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Global Invariants of a Trigonal Fibration

• Global Invariants

• Gonality of Algebraic Curves

• Recall the Case for g = 2

• Non-hyperelliptic Fibration of Genus 3
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1. Global Invariants
• Projective Complex Surface. S ⊂ Pn

• Global Invariants:

χ(OS), K2
S, χtop(S)

• 12χ(OS) = K2
S + χtop(S)
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• f : S → C relatively minimal fibration genus g.

C smooth curve, b = g(C).

• Relatively Numerical Invariants

K2
f := K2

S − 8(g − 1)(b− 1),

χf := χ(OS)− (g − 1)(b− 1),
ef := χtop(S)− 4(g − 1)(b− 1).

•K2
f ≥ 0, χf ≥ 0, ef ≥ 0
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• 12χf = K2
f + ef

• g = 0 (ruled surface)

K2
f = χf = ef = 0

• g = 1 (elliptic fibration)

K2
f = 0, χf =

1

12
ef

• If g ≥ 2, then

K2
f = 0 ⇐⇒ χf = 0 ⇐⇒ All fibers are isomorphic.

ef = 0 iff All fibers are smooth.
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• F1, · · · , Fs are all singular fibers

ef =
∑

i

eFi

eFi
= 2(g − pa(Fi,red)) + µ(Fi,red)

• Total Milnor number

µ(Fi,red) =
∑
p∈Fi

µp(Fi)

where
∑
p∈Fi

run over all singularities of Fi,red.

(µp(F ) is Milnor number of F at p. )
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• g = 1 elliptic fibration (Kodaira)
there are 11 types of singular fibers.

•

K2
f = 0, ef =

∑
i

eFi
, χf =

1

12
ef

eFi
= 2(g − pa(Fi,red)) + µ(Fi,red)

In this case, all invariants can be computed.
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• g = 2

– (Ogg, Namikawa, Ueno) ≈ 246 types of singular
fiber

– (Horrikawa, 1977) Classify singular fibers into 5
types.
(double cover)
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• (G.Xiao, 1985) If g = 2, then

K2
f =

1

5
s2 +

7

5
s3,

χf =
1

10
s2 +

1

5
s3,

ef = s2 + s3,

s2 =
∑
F

s2(F ), s3 =
∑
F

s3(F )

where s2(F ), s3(F ) ≥ 0.

• (G.Xiao) g ≥ 3 & hyperelliptic
similar formulas.

• Corollary

2 ≤ λf :=
K2

f

χf
≤ 7
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• (G.Xiao)
If g = 3 & hyperelliptic, then

K2
f =

2

7
s2 +

17

7
s3 +

10

7
s4 +

20

7
s5,

χf =
3

28
s2 +

2

7
s3 +

2

7
s4 +

1

14
s5,

ef = (s2 − 2s5) + s3 + 2s4,
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• g = 3 & Non-hyperelliptic

(Horikawa, M.Reid, Z.J.Chen)

λf :=
K2

f

χf
≥ 3

• Horikawa number

K2
f − 3χf =

∑
F

HF ,

HF := lengthcoker(S2f∗ωS/C ↪→ f∗(ω
⊗2
S/C))p, p = f (F )

• HF 6= 0 ⇐⇒ F singular, or smooth hyperelliptic.
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• (Viehweg 1977) a complete set of invariants for the
curves is described.

This set agrees in the case g = 2 with the invariants
of Y. Namikawa and K. Ueno
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• Atomic fiber (M.Reid, G.Xiao)

– Let F be a fiber
F can be deformed to some more simple singular
fibers.

– Atomic fiber: most simple singular fiber

– Conjecture: There are only 4 types of atomic
fibers.
(denoted by type (0) - (3))
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• Conjecture(M.Reid, G.Xiao)

Relatively invariants

K2
f =

1

3
a0 +

4

3
a1 + 3a2 +

14

3
a3,

χf =
1

9
a0 +

1

9
a1 +

1

3
a2 +

5

9
a3

ef = a0 + a2 + a3,

where ai is the number of atomic fibers of type (i).
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• Main Result
Theorem If f : S → C is semistable, then

K2
f =

1

3
s1 + 3s2 +

7

3
s3 + 2s4 +

13

3
s5 +

4

3
s6,

χf =
1

9
s1 +

1

3
s2 +

4

9
s3 +

1

3
s4 +

4

9
s5 +

1

9
s6

ef = s1 + s2 + 3s3 + 2s4 + s5,

where si ≥ 0.
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• The Methods:

Horikawa-Xiao’s: “Double Cover”

Reid’s: “Atomic Fiber”

Our Method: “Triple Cover”

Degree of Finite Cover = Gonality
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2. Gonality of Algebraic Curves
• “Gonality of C” = “minimal degree d”

π : C
d:1→ P1,

• Classification: d = 1, 2, 3, · · · ,
[

g+3
2

]
(1) d = 1: C ∼= P1 & g = 0;
(2) d = 2: C Hyperelliptic (e.g. g = 1, 2);
(3) d = 3: C Trigonal (e.g. g = 3, 4 );
(4) d ≥ 4: · · · · · ·
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• Classification of Fibrations

f : S → C, g(F ) = g

• f is elliptic ⇐⇒ F ∼= C/Λ

• f is hyperelliptic ⇐⇒ d(F ) = 2

• f is trigonal ⇐⇒ d(F ) = 3
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• f : S → C is hyperelliptic =⇒

S
2 : 1

- C × P1

C
�

f

-
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• f : S → C is trigonal =⇒

After some base change, we have

S �
k : 1

S̃
3 : 1

- C̃ × P1

C

f

?

�
k:1

C̃

f̃

?
�
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3. Recall the Case for g = 2

• Let f : S → C relatively minimal genus 2.

Step 1

S
2 : 1

- P(f∗ωS/C)

C

f

?�
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• Then we get a double cover π : S0 → P0

S �
1 : 1

S0

P(f∗ωS/C)

2 : 1

?

�

1 : 1
P0

π

?
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• The double cover satisfying

(1) φ : P0 → C relatively minimal ruled surface.

(2) B branch locus of π, then ( F0 is a fiber )
B ∼ −3Kφ + nF0 (for some n).
=⇒ BF0 = 6.

(3) Bh horizonal part of B

(i.e., Bh does not contain any fiber of φ and
Bv = B −Bh is the sum of some fibres.)

For any singularity p of Bh

multp(Bh) ≤ 3

• Such ruled surface associated with B is called nor-
malized model.
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• Step 2 Canonical Resolution

S � S̃ - S0

C

f

?

� P̃

π̃

?

can.res.
- P0

π

?

– From the computation of global invariants of dou-
ble cover, the contributions of the singularities of
S0 to invariants are due to those of the singulari-
ties of branch locus B.
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• Relative Ramified Index

D effective divisor in ruled surface φ : P0 → C.

relative ramified index of D:

rD := D2 + DKφ

• (Relative adjunction formula)

If D does not contain any fiber, then rD is just the
ramified index of projection φ : D → C.
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• Relatively Invariants of f : S → C

π : S0 → P0 corresponding double cover
B branch locus

K2
f =

(g − 1)

(2g + 1)
rB − r1

χf =
g

(8g + 4)
rB − r2

ef = rB − r3

where r1, r2, r3 are contributions of singularity to rel-
atively invariants, which can be computed from the
corresponding canonical resolution.
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• The computation of relatively invariants is due to
two parts:

(1) relatively ramified of branch locus B;

(2) contributions of singular points of B to the rela-
tively invariants.

• Find a good classification of singular points of
branch locus.

Compute contribution of each type of singular point
to the relatively invariants.
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• Step 3 Classify the singularities of branch
locus B

Any singularity p of branch locus B can be replaced
by the following two types of singularities, which
doesn’t influence its contribution to relatively invari-
ants.

• Type(A) (3 → 3) singularity
p satisfies that
multp(B) = multp′(B̃) = 3 and (B̃E)p′ = 3.
(p′ infinitely close singular point of p)

Type(B) negligible singular point
p satisfies that
multp(B) = 2.

(σ : (P1, E) → (P0, p) is a blowing-up at p. E is an
exceptional curve. B̃ is strict transform of B
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• Step4 Singular Index (G.Xiao)

K2
f =

1

5
s2 +

7

5
s3,

χf =
1

10
s2 +

1

5
s3,

ef = s2 + s3,

• s3: the number of (3 → 3) singularity
s2: relates to the number of negligible singularities
and relatively ramified index of branch locus.

• g ≥ 3 & hyperelliptic.
a similar result
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4. Non-hyperelliptic Fibration of Genus 3

• f : S → C trigonal fibration, genus 3.

• Step 1 After some base change, we can assume

S
3 : 1

- P(f∗ωS/C(−Γ))

C

f

?�
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• Then we get a triple cover π : S0 → P0

S �
1 : 1

S0

P(f∗ωS/C(−Γ))

3 : 1

?

�

1 : 1
P0

π

?



Global Invariants
Gonality of . . .

Recall the Case for . . .

Non-hyperelliptic . . .

Home Page

Title Page

JJ II

J I

Page 32 of 53

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• The triple cover satisfying

(1) φ : P0 → C relatively minimal ruled surface.

(2) R branch locus of π, then ( F0 is a fiber )
R ∼ −5Kφ + nF0 (for some n).
=⇒ RF0 = 10.

(3) Rh horizonal part of R

For any singularity p of Rh
multp(Rh) ≤ 5
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• Step 2 Canonical Resolution

S � S̃ - S0

C

f

?

� P̃

π̃

?

can.res.
- P0

π

?

– From the computation of global invariants of
triple cover, the contributions of the singularities
of triple cover to invariants are due to those of the
singularities of branch locus R.
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• Step 3
Classify the singularities of branch locus R

Most difficult problem : How to classify the singulari-
ties of the branch locus ?

• Select a good standard of classification:

multiplicity of a singular point ?
(compare with the case for g = 2)

It becomes more complex in triple cover.

• A good classification can simplify the computation
of relatively invariants.
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• Branch locus of triple cover
Let π : X → Y triple cover
X normal surface
Y smooth surface

• triple cover data (s, t,L)

(1) L invertible sheaf;
(2) s ∈ H0(X,L2)

(3) 0 6= t ∈ H0(X,L3)

(4)Y is the normalization of the surface defined by
z3 + sz + t = 0
in the line bundle of L
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• z3 + sz + t = 0 is minimal ⇐⇒ there is no prime p,

p2
∣∣ s, p3

∣∣ t.

• Any triple cover can be defined by a minimal equa-
tion.

• (S.-L. Tan 2000) definition of (a, b, c)

a =
4s3

gcd (s3, t2)
, b =

27t2

gcd (s3, t2)
, c =

4s3 + 27t2

gcd (s3, t2)
.

• Decomposition

a = 4a1a
2
2a

3
0, b = 27b1b

2
0, c = c1c

2
0,

where a1, a2, b1, c1 are square-free and
gcd (a1, a2) = gcd (ai, bj) = 1.
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• (S.-L. Tan 2000)

Relation between (a, b, c) and (s, t)

s = a1a
2
2b1a0, t = a1a

2
2b

2
1b0.

• Branch locus of triple cover

Ai = Div(ai), Bi = Div(bi), Ci = Div(ci).

• Simple ramified locus: D1 = B1 + C1

• Totally ramified locus: D2 = A1 + A2

• Branch locus: R = D1 + 2D2
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• (S.-L. Tan 2000)
D1 ≡ 2η, η = 3L− A1 −B1 − 2A2 − C0.

• (S.-L. Tan & D.-Q.Zhang 2004)
π is Galois iff D1 = 0 and η ≡ 0.

• φ is the double cover of (D1, η),

X ′ φ′
- X

Y ′

π′

? z2 = b1c1

φ
- Y

π

?

• π′ is Z3 − cover
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• Canonical resolution
Yk

τk
- Yk−1

τk−1
- . . . - Y2

τ2
- Y1

τ1
- Y

. . .

Xk

π̃ = πk

? σk
- Xk−1

πk−1

? σk−1
- . . . - X2

π2

? σ2
- X1

π1

? σ1
- X

π

?

• Branch locus of πk is smooth, so is Yk.

• Compute the data (a′, b′, c′) of π1:

a + b = c ⇒ σ∗1a + σ∗1b = σ∗1c

Eliminate the common factors,

a′ + b′ = c′.
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• Global Invariants of triple cover (S.-L.Tan 2000)

K2
X̃

= 3K2
Ỹ

+
1

2
D2

1 + 2D1KỸ +
4

3
D2

2 + 4D2KỸ − r1.

χ(OX̃) = 3χ(OỸ ) +
1

8
D2

1 +
1

4
D1KỸ +

5

18
D2

2 +
1

2
D2KỸ − r2

where r1, r2 are the contributions of the singulari-
ties of triple cover to global invariants which can be
computed by canonical resolution.
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• Consider canonical resolution
Xk

- X

Yk

π̃

?

can.res.
- Y

π

?

Let p singularity of branch locus R

σ1 blowing up p

E1 strict transform of σ1

E1 totally transform of E1 in Yk

• Define
Zπ,p := π̃∗E1

• Zπ,p is a cycle of exceptional curves.
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• For simplicity, we denote

Zπ,p := π̃∗σ∗(p)

• Another definition of Zπ,p:

Zπ,p = gcd {div(π̃∗σ∗g) | g ∈ mp},

where mp is the maximal ideal of local ring OY,p.
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• Fundamental Cycle
Theorem Zπ,p has a unique decomposition as fol-
lows.

Zπ,p = Z1 + Z2 + Z3, Zi ≥ 0,

satisfying that
(1) ZiZj = 0, (i 6= j);
(2) either Zi = 0, or Zi is the fundamental cycle of its
support;
(3) if p totally ramified, then Z1 ≥ Z2 ≥ Z3.

• Corollary Z2
1 ≥ −3,

equality holds iff Z2 = Z3 = 0.
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• Definition

Z1 : The fist fundamental cycle;

Z2 : The second fundamental cycle;

Z3 : The third fundamental cycle.

• Any singularity of branch locus has unique triples
(Z1, Z2, Z3).

• Local Invariants of p

Z2
i , pa(Zi) (i = 1, 2, 3)

• The invariants are independent of resolution.
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• Assuming p totally ramified, q = π−1(p), then

(1) q rational double point

⇐⇒ pa(Z1) = pa(Z2) = 0 & Z3 = 0

(2) q rational triple point

⇐⇒ pa(Z1) = 0 Z2 = Z3 = 0

(3) q is smooth

⇐⇒ pa(Z1) = pa(Z2) = pa(Z3) = 0.

• R = D1 + 2D2 branch locus

multp(R) ≥ 2pa(Z1) + 2pa(Z2) + 2pa(Z3).
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• Remark
In the case for double cover, we also have a similar
result.

Theorem If π is a double cover, p is the singular
point of branch locus B, then Zπ,p has a unique de-
composition as follows.

Zπ,p := Z1 + Z2, Zi ≥ 0,

satisfying that
(1) Z1Z2 = 0;
(2) either Z2 = 0, or Z2 is the fundamental cycle of its
support;
(3) Z1 ≥ Z2;
(4) Z2

1 ≥ −2, equality holds iff Z2 = 0.
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• (Double cover)

(3 → 3) singularity ⇐⇒ pa(Z1) = 1 and pa(Z2) = 0.

negligible singular point⇐⇒ Z2
1 = −2 and pa(Z1) = 0.

• It suggest that we can classify singular points of
branch locus by considering the local invariants Z2

i
and pa(Zi).
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• Classify singularities of branch locus of triple cover

– There are 9 classes of singularities of branch
locus of triple cover.

– Any singularity of branch locus can be replaced
by 9 classes of singularities above, which doesn’t
influence its contribution to global invariants.



Global Invariants
Gonality of . . .

Recall the Case for . . .

Non-hyperelliptic . . .

Home Page

Title Page

JJ II

J I

Page 49 of 53

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Standard of Classification:

(1) Z2
i =?

(2) pa(Zi) = 0 or not?
• Example

type(0) good cusp: p is totally ramified &

pa(Z1) = pa(Z2) = pa(Z3) = 0

( defined by local equation x2 + y3n = 0, n ≥ 1. )

type(1) Z2
1 = −3 (triple point)

......(omit)
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• Relatively Invariants of f : S → C

π : S0 → P0 corresponding triple cover
R = D1 + 2D2 branch locus
D1F = α1, D2F = α2

where F is a generic fiber.

3(g + 1)K2
f = αrD1 + 4(g − 1)rD2 − r′1

36(g + 1)χf = βrD1 + 2(5g + 1)rD2 − r′2
ef = rD1 + 2rD2 − r′3

D1D2 =
α2

(2α1 − 2)
rD1 +

α1

(2α2 − 2)
rD2

where

α =
(3g − 1)

2
− (g − 3)

2α1 − 2
, β =

(9g + 5)

2
− (g − 3)

2α1 − 2

r′1, r′2, r′3 are contributions of singularities of triple
cover to relatively invariants.



Global Invariants
Gonality of . . .

Recall the Case for . . .

Non-hyperelliptic . . .

Home Page

Title Page

JJ II

J I

Page 51 of 53

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• The computation of relatively invariants is also due
to two parts (compare with the case for g = 2):

(1) relatively ramified of branch locus R = D1 + 2D2;

(2) contributions of singular points of R to the rela-
tively invariants.

• We only need to compute contribution of each type
of singular point to the relatively invariants.
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• Step4 (g = 3, & non-hyperelliptic)
Singular Index
From the computation of global invariants of triple
cover, we have (semistable)

K2
f =

1

3
s1 + 3s2 +

7

3
s3 + 2s4 +

13

3
s5 +

4

3
s6,

χf =
1

9
s1 +

1

3
s2 +

4

9
s3 +

1

3
s4 +

4

9
s5 +

1

9
s6

ef = s1 + s2 + 3s3 + 2s4 + s5,

where si ≥ 0.
• si relates to the number of singularities of branch

locus.

• g ≥ 4 & trigonal fibration.
a similar result.
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