Singularities of triple covers on smooth surfaces

Lu Jun

Feb 27, 2006

- hyperelliptic fibration - an application of double cover
$f: S \rightarrow C$ hyperelliptic fibration of genus 2.

Induce a double cover π on rule surface φ_{0} : $P_{0} \rightarrow C$.
G.Xiao proved

$$
\left\{\begin{array}{cc}
K_{f}^{2}= & \frac{1}{5} s_{2}+ \tag{1}\\
\frac{7}{5} s_{3} \\
\chi_{f} & =\frac{1}{10} s_{2}+ \\
\frac{1}{5} s_{3} \\
e_{f} & =s_{2}+ \\
s_{3} .
\end{array}\right.
$$

s_{2}, s_{3} : singular index
(due to singular points of branch locus of corresponding double cover)

- fibration of genus 3

$f: S \rightarrow C$ fibration of genus 3.
M.Reid's conjecture:

$$
\begin{align*}
\chi_{f} & =\frac{1}{9}\left(a_{0}+a_{1}+3 a_{2}+5 a_{3}\right) \\
K_{f}^{2} & =\frac{1}{3}\left(a_{0}+4 a_{1}+9 a_{2}+14 a_{3}\right) . \tag{2}
\end{align*}
$$

a_{i} : numerical invariants.
(atomic fibers, singular index?)

- trigonal fibration
$f: S \rightarrow C$ fibration of genus $g \geq 3$,
general fiber is a triple cover of \mathbb{P}^{1}

After some base changes, we induce a triple cover π on rule surface $\varphi_{0}: P_{0} \rightarrow C$.

Canonical resolution

\[

\]

$\sigma: \tilde{P} \rightarrow P_{0}$ blowing-ups of P_{0}.
$\tilde{\pi}$ triple cover with smooth branch locus
$\rho: \widetilde{S} \rightarrow S$ contracted all (-1)-curves in fibres.
Then we get $f: S \rightarrow C$

- compute the relative numerical invariants by triple cover (local problem).
- find singular indexes like Xiao's.

Difficulties in this work:

- know little about singularities of triple cover.
- more complex process of canonical resoIution.
- When is an exceptional curve contractible in a fibre?
- What do the singular indexes look like?

- rational double point- double cover

$$
\begin{array}{ll}
A_{n}: & z^{2}=x^{2}+y^{n+1} \\
D_{n}: & z^{2}=y\left(x^{2}+y^{n-2}\right. \\
E_{6}: & z^{2}=x^{3}+y^{4} \\
E_{7}: & z^{2}=x\left(x^{2}+y^{3}\right) \\
E_{8}: & z^{2}=x^{3}+y^{5}
\end{array}
$$

- rational triple point - triple cover

There are 9 classes of rational triple points (M.Artin)

Tyurina (1968) gave explicitly 3 defining equations for each singularity.

$D_{n, 5}: \ldots \ldots \ldots$

Where o is a (-2)-curve, \bullet is a (-3)-curve.

- a rational point (double \& triple) is isomorphic to the normalization of the local surface defined by a cubic equation (Z.-J. Chen, R.Du, S.-L. Tan, F.Yu).
- a rational point (double \& triple) may have many kinds of such cubic equations with analytically distinct branch loci.
- find all possible branch loci for each rational singularity.
- Introduction of triple cover
(R. Miranda \& S.-L. Tan)

$f: Y \rightarrow X$ normal triple cover (X smooth).

- triple cover data (s, t, \mathcal{L}):
\mathcal{L} invertible sheaf.
$s \in H^{0}\left(X, \mathcal{L}^{2}\right), 0 \neq t \in H^{0}\left(X, \mathcal{L}^{3}\right)$
- Y is normalization of the surface defined by

$$
z^{3}+s z+t=0 .
$$

- Let

$$
\begin{aligned}
& a=\frac{4 s^{3}}{\operatorname{gcd}\left(s^{3}, t^{2}\right)}, b=\frac{27 t^{2}}{\operatorname{gcd}\left(s^{3}, t^{2}\right)}, c=a+b \\
& (a, b, c) \text { coprime sections. }
\end{aligned}
$$

- decompositions

$$
a=4 a_{1} a_{2}^{2} a_{0}^{3}, b=27 b_{1} b_{0}^{2}, c=c_{1} c_{0}^{2}
$$

$a_{1}, a_{2}, b_{1}, c_{1}$ square-free, $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$.

- decompositions of s, t

$$
s=a_{1} a_{2}^{2} b_{1} a_{0}, t=a_{1} a_{2}^{2} b_{1}^{2} b_{0}
$$

- Set

$$
A_{i}=\operatorname{Div}\left(a_{i}\right), B_{i}=\operatorname{Div}\left(b_{i}\right), C_{i}=\operatorname{Div}\left(c_{i}\right)
$$

- branch locus $R=D_{1}+2 D_{2}$.

$$
D_{1}=B_{1}+C_{1}, D_{2}=A_{1}+A_{2}
$$

π totally ramified over D_{2}, π simply ramified over D_{1}.

- non-normal locus $A_{2}+B_{1}+C_{0}$.

- Canonical resolution of singularities of triple cover.

Canonical resolution $\tau: \tilde{Y} \rightarrow Y$ is the following communicative diagrams.

$$
\begin{array}{ccccc}
\tilde{Y}=Y_{k} & \xrightarrow{\tau_{k}} & \cdots & \xrightarrow{\tau_{2}} Y_{1} & \xrightarrow{\tau_{1}} Y_{0}=Y \\
\tilde{\pi}=\pi_{k} \\
& \cdots & \pi_{1} \mid & & \\
\tilde{X}=X_{k} & \xrightarrow{\sigma_{k}} & \cdots & \xrightarrow{\sigma_{2}} X_{1} & \xrightarrow{\sigma_{1}} X_{0}=X
\end{array}
$$

σ_{i} : the blowing-up of X_{i} at singular point p_{i}. Y_{i+1} :the normalization of $X_{i+1} \times{ }_{X} Y_{i}$

- The corresponding data $\left(a^{(i)}, b^{(i)}, c^{(i)}\right)$ of π_{i} is obtained from

$$
\left(\sigma_{i}^{*} a^{(i-1)}, \sigma_{i}^{(*)} b^{(i-1)}, \sigma_{i}^{*} c^{(i-1)}\right)
$$

by eliminating the common factors.

- Resolution data.

$$
\begin{aligned}
& d_{i}=\min \left\{m_{p_{i}}\left(A^{(i)}\right), m_{p_{i}}\left(B^{(i)}\right), m_{p_{i}}\left(C^{(i)}\right)\right\} \\
& m_{i}=\left[\frac{m_{p_{i}}\left(D_{1}^{(i)}\right)}{2}\right], \\
& n_{i}= \begin{cases}m_{p_{i}}\left(D_{2}^{(i)}\right), & \text { if } 3 \mid d_{i}-m_{p_{i}}\left(D_{2}^{(i)}\right) ; \\
m_{p_{i}}\left(D_{2}^{(i)}\right)-1, & \text { otherwise. }\end{cases} \\
& w_{i}=m_{i}+n_{i} . \\
& D_{1}^{(i)}\left(D_{2}^{(i)}\right) \text { simply (totally) ramified locus } \\
& \text { of } \pi_{i} .
\end{aligned}
$$

- Numerical invariants.

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{Y}}\right)= & 3 \chi\left(\mathcal{O}_{\tilde{X}}\right)+\frac{1}{8} D_{1}^{2}+\frac{1}{4} D_{1} K_{\tilde{X}} \\
& +\frac{5}{18} D_{2}^{2}+\frac{1}{2} D_{2} K_{\tilde{X}} \\
& -\sum_{i=0}^{k-1} \frac{m_{i}\left(m_{i}-1\right)}{2}-\sum_{i=0}^{k-1} \frac{n_{i}\left(5 n_{i}-9\right)}{18}, \\
K_{\tilde{Y}}^{2}= & 3 K_{\tilde{X}}^{2}+\frac{1}{2} D_{1}^{2}+2 D_{1} K_{\tilde{X}} \\
& +\frac{4}{3} D_{2}^{2}+4 D_{2} K_{\tilde{X}} \\
& -\sum_{i=0}^{k-1} 2\left(m_{i}-1\right)^{2}-\sum_{i=0}^{k-1} \frac{4 n_{i}\left(n_{i}-3\right)}{3}-k .
\end{aligned}
$$

- Singularities of triple covers
- Topology of singularity
- Decomposition Theorem (fundamental Cycle of exceptional curves)
- Contraction Theorem (When is an exceptional curve contractible?)
- Criterion for rational points.
- Topology of singularities of triple covers.
$\pi: Y \rightarrow X$ triple cover;
p singular point of branch locus (totally ramified);
$p^{\prime}=\pi^{-1}(p)$;
E_{p}^{\prime} exceptional curves of p^{\prime} (no (-1)-curve);
$\mu_{p}(D)$ Milnor number of D at p.

We get

$$
\begin{aligned}
\mu_{p}\left(D_{1}\right)+2 \mu_{p}\left(D_{2}\right)= & \chi_{t o p}\left(E_{p}^{\prime}\right)+H_{p} \\
& +\frac{1}{2}\left(D_{1} D_{2}\right)_{p}+9 \tau_{p}
\end{aligned}
$$

where

$$
\tau_{p}=\sum_{i=0}^{k-1} \frac{m_{i}\left(m_{i}-1\right)}{2}+\sum_{i=0}^{k-1} \frac{n_{i}\left(5 n_{i}-9\right)}{18} .
$$

$H_{p}=\frac{1}{2} \sum_{i}\left(2-w_{i}\right)\left(w_{i}-3\right)+\varepsilon_{p}$
(Horikawa Number)

- Betti number of rational point of triple cover

$$
\begin{aligned}
b_{2}\left(E_{p}^{\prime}\right)= & \mu_{p}\left(D_{1}\right)+2 \mu_{p}\left(D_{2}\right) \\
& -\frac{1}{2} D_{1} D_{2}-1-9 \tau_{p} .
\end{aligned}
$$

- Laufer's formula on Galois triple cover.

$$
\begin{aligned}
2 \mu_{p}\left(D_{2}\right)= & \chi_{t o p}\left(E_{p}^{\prime}\right)-1+K^{2} \\
& +12 p_{g}+\frac{4}{3}\left(A_{1} A_{2}\right)_{p} .
\end{aligned}
$$

K rational canonical divisor of E_{p}^{\prime} p_{g} geometric genus of p^{\prime}.

- Decomposition Theorem.

Recall canonical resolution

\[

\]

p singular point of branch locus (totally ramified);
$p^{\prime}=\pi^{-1}(p)$;
$E_{p}=(\sigma \pi)^{-1}(p)$;
\mathcal{E}_{1} the totally transformation of σ at p.

$$
\begin{gathered}
\tilde{\pi}^{*} \mathcal{E}_{1}=Z_{0}+Z_{1}+Z_{2}, Z_{i} \geq 0, \\
Z_{i} Z_{j}=0, i \neq j .
\end{gathered}
$$

Moreover, $Z_{0}>Z_{1}>Z_{2}$,
Z_{i} is either zero or a fundamental cycle on it's support ($i=0,1,2$).

- This decomposition is unique.
- Contraction Theorem

It tell us when an exceptional curve is contractible in E_{p}.
(The details are omitted.)

- Horikawa number of singular point p of branch locus.

$$
H_{p}=\frac{1}{2} \sum_{i}\left(2-w_{i}\right)\left(w_{i}-3\right)+\varepsilon_{p}
$$

ε_{p} the number of the exceptional curve contracted by some blow-downs.

The following conditions are equivalent.
(1) the points of $\pi^{-1}(p)$ are rational singularities or smooth;
(2) $H_{p}=0$ and $w_{i} \leq 2, \forall i$.

- Criterion for rational point of triple cover.
- Rational point is mainly due to the branch locus.
- a rational point of triple cover may have many kinds of such cubic equations with analytically distinct branch loci.
- List of branch locus of rational point of triple cover.
(in the meaning of topological equivalence.)

type	equations of (D_{1}, D_{2})
A_{n}	$\begin{gathered} \left(1, x^{2}+y^{2}\right) \\ \left(x^{2}+y^{3 m+1}, y\right) \\ \left(\left(x^{2}+y^{3 m+1}\right)\left(x^{2}+y^{3 l+1}\right), 1\right) \\ \left(x, x+y^{2 m}\right) \\ \left(\left(x+y^{2 m}\right)\left(x^{2}+y^{3 l+4 m}\right), 1\right) \\ \left(x^{3}+y^{2 n+2}, 1\right) \end{gathered}$
D_{n}	$\begin{gathered} \left(1, x^{2}+y^{3}\right) \\ \left(\left(x^{2}+y^{3}\right)^{2}+x^{m+3}, 1\right) \\ \left(\left(x^{2}+y^{3}\right)\left(x^{2}+y^{n-1}\right), 1\right) \end{gathered}$
E_{6}	$\begin{gathered} \left(1, x^{2}+y^{4}\right) \\ \left(x^{2}+y^{3 m+2}, x+y^{2}\right) \\ \left(\left(x^{2}+y^{3 n+2}\right)\left(\left(\left(x+y^{2}\right)^{2}+y^{3 m+2}\right), 1\right)\right. \end{gathered}$
E_{7}	$\left(x^{4}+y^{9}, 1\right)$
E_{8}	$\begin{gathered} \left(1, x^{2}+y^{5}\right) \\ \left(\left(x^{2}+y^{5}\right)^{2}+y^{3 n+9}, 1\right) \\ \left(\left(x^{2}+y^{5}\right)^{2}+x^{3} y^{3 n}, 1\right) \end{gathered}$

(List of rational triple cover is omitted.)

- Trigonal fibration $f: S \rightarrow C$.

After some base changes, we induce a triple cover π on rule surface $\varphi_{0}: P_{0} \rightarrow C$ with data (s, t, \mathcal{L}).

Canonical resolution

$$
\begin{array}{llll}
S_{0} & \tau & \widetilde{S} \\
\left.\right|_{\pi} & & & \tilde{\pi} \\
P_{0} & & \sigma & \widetilde{P}
\end{array}
$$

$\rho: \widetilde{S} \rightarrow S$ contracted all (-1)-curves in
fibres. Then we get $f: S \rightarrow C$

$$
\begin{array}{lll}
S_{0} & \tau & \tilde{S} \\
\left.\right|_{\pi} & & \mid \tilde{\pi} \\
P_{0} & \sigma & \tilde{P}
\end{array}
$$

F_{0} fibre in rule surface P_{0}. \tilde{F}_{0} strict transform of F_{0} under σ.

- When is a component of $\tilde{\pi}^{*} \tilde{F}_{0}$ contractible?
- Case 1. $\tilde{\pi}^{*} \tilde{F}_{0}=3 C$, i.e., F_{0} is totally ramified component.
C contractible $\Leftrightarrow F_{0}^{2}=-3$.
- Case 2. $\tilde{\pi}^{*} \tilde{F}_{0}=2 C+C^{\prime}$, i.e., F_{0} is simply ramified component.
C contractible $\Leftrightarrow F_{0}^{2}=-2$;
C^{\prime} contractible $\Leftrightarrow \exists$! totally ramified point in F_{0}.
- Case 3. $\tilde{\pi}^{*} \tilde{F}_{0}=C, C$ irreducible.
C is not contractible.
- Case 4. $\tilde{\pi}^{*} \tilde{F}_{0}=C+C^{\prime}, C$ double cover over \tilde{F}_{0}.
C is not contractible;
C^{\prime} contractible \Leftrightarrow one of the following cases.
- \exists ! totally ramified point in F_{0}
(including infinitely near point)
$-\exists$ a good cusp (defined by $x^{2}+y^{3}=0$ at $(0,0)$) in F_{0};
- all points in F_{0} is simply ramified \& $\exists!p \in F_{0}$, s.t. D_{1} smooth and $\left(D_{1} F_{0}\right)_{p}=$ 2.
- Case 5. $\tilde{\pi}^{*} \tilde{F}_{0}=C+C^{\prime}+C^{\prime \prime}$
C contractible \Leftrightarrow one of the following cases.
- \exists ! totally ramified point in F_{0} (including infinitely near point)
- all points in F_{0} is simply ramified \& $\exists!p \in F_{0}$, s.t. D_{1} smooth and $\left(D_{1} F_{0}\right)_{p}=$ 2.
- Our ultimate goal: find singular indexes in trigonal fibration. However, it is still hard to us.

