Riccati foliations and Double Riccati foliations

JUN LU
Department of Mathematics
East China Normal University

2022. 11.26-11.27

1. Definition of Foliation

- X: algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}:$ maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=U_{\alpha} U_{\alpha}$,

$$
s \left\lvert\, U_{\alpha}=A\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial x_{\alpha}}+B\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial y_{\alpha}}\right., \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha}
$$

- s|${U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X: algebaic surface, T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

- Open covering $X=\cup_{\alpha} U_{\alpha}$,
- $\left.s\right|_{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X: algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,

- $\left.s\right|_{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X : algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,

$$
\left.s\right|_{U_{\alpha}}=A\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial x_{\alpha}}+B\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial y_{\alpha}}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- s|${U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X : algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,

$$
\left.s\right|_{U_{\alpha}}=A\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial x_{\alpha}}+B\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial y_{\alpha}}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.s\right|_{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$.

1. Definition of Foliations

- $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact seauence

$N_{\mathcal{F}}$ line bundle,

$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

Ω_{X} cotangent bundle of X,
$N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliations

- $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact sequence

$N_{\mathcal{F}}$ line bundle,
$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).
- Canonical bundle

Ω_{X} cotangent bundle of X,
$N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliations

- $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact sequence

$$
0 \rightarrow K_{\mathcal{F}}^{-1} \xrightarrow{-s} T_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \rightarrow 0,
$$

$N_{\mathcal{F}}$ line bundle,
$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

Ω_{X} cotangent bundle of X,
$N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliations

- $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact sequence

$$
0 \rightarrow K_{\mathcal{F}}^{-1} \xrightarrow{-s} T_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \rightarrow 0,
$$

$N_{\mathcal{F}}$ line bundle,
$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

$$
\omega_{X}:=\wedge^{2} \Omega_{X}=K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}
$$

Ω_{X} cotangent bundle of X, $N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliation

- Equivalently,

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

$$
\left.\omega\right|_{u_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha}
$$

$\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N} \mathcal{F}=\left\{f_{\alpha \beta}\right\}$

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right) .
$$

$$
\omega \mid U_{\alpha}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

$$
\omega \mid U_{\alpha}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

-

$$
\left.\omega\right|_{U_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

-

$$
\left.\omega\right|_{U_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

2. Example (1): fibration

- Algebraic foliation \mathcal{F} :

$\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.

2. Example (1): fibration

- Fibration $f: X \rightarrow C$,
C smooth curve, f holomorphic and surjective.
- Algebraic foliation \mathcal{F} :

$\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$

2. Example (1): fibration

- Fibration $f: X \rightarrow C$,
C smooth curve, f holomorphic and surjective.
- Fiber $F_{t}=f^{-1}(t), t \in C$.
- Algebraic foliation \mathcal{F} :

$\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.

2. Example (1): fibration

- Fibration $f: X \rightarrow C$,
C smooth curve, f holomorphic and surjective.
- Fiber $F_{t}=f^{-1}(t), t \in C$.
- Algebraic foliation \mathcal{F} :

$$
\begin{gathered}
\omega=\frac{1}{\mu(f)}\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y\right) \quad \text { (local eq.). } \\
\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
\end{gathered}
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f))
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{1}=f^{*} \Omega_{C}(D(f)) .
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t=c}\left(F_{t}-F_{t, \text { red }}\right)($ zero divisor of $d f)$.
- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f)) .
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t \in C}\left(F_{t}-F_{t, \text { red }}\right)$ (zero divisor of $d f$).
- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f)) .
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t \in C}\left(F_{t}-F_{t, \text { red }}\right)$ (zero divisor of $d f$).
- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f))
$$

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\rightleftarrows}$ general fiber F of φ
transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Local equation $\left(p_{i}, q \in \mathbb{C}\{x\}\right)$:
$\omega=\left(p_{0}(x) y^{2}+p_{1}(x) y+p_{2}(x)\right) d x-q(x) d y, \quad x \in B, y \in F$.
For convenience,

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$, degree of $\mathcal{F}: r:=\operatorname{deg} \mathcal{F}$.

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$.

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Local equation $\left(p_{i}, q \in \mathbb{C}\{x\}\right)$
$\omega=\left(p_{0}(x) y^{2}+p_{1}(x) y+p_{2}(x)\right) d x-q(x) d y, \quad x \in B, y \in F$
For convenience,

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$, degree of \mathcal{F} : $r:=\operatorname{deg} \mathcal{F}$.

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$.

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Local equation ($p_{i}, q \in \mathbb{C}\{x\}$)
$\omega=\left(p_{0}(x) y^{2}+p_{1}(x) y+p_{2}(x)\right) d x-q(x) d y, \quad x \in B, y \in F$.
For convenience,

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$, degree of \mathcal{F} : $r:=\operatorname{deg} \mathcal{F}$.

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$.

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Local equation ($p_{i}, q \in \mathbb{C}\{x\}$):

$$
\omega=\left(p_{0}(x) y^{2}+p_{1}(x) y+p_{2}(x)\right) d x-q(x) d y, \quad x \in B, y \in F
$$

For convenience,

$$
\omega=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y, \quad g_{i}:=\frac{p_{i}}{q}
$$

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$, degree of \mathcal{F} : $r:=\operatorname{deg} \mathcal{F}$.

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$.

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Local equation ($p_{i}, q \in \mathbb{C}\{x\}$):

$$
\omega=\left(p_{0}(x) y^{2}+p_{1}(x) y+p_{2}(x)\right) d x-q(x) d y, \quad x \in B, y \in F
$$

For convenience,

$$
\omega=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y, \quad g_{i}:=\frac{p_{i}}{q}
$$

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$, degree of $\mathcal{F}: r:=\operatorname{deg} \mathcal{F}$.

2. Example (3): Double Riccati foliations

- Double cover $\pi: Y \rightarrow X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \rightarrow B$ - Double Riccati foliation $\pi^{*} \mathcal{F}: \omega=\pi^{*} \omega_{0}$, where $\omega_{0}=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y$ (local).

2. Example (3): Double Riccati foliations

- Double cover $\pi: Y \rightarrow X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \rightarrow B$.
- Double Riccati foliation $\pi^{*} \mathcal{F}: \omega=\pi^{*} \omega_{0}$, where

$$
\omega_{0}=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y \text { (local). }
$$

2. Example (3): Double Riccati foliations

- Double cover $\pi: Y \rightarrow X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \rightarrow B$.
- Double Riccati foliation $\pi^{*} \mathcal{F}: \omega=\pi^{*} \omega_{0}$, where

$$
\omega_{0}=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y \text { (local). }
$$

2. Example (3): Double Riccati foliations

- Double cover $\pi: Y \rightarrow X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \rightarrow B$.
- Double Riccati foliation $\pi^{*} \mathcal{F}: \omega=\pi^{*} \omega_{0}$, where

$$
\omega_{0}=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y \text { (local). }
$$

3. \mathcal{F}-invariant curve

\mathcal{F} foliation: $\left\{\left(U_{\alpha}, \omega_{\alpha}\right)\right\}$ (or $\left\{\left(U_{\alpha}, s_{\alpha}\right)\right\}$),

or

$$
\omega_{\alpha}=B_{\alpha} d x_{\alpha}-A_{\alpha} d y_{\alpha} .
$$

- $C \subseteq X$ curve defined by $f_{\alpha}=0$ on U_{α}.
C is \mathcal{F}-invariant $\stackrel{\text { def }}{\Longleftrightarrow}$

$$
\forall p \in C \text {, vector } s(p) \text { is tangent to } C \text { at } p \text {. }
$$

3. \mathcal{F}-invariant curve

- \mathcal{F} foliation: $\left\{\left(U_{\alpha}, \omega_{\alpha}\right)\right\}$ (or $\left.\left\{\left(U_{\alpha}, s_{\alpha}\right)\right\}\right)$,

$$
s_{\alpha}=A_{\alpha} \frac{\partial}{\partial x_{\alpha}}+B_{\alpha} \frac{\partial}{\partial y_{\alpha}}
$$

or

$$
\omega_{\alpha}=B_{\alpha} d x_{\alpha}-A_{\alpha} d y_{\alpha}
$$

- $C \subseteq X$ curve defined by $f_{\alpha}=0$ on U_{α}.
C is \mathcal{F}-invariant $\stackrel{\text { def }}{\Longleftrightarrow}$
$\forall p \in C$, vector $s(p)$ is tangent to C at p.

3. \mathcal{F}-invariant curve

- \mathcal{F} foliation: $\left\{\left(U_{\alpha}, \omega_{\alpha}\right)\right\}$ (or $\left.\left\{\left(U_{\alpha}, s_{\alpha}\right)\right\}\right)$,

$$
s_{\alpha}=A_{\alpha} \frac{\partial}{\partial x_{\alpha}}+B_{\alpha} \frac{\partial}{\partial y_{\alpha}}
$$

or

$$
\omega_{\alpha}=B_{\alpha} d x_{\alpha}-A_{\alpha} d y_{\alpha}
$$

- $C \subseteq X$ curve defined by $f_{\alpha}=0$ on U_{α}.
C is \mathcal{F}-invariant $\stackrel{\text { def }}{\Longleftrightarrow}$
$\forall p \in C$, vector $s(p)$ is tangent to C at p.

3. \mathcal{F}-invariant curve

- C is \mathcal{F}-invariant $\Longleftrightarrow f_{\alpha}$ is the solution of ODE

- Example \mathcal{F} generated by a fibration $f: X \rightarrow B$. $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.
- $s:=$ the number of irreducible compact \mathcal{F}-invariant curves.
- $s=\infty \Longleftrightarrow \mathcal{F}$ is algebraic.

3. \mathcal{F}-invariant curve

- C is \mathcal{F}-invariant $\Longleftrightarrow f_{\alpha}$ is the solution of ODE

$$
\omega_{\alpha}=0
$$

- Example \mathcal{F} generated by a fibration $f: X \rightarrow B$. $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.
- $s:=$ the number of irreducible compact \mathcal{F}-invariant curves.
- $s=\infty \Longleftrightarrow \mathcal{F}$ is algebraic.

3. \mathcal{F}-invariant curve

- C is \mathcal{F}-invariant $\Longleftrightarrow f_{\alpha}$ is the solution of ODE

$$
\omega_{\alpha}=0
$$

- Example \mathcal{F} generated by a fibration $f: X \rightarrow B$. $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.
- $s:=$ the number of irreducible compact \mathcal{F}-invariant curves.
- $s=\infty \Longleftrightarrow \mathcal{F}$ is algebraic.

3. \mathcal{F}-invariant curve

- C is \mathcal{F}-invariant $\Longleftrightarrow f_{\alpha}$ is the solution of ODE

$$
\omega_{\alpha}=0 .
$$

- Example \mathcal{F} generated by a fibration $f: X \rightarrow B$. $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.
- $s:=$ the number of irreducible compact \mathcal{F}-invariant curves.
- $s=\infty \Longleftrightarrow \mathcal{F}$ is algebraic.

3. \mathcal{F}-invariant curve

- C is \mathcal{F}-invariant $\Longleftrightarrow f_{\alpha}$ is the solution of ODE

$$
\omega_{\alpha}=0 .
$$

- Example \mathcal{F} generated by a fibration $f: X \rightarrow B$. $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.
- $s:=$ the number of irreducible compact \mathcal{F}-invariant curves.
- $s=\infty \Longleftrightarrow \mathcal{F}$ is algebraic.

3. \mathcal{F}-invariant curve

- Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)

If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is algebraic.

- Question 2 (Painlevé 1974) Can we recognize the genus g of an algebraic foliation from its defining differential equation?

3. \mathcal{F}-invariant curve

- Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)
then \mathcal{F} is algebraic.

- Question 2 (Painlevé 1974) Can we recognize the genus g of an algebraic foliation from its defining differential equation?

3. \mathcal{F}-invariant curve

- Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)
then \mathcal{F} is algebraic.

- Question 2 (Painlevé 1974) Can we recognize the genus g of an algebraic foliation from its defining differential equation?

3. \mathcal{F}-invariant curve

- Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)

If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is algebraic.

- Question 2 (Painlevé 1974) Can we recognize the genus g of an algebraic foliation from its defining differential equation?

3. \mathcal{F}-invariant curve

- Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)

If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is algebraic.

- Question 2 (Painlevé 1974) Can we recognize the genus g of an algebraic foliation from its defining differential equation?

4. Invariants of \mathcal{F}

- Kodaira dimension of \mathcal{F} :
- Pluri-genus of $\mathcal{F}: p_{n}(\mathcal{F}):=h^{0}\left(n K_{\mathcal{F}}\right)$
- Chern number of \mathcal{F} (S.-L. Tan 2015):

$$
c_{1}^{2}(\mathcal{F}) \geq 0, c_{2}(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0
$$

4. Invariants of \mathcal{F}

- Kodaira dimension of \mathcal{F} :

$$
\operatorname{Kod}(\mathcal{F}):=\limsup _{n \rightarrow+\infty} \frac{\log h^{0}\left(n K_{\mathcal{F}}\right)}{\log n}
$$

- Pluri-genus of $\mathcal{F}: p_{n}(\mathcal{F}):=h^{0}\left(n K_{\mathcal{F}}\right)$
- Chern number of \mathcal{F} (S.-L. Tan 2015):

$$
c_{1}^{2}(\mathcal{F}) \geq 0, c_{2}(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0
$$

4. Invariants of \mathcal{F}

- Kodaira dimension of \mathcal{F} :

$$
\operatorname{Kod}(\mathcal{F}):=\limsup _{n \rightarrow+\infty} \frac{\log h^{0}\left(n K_{\mathcal{F}}\right)}{\log n}
$$

- Pluri-genus of $\mathcal{F}: p_{n}(\mathcal{F}):=h^{0}\left(n K_{\mathcal{F}}\right)$
- Chern number of \mathcal{F} (S.-L. Tan 2015):

$$
c_{1}^{2}(\mathcal{F}) \geq 0, c_{2}(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0
$$

4. Invariants of \mathcal{F}

- Kodaira dimension of \mathcal{F} :

$$
\operatorname{Kod}(\mathcal{F}):=\limsup _{n \rightarrow+\infty} \frac{\log h^{0}\left(n K_{\mathcal{F}}\right)}{\log n}
$$

- Pluri-genus of $\mathcal{F}: p_{n}(\mathcal{F}):=h^{0}\left(n K_{\mathcal{F}}\right)$
- Chern number of \mathcal{F} (S.-L. Tan 2015):

$$
c_{1}^{2}(\mathcal{F}) \geq 0, c_{2}(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0
$$

4. Invariants of \mathcal{F}

- Nöther Equality

$$
c_{1}^{2}(\mathcal{F})+c_{2}(\mathcal{F})=12 \chi(\mathcal{F})
$$

- Example (S.-L. Tan 2015) Algebraic foliation \mathcal{F} generated by a fibration $f: X \rightarrow C$,

$$
c_{1}^{2}(\mathcal{F})=\kappa(f), c_{2}(\mathcal{F})=\delta(f), \chi(\mathcal{F})=\lambda(f)
$$

where $\kappa(f), \delta(f), \lambda(f)$ are modular invariants of f.

4. Invariants of \mathcal{F}

- Nöther Equality

$$
c_{1}^{2}(\mathcal{F})+c_{2}(\mathcal{F})=12 \chi(\mathcal{F})
$$

- Example (S.-L. Tan 2015) Algebraic foliation \mathcal{F} generated by a fibration $f: X \rightarrow C$,

$$
c_{1}^{2}(\mathcal{F})=\kappa(f), c_{2}(\mathcal{F})=\delta(f), \chi(\mathcal{F})=\lambda(f)
$$

where $\kappa(f), \delta(f), \lambda(f)$ are modular invariants of f.

4. Invariants of \mathcal{F}

- Nöther Equality

$$
c_{1}^{2}(\mathcal{F})+c_{2}(\mathcal{F})=12 \chi(\mathcal{F})
$$

- Example (S.-L. Tan 2015) Algebraic foliation \mathcal{F} generated by a fibration $f: X \rightarrow C$,

$$
c_{1}^{2}(\mathcal{F})=\kappa(f), c_{2}(\mathcal{F})=\delta(f), \chi(\mathcal{F})=\lambda(f)
$$

where $\kappa(f), \delta(f), \lambda(f)$ are modular invariants of f.

4. Invariants of \mathcal{F}

- (S.-L. Tan 2015) By Xiao's inequality, one can find that any foliation \mathcal{F} satisfying that

$$
\lambda(\mathcal{F}):=c^{2}(\mathcal{F}) / \chi(\mathcal{F})<2, \quad(\chi(\mathcal{F}) \neq 0)
$$

is non-algebraic.

- Open question: Is there a non-algebraic foliation \mathcal{F} with $\lambda(\mathcal{F})<2$?

4. Invariants of \mathcal{F}

- (S.-L. Tan 2015) By Xiao's inequality, one can find that any foliation \mathcal{F} satisfying that

$$
\lambda(\mathcal{F}):=c^{2}(\mathcal{F}) / \chi(\mathcal{F})<2, \quad(\chi(\mathcal{F}) \neq 0)
$$

is non-algebraic.

- Open question: Is there a non-algebraic foliation \mathcal{F} with $\lambda(\mathcal{F})<2$?

4. Invariants of \mathcal{F}

- (S.-L. Tan 2015) By Xiao's inequality, one can find that any foliation \mathcal{F} satisfying that

$$
\lambda(\mathcal{F}):=c^{2}(\mathcal{F}) / \chi(\mathcal{F})<2, \quad(\chi(\mathcal{F}) \neq 0)
$$

is non-algebraic.

- Open question: Is there a non-algebraic foliation \mathcal{F} with $\lambda(\mathcal{F})<2$?

1. Invariants

- Assume: \mathcal{F} Riccati foliation w.r.t. a Hirzebruch surface
\square
- $\operatorname{kod}(\mathcal{F}) \leq 1$
- (S.-L. Tan) $c_{1}^{2}(\mathcal{F})=c_{2}(\mathcal{F})=\chi(\mathcal{F})=0$.
- (J. Lu, S.-L. Tan) $p_{n}(\mathcal{F})=\max \left\{n \operatorname{deg} \mathcal{F}-\sum_{p}\left\lceil\frac{n}{n_{p}}\right\rceil+1,0\right\}$
p : singularity of \mathcal{F} with eigenvalue $\frac{m_{p}}{n_{p}}$.

1. Invariants

- Assume: \mathcal{F} Riccati foliation w.r.t. a Hirzebruch surface $\varphi: X \rightarrow B$.
- $\operatorname{kod}(\mathcal{F}) \leq 1$
- (S.-L. Tan) $c_{1}^{2}(\mathcal{F})=c_{2}(\mathcal{F})=\chi(\mathcal{F})=0$.
o(J.Lu, S.-L. Tan) $p_{n}(\mathcal{F})=\max \left\{n \operatorname{deg} \mathcal{F}-\sum_{p}\left\lceil\frac{n}{n_{p}}\right\rceil+1,0\right\}$
p : singularity of \mathcal{F} with eigenvalue $\frac{m_{p}}{n_{p}}$.

1. Invariants

- Assume: \mathcal{F} Riccati foliation w.r.t. a Hirzebruch surface $\varphi: X \rightarrow B$.
- $\operatorname{kod}(\mathcal{F}) \leq 1$.
- (S.-L. Tan) $c_{1}^{2}(\mathcal{F})=c_{2}(\mathcal{F})=\chi(\mathcal{F})=0$.
- (J. Lu, S.-L. Tan) $p_{n}(\mathcal{F})=\max \left\{n \operatorname{deg} \mathcal{F}-\sum_{p}\left\lceil\frac{n}{n_{p}}\right\rceil+1,0\right\}$
p : singularity of \mathcal{F} with eigenvalue $\frac{m_{p}}{n_{p}}$.

2. Classification

- Classification of \mathcal{F} with $\operatorname{kod}(\mathcal{F})$

Theorem (J. Lu, S.-L. Tan)

Up to a birational map, we have

2. Classification

- Classification of \mathcal{F} with $\operatorname{kod}(\mathcal{F})=-\infty$

Theorem (J. Lu, S.-L. Tan)

Up to a birational map, we have$\omega=d y ;$
(2) $\omega=\lambda y d x-x d y\left(\lambda \in \mathbb{Q}^{+}\right.$and $\left.\lambda \leq \frac{1}{2}\right)$;
(3) $\omega=\left((x-1) y^{2}-x y+\lambda^{2}\right) d x-2 x(x-1) d y\left(\lambda \in \mathbb{Q}^{+}\right.$and $\left.\lambda \leq \frac{1}{2}\right)$;
(4) $\omega=\left(y^{2}+(8 x-4) y-5 x\right) d x-12 x(x-1) d y$;
(5) $\omega=\left(y^{2}+(18 x-12) y-7 x\right) d x-24 x(x-1) d y$;
(6) $\omega=\left(y^{2}+(40 x-30) y-11 x\right) d x-60 x(x-1) d y$;
(7) $\omega=\left(y^{2}+(30 x-20) y-119 x\right) d x-60 x(x-1) d y$

2. Classification

- Classification of \mathcal{F} with $\operatorname{kod}(\mathcal{F})$

Theorem (J. Lu, S.-L. Tan)

2. Classification

- Classification of \mathcal{F} with $\operatorname{kod}(\mathcal{F})=0$

$$
\begin{aligned}
& \text { Theorem (J.LU, S.-L. Tan) } \\
& \text { (1) } \omega=y d x-d y \\
& \text { (2) } \omega=\lambda y d x-x d y(\lambda \notin \mathbb{Q} \text { and }|\operatorname{Re} \lambda| \leq 1 / 2) \\
& \text { (3) } \omega=\left((x-1) y^{2}-x y+\lambda^{2}\right) d x-2 x(x-1) d y(\lambda \notin \mathbb{Q}) \\
& \text { (4) } \omega=(1+x y) d x-2 x(x-1) d y \\
& \text { (5) } \omega=\left(y^{2}+(x+2) y+1\right) d x-2 x^{2} d y \\
& \text { 6 } \omega=(\epsilon-y+2 x y) d x-3 x(x-1) d y(\epsilon=0,1) \\
& \text { (7) } \omega=\left(-y+2 x y+y^{2}\right) d x-3 x(x-1) d y \\
& \text { (8) } \omega=\left(y^{2}-4 x y+2 y-3\right) d x-12 x(x-1) d y \\
& \text { (9) } \cdots \cdots \cdots \cdots
\end{aligned}
$$

3. Algebraic Riccati foliation

- When is \mathcal{F} an algebraic Riccati foliation ?

[^0]
3. Algebraic Riccati foliation

- When is \mathcal{F} an algebraic Riccati foliation ?

Theorem (C. Gong, J. Lu, S.-L. Tan)

\mathcal{F} is algebraic iff it occurs in one of the following cases (up to a birational map):
$\left(A_{0}\right) \quad \omega=d y ;$
$\left(A_{n}\right) \omega=\psi^{\prime} y d x-n \psi d y$;
$\left(D_{n+2}\right) \omega=\psi^{\prime}\left(y^{2}+n(\psi-1) y-\psi\right) d x-2 n \psi(\psi-1) d y$;
(E6) $\quad \omega=\psi^{\prime}\left(y^{2}+4(2 \psi-1) y-5 \psi\right) d x-12 \psi(\psi-1) d y$;
$\left(E_{7}\right) \quad \omega=\psi^{\prime}\left(y^{2}+6(3 \varphi-2) y-7 \varphi\right) d x-24 \psi(\psi-1) d y$;
(E8) $\quad \omega=\psi^{\prime}\left(y^{2}+10(4 \psi-3) y-11 \psi\right) d x-60 \psi(\psi-1) d y$.
where $\psi \in \mathbb{C}(x)$.

3. Algebraic Riccati foliation

- Equivalently, we have

```
Theorem (C.Gong, J.Lu, S.-L. Tan)
\mathcal{F}}\mathrm{ algebraic }\Leftrightarrow\exists\mathrm{ Riccati foliation }\mp@subsup{\mathcal{F}}{0}{}\mathrm{ with }\operatorname{kod}(\mp@subsup{\mathcal{F}}{0}{})=-\infty\mathrm{ w.r.t. a
ruling map }\mp@subsup{\varphi}{0}{}:\mp@subsup{X}{0}{}->\mp@subsup{\mathbb{P}}{}{1}\mathrm{ s.t. }\mathcal{F}\mathrm{ is the pulling-back foliation of }\mp@subsup{\mathcal{F}}{0}{
after a base change \psi: \mathbb{P}}
\sigma : X ~ X ~ - ~ X ~ X ~
```


where $\varphi: X \rightarrow \mathbb{P}^{1}$ is the ruling map adapted to \mathcal{F}.

3. Algebraic Riccati foliation

- Equivalently, we have

Theorem (C. Gong, J. Lu, S.-L. Tan)

\mathcal{F} algebraic $\Leftrightarrow \exists$ Riccati foliation \mathcal{F}_{0} with $\operatorname{kod}\left(\mathcal{F}_{0}\right)=-\infty$ w.r.t. a ruling map $\varphi_{0}: X_{0} \rightarrow \mathbb{P}^{1}$ s.t. \mathcal{F} is the pulling-back foliation of \mathcal{F}_{0} after a base change $\psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ and a birational map $\sigma: X \rightarrow X_{1}$

$$
(\mathcal{F}, X)-\stackrel{-}{\circ}_{\stackrel{\sigma}{>}}^{\left(\psi^{*} \mathcal{F}_{0}, X_{1}\right) \longrightarrow} \underset{\mathbb{P}^{1} \longrightarrow}{\left(\mathcal{F}_{0}, X_{0}\right)}
$$

where $\varphi: X \rightarrow \mathbb{P}^{1}$ is the ruling map adapted to \mathcal{F}.

3. Algebraic Riccati foliation

$\stackrel{\text { def }}{\Longleftrightarrow} \omega=d f$ gives a Riccati foliation of type $A_{n}\left(D_{n}, E_{k}\right)$

Corollary (C. Gong, J. Lu, S.-L. Tan)
 f is a Riccati fibration iff f can become a trivial fibration after a uniformly ramified base change $\pi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}\left(=\mathbb{P}^{1} / G\right)$. where $G<\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ and $|G|$

- In particular, f is an isotrivial fibration over \mathbb{P}^{1} with at most 3 critical points.

3. Algebraic Riccati foliation

- A Riccati fibration $f: X \rightarrow C$ of type $A_{n}\left(D_{n}, E_{k}\right)$ $\stackrel{\text { def }}{\Longleftrightarrow} \omega=d f$ gives a Riccati foliation of type $A_{n}\left(D_{n}, E_{k}\right)$

Corollary (C. Gong, J. Lu, S.-L. Tan) f is a Riccati fibration iff f can become a trivial fibration after a uniformly ramified base change $\pi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}\left(=\mathbb{P}^{1} / G\right)$, where $G<\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ and $|G|$
 - In particular, f is an isotrivial fibration over \mathbb{P}^{1} with at most 3 critical points.

3. Algebraic Riccati foliation

- A Riccati fibration $f: X \rightarrow C$ of type $A_{n}\left(D_{n}, E_{k}\right)$ $\stackrel{\text { def }}{\Longleftrightarrow} \omega=d f$ gives a Riccati foliation of type $A_{n}\left(D_{n}, E_{k}\right)$

Corollary (C. Gong, J. Lu, S.-L. Tan)

f is a Riccati fibration iff f can become a trivial fibration after a uniformly ramified base change $\pi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}\left(=\mathbb{P}^{1} / G\right)$, where $G<\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ and $|G|<\infty$.

- In particular, f is an isotrivial fibration over \mathbb{P}^{1} with at most 3 critical points.

3. Algebraic Riccati foliation

- A Riccati fibration $f: X \rightarrow C$ of type $A_{n}\left(D_{n}, E_{k}\right)$ $\stackrel{\text { def }}{\Longleftrightarrow} \omega=d f$ gives a Riccati foliation of type $A_{n}\left(D_{n}, E_{k}\right)$

Corollary (C. Gong, J. Lu, S.-L. Tan)

f is a Riccati fibration iff f can become a trivial fibration after a uniformly ramified base change $\pi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}\left(=\mathbb{P}^{1} / G\right)$, where $G<\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ and $|G|<\infty$.

- In particular, f is an isotrivial fibration over \mathbb{P}^{1} with at most 3 critical points.

3. Algebraic Riccati foliation

- Remark: G corresponds with one kind of $A-D-E$ surface singularities.

Corollary
 Let ve he the order of the monodromy of a fiber F of f, then

3. Algebraic Riccati foliation

- Remark: G corresponds with one kind of $A-D-E$ surface singularities.

Corollary
 Let γ_{F} be the order of the monodromy of a fiber F of f, then

3. Algebraic Riccati foliation

- Remark: G corresponds with one kind of $A-D-E$ surface singularities.

Corollary

Let γ_{F} be the order of the monodromy of a fiber F of f, then

$$
2-\frac{2}{|G|}=\sum_{F}\left(1-\frac{1}{\gamma_{F}}\right)
$$

3. Algebraic Riccati foliation

- Genus g of a Riccaiti fibration $f(\mathcal{F}, f$ as above $)$.

Corollary (C. Gong, J. Lu, S.-L. Tan)

$\frac{m_{p}}{n_{p}}:=$ eigenvalue of a singularity p of \mathcal{F}
where p runs over all singularities of \mathcal{F}.

3. Algebraic Riccati foliation

- Genus g of a Riccaiti fibration $f(\mathcal{F}, f$ as above $)$.

where p runs over all singularities of \mathcal{F}

3. Algebraic Riccati foliation

- Genus g of a Riccaiti fibration $f(\mathcal{F}, f$ as above $)$.

Corollary (C. Gong, J. Lu, S.-L. Tan)
$\frac{m_{p}}{n_{p}}:=$ eigenvalue of a singularity p of \mathcal{F}.

$$
\frac{2 g-2}{|G|}=-2+\frac{1}{2} \sum_{p}\left(1-\frac{1}{n_{p}}\right) .
$$

where p runs over all singularities of \mathcal{F}.

3. Algebraic Riccati foliation

and $\psi=\frac{x f^{2}}{(x-1)(x-\lambda) g^{2}}(f, g \in \mathbb{C}[x])$ satisfies some conditions.

3. Algebraic Riccati foliation

Corollary (C. Gong, J. Lu, S.-L. Tan)

Up to a birational map, \mathcal{F} algebraic $\& \operatorname{Kod}(\mathcal{F})=0$ iff

Type	Riccati foliations	Families	Singular fibers
A_{1}	$\left(3 x^{2}+1\right) y d x-2\left(x^{3}+x+c\right) d y$	$y^{2}=t\left(x^{3}+x+c\right)$	$\mathrm{I}_{0}^{*}, \mathrm{I}_{0}^{*}$
	$3 x^{2} y d x-2\left(x^{3}+1\right) d y$	$y^{2}=t\left(x^{3}+1\right)$	
A_{2}	$(2 x-1) y d x-3 x(x-1) d y$	$y^{3}=t x(x-1)$	IV, IV ${ }^{*}$
A_{3}	$(2 x-1) y d x-4 x(x-1) d y$	$y^{4}=t x(x-1)$	III, III *
A_{5}	$(3 x-2) y d x-6 x(x-1) d y$	$y^{6}=t x^{2}(x-1)$	$\mathrm{II}, \mathrm{II}^{*}$
E_{6}	$\left(3 y^{2}-2 x y-1\right) d x-6\left(x^{2}-1\right) d y$	$z^{3}=t\left(x^{2}-1\right)$	$\mathrm{IV}, \mathrm{IV}^{*}, 2 \mathrm{I}_{0}$
D_{n+2}	$\frac{\psi^{\prime}}{\psi(\psi-1)}\left(y^{2}+n(\psi-1) y-\psi\right) d x-2 n d y$	$\left(\frac{y+\sqrt{\psi}}{y-\sqrt{\psi}}\right)^{n}=t\left(\frac{\sqrt{\psi}+1}{\sqrt{\psi}-1}\right)$	$\mathrm{I}_{0}^{*}, \mathrm{I}_{0}^{*}, \mathrm{nI}_{0}$

where $c \in \mathbb{C}$ satisfies $4+27 c^{3} \neq 0$,

$$
z:=\frac{\left(4 x^{2}-3\right) y^{4}-4 x y^{3}+6 y^{2}-4 x y+1}{3 y^{4}-8 x y^{3}+6 y^{2}-1}
$$

and $\psi=\frac{x f^{2}}{(x-1)(x-\lambda) g^{2}}(f, g \in \mathbb{C}[x])$ satisfies some conditions.

3. Algebraic Riccati foliation

- Algebraic foliation of type A_{n}

Corollary (C. Gong, J. Lu, S.-L.T.Tan)
\mathcal{F} is an algebraic foliation of type A_{n}
\Longleftrightarrow it has two \mathcal{F}-invariant section of
\Longleftrightarrow it is from a fibration $f: X \rightarrow \mathbb{P}^{1}$ with two singular fibers.

- Remark: Let s be the number of critical points of a fibration $f: X \rightarrow \mathbb{P}^{1}$. Then $s \geq 2$. Furthermore, $s \geq \begin{cases}4, & \text { semistable (Beauville 1981) } \\ 5, & \text { semistable and } g>1(\operatorname{Tan} 1995) .\end{cases}$

3. Algebraic Riccati foliation

- Algebraic foliation of type A_{n}

Corollary (C. Gong, J. Lu, S.-L. Tan)

\mathcal{F} is an algebraic foliation of type A_{n}
\Longleftrightarrow it has two \mathcal{F}-invariant section of φ
\Longleftrightarrow it is from a fibration $f: X \rightarrow \mathbb{P}^{1}$ with two singular fibers.

- Remark: Let s be the number of critical points of a fibration $f: X \rightarrow \mathbb{P}^{1}$. Then $s \geq 2$. Furthermore,

semistable (Beauville 1981)
semistable and $g>1$ (Tan 1995).

3. Algebraic Riccati foliation

- Algebraic foliation of type A_{n}

Corollary (C. Gong, J. Lu, S.-L. Tan)

\mathcal{F} is an algebraic foliation of type A_{n}
\Longleftrightarrow it has two \mathcal{F}-invariant section of φ
\Longleftrightarrow it is from a fibration $f: X \rightarrow \mathbb{P}^{1}$ with two singular fibers.

- Remark: Let s be the number of critical points of a fibration $f: X \rightarrow \mathbb{P}^{1}$. Then $s \geq 2$. Furthermore,

$$
s \geq \begin{cases}4, & \text { semistable (Beauville 1981) } \\ 5, & \text { semistable and } g>1(\operatorname{Tan} 1995)\end{cases}
$$

3. Algebraic Riccati foliation

- Application We find a counterexample to Gurjar-Zhang's conjecture by using an algebraic Riccati foliation of type E_{n} (J. Lu, X.H. Wu).
- Gurjar-Zhang's conjecture(1996): Let X be a smooth projective, rational surface and $\varphi: X \rightarrow \mathbb{P}^{1}$ be a morphism with connected fibers. Then φ has at most one multiple fiber.

3. Algebraic Riccati foliation

- Application We find a counterexample to Gurjar-Zhang's conjecture by using an algebraic Riccati foliation of type E_{n} (J. Lu, X.H. Wu).
- Gurjar-Zhang's conjecture(1996): Let X be a smooth projective, rational surface and $\varphi: X \rightarrow \mathbb{P}^{1}$ be a morphism with connected fibers. Then φ has at most one multiple fiber.

4．Discriminant

－Discriminant of \mathcal{F}

－$\Delta(\mathcal{F}) \in H^{0}\left(S^{2} \Omega_{\mathbb{P}^{1}}(\log T)\right)$ where

$$
T=\left\{p \in \mathbb{P}^{-1} \mid F p=\varphi^{-1}(p) \text { is } \mathcal{F} \text { - invariant }\right\} .
$$

4.Discriminant

- $\omega=\left(g_{0} y^{2}+g_{1} y+g_{2}\right) d x-d y, g_{i} \in \mathbb{C}(x)$.
- Discriminant of \mathcal{F}

- $\Delta(\mathcal{F}) \in H^{0}\left(S^{2} \Omega_{\mathbb{P}^{1}}(\log T)\right)$ where

$$
T=\left\{p \in \mathbb{P}^{1} \mid F p=\varphi^{-1}(p) \text { is } \mathcal{F}-\text { invariant }\right\} .
$$

4.Discriminant

- $\omega=\left(g_{0} y^{2}+g_{1} y+g_{2}\right) d x-d y, g_{i} \in \mathbb{C}(x)$.
- Discriminant of \mathcal{F} :

$$
\Delta(\mathcal{F})=\frac{1}{2}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right)^{\prime}-\frac{1}{4}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right)^{2}-g_{0}(x) g_{2}(x)
$$

- $\Delta(\mathcal{F}) \in H^{0}\left(S^{2} \Omega_{\mathbb{P}^{1}}(\log T)\right)$ where

$$
T=\left\{p \in \mathbb{P}^{-1} \mid F p=\varphi^{-1}(p) \text { is } \mathcal{F} \text {-invariant }\right\} .
$$

4.Discriminant

- $\omega=\left(g_{0} y^{2}+g_{1} y+g_{2}\right) d x-d y, g_{i} \in \mathbb{C}(x)$.
- Discriminant of \mathcal{F} :

$$
\Delta(\mathcal{F})=\frac{1}{2}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right)^{\prime}-\frac{1}{4}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right)^{2}-g_{0}(x) g_{2}(x)
$$

- $\Delta(\mathcal{F}) \in H^{0}\left(S^{2} \Omega_{\mathbb{P}^{1}}(\log T)\right)$ where

$$
T=\left\{p \in \mathbb{P}^{1} \mid F p=\varphi^{-1}(p) \text { is } \mathcal{F}-\text { invariant }\right\}
$$

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

> where
> - $p \in \mathbb{P}^{1}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
> - $\pm \lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}.
> - $\sum_{p} \mu_{p}=0$.
> - Question: What's the geometric meaning of μ_{p} ?

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

$$
\Delta(\mathcal{F})=\sum_{p} \frac{1-\lambda_{p}^{2}}{4(x-p)^{2}}+\sum_{p} \frac{\mu_{p}}{x-p}
$$

where

- $p \in \mathbb{P}^{1}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
$\pm \lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}
- $\sum_{p} \mu_{p}=0$.
- Question: What's the geometric meaning of μ_{p} ?

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

$$
\Delta(\mathcal{F})=\sum_{p} \frac{1-\lambda_{p}^{2}}{4(x-p)^{2}}+\sum_{p} \frac{\mu_{p}}{x-p}
$$

where

- $p \in \mathbb{P}^{1}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
- $\pm \lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}.
- $\sum_{p} \mu_{p}=0$.
- Question: What's the geometric meaning of μ_{p} ?

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

$$
\Delta(\mathcal{F})=\sum_{p} \frac{1-\lambda_{p}^{2}}{4(x-p)^{2}}+\sum_{p} \frac{\mu_{p}}{x-p}
$$

where

- $p \in \mathbb{P}^{1}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
- $\pm \lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}.
- $\sum_{p} \mu_{p}=0$.
- Question: What's the geometric meaning of μ_{p} ?

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

$$
\Delta(\mathcal{F})=\sum_{p} \frac{1-\lambda_{p}^{2}}{4(x-p)^{2}}+\sum_{p} \frac{\mu_{p}}{x-p}
$$

where

- $p \in \mathbb{P}^{1}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
- $\pm \lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}.
- $\sum_{p} \mu_{p}=0$.
- Question: What's the geometric meaning of μ_{p} ?

4.Discriminant

- Invariance of Discriminant

Theorem (C. Gong, J. Lu, S.-L. Tan)
 $\Delta(\mathcal{F})=\Delta(\mathcal{F})$ iff \mathcal{F} can becomes \mathcal{F} by choosing suitable coordinates and flipping maps.

- Up to a birational map as above, λ_{p} 's and μ_{p} 's determine the Riccati foliation \mathcal{F}.

4.Discriminant

- Invariance of Discriminant

Theorem (C. Gong, J. Lu, S.-L. Tan)

$\Delta(\mathcal{F})=\Delta(\widetilde{\mathcal{F}})$ iff $\widetilde{\mathcal{F}}$ can becomes \mathcal{F} by choosing suitable coordinates and flipping maps.

- Up to a birational map as above, λ_{p} 's and μ_{p} 's determine the Riccati foliation \mathcal{F}

4.Discriminant

- Invariance of Discriminant

Theorem (C. Gong, J. Lu, S.-L. Tan)

$\Delta(\mathcal{F})=\Delta(\widetilde{\mathcal{F}})$ iff $\widetilde{\mathcal{F}}$ can becomes \mathcal{F} by choosing suitable coordinates and flipping maps.

- Up to a birational map as above, λ_{p} 's and μ_{p} 's determine the Riccati foliation \mathcal{F}.

4.Discriminant

- Criterion for algebraic Riccati foliation

Theorem (C. Gong, J. Lu, S.-L. Tan)

\mathcal{F} is algebraic iff

$$
\Delta(\mathcal{F})=\frac{1}{2}\left(\frac{\psi^{\prime \prime}}{\psi^{\prime}}\right)^{\prime}-\frac{1}{4}\left(\frac{\psi^{\prime \prime}}{\psi^{\prime}}\right)^{2}+\left(\psi^{\prime}\right)^{2} \cdot \psi^{*} \Delta\left(\mathcal{F}_{0}\right)
$$

for some $\psi \in \mathbb{C}(x)$ and a Riccati foliation \mathcal{F}_{0} with Kodaira dimension

- Question: What can we say about μ_{p} 's for an algebraic Riccati foliation \mathcal{F} ?

4.Discriminant

- Criterion for algebraic Riccati foliation

Theorem (C. Gong, J. Lu, S.-L. Tan)

\mathcal{F} is algebraic iff

$$
\Delta(\mathcal{F})=\frac{1}{2}\left(\frac{\psi^{\prime \prime}}{\psi^{\prime}}\right)^{\prime}-\frac{1}{4}\left(\frac{\psi^{\prime \prime}}{\psi^{\prime}}\right)^{2}+\left(\psi^{\prime}\right)^{2} \cdot \psi^{*} \Delta\left(\mathcal{F}_{0}\right)
$$

for some $\psi \in \mathbb{C}(x)$ and a Riccati foliation \mathcal{F}_{0} with Kodaira dimension $-\infty$.

- Question: What can we say about μ_{p} 's for an algebraic Riccati foliation \mathcal{F} ?

4.Discriminant

- Criterion for algebraic Riccati foliation

Theorem (C. Gong, J. Lu, S.-L. Tan)

\mathcal{F} is algebraic iff

$$
\Delta(\mathcal{F})=\frac{1}{2}\left(\frac{\psi^{\prime \prime}}{\psi^{\prime}}\right)^{\prime}-\frac{1}{4}\left(\frac{\psi^{\prime \prime}}{\psi^{\prime}}\right)^{2}+\left(\psi^{\prime}\right)^{2} \cdot \psi^{*} \Delta\left(\mathcal{F}_{0}\right)
$$

for some $\psi \in \mathbb{C}(x)$ and a Riccati foliation \mathcal{F}_{0} with Kodaira dimension $-\infty$.

- Question: What can we say about μ_{p} 's for an algebraic Riccati foliation \mathcal{F} ?

1.Formulae for Chern numbers

- Double cover $\pi: X \rightarrow Y$ with branch locus R

Riccati foliation \mathcal{G} on Y w.r.t. φ
Double Riccati foliation $\mathcal{F}=\pi^{*} \mathcal{G}$

- π and φ give a hyperelliptic fibration of genus g.
- Let $p \in R$ be a node or the tangent points of R to G. local invariants $s_{1}(p)$ and $s_{2}(p)$ of the branch locus R w.r.t. \mathcal{G}.
- Let F be an \mathcal{G}-invariant fiber of φ.
local invariants $\nu(F)$ of F w.r.t. \mathcal{G}.

1.Formulae for Chern numbers

- Double cover $\pi: X \rightarrow Y$ with branch locus R Riccati foliation \mathcal{G} on Y w.r.t. φ
Double Riccati foliation $\mathcal{F}=\pi^{*} \mathcal{G}$
- π and φ give a hyperelliptic fibration of genus g.
- Let $p \in R$ be a node or the tangent points of R to \mathcal{G} local invariants $s_{1}(p)$ and $s_{2}(p)$ of the branch locus R w.r.t. \mathcal{G}.
- Let F be an \mathcal{G}-invariant fiber of φ.
local invariants $\nu(F)$ of F w.r.t. \mathcal{G}.

1.Formulae for Chern numbers

- Double cover $\pi: X \rightarrow Y$ with branch locus R Riccati foliation \mathcal{G} on Y w.r.t. φ
Double Riccati foliation $\mathcal{F}=\pi^{*} \mathcal{G}$
- π and φ give a hyperelliptic fibration of genus g.
- Let $p \in R$ be a node or the tangent points of R to \mathcal{G}. local invariants $s_{1}(p)$ and $s_{2}(p)$ of the branch locus R w.r.t. \mathcal{G}.
- Let F be an \mathcal{G}-invariant fiber of φ. local invariants $\nu(F)$ of F w.r.t. \mathcal{G}.

1.Formulae for Chern numbers

- Formulae for Chern numbers.

Theorem (J. Hong, J. Lu, S.-L. Tan)

where $p \in R$ runs over the nodes and the tangent points of R to \mathcal{G}, F runs over all \mathcal{G}-invariant fibers of φ

1.Formulae for Chern numbers

- Formulae for Chern numbers.

Theorem (J. Hong, J. Lu, S.-L. Tan)

$$
\begin{aligned}
\chi(\mathcal{F}) & =\frac{1}{12} \sum_{p \in R} s_{2}(p)+\frac{1}{4}(g+1) \operatorname{deg} \mathcal{G} \\
c_{1}^{2}(\mathcal{F}) & =\sum_{p \in R} s_{1}(p)+3(g+1) \operatorname{deg} \mathcal{G}-\sum_{F} \nu(F),
\end{aligned}
$$

where $p \in R$ runs over the nodes and the tangent points of R to \mathcal{G}, F runs over all \mathcal{G}-invariant fibers of φ.

2.Inequality of slope

- Inequality of slope

Theorem(J. Hong J. Lu, S.-L. Tan, 2020)

$$
4 \leq \lambda(\mathcal{F})<12
$$

2. Inequality of slope

- Slope of \mathcal{F} :

$$
\lambda(\mathcal{F}):=c_{1}^{2}(\mathcal{F}) / \chi(\mathcal{F}) .
$$

- Inequality of slope

Theorem (J. Hong J. Lu.S.-L. Tan, 2020)

$$
4 \leq \lambda(\mathcal{F})<12
$$

2. Inequality of slope

- Slope of \mathcal{F} :

$$
\lambda(\mathcal{F}):=c_{1}^{2}(\mathcal{F}) / \chi(\mathcal{F})
$$

- Inequality of slope

Theorem (J. Hong, J. Lu, S.-L. Tan, 2020)

$$
4 \leq \lambda(\mathcal{F})<12
$$

3.Question

- Question: Is it true that

for any non-algebraic foliation \mathcal{F} with $\chi(\mathcal{F}) \neq 0$?

- (J. Lu, W.L. Shao) The slope inequality holds for a Lotka-Volterra foliation

$$
\omega=y(a+b x+c y) d x+x\left(a^{\prime}+b^{\prime} x+c^{\prime} y\right) d y
$$

3.Question

- Question: Is it true that

$$
\lambda(\mathcal{F}) \geq 4
$$

for any non-algebraic foliation \mathcal{F} with $\chi(\mathcal{F}) \neq 0$?

- (J. Lu, W.L. Shao) The slope inequality holds for a Lotka-Volterra foliation

3.Question

- Question: Is it true that

$$
\lambda(\mathcal{F}) \geq 4
$$

for any non-algebraic foliation \mathcal{F} with $\chi(\mathcal{F}) \neq 0$?

- (J. Lu, W.L. Shao) The slope inequality holds for a Lotka-Volterra foliation

$$
\omega=y(a+b x+c y) d x+x\left(a^{\prime}+b^{\prime} x+c^{\prime} y\right) d y
$$

Thank you!

[^0]: where $\psi \in \mathbb{C}(x)$

