Riccati foliations and Double Riccati foliations

JUN LU

Department of Mathematics East China Normal University

2022. 11.26-11.27

- X: algebaic surface,
 T_X: tangent bundle of X.
 L⁻¹ ⊆ T_X: maximal sub-line bundle.
- ullet Foliation ${\mathcal F}$ is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}} = A(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial x_{\alpha}} + B(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial y_{\alpha}}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

•
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

X: algebaic surface,

 T_X : tangent bundle of X.

 $\mathcal{L}^{-1} \subseteq T_X$: maximal sub-line bundle.

• Foliation \mathcal{F} is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}} = A(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial x_{\alpha}} + B(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial y_{\alpha}}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

•
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

X: algebaic surface,

 T_X : tangent bundle of X.

 $\mathcal{L}^{-1} \subseteq T_X$: maximal sub-line bundle.

• Foliation \mathcal{F} is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}} = A(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial x_{\alpha}} + B(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial y_{\alpha}}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

•
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

- X: algebaic surface,
 T_X: tangent bundle of X.
 L⁻¹ ⊆ T_X: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}}=A(x_{\alpha},y_{\alpha})\frac{\partial}{\partial x_{\alpha}}+B(x_{\alpha},y_{\alpha})\frac{\partial}{\partial y_{\alpha}},\quad (x_{\alpha},y_{\alpha})\in U_{\alpha}.$$

•
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

- X: algebaic surface,
 T_X: tangent bundle of X.
 L⁻¹ ⊆ T_X: maximal sub-line bundle.
- ullet Foliation ${\mathcal F}$ is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}}=A(x_{\alpha},y_{\alpha})\frac{\partial}{\partial x_{\alpha}}+B(x_{\alpha},y_{\alpha})\frac{\partial}{\partial y_{\alpha}},\quad (x_{\alpha},y_{\alpha})\in U_{\alpha}.$$

•
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$

- $K_{\mathcal{F}} := \mathcal{L}$ canonical bundle of \mathcal{F} .
- Exact sequence

$$0 o {\mathcal K}_{\mathcal F}^{-1} \stackrel{\cdot s}{ o} \mathcal T_X o \mathcal I_{Z(s)} \otimes \mathcal N_{\mathcal F} o 0,$$

 $N_{\mathcal{F}}$ line bundle, $\mathcal{I}_{Z(s)}$ ideal sheaf of Z(s) (zero set of s)

Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$

- $K_{\mathcal{F}} := \mathcal{L}$ canonical bundle of \mathcal{F} .
- Exact sequence

$$0 o K_{\mathcal{F}}^{-1} \stackrel{\cdot s}{ o} T_X o \mathcal{I}_{Z(s)} \otimes \mathsf{N}_{\mathcal{F}} o 0$$

 $N_{\mathcal{F}}$ line bundle, $\mathcal{I}_{Z(s)}$ ideal sheaf of Z(s) (zero set of s)

Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$

- $K_{\mathcal{F}} := \mathcal{L}$ canonical bundle of \mathcal{F} .
- Exact sequence

$$0 \to K_{\mathcal{F}}^{-1} \stackrel{\boldsymbol{\cdot s}}{\to} T_X \to \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \to 0,$$

 $N_{\mathcal{F}}$ line bundle, $\mathcal{I}_{Z(s)}$ ideal sheaf of Z(s) (zero set of s).

Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$

- $K_{\mathcal{F}} := \mathcal{L}$ canonical bundle of \mathcal{F} .
- Exact sequence

$$0 \to K_{\mathcal{F}}^{-1} \stackrel{\cdot s}{\to} T_X \to \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \to 0,$$

 $N_{\mathcal{F}}$ line bundle, $\mathcal{I}_{Z(s)}$ ideal sheaf of Z(s) (zero set of s).

Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$

Equivalently,

$$0 o N_{\mathcal{F}}^{-1} o \Omega_X o \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} o 0.$$

ullet The second definition of Foliation ${\mathcal F}$

$$\omega \in H^0(X,\Omega_X \otimes N_{\mathcal{F}}).$$

0

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

•
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
, $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$.

Equivalently,

$$0 \to N_{\mathcal{F}}^{-1} \to \Omega_X \to \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \to 0.$$

ullet The second definition of Foliation ${\mathcal F}$

$$\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$$

•

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

•
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
, $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$.

Equivalently,

$$0 \to N_{\mathcal{F}}^{-1} \to \Omega_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{K}_{\mathcal{F}} \to 0.$$

• The second definition of Foliation \mathcal{F} :

$$\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$$

0

$$\omega|_{U_{\alpha}}=B(x_{\alpha},y_{\alpha})dx_{\alpha}-A(x_{\alpha},y_{\alpha})dy_{\alpha},\quad (x_{\alpha},y_{\alpha})\in U_{\alpha}.$$

•
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
, $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$.

Equivalently,

$$0 \to N_{\mathcal{F}}^{-1} \to \Omega_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{K}_{\mathcal{F}} \to 0.$$

• The second definition of Foliation \mathcal{F} :

$$\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$$

•

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

•
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
, $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$.

Equivalently,

$$0 \to N_{\mathcal{F}}^{-1} \to \Omega_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{K}_{\mathcal{F}} \to 0.$$

• The second definition of Foliation \mathcal{F} :

$$\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$$

•

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

•
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
, $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$.

- Fibration f: X → C,
 C smooth curve, f holomorphic and surjective.
- Fiber $F_t = f^{-1}(t), t \in C$.
- Algebraic foliation \mathcal{F} :

$$\omega = \frac{1}{\mu(f)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right)$$
 (local eq.),

$$\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

- Fibration f: X → C,
 C smooth curve, f holomorphic and surjective.
- Fiber $F_t = f^{-1}(t)$, $t \in C$.
- Algebraic foliation \mathcal{F} :

$$\omega = \frac{1}{\mu(f)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right)$$
 (local eq.),

$$\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

- Fibration f: X → C,
 C smooth curve, f holomorphic and surjective.
- Fiber $F_t = f^{-1}(t), t \in C$.
- Algebraic foliation \mathcal{F} :

$$\omega = \frac{1}{\mu(f)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \quad \text{(local eq.)},$$

$$\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

- Fibration f: X → C,
 C smooth curve, f holomorphic and surjective.
- Fiber $F_t = f^{-1}(t), t \in C$.
- Algebraic foliation \mathcal{F} :

$$\omega = \frac{1}{\mu(f)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \quad \text{(local eq.)},$$

$$\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^*\Omega_C^{-1}$ (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$ (zero divisor of df).
- Conormal bundle of \mathcal{F} :

$$N_{\mathcal{F}}^{-1} = f^* \Omega_{\mathcal{C}}(D(f)).$$

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^* \Omega_C^{-1}$ (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$ (zero divisor of df).
- Conormal bundle of \mathcal{F} :

$$N_{\mathcal{F}}^{-1} = f^*\Omega_{\mathcal{C}}(D(f))$$

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^*\Omega_C^{-1}$ (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$ (zero divisor of df).
- Conormal bundle of \mathcal{F} :

$$N_{\mathcal{F}}^{-1} = f^*\Omega_C(D(f))$$

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^*\Omega_C^{-1}$ (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$ (zero divisor of df).
- Conormal bundle of \mathcal{F} :

$$N_{\mathcal{F}}^{-1} = f^*\Omega_C(D(f))$$

• Canonical bundle of \mathcal{F} :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^*\Omega_C^{-1}$ (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$ (zero divisor of df).
- Conormal bundle of \mathcal{F} :

$$N_{\mathcal{F}}^{-1} = f^* \Omega_{\mathcal{C}}(D(f)).$$

- Ruled surface $\varphi: X \to B$. Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{def}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F} .
- \mathcal{F} Riccati foliation $\iff K_{\mathcal{F}}F = 0$.
- Local equation $(p_i, q \in \mathbb{C}\{x\})$:

$$\omega = (p_0(x)y^2 + p_1(x)y + p_2(x)) dx - q(x)dy, \quad x \in B, \ y \in F.$$

For convenience,

$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy, \ g_i := \frac{p_i}{q}$$

Canonical bundle of \(\mathcal{F} : K_F = rF \),
 degree of \(\mathcal{F} : r := \deg F \).

- Ruled surface $\varphi: X \to B$. Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{def}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F} .
- \mathcal{F} Riccati foliation $\iff K_{\mathcal{F}}F = 0$
- Local equation $(p_i, q \in \mathbb{C}\{x\})$:

$$\omega = (p_0(x)y^2 + p_1(x)y + p_2(x)) dx - q(x)dy, \quad x \in B, \ y \in F.$$

For convenience,

$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy, \ g_i := \frac{p_i}{q}$$

Canonical bundle of \(\mathcal{F} : K_F = rF \),
 degree of \(\mathcal{F} : r := \deg \mathcal{F} \).

- Ruled surface $\varphi: X \to B$. Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{def}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F} .
- \mathcal{F} Riccati foliation $\iff K_{\mathcal{F}}F = 0$.
- Local equation $(p_i, q \in \mathbb{C}\{x\})$:

$$\omega = (p_0(x)y^2 + p_1(x)y + p_2(x)) dx - q(x)dy, \quad x \in B, y \in F.$$

For convenience,

$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy, \ g_i := \frac{p_i}{q}$$

Canonical bundle of \(\mathcal{F} : K_F = rF \),
 degree of \(\mathcal{F} : r := \deg \mathcal{F} \).

- Ruled surface $\varphi: X \to B$.

 Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{def}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F} .
- \mathcal{F} Riccati foliation $\iff K_{\mathcal{F}}F = 0$.
- Local equation $(p_i, q \in \mathbb{C}\{x\})$:

$$\omega = (p_0(x)y^2 + p_1(x)y + p_2(x)) dx - q(x)dy, \quad x \in B, \ y \in F.$$

For convenience,

$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy, \quad g_i := \frac{p_i}{q}.$$

Canonical bundle of \$\mathcal{F}\$: \$K_{\mathcal{F}} = rF\$,
 degree of \$\mathcal{F}\$: \$r := \deg \$\mathcal{F}\$.

- Ruled surface $\varphi: X \to B$. Riccati Foliation $\mathcal F$ w.r.t. $\varphi \stackrel{def}{\Longleftrightarrow}$ general fiber F of φ transverse to $\mathcal F$.
- \mathcal{F} Riccati foliation $\iff K_{\mathcal{F}}F = 0$.
- Local equation $(p_i, q \in \mathbb{C}\{x\})$:

$$\omega = (p_0(x)y^2 + p_1(x)y + p_2(x)) dx - q(x)dy, \quad x \in B, \ y \in F.$$

For convenience,

$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy, \quad g_i := \frac{p_i}{q}.$$

 Canonical bundle of F: K_F = rF, degree of F: r := deg F.

- Double cover $\pi: Y \to X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \to B$.
- Double Riccati foliation $\pi^* \mathcal{F}$: $\omega = \pi^* \omega_0$, where

$$\omega_0 = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy$$
 (local).

- Double cover $\pi: Y \to X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \to B$.
- Double Riccati foliation $\pi^* \mathcal{F}$: $\omega = \pi^* \omega_0$, where

$$\omega_0 = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy$$
 (local).

- Double cover $\pi: Y \to X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \to B$.
- Double Riccati foliation $\pi^* \mathcal{F}$: $\omega = \pi^* \omega_0$, where

$$\omega_0 = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy$$
 (local).

- Double cover $\pi: Y \to X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \to B$.
- Double Riccati foliation $\pi^*\mathcal{F}$: $\omega = \pi^*\omega_0$, where

$$\omega_0 = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy$$
 (local).

3. \mathcal{F} -invariant curve

• \mathcal{F} foliation: $\{(U_{\alpha}, \omega_{\alpha})\}$ (or $\{(U_{\alpha}, s_{\alpha})\}$),

$$s_{\alpha} = A_{\alpha} \frac{\partial}{\partial x_{\alpha}} + B_{\alpha} \frac{\partial}{\partial y_{\alpha}}$$

or

$$\omega_{\alpha} = B_{\alpha} dx_{\alpha} - A_{\alpha} dy_{\alpha}.$$

• $C \subseteq X$ curve defined by $f_{\alpha} = 0$ on U_{α} . C is \mathcal{F} -invariant $\stackrel{def}{\Longleftrightarrow}$ $\forall p \in C$, vector s(p) is tangent to C at p.

3. \mathcal{F} -invariant curve

• \mathcal{F} foliation: $\{(U_{\alpha}, \omega_{\alpha})\}$ (or $\{(U_{\alpha}, s_{\alpha})\}$),

$$s_{\alpha} = A_{\alpha} \frac{\partial}{\partial x_{\alpha}} + B_{\alpha} \frac{\partial}{\partial y_{\alpha}}$$

or

$$\omega_{\alpha} = B_{\alpha} dx_{\alpha} - A_{\alpha} dy_{\alpha}.$$

• $C \subseteq X$ curve defined by $f_{\alpha} = 0$ on U_{α} . C is \mathcal{F} -invariant $\stackrel{def}{\Longleftrightarrow}$ $\forall p \in C$, vector s(p) is tangent to C at p.

3. \mathcal{F} -invariant curve

• \mathcal{F} foliation: $\{(U_{\alpha}, \omega_{\alpha})\}$ (or $\{(U_{\alpha}, s_{\alpha})\}$),

$$s_{\alpha} = A_{\alpha} \frac{\partial}{\partial x_{\alpha}} + B_{\alpha} \frac{\partial}{\partial y_{\alpha}}$$

or

$$\omega_{\alpha} = B_{\alpha} dx_{\alpha} - A_{\alpha} dy_{\alpha}.$$

• $C \subseteq X$ curve defined by $f_{\alpha} = 0$ on U_{α} . C is \mathcal{F} -invariant $\stackrel{def}{\Longleftrightarrow}$ $\forall p \in C$, vector s(p) is tangent to C at p.

• C is \mathcal{F} -invariant \iff f_{α} is the solution of ODE

$$\omega_{\alpha}=0.$$

• Example \mathcal{F} generated by a fibration $f: X \to B$. $C \subseteq X$ is \mathcal{F} -invariant iff C lies in the fibers of f.

- s := the number of irreducible compact \mathcal{F} -invariant curves.
- $s = \infty \iff \mathcal{F}$ is algebraic.

• C is \mathcal{F} -invariant $\iff f_{\alpha}$ is the solution of ODE

$$\omega_{\alpha}=0.$$

• Example \mathcal{F} generated by a fibration $f: X \to B$. $C \subseteq X$ is \mathcal{F} -invariant iff C lies in the fibers of f.

- s := the number of irreducible compact \mathcal{F} -invariant curves.
- $s = \infty \iff \mathcal{F}$ is algebraic.

• C is \mathcal{F} -invariant $\iff f_{\alpha}$ is the solution of ODE

$$\omega_{\alpha}=0.$$

Example F generated by a fibration f: X → B.
 C ⊆ X is F-invariant iff C lies in the fibers of f.

- s := the number of irreducible compact \mathcal{F} -invariant curves.
- $s = \infty \iff \mathcal{F}$ is algebraic.

• C is \mathcal{F} -invariant $\iff f_{\alpha}$ is the solution of ODE

$$\omega_{\alpha}=0.$$

Example F generated by a fibration f: X → B.
 C ⊆ X is F-invariant iff C lies in the fibers of f.

- s := the number of irreducible compact \mathcal{F} -invariant curves.
- $s = \infty \iff \mathcal{F}$ is algebraic.

• C is \mathcal{F} -invariant $\iff f_{\alpha}$ is the solution of ODE

$$\omega_{\alpha}=0.$$

Example F generated by a fibration f: X → B.
 C ⊆ X is F-invariant iff C lies in the fibers of f.

- s := the number of irreducible compact \mathcal{F} -invariant curves.
- $s = \infty \iff \mathcal{F}$ is algebraic.

• Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)

lf.

$$s \geq h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2$$

then F is algebraic.

• Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)

lf.

$$s \geq h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2$$

then F is algebraic.

• Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)

lf.

$$s \geq h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2$$

then F is algebraic.

• Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)

If

$$s \ge h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then \mathcal{F} is algebraic.

• Question 1 (Poincaré 1891): Is it possible to decide if \mathcal{F} on a rational surface is algebraic?

Theorem (Jouanolou, 1978)

If

$$s \ge h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then \mathcal{F} is algebraic.

$$Kod(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(nK_{\mathcal{F}})}{\log n}.$$

- Pluri-genus of \mathcal{F} : $p_n(\mathcal{F}) := h^0(nK_{\mathcal{F}})$
- Chern number of \mathcal{F} (S.-L. Tan 2015):

$$c_1^2(\mathcal{F}) \geq 0, c_2(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0,$$

$$Kod(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(nK_{\mathcal{F}})}{\log n}.$$

- Pluri-genus of \mathcal{F} : $p_n(\mathcal{F}) := h^0(nK_{\mathcal{F}})$
- Chern number of \mathcal{F} (S.-L. Tan 2015):

$$c_1^2(\mathcal{F}) \geq 0, c_2(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0$$

$$Kod(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(nK_{\mathcal{F}})}{\log n}.$$

- Pluri-genus of \mathcal{F} : $p_n(\mathcal{F}) := h^0(nK_{\mathcal{F}})$
- Chern number of \mathcal{F} (S.-L. Tan 2015):

$$c_1^2(\mathcal{F}) \geq 0, c_2(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0$$

$$Kod(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(nK_{\mathcal{F}})}{\log n}.$$

- Pluri-genus of \mathcal{F} : $p_n(\mathcal{F}) := h^0(nK_{\mathcal{F}})$
- Chern number of \mathcal{F} (S.-L. Tan 2015):

$$c_1^2(\mathcal{F}) \geq 0, c_2(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0,$$

Nöther Equality

$$c_1^2(\mathcal{F}) + c_2(\mathcal{F}) = 12\chi(\mathcal{F}).$$

• **Example** (S.-L. Tan 2015) Algebraic foliation \mathcal{F} generated by a fibration $f: X \to C$,

$$c_1^2(\mathcal{F}) = \kappa(f), c_2(\mathcal{F}) = \delta(f), \chi(\mathcal{F}) = \lambda(f)$$

where $\kappa(f)$, $\delta(f)$, $\lambda(f)$ are modular invariants of f.

Nöther Equality

$$c_1^2(\mathcal{F}) + c_2(\mathcal{F}) = 12\chi(\mathcal{F}).$$

• **Example** (S.-L. Tan 2015) Algebraic foliation \mathcal{F} generated by a fibration $f: X \to C$,

$$c_1^2(\mathcal{F}) = \kappa(f), c_2(\mathcal{F}) = \delta(f), \chi(\mathcal{F}) = \lambda(f)$$

where $\kappa(f), \delta(f), \lambda(f)$ are modular invariants of f.

Nöther Equality

$$c_1^2(\mathcal{F}) + c_2(\mathcal{F}) = 12\chi(\mathcal{F}).$$

• **Example** (S.-L. Tan 2015) Algebraic foliation \mathcal{F} generated by a fibration $f: X \to C$,

$$c_1^2(\mathcal{F}) = \kappa(f), c_2(\mathcal{F}) = \delta(f), \chi(\mathcal{F}) = \lambda(f)$$

where $\kappa(f)$, $\delta(f)$, $\lambda(f)$ are modular invariants of f.

 \bullet (S.-L. Tan 2015) By Xiao's inequality, one can find that any foliation ${\mathcal F}$ satisfying that

$$\lambda(\mathcal{F}) := c^2(\mathcal{F})/\chi(\mathcal{F}) < 2, \quad (\chi(\mathcal{F}) \neq 0)$$

is non-algebraic.

• Open question: Is there a non-algebraic foliation $\mathcal F$ with $\lambda(\mathcal F) < 2?$

 \bullet (S.-L. Tan 2015) By Xiao's inequality, one can find that any foliation ${\mathcal F}$ satisfying that

$$\lambda(\mathcal{F}) := c^2(\mathcal{F})/\chi(\mathcal{F}) < 2, \quad (\chi(\mathcal{F}) \neq 0)$$

is non-algebraic.

• Open question: Is there a non-algebraic foliation $\mathcal F$ with $\lambda(\mathcal F) < 2$?

 \bullet (S.-L. Tan 2015) By Xiao's inequality, one can find that any foliation ${\mathcal F}$ satisfying that

$$\lambda(\mathcal{F}) := c^2(\mathcal{F})/\chi(\mathcal{F}) < 2, \quad (\chi(\mathcal{F}) \neq 0)$$

is non-algebraic.

• Open question: Is there a non-algebraic foliation $\mathcal F$ with $\lambda(\mathcal F) < 2$?

1. Invariants

- **Assume:** \mathcal{F} Riccati foliation w.r.t. a Hirzebruch surface $\varphi: X \to B$.
- $kod(\mathcal{F}) \leq 1$.
- (S.-L. Tan) $c_1^2(\mathcal{F}) = c_2(\mathcal{F}) = \chi(\mathcal{F}) = 0.$
- (J. Lu, S.-L. Tan) $p_n(\mathcal{F}) = \max \left\{ n \deg \mathcal{F} \sum_{p} \left\lceil \frac{n}{n_p} \right\rceil + 1, 0 \right\}$ p: singularity of \mathcal{F} with eigenvalue $\frac{m_p}{n_p}$.

1. Invariants

- **Assume:** \mathcal{F} Riccati foliation w.r.t. a Hirzebruch surface $\varphi: X \to \mathcal{B}$.
- $kod(\mathcal{F}) \leq 1$.
- (S.-L. Tan) $c_1^2(\mathcal{F}) = c_2(\mathcal{F}) = \chi(\mathcal{F}) = 0.$
- (J. Lu, S.-L. Tan) $p_n(\mathcal{F}) = \max \left\{ n \deg \mathcal{F} \sum_p \left\lceil \frac{n}{n_p} \right\rceil + 1, 0 \right\}$ p: singularity of \mathcal{F} with eigenvalue $\frac{m_p}{n_p}$.

1. Invariants

- **Assume:** \mathcal{F} Riccati foliation w.r.t. a Hirzebruch surface $\varphi: X \to \mathcal{B}$.
- $kod(\mathcal{F}) \leq 1$.
- (S.-L. Tan) $c_1^2(\mathcal{F}) = c_2(\mathcal{F}) = \chi(\mathcal{F}) = 0.$
- (J. Lu, S.-L. Tan) $p_n(\mathcal{F}) = \max \left\{ n \deg \mathcal{F} \sum_p \left\lceil \frac{n}{n_p} \right\rceil + 1, 0 \right\}$ p: singularity of \mathcal{F} with eigenvalue $\frac{m_p}{n_p}$.

• Classification of $\mathcal F$ with $kod(\mathcal F) = -\infty$

Theorem (J. Lu, S.-L. Tan)

Up to a birational map, we have

- 2 $\omega = \lambda y dx x dy \ (\lambda \in \mathbb{Q}^+ \text{ and } \lambda \leq \frac{1}{2});$
- 4) $\omega = (y^2 + (8x 4)y 5x)dx 12x(x 1)dy;$
- 6 $\omega = (y^2 + (40x 30)y 11x)dx 60x(x 1)dy$

• Classification of \mathcal{F} with $kod(\mathcal{F}) = -\infty$

Theorem (J. Lu, S.-L. Tan)

Up to a birational map, we have

- 2 $\omega = \lambda y dx x dy \ (\lambda \in \mathbb{Q}^+ \text{ and } \lambda \leq \frac{1}{2});$
- 3 $\omega = ((x-1)y^2 xy + \lambda^2)dx 2x(x-1)dy \ (\lambda \in \mathbb{Q}^+ \text{ and } \lambda \leq \frac{1}{2});$
- 4 $\omega = (y^2 + (8x 4)y 5x)dx 12x(x 1)dy;$

ullet Classification of ${\mathcal F}$ with $kod({\mathcal F})={\mathbb C}$

Theorem (J. Lu, S.-L. Tan)

- $\bigcirc \omega = \lambda y dx x dy \ (\lambda \not\in \mathbb{Q} \ and \ |\mathrm{Re}\lambda| \le 1/2)$

- 6 $\omega = (\epsilon y + 2xy)dx 3x(x 1)dy \ (\epsilon = 0, 1)$
- $0 \omega = (-y + 2xy + y^2)dx 3x(x 1)dy$
- 8) $\omega = (y^2 4xy + 2y 3)dx 12x(x 1)dy$

• Classification of \mathcal{F} with $kod(\mathcal{F}) = 0$

Theorem (J. Lu, S.-L. Tan)

- 2 $\omega = \lambda y dx x dy \ (\lambda \not\in \mathbb{Q} \ \text{and} \ |\mathrm{Re}\lambda| \le 1/2)$
- 3 $\omega = ((x-1)y^2 xy + \lambda^2)dx 2x(x-1)dy \ (\lambda \notin \mathbb{Q})$

- $\mathbf{6} \ \omega = (\epsilon y + 2xy)dx 3x(x-1)dy \ (\epsilon = 0, 1)$
- $0 \omega = (-y + 2xy + y^2)dx 3x(x 1)dy$
- 8 $\omega = (y^2 4xy + 2y 3)dx 12x(x 1)dy$
- **9**

ullet When is ${\mathcal F}$ an algebraic Riccati foliation ?

Theorem (C. Gong, J. Lu, S.-L. Tan)

F is algebraic iff it occurs in one of the following cases (up to a birational map):

$$\begin{array}{ll} (A_0) & \omega = dy; \\ (A_n) & \omega = \psi' y dx - n \psi dy; \\ (D_{n+2}) & \omega = \psi' \left(y^2 + n(\psi - 1)y - \psi \right) dx - 2n\psi(\psi - 1) dy; \\ (E_6) & \omega = \psi' \left(y^2 + 4(2\psi - 1)y - 5\psi \right) dx - 12\psi(\psi - 1) dy; \\ (E_7) & \omega = \psi' \left(y^2 + 6(3\varphi - 2)y - 7\varphi \right) dx - 24\psi(\psi - 1) dy; \\ (E_8) & \omega = \psi'(y^2 + 10(4\psi - 3)y - 11\psi) dx - 60\psi(\psi - 1) dy. \end{array}$$

where $\psi \in \mathbb{C}(x)$.

ullet When is ${\mathcal F}$ an algebraic Riccati foliation ?

Theorem (C. Gong, J. Lu, S.-L. Tan)

 \mathcal{F} is algebraic iff it occurs in one of the following cases (up to a birational map):

$$\begin{array}{ll} (A_0) & \omega = dy; \\ (A_n) & \omega = \psi' y dx - n \psi dy; \\ (D_{n+2}) & \omega = \psi' \left(y^2 + n(\psi - 1)y - \psi \right) dx - 2n \psi(\psi - 1) dy; \\ (E_6) & \omega = \psi' \left(y^2 + 4(2\psi - 1)y - 5\psi \right) dx - 12\psi(\psi - 1) dy; \\ (E_7) & \omega = \psi' \left(y^2 + 6(3\varphi - 2)y - 7\varphi \right) dx - 24\psi(\psi - 1) dy; \\ (E_8) & \omega = \psi'(y^2 + 10(4\psi - 3)y - 11\psi) dx - 60\psi(\psi - 1) dy. \end{array}$$

where $\psi \in \mathbb{C}(x)$.

Equivalently, we have

Theorem (C. Gong, J. Lu, S.-L. Tan)

 \mathcal{F} algebraic $\Leftrightarrow \exists$ Riccati foliation \mathcal{F}_0 with $kod(\mathcal{F}_0) = -\infty$ w.r.t. a ruling map $\varphi_0 : X_0 \to \mathbb{P}^1$ s.t. \mathcal{F} is the pulling-back foliation of \mathcal{F}_0 after a base change $\psi : \mathbb{P}^1 \to \mathbb{P}^1$ and a birational map $\sigma : X \dashrightarrow X_1$

$$(\mathcal{F}, X) - \stackrel{\sigma}{\longrightarrow} (\psi^* \mathcal{F}_0, X_1) \longrightarrow (\mathcal{F}_0, X_0)$$

$$\downarrow^{\varphi_1} \qquad \qquad \downarrow^{\varphi_0}$$

$$\downarrow^{\varphi_0} \qquad \qquad \downarrow^{\varphi_0}$$

$$\downarrow^{\varphi_1} \qquad \qquad \downarrow^{\varphi_0}$$

where $\varphi: X \to \mathbb{P}^1$ is the ruling map adapted to \mathcal{F} .

Equivalently, we have

Theorem (C. Gong, J. Lu, S.-L. Tan)

 \mathcal{F} algebraic $\Leftrightarrow \exists$ Riccati foliation \mathcal{F}_0 with $kod(\mathcal{F}_0) = -\infty$ w.r.t. a ruling map $\varphi_0: X_0 \to \mathbb{P}^1$ s.t. \mathcal{F} is the pulling-back foliation of \mathcal{F}_0 after a base change $\psi: \mathbb{P}^1 \to \mathbb{P}^1$ and a birational map $\sigma: X \longrightarrow X_1$

$$(\mathcal{F}, X) - \stackrel{\sigma}{\longrightarrow} (\psi^* \mathcal{F}_0, X_1) \longrightarrow ($$

$$(\mathcal{F}, X) - \stackrel{\sigma}{\longrightarrow} (\psi^* \mathcal{F}_0, X_1) \longrightarrow (\mathcal{F}_0, X_0)$$

$$\downarrow^{\varphi_1} \qquad \qquad \downarrow^{\varphi_0}$$

$$\mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

where $\varphi: X \to \mathbb{P}^1$ is the ruling map adapted to \mathcal{F} .

• A Riccati fibration $f: X \to C$ of type $A_n(D_n, E_k)$ $\stackrel{def}{\Longleftrightarrow} \omega = df$ gives a Riccati foliation of type $A_n(D_n, E_k)$

Corollary (C. Gong, J. Lu, S.-L. Tan)

f is a Riccati fibration iff f can become a trivial fibration after a uniformly ramified base change $\pi: \mathbb{P}^1 \to \mathbb{P}^1(=\mathbb{P}^1/G)$, where $G < \operatorname{Aut}(\mathbb{P}^1)$ and $|G| < \infty$.

• A Riccati fibration $f: X \to C$ of type $A_n(D_n, E_k)$ $\stackrel{def}{\Longleftrightarrow} \omega = df$ gives a Riccati foliation of type $A_n(D_n, E_k)$

Corollary (C. Gong, J. Lu, S.-L. Tan)

f is a Riccati fibration iff f can become a trivial fibration after a uniformly ramified base change $\pi: \mathbb{P}^1 \to \mathbb{P}^1 (= \mathbb{P}^1/G)$, where $G < \operatorname{Aut}(\mathbb{P}^1)$ and $|G| < \infty$.

• A Riccati fibration $f: X \to C$ of type $A_n(D_n, E_k)$ $\stackrel{def}{\Longleftrightarrow} \omega = df$ gives a Riccati foliation of type $A_n(D_n, E_k)$

Corollary (C. Gong, J. Lu, S.-L. Tan)

f is a Riccati fibration iff f can become a trivial fibration after a uniformly ramified base change $\pi: \mathbb{P}^1 \to \mathbb{P}^1 (= \mathbb{P}^1/G)$, where $G < \operatorname{Aut}(\mathbb{P}^1)$ and $|G| < \infty$.

• A Riccati fibration $f: X \to C$ of type $A_n(D_n, E_k)$ $\stackrel{def}{\Longleftrightarrow} \omega = df$ gives a Riccati foliation of type $A_n(D_n, E_k)$

Corollary (C. Gong, J. Lu, S.-L. Tan)

f is a Riccati fibration iff f can become a trivial fibration after a uniformly ramified base change $\pi: \mathbb{P}^1 \to \mathbb{P}^1 (= \mathbb{P}^1/G)$, where $G < \operatorname{Aut}(\mathbb{P}^1)$ and $|G| < \infty$.

• **Remark:** *G* corresponds with one kind of *A-D-E* surface singularities.

Corollary

Let γ_F be the order of the monodromy of a fiber F of f, then

$$2 - \frac{2}{|G|} = \sum_{F} \left(1 - \frac{1}{\gamma_F} \right).$$

• **Remark:** *G* corresponds with one kind of *A-D-E* surface singularities.

Corollary

Let γ_F be the order of the monodromy of a fiber F of f, then

$$2 - \frac{2}{|G|} = \sum_{F} \left(1 - \frac{1}{\gamma_F} \right)$$

• **Remark:** *G* corresponds with one kind of *A-D-E* surface singularities.

Corollary

Let γ_F be the order of the monodromy of a fiber F of f, then

$$2 - \frac{2}{|G|} = \sum_{F} \left(1 - \frac{1}{\gamma_F} \right).$$

• Genus g of a Riccaiti fibration f (\mathcal{F} , f as above)

Corollary (C. Gong, J. Lu, S.-L. Tan)

 $\frac{m_p}{n_p}:=$ eigenvalue of a singularity p of $\mathcal{F}.$

$$\frac{2g-2}{|G|} = -2 + \frac{1}{2} \sum_{p} \left(1 - \frac{1}{n_p} \right).$$

where p runs over all singularities of \mathcal{F} .

• Genus g of a Riccaiti fibration f (\mathcal{F} , f as above).

Corollary (C. Gong, J. Lu, S.-L. Tan)

 $\frac{m_p}{n_p} := \text{eigenvalue of a singularity p of } \mathcal{F}.$

$$\frac{2g-2}{|G|} = -2 + \frac{1}{2} \sum_{p} \left(1 - \frac{1}{n_p} \right)$$

where p runs over all singularities of \mathcal{F} .

• Genus g of a Riccaiti fibration f (\mathcal{F} , f as above).

Corollary (C. Gong, J. Lu, S.-L. Tan)

 $rac{m_p}{n_p}:=$ eigenvalue of a singularity p of $\mathcal{F}.$

$$\frac{2g-2}{|G|} = -2 + \frac{1}{2} \sum_{p} \left(1 - \frac{1}{n_p} \right).$$

where p runs over all singularities of \mathcal{F} .

Corollary (C. Gong, J. Lu, S.-L. Tan)

Up to a birational map, $\mathcal F$ algebraic & $\operatorname{Kod}(\mathcal F)=0$ if

where $c \in \mathbb{C}$ satisfies $4 + 27c^3 \neq 0$,

$$\mathbf{z} := \frac{(4x^2 - 3)y^4 - 4xy^3 + 6y^2 - 4xy + 1}{3y^4 - 8xy^3 + 6y^2 - 1}$$

and $\psi=rac{xf^2}{(x-1)(x-\lambda)g^2}$ $(f,g\in\mathbb{C}[x]$) satisfies some conditions

Corollary (C. Gong, J. Lu, S.-L. Tan)

Up to a birational map, \mathcal{F} algebraic & $\operatorname{Kod}(\mathcal{F}) = 0$ iff

Type	Riccati foliations	Families	Singular fibers
A_1	$(3x^2+1)ydx - 2(x^3+x+c)dy$	$y^2 = t(x^3 + x + c)$	I_0^*, I_0^*
	$3x^2ydx - 2(x^3 + 1)dy$	$y^2 = t(x^3 + 1)$	
A ₂	(2x-1)ydx-3x(x-1)dy	$y^3 = tx(x-1)$	IV, IV*
A ₃	(2x-1)ydx - 4x(x-1)dy	$y^4 = tx(x-1)$	III, III*
A_5	(3x-2)ydx-6x(x-1)dy	$y^6 = tx^2(x-1)$	II, II*
E ₆	$(3y^2 - 2xy - 1)dx - 6(x^2 - 1)dy$	$z^3 = t(x^2 - 1)$	IV, IV*, 2I ₀
D_{n+2}	$\frac{\psi'}{\psi(\psi-1)}(y^2+n(\psi-1)y-\psi)dx-2ndy$	$\left(\frac{y+\sqrt{\psi}}{y-\sqrt{\psi}}\right)^n = t\left(\frac{\sqrt{\psi}+1}{\sqrt{\psi}-1}\right)$	I_0^*, I_0^*, nI_0

where $c \in \mathbb{C}$ satisfies $4 + 27c^3 \neq 0$,

$$\mathbf{z} := \frac{(4x^2 - 3)y^4 - 4xy^3 + 6y^2 - 4xy + 1}{3y^4 - 8xy^3 + 6y^2 - 1}$$

and $\psi=\frac{xf^2}{(x-1)(x-\lambda)g^2}$ (f, $g\in\mathbb{C}[x]$) satisfies some conditions.

• Algebraic foliation of type A_n

Corollary (C. Gong, J. Lu, S.-L. Tan)

 \mathcal{F} is an algebraic foliation of type A_n

 \iff it has two ${\cal F}$ -invariant section of φ

 \iff it is from a fibration $f:X\to\mathbb{P}^1$ with two singular fibers

• **Remark:** Let s be the number of critical points of a fibration $f: X \to \mathbb{P}^1$. Then $s \ge 2$. Furthermore,

$$s \ge \left\{ \begin{array}{ll} 4, & \text{semistable (Beauville 1981)} \\ 5, & \text{semistable and } g > 1 (\text{Tan 1995}). \end{array} \right.$$

Algebraic foliation of type A_n

Corollary (C. Gong, J. Lu, S.-L. Tan)

 \mathcal{F} is an algebraic foliation of type A_n

 \iff it has two \mathcal{F} -invariant section of φ

 \iff it is from a fibration $f:X o \mathbb{P}^1$ with two singular fibers.

• **Remark:** Let s be the number of critical points of a fibration $f: X \to \mathbb{P}^1$. Then $s \ge 2$. Furthermore,

$$s \ge \begin{cases} 4, & \text{semistable (Beauville 1981)} \\ 5, & \text{semistable and } g > 1 \text{(Tan 1995)}. \end{cases}$$

Algebraic foliation of type A_n

Corollary (C. Gong, J. Lu, S.-L. Tan)

 \mathcal{F} is an algebraic foliation of type A_n

 \iff it has two \mathcal{F} -invariant section of φ

 \iff it is from a fibration $f:X o \mathbb{P}^1$ with two singular fibers.

• **Remark:** Let s be the number of critical points of a fibration $f: X \to \mathbb{P}^1$. Then $s \ge 2$. Furthermore,

$$s \ge \begin{cases} 4, & \text{semistable (Beauville 1981)} \\ 5, & \text{semistable and } g > 1 \text{(Tan 1995)}. \end{cases}$$

- Application We find a counterexample to Gurjar-Zhang's conjecture by using an algebraic Riccati foliation of type E_n (J. Lu, X.H. Wu).
- Gurjar-Zhang's conjecture(1996): Let X be a smooth projective, rational surface and $\varphi: X \to \mathbb{P}^1$ be a morphism with connected fibers. Then φ has at most one multiple fiber.

- Application We find a counterexample to Gurjar-Zhang's conjecture by using an algebraic Riccati foliation of type E_n (J. Lu, X.H. Wu).
- Gurjar-Zhang's conjecture(1996): Let X be a smooth projective, rational surface and $\varphi: X \to \mathbb{P}^1$ be a morphism with connected fibers. Then φ has at most one multiple fiber.

•
$$\omega = (g_0 y^2 + g_1 y + g_2) dx - dy, g_i \in \mathbb{C}(x).$$

ullet Discriminant of ${\mathcal F}$

$$\Delta(\mathcal{F}) = \frac{1}{2} \left(g_1 + \frac{g_0'}{g_0} \right)' - \frac{1}{4} \left(g_1 + \frac{g_0'}{g_0} \right)^2 - g_0(x) g_2(x).$$

ullet $\Delta(\mathcal{F})\in H^0(S^2\Omega_{\mathbb{P}^1}(\log\,T))$ where

$$T = \{ p \in \mathbb{P}^1 \mid Fp = \varphi^{-1}(p) \text{ is } \mathcal{F} - \text{invariant} \}.$$

- $\bullet \ \omega = (g_0y^2 + g_1y + g_2)dx dy, \ g_i \in \mathbb{C}(x).$
- Discriminant of \mathcal{F} :

$$\Delta(\mathcal{F}) = \frac{1}{2} \left(g_1 + \frac{g_0'}{g_0} \right)' - \frac{1}{4} \left(g_1 + \frac{g_0'}{g_0} \right)^2 - g_0(x) g_2(x)$$

ullet $\Delta(\mathcal{F})\in H^0(S^2\Omega_{\mathbb{P}^1}(\log\,T))$ where

$$T = \{ p \in \mathbb{P}^1 \mid Fp = \varphi^{-1}(p) \text{ is } \mathcal{F} - \text{invariant} \}.$$

$$\bullet \ \omega = (g_0y^2 + g_1y + g_2)dx - dy, \ g_i \in \mathbb{C}(x).$$

• Discriminant of \mathcal{F} :

$$\Delta(\mathcal{F}) = \frac{1}{2} \left(g_1 + \frac{g_0'}{g_0} \right)' - \frac{1}{4} \left(g_1 + \frac{g_0'}{g_0} \right)^2 - g_0(x) g_2(x).$$

ullet $\Delta(\mathcal{F})\in H^0(S^2\Omega_{\mathbb{P}^1}(\log\,T))$ where

$$T = \{ p \in \mathbb{P}^1 \mid Fp = \varphi^{-1}(p) \text{ is } \mathcal{F} - \text{invariant} \}.$$

$$\bullet \ \omega = (g_0y^2 + g_1y + g_2)dx - dy, \ g_i \in \mathbb{C}(x).$$

Discriminant of F:

$$\Delta(\mathcal{F}) = \frac{1}{2} \left(g_1 + \frac{g_0'}{g_0} \right)' - \frac{1}{4} \left(g_1 + \frac{g_0'}{g_0} \right)^2 - g_0(x) g_2(x).$$

ullet $\Delta(\mathcal{F})\in H^0(S^2\Omega_{\mathbb{P}^1}(\log\,\mathcal{T}))$ where

$$T = \{ p \in \mathbb{P}^1 \mid Fp = \varphi^{-1}(p) \text{ is } \mathcal{F} - \text{invariant} \}.$$

ullet If all singularities of ${\mathcal F}$ have non-zero eigenvalue, then

$$\Delta(\mathcal{F}) = \sum_{p} \frac{1 - \lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^1$ runs over all points whose inverse image F_p is \mathcal{F} -invariant.
- $\pm \lambda_p$ is the eigenvalue of the singularities lying on F_p .
- $\bullet \sum_{p} \mu_{p} = 0.$
- Question: What's the geometric meaning of μ_p ?

ullet If all singularities of ${\mathcal F}$ have non-zero eigenvalue, then

$$\Delta(\mathcal{F}) = \sum_{p} \frac{1 - \lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^1$ runs over all points whose inverse image F_p is \mathcal{F} -invariant.
- $\pm \lambda_p$ is the eigenvalue of the singularities lying on F_p .
- $\bullet \sum_{p} \mu_{p} = 0.$
- Question: What's the geometric meaning of μ_p ?

ullet If all singularities of ${\mathcal F}$ have non-zero eigenvalue, then

$$\Delta(\mathcal{F}) = \sum_{p} \frac{1 - \lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^1$ runs over all points whose inverse image F_p is \mathcal{F} -invariant.
- $\pm \lambda_p$ is the eigenvalue of the singularities lying on F_p .
- $\bullet \sum_{p} \mu_{p} = 0.$
- Question: What's the geometric meaning of μ_p ?

ullet If all singularities of ${\mathcal F}$ have non-zero eigenvalue, then

$$\Delta(\mathcal{F}) = \sum_{p} \frac{1 - \lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^1$ runs over all points whose inverse image F_p is \mathcal{F} -invariant.
- $\pm \lambda_p$ is the eigenvalue of the singularities lying on F_p .
- $\bullet \sum_{p} \mu_{p} = 0.$
- Question: What's the geometric meaning of μ_p ?

ullet If all singularities of ${\mathcal F}$ have non-zero eigenvalue, then

$$\Delta(\mathcal{F}) = \sum_{p} \frac{1 - \lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^1$ runs over all points whose inverse image F_p is \mathcal{F} -invariant.
- $\pm \lambda_p$ is the eigenvalue of the singularities lying on F_p .
- $\bullet \sum_{p} \mu_{p} = 0.$
- Question: What's the geometric meaning of μ_p ?

Invariance of Discriminant

Theorem (C. Gong, J. Lu, S.-L. Tan)

 $\Delta(\mathcal{F}) = \Delta(\widetilde{\mathcal{F}})$ iff $\widetilde{\mathcal{F}}$ can becomes \mathcal{F} by choosing suitable coordinates and flipping maps.

• Up to a birational map as above, λ_p 's and μ_p 's determine the Riccati foliation \mathcal{F} .

Invariance of Discriminant

Theorem (C. Gong, J. Lu, S.-L. Tan)

 $\Delta(\mathcal{F}) = \Delta(\widetilde{\mathcal{F}})$ iff $\widetilde{\mathcal{F}}$ can becomes \mathcal{F} by choosing suitable coordinates and flipping maps.

• Up to a birational map as above, λ_p 's and μ_p 's determine the Riccati foliation \mathcal{F} .

Invariance of Discriminant

Theorem (C. Gong, J. Lu, S.-L. Tan)

 $\Delta(\mathcal{F}) = \Delta(\widetilde{\mathcal{F}})$ iff $\widetilde{\mathcal{F}}$ can becomes \mathcal{F} by choosing suitable coordinates and flipping maps.

• Up to a birational map as above, λ_p 's and μ_p 's determine the Riccati foliation \mathcal{F} .

Criterion for algebraic Riccati foliation

Theorem (C. Gong, J. Lu, S.-L. Tan)

 ${\cal F}$ is algebraic ifl

$$\Delta(\mathcal{F}) = \frac{1}{2} \left(\frac{\psi''}{\psi'} \right)' - \frac{1}{4} \left(\frac{\psi''}{\psi'} \right)^2 + (\psi')^2 \cdot \psi^* \Delta(\mathcal{F}_0)$$

for some $\psi \in \mathbb{C}(x)$ and a Riccati foliation \mathcal{F}_0 with Kodaira dimension $-\infty$.

• Question: What can we say about μ_p 's for an algebraic Riccati foliation \mathcal{F} ?

• Criterion for algebraic Riccati foliation

Theorem (C. Gong, J. Lu, S.-L. Tan)

 \mathcal{F} is algebraic iff

$$\Delta(\mathcal{F}) = \frac{1}{2} \left(\frac{\psi''}{\psi'} \right)' - \frac{1}{4} \left(\frac{\psi''}{\psi'} \right)^2 + (\psi')^2 \cdot \psi^* \Delta(\mathcal{F}_0).$$

for some $\psi \in \mathbb{C}(x)$ and a Riccati foliation \mathcal{F}_0 with Kodaira dimension $-\infty$.

• Question: What can we say about μ_p 's for an algebraic Riccati foliation \mathcal{F} ?

• Criterion for algebraic Riccati foliation

Theorem (C. Gong, J. Lu, S.-L. Tan)

 \mathcal{F} is algebraic iff

$$\Delta(\mathcal{F}) = \frac{1}{2} \left(\frac{\psi''}{\psi'} \right)' - \frac{1}{4} \left(\frac{\psi''}{\psi'} \right)^2 + (\psi')^2 \cdot \psi^* \Delta(\mathcal{F}_0).$$

for some $\psi \in \mathbb{C}(x)$ and a Riccati foliation \mathcal{F}_0 with Kodaira dimension $-\infty$.

• **Question**: What can we say about μ_p 's for an algebraic Riccati foliation \mathcal{F} ?

- Double cover $\pi: X \to Y$ with branch locus RRiccati foliation $\mathcal G$ on Y w.r.t. φ Double Riccati foliation $\mathcal F = \pi^*\mathcal G$
- π and φ give a hyperelliptic fibration of genus g.
- Let $p \in R$ be a node or the tangent points of R to \mathcal{G} . local invariants $s_1(p)$ and $s_2(p)$ of the branch locus R w.r.t. \mathcal{G} .
- Let F be an \mathcal{G} -invariant fiber of φ . local invariants $\nu(F)$ of F w.r.t. \mathcal{G} .

- Double cover π: X → Y with branch locus R
 Riccati foliation G on Y w.r.t. φ
 Double Riccati foliation F = π*G
- π and φ give a hyperelliptic fibration of genus g.
- Let $p \in R$ be a node or the tangent points of R to \mathcal{G} . local invariants $s_1(p)$ and $s_2(p)$ of the branch locus R w.r.t. \mathcal{G} .
- Let F be an \mathcal{G} -invariant fiber of φ . local invariants $\nu(F)$ of F w.r.t. \mathcal{G} .

- Double cover π: X → Y with branch locus R
 Riccati foliation G on Y w.r.t. φ
 Double Riccati foliation F = π*G
- π and φ give a hyperelliptic fibration of genus g.
- Let $p \in R$ be a node or the tangent points of R to \mathcal{G} . local invariants $s_1(p)$ and $s_2(p)$ of the branch locus R w.r.t. \mathcal{G} .
- Let F be an \mathcal{G} -invariant fiber of φ . local invariants $\nu(F)$ of F w.r.t. \mathcal{G} .

Formulae for Chern numbers.

Theorem (J. Hong, J. Lu, S.-L. Tan)

$$\chi(\mathcal{F}) = \frac{1}{12} \sum_{p \in R} \mathbf{s_2(p)} + \frac{1}{4} (g+1) \operatorname{deg} \mathcal{G},$$

$$c_1^2(\mathcal{F}) = \sum_{p \in R} \mathbf{s_1(p)} + 3(g+1) \operatorname{deg} \mathcal{G} - \sum_F \nu(F)$$

where $p \in R$ runs over the nodes and the tangent points of R to G, F runs over all G-invariant fibers of φ .

Formulae for Chern numbers.

Theorem (J. Hong, J. Lu, S.-L. Tan)

$$\chi(\mathcal{F}) = \frac{1}{12} \sum_{\boldsymbol{p} \in R} \mathbf{s_2}(\boldsymbol{p}) + \frac{1}{4}(g+1) \deg \mathcal{G},$$

$$c_1^2(\mathcal{F}) = \sum_{\boldsymbol{p} \in R} \mathbf{s_1}(\boldsymbol{p}) + 3(g+1) \deg \mathcal{G} - \sum_{\boldsymbol{F}} \nu(\boldsymbol{F}),$$

where $p \in R$ runs over the nodes and the tangent points of R to G, F runs over all G-invariant fibers of φ .

2.Inequality of slope

• Slope of \mathcal{F} :

$$\lambda(\mathcal{F}) := c_1^2(\mathcal{F})/\chi(\mathcal{F}).$$

Inequality of slope

Theorem (J. Hong, J. Lu, S.-L. Tan, 2020)

$$4 \leq \lambda(\mathcal{F}) < 12$$
.

2.Inequality of slope

• Slope of \mathcal{F} :

$$\lambda(\mathcal{F}) := c_1^2(\mathcal{F})/\chi(\mathcal{F}).$$

Inequality of slope

Theorem (J. Hong, J. Lu, S.-L. Tan, 2020)

$$4 \leq \lambda(\mathcal{F}) < 12$$
.

2.Inequality of slope

• Slope of \mathcal{F} :

$$\lambda(\mathcal{F}) := c_1^2(\mathcal{F})/\chi(\mathcal{F}).$$

Inequality of slope

Theorem (J. Hong, J. Lu, S.-L. Tan, 2020)

$$4 \leq \lambda(\mathcal{F}) < 12$$
.

3. Question

Question: Is it true that

$$\lambda(\mathcal{F}) \geq 4$$

for any non-algebraic foliation \mathcal{F} with $\chi(\mathcal{F}) \neq 0$?

• (J. Lu, W.L. Shao) The slope inequality holds for a Lotka-Volterra foliation

$$\omega = y(a + bx + cy)dx + x(a' + b'x + c'y)dy.$$

3. Question

• Question: Is it true that

$$\lambda(\mathcal{F}) \geq 4$$

for any non-algebraic foliation \mathcal{F} with $\chi(\mathcal{F}) \neq 0$?

 (J. Lu, W.L. Shao) The slope inequality holds for a Lotka-Volterra foliation

$$\omega = y(a + bx + cy)dx + x(a' + b'x + c'y)dy$$

3. Question

Question: Is it true that

$$\lambda(\mathcal{F}) \geq 4$$

for any non-algebraic foliation \mathcal{F} with $\chi(\mathcal{F}) \neq 0$?

 (J. Lu, W.L. Shao) The slope inequality holds for a Lotka-Volterra foliation

$$\omega = y(a + bx + cy)dx + x(a' + b'x + c'y)dy.$$

Thank you!