
Singularities of triple covers
on smooth surfaces

Lu Jun

Feb 27, 2006

1



• hyperelliptic fibration — an application

of double cover

f : S → C hyperelliptic fibration of genus 2.

Induce a double cover π on rule surface ϕ0 :

P0 → C.

G.Xiao proved





K2
f = 1

5s2+
7
5s3,

χf = 1
10s2+

1
5s3,

ef = s2+ s3.

(1)

s2, s3 : singular index

( due to singular points of branch locus of

corresponding double cover)
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• fibration of genus 3

f : S → C fibration of genus 3.

M.Reid’s conjecture:

χf = 1
9(a0 + a1 + 3a2 + 5a3),

K2
f = 1

3(a0 + 4a1 + 9a2 + 14a3).
(2)

ai: numerical invariants.

( atomic fibers, singular index? )
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• trigonal fibration

f : S → C fibration of genus g ≥ 3,

general fiber is a triple cover of P1

After some base changes, we induce a

triple cover π on rule surface ϕ0 : P0 → C.

Canonical resolution

S0
τ←− S̃yπ

yπ̃

P0
σ←− P̃

σ : P̃ → P0 blowing-ups of P0.

π̃ triple cover with smooth branch locus

ρ : S̃ → S contracted all (−1)-curves in

fibres.

Then we get f : S → C
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• compute the relative numerical invariants

by triple cover (local problem).

• find singular indexes like Xiao’s.

Difficulties in this work:

• know little about singularities of triple

cover.

• more complex process of canonical reso-

lution.

• When is an exceptional curve contractible

in a fibre?

• What do the singular indexes look like?
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• rational double point— double cover

An : z2 = x2 + yn+1,

Dn : z2 = y(x2 + yn−2,

E6 : z2 = x3 + y4,

E7 : z2 = x(x2 + y3),
E8 : z2 = x3 + y5.
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• rational triple point — triple cover

There are 9 classes of rational triple points

(M.Artin)

Tyurina (1968) gave explicitly 3 defining equa-

tions for each singularity.

An,m,k: c c c c
c c
sp p p p p p p p p p p p p p p p p p p p p p
p p p p p p p p p p p

Bm,n: c c c c c
c

csp p p p p p p p p p p p p p p p p p p p p p

Cm,n: c c c c cc
c

sp p p p p p p p p p p p p p p p p p p p p p

Dn,5: c c c c c c
c

sp p p p p p p p p p p

E6,0: c c c c s
c

c E7,0: c c c c c
c

c s

E0,7: c c c c c c
c

s Fn,6: c c c c c c c
c

sp p p p p p p p p p p

Gn,0: c c c c c c c c
s

p p p p p p p p p p p

Where ◦ is a (−2)-curve, • is a (−3)-curve.
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• a rational point (double & triple) is iso-

morphic to the normalization of the local

surface defined by a cubic equation (Z.-J.

Chen, R.Du, S.-L. Tan, F.Yu).

• a rational point (double & triple) may

have many kinds of such cubic equations

with analytically distinct branch loci.

• find all possible branch loci for each ra-

tional singularity.
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• Introduction of triple cover

(R. Miranda & S.-L. Tan)

f : Y → X normal triple cover ( X smooth ).

• triple cover data (s, t,L):

L invertible sheaf.

s ∈ H0(X,L2), 0 6= t ∈ H0(X,L3)

• Y is normalization of the surface defined

by

z3 + sz + t = 0.
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• Let

a =
4s3

gcd (s3, t2)
, b =

27t2

gcd (s3, t2)
, c = a + b.

(a, b, c) coprime sections.

• decompositions

a = 4a1a2
2a3

0, b = 27b1b20, c = c1c20,

a1, a2, b1, c1 square-free, gcd (a1, a2) = 1.

• decompositions of s, t

s = a1a2
2b1a0, t = a1a2

2b21b0.

• Set

Ai = Div(ai), Bi = Div(bi), Ci = Div(ci).
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• branch locus R = D1 + 2D2.

D1 = B1 + C1, D2 = A1 + A2.

π totally ramified over D2,

π simply ramified over D1.

• non-normal locus A2 + B1 + C0.
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• Canonical resolution of singularities of triple

cover.

Canonical resolution τ : Ỹ → Y is the follow-

ing communicative diagrams.

Ỹ =Yk
τk−→ · · · τ2−→ Y1

τ1−→ Y0 = Y

π̃=πk

y · · · π1

y
yπ0

X̃ =Xk
σk−−→ · · · σ2−−→ X1

σ1−−→ X0= X

σi : the blowing-up of Xi at singular point pi.

Yi+1 :the normalization of Xi+1 ×Xi
Yi

• The corresponding data (a(i), b(i), c(i)) of

πi is obtained from

(σ∗i a(i−1), σ
(∗)
i b(i−1), σ∗i c(i−1))

by eliminating the common factors.



• Resolution data.

di = min{mpi(A
(i)), mpi(B

(i)), mpi(C
(i))},

mi = [
mpi(D

(i)
1 )

2
],

ni =





mpi(D
(i)
2 ), if 3 | di −mpi(D

(i)
2 );

mpi(D
(i)
2 )− 1, otherwise.

wi = mi + ni.

D
(i)
1 (D(i)

2 ) simply (totally) ramified locus

of πi.
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• Numerical invariants.

χ(OỸ ) =3χ(OX̃) +
1

8
D2

1 +
1

4
D1KX̃

+
5

18
D2

2 +
1

2
D2KX̃

−
k−1∑

i=0

mi(mi − 1)

2
−

k−1∑

i=0

ni(5ni − 9)

18
,

K2
Ỹ

=3K2
X̃

+
1

2
D2

1 + 2D1KX̃

+
4

3
D2

2 + 4D2KX̃

−
k−1∑

i=0

2(mi − 1)2 −
k−1∑

i=0

4ni(ni − 3)

3
− k.
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• Singularities of triple covers

– Topology of singularity

– Decomposition Theorem ( fundamen-

tal Cycle of exceptional curves )

– Contraction Theorem (When is an ex-

ceptional curve contractible?)

– Criterion for rational points.
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• Topology of singularities of triple covers.

π : Y → X triple cover;

p singular point of branch locus ( totally ram-

ified );

p′ = π−1(p);

E′p exceptional curves of p′(no (−1)-curve);

µp(D) Milnor number of D at p.

We get

µp(D1) + 2µp(D2) =χtop(E
′
p) + Hp

+
1

2
(D1D2)p + 9τp,

where

τp =
k−1∑

i=0

mi(mi − 1)

2
+

k−1∑

i=0

ni(5ni − 9)

18
.

Hp = 1
2

∑
i
(2− wi)(wi − 3) + εp

(Horikawa Number)
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• Betti number of rational point of triple

cover

b2(E
′
p) =µp(D1) + 2µp(D2)

− 1

2
D1D2 − 1− 9τp.

• Laufer’s formula on Galois triple cover.

2µp(D2) =χtop(E
′
p)− 1 + K2

+ 12pg +
4

3
(A1A2)p.

K rational canonical divisor of E′p
pg geometric genus of p′.
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• Decomposition Theorem.

Recall canonical resolution

(Ỹ , Ep)
τ−→ (Y, p)

π̃

y
yπ0

(X̃, E1) σ−→ (X, p)

p singular point of branch locus ( totally
ramified );
p′ = π−1(p);
Ep = (σπ)−1(p);
E1 the totally transformation of σ at p.

π̃∗E1 = Z0 + Z1 + Z2, Zi ≥ 0,

ZiZj = 0, i 6= j.

Moreover, Z0 > Z1 > Z2,
Zi is either zero or a fundamental cycle
on it’s support (i = 0,1,2).

• This decomposition is unique.
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• Contraction Theorem

It tell us when an exceptional curve is

contractible in Ep.

(The details are omitted.)

• Horikawa number of singular point p of

branch locus.

Hp =
1

2

∑

i

(2− wi)(wi − 3) + εp

εp the number of the exceptional curve

contracted by some blow-downs.
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The following conditions are equivalent.

(1) the points of π−1(p) are rational singu-

larities or smooth;

(2) Hp = 0 and wi ≤ 2, ∀i.

• Criterion for rational point of triple cover.

– Rational point is mainly due to the

branch locus.

– a rational point of triple cover may

have many kinds of such cubic equa-

tions with analytically distinct branch

loci.
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• List of branch locus of rational point of

triple cover.

(in the meaning of topological equiva-

lence. )
type equations of ( D1, D2)
An (1, x2 + y2)

(x2 + y3m+1, y)
((x2 + y3m+1)(x2 + y3l+1), 1 )

(x, x + y2m)
((x + y2m)(x2 + y3l+4m), 1)

(x3 + y2n+2, 1)
Dn (1, x2 + y3)

((x2 + y3)2 + xm+3, 1)
((x2 + y3)(x2 + yn−1), 1)

E6 (1, x2 + y4)
(x2 + y3m+2, x + y2)

((x2 + y3n+2)((x + y2)2 + y3m+2), 1)
E7 (x4 + y9, 1)

E8 (1, x2 + y5)
((x2 + y5)2 + y3n+9, 1 )
((x2 + y5)2 + x3y3n, 1)

(List of rational triple cover is omitted. )
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• Trigonal fibration f : S → C.

After some base changes, we induce a

triple cover π on rule surface ϕ0 : P0 → C

with data (s, t,L).

Canonical resolution

S0
τ←− S̃yπ

yπ̃

P0
σ←− P̃

ρ : S̃ → S contracted all (−1)-curves in

fibres. Then we get f : S → C
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S0
τ←− S̃yπ

yπ̃

P0
σ←− P̃

F0 fibre in rule surface P0.

F̃0 strict transform of F0 under σ.

• When is a component of π̃∗F̃0 contractible?

• Case 1. π̃∗F̃0 = 3C, i.e., F0 is totally

ramified component.

C contractible ⇔ F2
0 = −3.

• Case 2. π̃∗F̃0 = 2C +C′, i.e., F0 is simply

ramified component.

C contractible ⇔ F2
0 = −2;

C′ contractible⇔ ∃! totally ramified point

in F0.
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• Case 3. π̃∗F̃0 = C, C irreducible.

C is not contractible.

• Case 4. π̃∗F̃0 = C + C′, C double cover

over F̃0.

C is not contractible;

C′ contractible ⇔ one of the following

cases.

– ∃! totally ramified point in F0

(including infinitely near point)

– ∃ a good cusp (defined by x2+ y3 = 0

at (0,0)) in F0;

– all points in F0 is simply ramified &

∃! p ∈ F0, s.t. D1 smooth and (D1F0)p =

2.
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• Case 5. π̃∗F̃0 = C + C′ + C′′
C contractible ⇔ one of the following

cases.

– ∃! totally ramified point in F0

(including infinitely near point)

– all points in F0 is simply ramified &

∃! p ∈ F0, s.t. D1 smooth and (D1F0)p =

2.

• Our ultimate goal: find singular indexes

in trigonal fibration.

However, it is still hard to us.
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