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Global Invariants of a Trigonal Fibration

Global Invariants
Gonality of Algebraic Curves
Recall the Case for g =2

Non-hyperelliptic Fibration of Genus 3
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1. Global Invariants
e Projective Complex Surface. S C P

Global Invariants

e Global Invariants:
X(OS) 9 Kg, XtOp(S) Home Page
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o f:S5— C relatively minimal fibration genus g.
C' smooth curve, b = g(C).

e Relatively Numerical Invariants
K= K3 —8(g — 1)(b— 1),

xr = x(0s) — (g — 1)(b - 1),
ef = XuoplS) — 4g — 1)(b - 1).

e Ki>0,x5>0,ep >0
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12x; = K7 + ey

g =0 (ruled surface)

K]%:szef:O

g =1 (elliptic fibration)

1
K?=0, xf = —
r= 0 X T

If ¢ > 2, then

K% =0<«= x;=0<«= All fibers are isomorphic.

ey = 0 Iff All fibers are smooth.
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e Fy,---,F;are all singular fibers

efzzeﬂ

1

CF, = 2(9 — pa(Fiﬂ“ed)) + M(Fi,red)

e Total Milnor number

1 Fired) = Z pp(F7)

peEF;

where > run over all singularities of F; ..

pel;

(pp(F') is Milnor number of F at p. )
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g =1 elliptic fibration (Kodaira)
there are 11 types of singular fibers.

1
2 _ _
Kf = 0, ef = EZ er, Xf= 12€f

er, = 2(9 — Pa(Fired)) + M(Fz’,red)
In this case, all invariants can be computed.
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o g:2

" (Ogg, Namikawa, Ueno) ~ 246 types of singular — FEEIEEE
lber

— (Horrikawa, 1977) Classify singular fibers into 5
types.
(double cover) e
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e (G.Xiao, 1985) If ¢ = 2, then

]. 7 lobal Invariants
KJ% 592 + =53 Gor
1 N 1
= —S9+ =58
Xf 10 2 5 39
ef = So + S3,
So = Z SQ(F), S3 = Z Sg(F) riome Page
F F Title Page

where so( F'), s3(F) > 0.
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e (G.Xiao0) g >3 & hyperelliptic
similar formulas.
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(G.Xiao)
If g =3 & hyperelliptic, then

K2—gs +1—75 +1—Os +2s
e
3 +2 +2 +1

Xf =g T 78 T o

ef = (82 — 285) + s34 254,
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g =3 & Non-hyperelliptic
(Horikawa, M.Reid, Z.J.Chen)
K2
Af = -/ > 3
Xf

Horikawa number
K} —3x;=>» Hp,
F

Hp = lengthcoker(S” fiws)c — f*(w?f(j))p, p= f(F)

Hp # 0 < F singular, or smooth hyperelliptic.
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e (Viehweg 1977) a complete set of invariants for the
curves is described.

This set agrees in the case g = 2 with the invariants
of Y. Namikawa and K. Ueno
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e Atomic fiber (M.Reid, G.Xiao)

Let I be a fiber

F' can be deformed to some more simple singular
fibers.

Atomic fiber: most simple singular fiber

i Conjecture: There are only 4 types of atomic
ibers.
(denoted by type (0) - (3))
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e Conjecture(M.Reid, G.Xiao)

Relatively invariants

1 4 14
K} = 200+ 501 + 3as + =5,
1 1 1 5}
Xf = §a0 -+ 5&1 -+ gCLQ -+ 5&3
ef _ ao _|_ a2 _I_ CLB’ Home Page
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Main Result
Theorem If /' : S — C' is semistable, then

1 7 13 4
Kj = 251+ 359 + 253+ 254 + =5+ 35

1 1 4 1 4 1
Xf = 581 + 582 -+ 583 -+ 584 + 585 -+ 586

€f=S1-|-82—|-383—|—284—|-S5,
where s; > 0.
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The Methods:

Horikawa-Xiao’s: “Double Cover”
Reid’s: “Atomic Fiber”
Our Method: “Triple Cover”

Degree of Finite Cover = Gonality
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2. Gonality of Algebraic Curves

Gonality of...

e “Gonality of C” = “minimal degree d”
r.C % Pt

e Classification: ¢=1,2.3,---, [g—f’]
(1)d=1C=P' & g=0;

(2) d = 2: C' Hyperelliptic (e.g. g =1,2);
(3) d = 3: C' Trigonal (e.g. ¢g=3,4);
(4) d Z A oo Page 17 of 53
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Classification of Fibrations

f is elliptic

f:S—=C, gF)=g

— FF=C/A

f is hyperelliptic <= d(F) =2

f is trigonal

< d(F)=3

Gonality of ...
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o f:S5— Cishyperelliptic =

Gonality of ...

f Home Page
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o f:S5— Clistrigonal —

Gonality of ...

After some base change, we have

k:1 ~ 1 -
S S———B———»CXIP’l
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3. Recall the Case for g =2

o Letf:S — C relatively minimal genus 2. Recall the Case for..
Step 1
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Then we get a double cover 7 : Sy — F,

S _____ ._ _ o SO Recall the Case for...

| Home Page

P(f*w5/0> ______ P() Title Page
1:1

Il Screen eClose eQuit



e The double cover satisfying

Global Invariants

(1) ¢ : By — C relatively minimal ruled surface. Gonalyo.__
eca e caseior...

Non-hyperelliptic. ..

(2) B branch locus of 7, then ( Iy is a fiber)
B ~ —3K 4+ nky (for some n).

(3) By, horizonal part of B i |
(i.e., Bj, does not contain any fiber of ¢ and ﬁg
B, = B — By, is the sum of some fibres.)

_ _ ||
For any singularity p of B;, Page 23 of 53

TTLUth(Bh> S 3 Go Back
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e Such ruled surface associated with B is called nor-
malized model.

duddd



e Step 2 Canonical Resolution

S S S 0 Recall the Case for ...
f 0 ™
T Home Page
C P P 0 Title Page
can.res. -

— From the computation of global invariants of dou-
ble cover, the contributions of the singularities of Page 24 of 55
Sy to invariants are due to those of the singulari-
ties of branch locus B.
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e Relative Ramified Index
D effective divisor in ruled surface ¢ : Py — C.
relative ramified index of D:

rp = D*+ DK,

e (Relative adjunction formula)

If D does not contain any fiber, then rp is just the
ramified index of projection ¢ : D — C.

Recall the Case for...
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e Relatively Invariantsof f : S — C

7 : Sy — P, corresponding double cover oot
B branCh IOCUS Non-hyperelliptic. ..
2 (g—1)
F= o TB— T
<2_g + 1) Home Page
Xf==——=TB— 17 | o |
(89 —i_ 4) 44 44 |
€f =Tp — 173 p » |
where 71, 72, r3 are contributions of singularity to rel- | Pago 260133 |
atively invariants, which can be computed from the Go Back
corresponding canonical resolution. e —
Close

Quit



e The computation of relatively invariants is due to
two parts:

(1) relatively ramified of branch locus B;

(2) contributions of singular points of B to the rela-
tively invariants.

e Find a good classification of singular points of
branch locus.

Compute contribution of each type of singular point
to the relatively invariants.

Global Invariants
Gonality of...

Recall the Case for ...

Non-hyperelliptic. ..
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e Step 3 Classify the singularities of branch
locus B

Global Invariants

Any singularity p of branch locus B can be replaced

by the following two types of singularities, which  wenpereiipic-

doesn’t influence its contribution to relatively invari-
ants.

Home Page
e Type(A) (3 — 3) singularity
p satisfies that |
mult,(B) = mult, (B) = 3 and (BE), =3. e
(p" infinitely close singular point of p
Type(B) negligible singular point __Coseck |
p satisfies that Full Screen
m’LLth(B> = 2 Close
Quit

(0 : (P, E) — (P, p) is a blowing-up at p. E is an
exceptional curve. B is strict transform of B



e Step4 Singular Index (G.Xiao)

1 7
K% = —59+ =
¥ 582 -+ 583,
1 N 1
= —89+ =S
Xf 10 2 5 39

ef = So + S3,

e s3: the number of (3 — 3) singularity

so. relates to the number of negligible singularities
and relatively ramified index of branch locus.

e g>3 & hyperelliptic.
a similar result

Recall the Case for...
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4. Non-hyperelliptic Fibration of Genus 3

e f:S5— (C trigonalfibration, genus 3.

Non-hyperelliptic. ..

e Step 1 After some base change, we can assume
3 . ]. Home Page
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e Then we get a triple cover 7 : Sy — F,

Non-hyperelliptic. ..

| Home Page

P(f*wS/C(_F>>‘1_ ‘ - P() Title Page

Il Screen eClose eQuit



e The triple cover satisfying
(1) ¢ : By — C relatively minimal ruled surface.

Non-hyperelliptic. ..

(2) R branch locus of 7, then ( Fj is a fiber)
R ~ —5K4 + nky (for some n).
—> RF, = 10.

(3) Ry, horizonal part of R

For any singularity p of Ry,
mult,(Ry) <5
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e Step 2 Canonical Resolution

S S So
Non-hyperelliptic. ..
f T ™
~ Home Page
C P Py .
can.res. e Pege

—  From the computation of global invariants of
triple cover, the contributions of the singularities e
of triple cover to invariants are due to those of the
singularities of branch locus R.
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e Step 3
Classify the singularities of branch locus R Global Invariants

Gonality of...
Recall the Case for...

Most difficult problem : How to classify the singulari-
ties of the branch locus ?

e Select a good standard of classification:

Home Page
multiplicity of a singular point ? Til Page
(compare with the case for g = 2) | » |

<> |

It becomes more complex in triple cover.

Page 34 of 53

e A good classification can simplify the computation Go back
of relatively invariants. Full Screen
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e Branch locus of triple cover

Let 7 : X — Y triple cover

X normal surface o
Y smooth surface T

e triple cover data (s, t, L)

(1) £ invertible sheaf;

(2) s € H'(X, L?) TR
(8)0#te H' X, L Tt Pege
(4)Y is the normalization of the surface defined by

P rsz+t=0

in the Iine bundle Of £ Page 35 of 53
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o 2%+ 5sz+t=0Iis minimal «<= there is no prime p,

Global Invariants

2 3 onality of...
p ‘ S’ p ‘ t gecallltt};wefCase for...
e Any triple cover can be defined by a minimal equa-

tion.
e (S.-L. Tan 2000) definition of (a, b, c)

453 742 4g3 1 T2 | Home Page_|
a = : b —  C = . Title Page
ged (s7,8) ged (53, 12) ged (53, 12) Y
e Decomposition (o[>
Page 36 of 53
a = 4aya2al, b = 27b1b%, ¢ = e1¢2,
where ay, az, by, ¢, are square-free and _Fut |
ng (a’17 0/2) — ng (ze’ b]) — ].. Close

Quit



(S.-L. Tan 2000)
Relation between (a, b, c) and (s, )
s = arasbiag, t = a1a5bbo.
Branch locus of triple cover
A; = Div(a;), B; = Div(b;), C; = Div(c;).

Simple ramified locus: D; = B; + C}
Totally ramified locus: D, = A; + A

Branch locus: R = D; + 2D,

Non-hyperelliptic. ..
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e (S.-L. Tan 2000)
DlEQH,UZSL—Al—Bl—QAQ—CO.

e (S.-L. Tan & D.-Q.Zhang 2004)
7 is Galois iff D; = 0 and n = 0.
e ¢ is the double cover of (D1, n),

Non-hyperelliptic. ..

/
X/ ¢ X Home Page
Title Page
7 T
2 Page 38 of 53
Y/ = b 1 & 1 Y Go Back
¢ Full Screen

. Close
o 7' iS Zs3 — cover
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e (Canonical resolution

Tk Tk—1 T2 71

Vi —— Y . Ys Y, %
Non-hyperelliptic. ..
= Tk Thk—1 e 79 T T
X, — 2k xS0k X,— 22 x 2 x
Home Page
e Branch locus of 7, is smooth, so is Y. Tile Page

e Compute the data (a/, ¥/, ¢) of m;:

Page 39 of 53

a+b=c = oja+ob=o0]c Go Back

Full Screen

Eliminate the common factors,

Close

a—+b=¢.
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e Global Invariants of triple cover (S.-L.Tan 2000)

Global Invariants
Gonality of...
Recall the Case for...

1 4
K% = 3K + éDf +2D1 Ky + §D% + 4Dy Ky —11.
L o 1 5o, 1
X(Oj(> = 3X(O§/) + éDl + ZDle/ + 1_8D2 + §D2Kf/ — 1y
where r, ro are the contributions of the singulari- e ]
ties of triple cover to global invariants which can be e |
computed by canonical resolution. | >
I
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e (Consider canonical resolution

X X
Non-hyperelliptic. ..
T s
Y]{? Y Home Page
can.res. Title Page

Let p singularity of branch locus R
o1 blowing up p

FE strict transform of oy

&1 totally transform of £ in Y,

Page 41 of 53
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e Define o
Zﬂ,p = 77'*51

e Z.,is acycle of exceptional curves.




e For simplicity, we denote

Zrp =T 0"(p)

Non-hyperelliptic. ..

e Another definition of Z

Zﬂ',p — ng {d’[lv(ﬁ-*o-*g> | g E mp}’ Home Page

Title Page

where m,, is the maximal ideal of local ring Oy,
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e Fundamental Cycle

Theorem 7, has a unique decomposition as fol- | ge=maen
|OWS . Recall the Case for...

Lnp =21+ Lo+ 243, Z; >0,
satisfying that

(1) 2i2; =0, i #35); | e Pag
(2) either Z; = 0, or Z; is the fundamental cycle of its e Page
support; R BN
(3) if p totally ramified, then Z;, > Z, > Z. Tl |
Page 43 of 53
e Corollary 7Z; > -3,  Gosak_|
equality holds iff Z, = Z3 = 0. Full Sereon
Close

Quit



e Definition

Global Invariants

71 . The fist fundamental cycle; Gonalty o...
Recall the Case for...
: :
Z, : The second fundamental cycle; SR

Z3 . The third fundamental cycle.

Home Page

i

e Any singularity of branch locus has unique triples T
(ZlaZ?aZ?))' | »

< > |
Page 44 of 53
e Local Invariants of p Go Back

. Full Screen
72 pJZ) (i=1,2,3 ST
t p ( ) < ) Close

e The invariants are independent of resolution. u



e Assuming p totally ramified, ¢ = 7—1(p), then
(1) ¢ rational double point
> pa(Z1) = pu(Z2) =0 & Z3 =10
(2) ¢ rational triple point

Non-hyperelliptic. ..

<j:> pa(Zl) — 0 ZQ — Z3 — O Home Page
(3) ¢ is smooth
< pa<Zl) — pa(Z2) = pa<Zg) — 0.

Page 45 of 53
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e R = D;+ 2D, branch locus I
WUZtP(R) Z 2pa<Zl) _|_ Qpa(ZZ) —|_ 2pa(Z3). Close
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e Remark o
In the case for double cover, we also have a similar Global Invarians
reSU It Gonality of...

Recall the Case for ...

Theorem If 7 is a double cover, p is the singular

point of branch locus B, then Z, , has a unique de-
composition as follows.

Zﬂjp = Zl -+ 227 ZZ 2 O7 Home Page
satisfying that ﬁ]
(1) 129 =0 | » |
(2) either Z, = 0, or Z, is the fundamental cycle of its ] |
support;
(3) Z1 > ZQ, Go Back
(4) Z3 > —2, equality holds iff Z; = 0. Ful Scrcen

Close

Quit



e (Double cover)
(3 — 3) singularity <= p,(Z1) = 1 and p,(Z>) = 0.

Non-hyperelliptic. ..

negligible singular point < Z? = —2and p,(Z;) = 0.

e |t suggest that we can classify singular points of
branch locus by considering the local invariants Z?
and pa(Zz) Home Page

Title Page
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e C(lassify singularities of branch locus of triple cover

Global Invariants
Gonality of...
Recall the Case for...

— There are 9 classes of singularities of branch
locus of triple cover.

— Any singularity of branch locus can be replaced
by 9 classes of singularities above, which doesn’t
influence its contribution to global invariants.

KR
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e Standard of Classification:
(1) ZZ? =
(2) pa(Zz) — O Or not? Non-hyperelliptic. ..

e Example
type(0) good cusp: p is totally ramified &

pa(Zl) — pa(Z2> = pa<Z3) =0

Home Page

Title Page

( defined by local equation z> + 4> =0, n > 1.)
type(1) Z# = —3 (triple point) e
...... (omit)
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e Relatively Invariantsof f : 5 — C

7 : Sy — P, corresponding triple cover oty
Recall the Case for...
R = D{+ 2D branch locus

DlF = (1, DQF = (9
where F'is a generic fiber.

3(9 -+ 1>Kj2c = Qrp, + 4(9 _ ]_)TDQ _ r/l Home Page

36(9 -+ 1)Xf — 67"D1 -+ 2(59 + 1)TD2 o ré Title Page
ef:Tpl—f-QTDQ—Té RKEEN
@ a1 | > |

D\Dy = ————3"py + 57,

(2@1 o 2) (2@2 T 2) Page 50 of 53

Where Go Back

Full Screen
W_B9=Y _(9=3) o (9+5 (9-9 _rursoenn |
2 2001 — 2/ 2 2001 — 2 _ Cose |

ri, ry, r5 are contributions of singularities of triple
cover to relatively invariants.



e The computation of relatively invariants is also due
to two parts (compare with the case for g = 2): Global Invariants

Gonality of...
Recall the Case for...

(1) relatively ramified of branch locus R = Dy + 2Ds;

(2) contributions of singular points of R to the rela-
tively invariants.

Home Page
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e We only need to compute contribution of each type
of singular point to the relatively invariants. < | > |
]|
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e Stepd (¢ =3, & non-hyperelliptic)
Sl”gUlar Index Global Invariants

Gonality of...
From the computation of global invariants of triple
cover, we have (semistable)

, 1 7 13 4
Kf = gsl + 359 + 553 + 254 + 385 + §567
1 —I_ 1 —|_ 4 —|_ 1 —|_ 4 —|_ 1 Home Page
= —S —S —S —S _85 =S Title Page
Xf 9 1 3 2 9 3 3 4 9 9 6
er = 51+ So+ 353+ 254 + S5, RKEEN
where s; > 0. PA%
e s, relates to the number of singularities of branch
locus. LI
Full Screen
e g >4 & trigonal fibration. Gioss

a similar result. —
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