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1. Definition of Foliation

@ X: algebaic surface,
Tx: tangent bundle of X.
L~ C Tx: maximal sub-line bundle.
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1. Definition of Foliation

@ X: algebaic surface,

Tx: tangent bundle of X.

L~ C Tx: maximal sub-line bundle.
o Foliation F is a section

se HY(X, Tx ® £).
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Foliations

1. Definition of Foliation

@ X: algebaic surface,
Tx: tangent bundle of X.
L~ C Tx: maximal sub-line bundle.

@ Foliation F is a section
se HY(X, Tx ® £).

@ Open covering X = U, Uy,

)
+ B(Xoé,yoz)L

0
slu, = A(Xas Ya) = By
3

B (Xas Ya) € Usq.
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Foliations

1. Definition of Foliation

@ X: algebaic surface,
Tx: tangent bundle of X.
L~ C Tx: maximal sub-line bundle.

@ Foliation F is a section
se HY(X, Tx ® £).

@ Open covering X = U, Uy,

)
+ B(Xoé,yoz)L

Y [0 U()/
Dy (Xa» Ya) €

0
Slu, = A(Xm)/a)aT
(0%

® slu, = gapslus, £ = {8as}-
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1. Definition of Foliations

@ Kr:= L canonical bundle of F.
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Foliations

1. Definition of Foliations

@ Kr:= L canonical bundle of F.
@ Exact sequence

0—>K]?1'—S>TX —>IZ(5)®N]:—>0,

Nz line bundle,
T7(s) ideal sheaf of Z(s) (zero set of s).
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Foliations

1. Definition of Foliations

@ Kr:= L canonical bundle of F.
@ Exact sequence

0—>K]?1'—S>TX —>IZ(5)®N]:—>0,

Nz line bundle,
T7(s) ideal sheaf of Z(s) (zero set of s).

@ Canonical bundle
A2 _ 1
wx = NQx = Kr® Nz

Qx cotangent bundle of X,
N;l conormal bundle of F.
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1. Definition of Foliation
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Foliations

1. Definition of Foliation

e Equivalently,

0—>N‘;1—>QX —>IZ(5)®K]:—>0.
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Foliations

1. Definition of Foliation

e Equivalently,

0—>N‘;1—>QX —>IZ(5)®K]:—>0.

@ The second definition of Foliation F:

w e HY(X,Qx ® Nr).
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Foliations

1. Definition of Foliation

e Equivalently,

0—>N‘;1—>QX —>IZ(5)®K]:—>0.

@ The second definition of Foliation F:

w e HY(X,Qx ® Nr).

w|Uo¢ = B(Xaaya)dxa - A(Xaa}/a)d)/m (Xaa)/a) € Uy.
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Foliations

1. Definition of Foliation

e Equivalently,

0—>N‘;1—>QX —>IZ(5)®K]:—>0.

@ The second definition of Foliation F:

w e HY(X,Qx ® Nr).

w|Uo¢ = B(Xaaya)dxa - A(Xaa}/a)d)/m (Xaa)/a) € Uy.

« — Taf ) = 1apys-
° wly, = fapwlus Nr = {fus}



Foliations
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Foliations

2. Example (1): fibration

@ Fibration f : X — C,
C smooth curve, f holomorphic and surjective.
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Foliations

2. Example (1): fibration

@ Fibration f : X — C,
C smooth curve, f holomorphic and surjective.

@ Fiber F; = f1(t), t € C.
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Foliations

2. Example (1): fibration

@ Fibration f : X — C,
C smooth curve, f holomorphic and surjective.

@ Fiber F; = f1(t), t € C.
o Algebraic foliation F:

1 [of of
= (Lo + & local eq.
w ) <8de+ 8ydy> (local eq.),

u(F) = ged(2E, 90).
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2. Example (1): fibration
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2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where
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Foliations

2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where

@ wx/c = wx ® f*QEl (relative canonical bundle)
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Foliations

2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where
@ wx/c = wx ® f*QEl (relative canonical bundle)

@ D(f):= Y (Ft — Ftred) (zero divisor of df).
teC
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Foliations

2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where
@ wx/c = wx ® f*QEl (relative canonical bundle)

@ D(f):= Y (Ft — Ftred) (zero divisor of df).
teC
@ Conormal bundle of F:

Nz = f*Qc(D(f)).
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2. Example (2): Riccati foliations
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Foliations

2. Example (2): Riccati foliations

@ Ruled surface p: X — B.

. - A~ def. .
Riccati Foliation F w.r.t. ¢ <= general fiber F of
transverse to F.
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Foliations

2. Example (2): Riccati foliations

@ Ruled surface p: X — B.

. - A~ def. .
Riccati Foliation F w.r.t. ¢ <= general fiber F of
transverse to F.

@ F Riccati foliation <—= KrF = 0.
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Foliations

2. Example (2): Riccati foliations

@ Ruled surface p: X — B.

. - A~ def. .
Riccati Foliation F w.r.t. ¢ <= general fiber F of
transverse to F.

@ F Riccati foliation <= KzF = 0.

@ Local equation (pj, g € C{x}):
w = (po(x)y* + p1(x)y + p2(x)) dx—q(x)dy, x€ B, y € F.
For convenience,

Pi
w = (go(X)y2 + gi(x)y +g2(x)) dx — dy, gj:= E
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Foliations

2. Example (2): Riccati foliations

@ Ruled surface p: X — B.

. - A~ def. .
Riccati Foliation F w.r.t. ¢ <= general fiber F of
transverse to F.

@ F Riccati foliation <= KzF = 0.
@ Local equation (pj, g € C{x}):

w= (po(x)y2 +pm(x)y + pz(x)) dx—q(x)dy, x€B,y€F.
For convenience,

Pi
w = (go(X)y2 + gi(x)y +g2(x)) dx — dy, gj:= E

@ Canonical bundle of 7: Kz = rF,
degree of F: r ;= deg F.
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2. Example (3): Double Riccati foliations
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Foliations

2. Example (3): Double Riccati foliations

@ Double cover 7 : Y — X.
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Foliations

2. Example (3): Double Riccati foliations

@ Double cover 7 : Y — X.

@ Riccati foliation F w.r.t. ¢ : X — B.
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Foliations

2. Example (3): Double Riccati foliations

@ Double cover 7: Y — X.
@ Riccati foliation F w.r.t. ¢ : X — B.

@ Double Riccati foliation 7*F: w = w*wq, where

wo = (go(x)y? + g1(x)y + g2(x)) dx — dy (local).
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3. F-invariant curve
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Foliations

3. F-invariant curve

o F foliation: {(Uyn,wa)} (or {(Ua,sa)}),

0 0
o — Aafi Ba[i
> OXa i 0Ya

or
Wa = Ba dX(v - Aa d)/u, .
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Foliations

3. F-invariant curve

o F foliation: {(Uyn,wa)} (or {(Ua,sa)}),

0 0
o — Aafi Ba[i
> OXa i 0Ya

or
Wa = Ba dX(v - Aa d)/u, .

@ C C X curve defined by f, =0 on U,.

C is F-invariant <&
Vp € C, vector s(p) is tangent to C at p.
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3. F-invariant curve
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Foliations

3. F-invariant curve

@ C is F-invariant <= f, is the solution of ODE

we = 0.
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Foliations

3. F-invariant curve

@ C is F-invariant <= f, is the solution of ODE

we = 0.

o Example F generated by a fibration f : X — B.
C C X is F-invariant iff C lies in the fibers of f.
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Foliations

3. F-invariant curve

@ C is F-invariant <= f, is the solution of ODE

we = 0.

o Example F generated by a fibration f : X — B.
C C X is F-invariant iff C lies in the fibers of f.

@ s := the number of irreducible compact F-invariant curves.
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Foliations

3. F-invariant curve

@ C is F-invariant <= f, is the solution of ODE

we = 0.

Example F generated by a fibration f : X — B.
C C X is F-invariant iff C lies in the fibers of f.

s := the number of irreducible compact F-invariant curves.

s = 00 <= F is algebraic.
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3. F-invariant curve
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Foliations

3. F-invariant curve

@ Question 1 (Poincaré 1891): Is it possible to decide if F on a
rational surface is algebraic?
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Foliations

3. F-invariant curve

@ Question 1 (Poincaré 1891): Is it possible to decide if F on a
rational surface is algebraic?
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Foliations

3. F-invariant curve

@ Question 1 (Poincaré 1891): Is it possible to decide if F on a
rational surface is algebraic?

Theorem (Jouanolou, 1978)

If

s > hO(X, Kz) + hHH(X) — htO(X) + 2,
then F is algebraic.
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Foliations

3. F-invariant curve

@ Question 1 (Poincaré 1891): Is it possible to decide if F on a
rational surface is algebraic?

Theorem (Jouanolou, 1978)

If

s > hO(X, Kz) + hHH(X) — htO(X) + 2,
then F is algebraic.

@ Question 2 (Painlevé 1974) Can we recognize the genus g of
an algebraic foliation from its defining differential equation?
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4. Invariants of F
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Foliations

4. Invariants of F

@ Kodaira dimension of F:

log h°(nK
Kod(F) := limsup M.
n——+00 logn
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Foliations

4. Invariants of F

@ Kodaira dimension of F:

log h°(nK
Kod(F) := limsup M.
n——+00 logn

@ Pluri-genus of F: p,(F) := h°(nKz)
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Foliations

4. Invariants of F

@ Kodaira dimension of F:

log h°(nK
Kod(F) := limsup M.
n—+00 logn

@ Pluri-genus of F: p,(F) := h°(nKz)
@ Chern number of F (S.-L. Tan 2015):

c2(F) > 0,c(F) > 0,x(F) >0,
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4. Invariants of F
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Foliations

4. Invariants of F

@ Nother Equality

c2(F) + o F) = 12x(F).
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Foliations

4. Invariants of F

@ Nother Equality

c2(F) + o F) = 12x(F).

o Example (S.-L. Tan 2015) Algebraic foliation F generated
by a fibration f : X — C,

ci(F) = w(F), (F) = 8(F), x(F) = A(f)

where k(f),(f), \(f) are modular invariants of f.
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4. Invariants of F
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Foliations

4. Invariants of F

@ (S.-L. Tan 2015) By Xiao's inequality, one can find that any
foliation F satisfying that

MF) = A(F)/X(F) <2, (\(F) £0)

is non-algebraic.
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Foliations

4. Invariants of F

@ (S.-L. Tan 2015) By Xiao's inequality, one can find that any
foliation F satisfying that

MF) = A(F)/X(F) <2, (\(F) £0)

is non-algebraic.

@ Open question: Is there a non-algebraic foliation F with
ANF) <27
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1. Invariants
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Riccati Foliations

1. Invariants

@ Assume: F Riccati foliation w.r.t. a Hirzebruch surface
p: X — B.
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Riccati Foliations

1. Invariants

@ Assume: F Riccati foliation w.r.t. a Hirzebruch surface
p: X — B.

o kod(F) < 1.
o (S--L. Tan) c?(F) = co(F) = x(F) = 0.

e (J. Lu, S--L. Tan) po(F) = max{ndeg]:— > Lf'ﬂ + 1,0}
p

p: singularity of F with eigenvalue T:

Jun Lu Riccati foliations and Double Riccati foliations



Riccati Foliations

2. Classification
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Riccati Foliations

2. Classification

o Classification of F with kod(F) = —c0
Theorem (J. Lu, S.-L. Tan)

Up to a birational map, we have

o w = dy;

ew:)\ydxfxdy()\E@Jrand)\S%);

e w = ((x — 1)y? — xy + A?)dx — 2x(x — 1)dy (A € Q" and A < %),
o w = (y? + (8x — 4)y — Bx)dx — 12x(x — 1)dy;
o w = (y? + (18x — 12)y — 7x)dx — 24x(x — 1)dy;

@ © = (v + (40x — 30)y — 11x)dx — 60x(x — 1)dy;

@ v = (v + (30x — 20)y — 119x)dx — 60x(x — 1)dy
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Riccati Foliations

2. Classification

o Classification of F with kod(F) =0

Theorem (J. Lu, S.-L. Tan)

Ow:ydxfdy

@ v = A\ydx — xdy (A € Q and |[ReX| < 1/2)

© v =((x—1)y* — v+ A)dx — 2x(x — )dy (A £ Q)
Q w = (1+xy)dx — 2x(x — 1)dy

© v =2+ (x+2)y +1)dx — 2x2dy

Q v =(c—y+2xy)dx — 3x(x — 1)dy (€ =0,1)

@ v = (—y+2xy + y?)dx — 3x(x — 1)dy

9 w = (y? — 4xy + 2y — 3)dx — 12x(x — 1)dy
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Riccati Foliations

3. Algebraic Riccati foliation
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Fo ions
Riccati Foliations

Double Riccati Foliation

3. Algebraic Riccati foliation

@ When is F an algebraic Riccati foliation ?

Theorem (C. Gong, J. Lu, S.-L. Tan)

F is algebraic iff it occurs in one of the following cases (up to a
birational map):

(Ag) w=dy;
(An) W= ¢’ydx — mpdy;

(Dnt2) w=1"(y*+n(y — 1)y — ) dx — 2mp(¢p — 1)dy;
(Bs) w=1'"(y*>+4(2y—1)y —5¢) dx — 12¢p(¢) — 1)dy;
(E7) w=1'(y*+6(3p—2)y—Tp) dx — 24¢(¢) — 1)dy;
(Bs) w=1'(y*+10(4¢ — 3)y — 113p)dx — 60¢)(¢ — 1)dy.

where 1) € C(x).
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3. Algebraic Riccati foliation
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Riccati Foliations
Double Riccati Foliation

3. Algebraic Riccati foliation

e Equivalently, we have

Theorem (C. Gong, J. Lu, S.-L. Tan)

F algebraic < 3 Riccati foliation Fy with kod(Fp) = —oco w.r.t. a
ruling map o : Xo — P* s.t. F is the pulling-back foliation of
after a base change 1) : P* — P! and a birational map

o: X -— X1

(F, X) = =" (*Fo, X1) — (Fo, Xo)

N

P! P!

where ¢ : X — P! js the ruling map adapted to F.
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3. Algebraic Riccati foliation
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Riccati Foliations

3. Algebraic Riccati foliation

@ A Riccati fibration f : X — C of type A, (Dy, Ex)

& = df gives a Riccati foliation of type A, (Dp,Ex)
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Riccati Foliations

3. Algebraic Riccati foliation

@ A Riccati fibration f : X — C of type A, (Dy, Ex)

& = df gives a Riccati foliation of type A, (Dp,Ex)

Corollary (C. Gong, J. Lu, S.-L. Tan)

f is a Riccati fibration iff f can become a trivial fibration after a

uniformly ramified base change m : P! — Pl(= P!/G), where
G < Aut(P!) and |G| < cc.
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Riccati Foliations

3. Algebraic Riccati foliation

@ A Riccati fibration f : X — C of type A, (Dy, Ex)

& = df gives a Riccati foliation of type A, (Dn,Ex)

Corollary (C. Gong, J. Lu, S.-L. Tan)

f is a Riccati fibration iff f can become a trivial fibration after a

uniformly ramified base change m : P* — P(= P!/G), where
G < Aut(P!) and |G| < cc.

@ In particular, f is an isotrivial fibration over P! with at most 3
critical points.
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3. Algebraic Riccati foliation
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Riccati Foliations

3. Algebraic Riccati foliation

@ Remark: G corresponds with one kind of A-D-E surface
singularities.
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Riccati Foliations

3. Algebraic Riccati foliation

@ Remark: G corresponds with one kind of A-D-E surface
singularities.

Let ¢ be the order of the monodromy of a fiber F of f, then
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Riccati Foliations

3. Algebraic Riccati foliation
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Riccati Foliations

3. Algebraic Riccati foliation

@ Genus g of a Riccaiti fibration f (F, f as above).
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Riccati Foliations

3. Algebraic Riccati foliation

@ Genus g of a Riccaiti fibration f (F, f as above).

Corollary (C. Gong, J. Lu, S.-L. Tan)

e .— eigenvalue of a singularity p of F.

np

2 -2 1 1
el 2+2Z<l )

P

where p runs over all singularities of F.
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3. Algebraic Riccati foliation
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Riccati Foliatio
Double Riccati Foliatio

3. Algebraic Riccati foliation

Corollary (C. Gong, J. Lu, S.-L. Tan)

Up to a birational map, F algebraic & Kod(F) = 0 iff

Type Riccati foliations Families Singular fibers
Ar (3x% + 1)ydx — 2(x° + x + c)dy Y2 =t(> +x+¢) 15, I

3x%ydx — 2(x> + 1)dy y? =t(x>+1)
Ay (2x — 1)ydx — 3x(x — 1)dy v} = tx(x — 1) IV, IV*
A3 (2x — 1)ydx — 4x(x — 1)dy v = tx(x — 1) 111, T1T*
As (3x — 2)ydx — 6x(x — 1)dy Y= oP(x—1) 11, IT*
[ (3y% — 2xy — 1)dx — 6(x%> — 1)dy 2 =t(x? — 1) 1V, IV*, 21,

)7 ) ) 5\ D+1

Dnvz | oo + n(w — 1)y — )dx — 2ndy (ﬁi\@) = (22 | 1,155,000

where c € C satisfies 4 + 27¢% # 0,

_(4x® —3)y* —4xy3 + 6y? —4xy + 1
- 3y* — 8xy3 + 6y2

and ¢ = m (f,g € C[x] ) satisfies some conditions.
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3. Algebraic Riccati foliation
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Riccati Foliations

3. Algebraic Riccati foliation

@ Algebraic foliation of type A,
Corollary (C. Gong, J. Lu, S.-L. Tan)

F is an algebraic foliation of type A,
<= it has two F-invariant section of ©
<= it is from a fibration f : X — P! with two singular fibers.

Jun Lu Riccati foliations and Double Riccati foliations



Riccati Foliations

3. Algebraic Riccati foliation

@ Algebraic foliation of type A,
Corollary (C. Gong, J. Lu, S.-L. Tan)

F is an algebraic foliation of type A,
<= it has two F-invariant section of ©
<= it is from a fibration f : X — P! with two singular fibers.

@ Remark: Let s be the number of critical points of a fibration
f: X — P! Then s > 2. Furthermore,

s> 4, semistable (Beauville 1981)
— | 5, semistable and g > 1(Tan 1995).
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3. Algebraic Riccati foliation
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Riccati Foliations

3. Algebraic Riccati foliation

@ Application We find a counterexample to Gurjar-Zhang's

conjecture by using an algebraic Riccati foliation of type E,
(J. Lu, X.H. Wu).

e Gurjar-Zhang's conjecture(1996): Let X be a smooth
projective, rational surface and ¢ : X — P' be a morphism
with connected fibers. Then @ has at most one multiple fiber.
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4 Discriminant
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Riccati Foliations

4 Discriminant

o w=(goy?+gy +&)dx —dy, g € C(x).
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Riccati Foliations

4 Discriminant

o w=(goy?+gy +&)dx —dy, g € C(x).
@ Discriminant of F :
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Riccati Foliations

4 Discriminant

o w=(goy?+gy +&)dx —dy, g € C(x).
@ Discriminant of F :

1 g/ / 1 gl 2
2 = (a+2) -5 (a+2) - atato.

o A(F) € H(S?Qp1(log T)) where

T={pcP'|Fp=yp(p)is F —invariant}.
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Riccati Foliations

4 Discriminant
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Riccati Foliations

4 Discriminant

o If all singularities of F have non-zero eigenvalue, then

A(f)=241_Ap22+Z -
p P

(x—p) x—p

where
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Riccati Foliations

4 Discriminant

o If all singularities of F have non-zero eigenvalue, then

1-),° Hp
A= a2
p p

X—=p

where

@ p € P! runs over all points whose inverse image Fpis
F-invariant.

@ £\, is the eigenvalue of the singularities lying on Fp.
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4 Discriminant

o If all singularities of F have non-zero eigenvalue, then

1-),° Hp
A= a2
p p

X—=p

where

@ p € P! runs over all points whose inverse image Fpis
F-invariant.

@ £\, is the eigenvalue of the singularities lying on Fp.
@ > up=0.
P
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Riccati Foliations

4 Discriminant

o If all singularities of F have non-zero eigenvalue, then

1-),° Hp
A= a2
p p

X—=p

where

@ p € P! runs over all points whose inverse image Fpis
F-invariant.

@ £\, is the eigenvalue of the singularities lying on Fp.
@ > up=0.
P

@ Question: What's the geometric meaning of 11,7
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Riccati Foliations

4 Discriminant

@ Invariance of Discriminant

Theorem (C. Gong, J. Lu, S.-L. Tan)

A(F) = A(F) iff F can becomes F by choosing suitable
coordinates and flipping maps.
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Riccati Foliations

4 Discriminant

@ Invariance of Discriminant

Theorem (C. Gong, J. Lu, S.-L. Tan)

A(F) = A(F) iff F can becomes F by choosing suitable
coordinates and flipping maps.

@ Up to a birational map as above, \,'s and i,'s determine the
Riccati foliation F.
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4 Discriminant
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Riccati Foliations

4 Discriminant

o Criterion for algebraic Riccati foliation

Theorem (C. Gong, J. Lu, S.-L. Tan)

F is algebraic iff

2 =2 (L) 3 (L) v wr wae,

V) A\

for some ¢ € C(x) and a Riccati foliation Fy with Kodaira
dimension —o0.
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Riccati Foliations

4 Discriminant

o Criterion for algebraic Riccati foliation

Theorem (C. Gong, J. Lu, S.-L. Tan)

F is algebraic iff

2 =2 (L) 3 (L) v wr wae,

V) A\

for some ¢ € C(x) and a Riccati foliation Fy with Kodaira
dimension —o0.

@ Question: What can we say about j,'s for an algebraic
Riccati foliation F7
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Double Riccati Foliation

1.Formulae for Chern numbers
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Double Riccati Foliation

1.Formulae for Chern numbers

@ Double cover m : X — Y with branch locus R
Riccati foliation G on Y w.r.t. ¢
Double Riccati foliation F = 7*G

e 7 and ¢ give a hyperelliptic fibration of genus g.
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1.Formulae for Chern numbers

@ Double cover m : X — Y with branch locus R
Riccati foliation G on Y w.r.t. ¢
Double Riccati foliation F = 7*G

e 7 and ¢ give a hyperelliptic fibration of genus g.

@ Let p € R be a node or the tangent points of R to G.
local invariants s1(p) and sy(p) of the branch locus R w.r.t. G.

@ Let F be an G-invariant fiber of (.
local invariants v(F) of F w.r.t. G.
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1.Formulae for Chern numbers
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1.Formulae for Chern numbers

@ Formulae for Chern numbers.

Theorem (J. Hong, J. Lu, S.-L. Tan)

W(F) = =3 52(p) + 2 (g + 1) deg,

12 4
PER
F(F) =) si(p)+3(g+1)degG - > v(F),
PER F

where p € R runs over the nodes and the tangent points of R to
G, F runs over all G-invariant fibers of .
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2.Inequality of slope
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2.Inequality of slope

@ Slope of F:
NF) = G (F)/x(F).
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2.Inequality of slope

@ Slope of F:
NF) = G (F)/x(F).

@ Inequality of slope

Theorem (J. Hong, J. Lu, S.-L. Tan, 2020)

4 < \F) <12,
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3.Question
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3.Question

@ Question: Is it true that
AMF) >4

for any non-algebraic foliation F with x(F) # 07
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3.Question

@ Question: Is it true that
AMF) >4

for any non-algebraic foliation F with x(F) # 07

e (J. Lu, W.L. Shao) The slope inequality holds for a
Lotka-Volterra foliation

w=y(a+ bx+cy)dx + x(a' + b'x + c'y)dy.

Jun Lu Riccati foliations and Double Riccati foliations



Double Riccati Foliation

Thank you!
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