_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \rightarrow 0,
$$

$N_{\mathcal{F}}$ line bundle,
$\mathcal{I}_{\bar{\prime}(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

$$
\omega_{X}:=\Lambda^{2} \Omega_{X}=K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}
$$

Ω_{X} cotangent bundle of X,
$N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliations

- $T_{\mathcal{F}}:=\mathcal{L}^{-1}$ tangent bundle of \mathcal{F}, $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact sequence

$N_{\mathcal{F}}$ line bundle,

$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s)

- Canonical bundle

$$
\omega_{X}:=\wedge^{2} \Omega_{X}=K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}
$$

Ω_{X} cotangent bundle of X,
$N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliations

- $T_{\mathcal{F}}:=\mathcal{L}^{-1}$ tangent bundle of \mathcal{F}, $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact sequence

$$
0 \rightarrow T_{\mathcal{F}} \xrightarrow{\cdot s} T_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \rightarrow 0
$$

$N_{\mathcal{F}}$ line bundle,
$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

Ω_{X} cotangent bundle of X,
$N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliations

- $T_{\mathcal{F}}:=\mathcal{L}^{-1}$ tangent bundle of \mathcal{F}, $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact sequence

$$
0 \rightarrow T_{\mathcal{F}} \xrightarrow{\cdot s} T_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \rightarrow 0
$$

$N_{\mathcal{F}}$ line bundle,
$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

$$
\omega_{X}:=\wedge^{2} \Omega_{X}=K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}
$$

Ω_{X} cotangent bundle of X, $N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliation

- Equivalently,

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

$$
\left.\omega\right|_{U_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha}
$$

$$
\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\} .
$$

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right) .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

$$
\left.\omega\right|_{U_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

-

$$
\left.\omega\right|_{U_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

-

$$
\left.\omega\right|_{U_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

2. Example (1): fibration

- Fiber $F_{t}=f^{-1}(t), t \in C$.

Local equation

$$
F_{t}: \quad f(x, y)=t .
$$

Smooth (Singular) fiber $F_{t} \stackrel{\text { def }}{\Longleftrightarrow} F_{t}$ smooth (singular) curve. - Foliation \mathcal{F} generated by f :

$$
\begin{gathered}
\omega=\frac{1}{\mu(f)}\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y\right) \quad \text { (local eq.), } \\
\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
\end{gathered}
$$

2. Example (1): fibration

- Fibration $f: X \rightarrow C$,
C smooth curve, f holomorphic and surjective.

Local equation

Smooth (Singular) fiber $F_{t} \stackrel{\text { def }}{\Longleftrightarrow} F_{t}$ smooth (singular) curve.

- Foliation \mathcal{F} generated by f :

$$
\omega=\frac{1}{\mu(f)}\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y\right) \quad \text { (local eq.) }
$$

$\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.

2. Example (1): fibration

- Fibration $f: X \rightarrow C$,
C smooth curve, f holomorphic and surjective.
- Fiber $F_{t}=f^{-1}(t), t \in C$.

Local equation

$$
F_{t}: \quad f(x, y)=t
$$

Smooth (Singular) fiber $F_{t} \stackrel{\text { def }}{\Longleftrightarrow} F_{t}$ smooth (singular) curve.

- Foliation \mathcal{F} generated by f :

$\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.

2. Example (1): fibration

- Fibration $f: X \rightarrow C$,
C smooth curve, f holomorphic and surjective.
- Fiber $F_{t}=f^{-1}(t), t \in C$.

Local equation

$$
F_{t}: \quad f(x, y)=t
$$

Smooth (Singular) fiber $F_{t} \stackrel{\text { def }}{\Longleftrightarrow} F_{t}$ smooth (singular) curve.

- Foliation \mathcal{F} generated by f :

$$
\omega=\frac{1}{\mu(f)}\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y\right) \quad \text { (local eq.) }
$$

$\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f)) .
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t \in C}\left(F_{t}-F_{t, \text { red }}\right)$ (zero divisor of $\left.d f\right)$.
- Conormal bundle of \mathcal{F} :
$N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f))$.

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t=c}\left(F_{t}-F_{t, \text { red }}\right)$ (zero divisor of $\left.d f\right)$.
- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f)) .
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f)),
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t \in C}\left(F_{t}-F_{t, \text { red }}\right)$ (zero divisor of $d f$).
- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f)) .
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t \in C}\left(F_{t}-F_{t, \text { red }}\right)$ (zero divisor of $d f$).
- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f))
$$

2. Example (2): Foliations on \mathbb{P}^{2}

- Foliation \mathcal{F} on \mathbb{C}^{2} :

$$
\omega=f(x, y) d x+g(x, y) d y
$$

- Extension of \mathcal{F} on $\mathbb{P}^{2}($ Darboux $):[X, Y, Z] \in \mathbb{P}^{2}$,

$$
\omega=F(X, Y, Z) d X+G(X, Y, Z) d Y+H(X, Y, Z) d Z
$$

$\operatorname{deg} F=\operatorname{deg} G=\operatorname{deg} H=d$.

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=\mathcal{O}_{\times(}(d-2)$. Conormal bundle of $\mathcal{F}: N_{\mathcal{F}}^{-1}=\mathcal{O}_{x}(d-1)$.

2. Example (2): Foliations on \mathbb{P}^{2}

- Foliation \mathcal{F} on \mathbb{C}^{2} :

$$
\omega=f(x, y) d x+g(x, y) d y
$$

- Extension of \mathcal{F} on \mathbb{P}^{2} (Darboux): $[X, Y, Z] \in \mathbb{P}^{2}$,

$$
\omega=F(X, Y, Z) d X+G(X, Y, Z) d Y+H(X, Y, Z) d Z,
$$

$\operatorname{deg} F=\operatorname{deg} G=\operatorname{deg} H=d$.

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=\mathcal{O}_{\times}(d-2)$.

Conormal bundle of $\mathcal{F}: N_{\mathcal{F}}^{-1}=\mathcal{O}_{x}(d-1)$.

2. Example (2): Foliations on \mathbb{P}^{2}

- Foliation \mathcal{F} on \mathbb{C}^{2} :

$$
\omega=f(x, y) d x+g(x, y) d y
$$

- Extension of \mathcal{F} on \mathbb{P}^{2} (Darboux): $[X, Y, Z] \in \mathbb{P}^{2}$,

$$
\omega=F(X, Y, Z) d X+G(X, Y, Z) d Y+H(X, Y, Z) d Z
$$

$\operatorname{deg} F=\operatorname{deg} G=\operatorname{deg} H=d$.

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=\mathcal{O}_{X}(d-2)$

Conormal bundle of $\mathcal{F}: N_{\mathcal{F}}^{-1}=\mathcal{O}_{x}(d-1)$.

2. Example (2): Foliations on \mathbb{P}^{2}

- Foliation \mathcal{F} on \mathbb{C}^{2} :

$$
\omega=f(x, y) d x+g(x, y) d y
$$

- Extension of \mathcal{F} on \mathbb{P}^{2} (Darboux): $[X, Y, Z] \in \mathbb{P}^{2}$,

$$
\omega=F(X, Y, Z) d X+G(X, Y, Z) d Y+H(X, Y, Z) d Z
$$

$\operatorname{deg} F=\operatorname{deg} G=\operatorname{deg} H=d$.

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=\mathcal{O}_{X}(d-2)$.

Conormal bundle of $\mathcal{F}: N_{\mathcal{F}}^{-1}=\mathcal{O}_{X}(d-1)$.

3. \mathcal{F}-invariant curve

\mathcal{F} foliation: $\left\{\left(U_{\alpha}, \omega_{\alpha}\right)\right\}$ (or $\left\{\left(U_{\alpha}, s_{\alpha}\right)\right\}$),

or

$$
\omega_{\alpha}=B_{\alpha} d x_{\alpha}-A_{\alpha} d y_{\alpha} .
$$

- $C \subseteq X$ curve defined by $f_{\alpha}=0$ on U_{α}.
C is \mathcal{F}-invariant $\stackrel{\text { def }}{\Longleftrightarrow}$

$$
\forall p \in C \text {, vector } s(p) \text { is tangent to } C \text { at } p \text {. }
$$

3. \mathcal{F}-invariant curve

- \mathcal{F} foliation: $\left\{\left(U_{\alpha}, \omega_{\alpha}\right)\right\}$ (or $\left.\left\{\left(U_{\alpha}, s_{\alpha}\right)\right\}\right)$,

$$
s_{\alpha}=A_{\alpha} \frac{\partial}{\partial x_{\alpha}}+B_{\alpha} \frac{\partial}{\partial y_{\alpha}}
$$

or

$$
\omega_{\alpha}=B_{\alpha} d x_{\alpha}-A_{\alpha} d y_{\alpha}
$$

- $C \subseteq X$ curve defined by $f_{\alpha}=0$ on U_{α}.
C is \mathcal{F}-invariant $\stackrel{\text { def }}{\Longleftrightarrow}$ $\forall p \in C$, vector $s(p)$ is tangent to C at p.

3. \mathcal{F}-invariant curve

- \mathcal{F} foliation: $\left\{\left(U_{\alpha}, \omega_{\alpha}\right)\right\}$ (or $\left.\left\{\left(U_{\alpha}, s_{\alpha}\right)\right\}\right)$,

$$
s_{\alpha}=A_{\alpha} \frac{\partial}{\partial x_{\alpha}}+B_{\alpha} \frac{\partial}{\partial y_{\alpha}}
$$

or

$$
\omega_{\alpha}=B_{\alpha} d x_{\alpha}-A_{\alpha} d y_{\alpha}
$$

- $C \subseteq X$ curve defined by $f_{\alpha}=0$ on U_{α}.
C is \mathcal{F}-invariant $\stackrel{\text { def }}{\Longleftrightarrow}$
$\forall p \in C$, vector $s(p)$ is tangent to C at p.

3. \mathcal{F}-invariant curve

\mathcal{C} is \mathcal{F}-invariant iff

- iff f_{α} is the solution of ODE

Example

Let \mathcal{F} be a foliation generated by a fibration $f: X \rightarrow C$. Then $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.

3. \mathcal{F}-invariant curve

\mathcal{C} is \mathcal{F}-invariant iff
-

$$
f_{\alpha} \mid s\left(f_{\alpha}\right)
$$

- iff f_{α} is the solution of ODE

Example

Let \mathcal{F} be a foliation generated by a fibration $f: X \rightarrow C$. Then $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.

3. \mathcal{F}-invariant curve

C is \mathcal{F}-invariant iff
-

$$
f_{\alpha} \mid s\left(f_{\alpha}\right)
$$

- iff f_{α} is the solution of ODE

$$
\omega_{\alpha}=0
$$

Example
 Let \mathcal{F} be a foliation generated by a fibration $: X \rightarrow C$. Then $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f

3. \mathcal{F}-invariant curve

C is \mathcal{F}-invariant iff
-

$$
f_{\alpha} \mid s\left(f_{\alpha}\right)
$$

- iff f_{α} is the solution of ODE

$$
\omega_{\alpha}=0
$$

Example

Let \mathcal{F} be a foliation generated by a fibration $f: X \rightarrow C$. Then $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration

Theorem (Jouanolou, 1978)
If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration

Theorem (Jouanolou, 1978)
If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration $\Longrightarrow s=\infty$.

Theorem (Jouanolou, 1978)

If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration $\Longrightarrow s=\infty$.

Theorem (Jouanolou, 1978)
If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration $\Longrightarrow s=\infty$.

Theorem (Jouanolou, 1978)

If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

1. Canonical bundle $K_{\mathcal{F}}$

- Pseudo-effective divisor $D \stackrel{\text { def }}{\Longleftrightarrow} D H \geq 0, \forall$ ample H.

Theorem (Miyaoka,1985)

If $K_{\mathcal{F}}$ is not pseudo-effective, then \mathcal{F} is generated by a rational fibration.

- (Zariski decomposition) $K_{\mathcal{F}}$ pseudo-effective \Longrightarrow

$$
K F=P+N, \quad P N=0,
$$

Positive part P : nef \mathbb{Q}-divisor.
Negative part N : effective \mathbb{Q}-divisor, $\operatorname{Supp}(N)$ negative curve.

1. Canonical bundle $K_{\mathcal{F}}$

- Pseudo-effective divisor $D \stackrel{\text { def }}{\Longleftrightarrow} D H \geq 0, \forall$ ample H.

Theorem (Miyaoka,1985)

If $K_{\mathcal{F}}$ is not pseudo-effective, then \mathcal{F} is generated by a rational

 fibration.- (Zariski decomposition) $K_{\mathcal{F}}$ pseudo-effective \Longrightarrow

$$
K F=P+N, \quad P N=0,
$$

Positive part P : nef \mathbb{Q}-divisor.
Negative part N : effective \mathbb{Q}-divisor, $\operatorname{Supp}(N)$ negative curve.

1. Canonical bundle $K_{\mathcal{F}}$

- Pseudo-effective divisor $D \stackrel{\text { def }}{\Longleftrightarrow} D H \geq 0, \forall$ ample H.

Theorem (Miyaoka,1985)

If $K_{\mathcal{F}}$ is not pseudo-effective, then \mathcal{F} is generated by a rational fibration.

- (Zariski decomposition) $K_{\mathcal{F}}$ pseudo-effective \Longrightarrow

$$
K_{F}=P+N, \quad P N=0
$$

1. Canonical bundle $K_{\mathcal{F}}$

- Pseudo-effective divisor $D \stackrel{\text { def }}{\Longleftrightarrow} D H \geq 0$, \forall ample H.

Theorem (Miyaoka,1985)

If $K_{\mathcal{F}}$ is not pseudo-effective, then \mathcal{F} is generated by a rational fibration.

- (Zariski decomposition) $K_{\mathcal{F}}$ pseudo-effective \Longrightarrow

$$
K_{\mathcal{F}}=P+N, \quad P N=0
$$

Positive part P : nef \mathbb{Q}-divisor.
Negative part N : effective \mathbb{Q}-divisor, $\operatorname{Supp}(N)$ negative curve.

