Riccati foliations and Double Riccati foliations

JUN LU
Department of Mathematics
East China Normal University

$$
\text { 2021. } 11.16
$$

1. Definition of Foliation

- X: algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}:$ maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=U_{\alpha} U_{\alpha}$,

$$
s \left\lvert\, U_{\alpha}=A\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial x_{\alpha}}+B\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial y_{\alpha}}\right., \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha}
$$

- s|${U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X: algebaic surface, T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

- Open covering $X=\cup_{\alpha} U_{\alpha}$,
- $\left.s\right|_{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X: algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,

- $\left.s\right|_{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X : algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,

$$
\left.s\right|_{U_{\alpha}}=A\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial x_{\alpha}}+B\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial y_{\alpha}}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- s|${U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$

1. Definition of Foliation

- X : algebaic surface,
T_{X} : tangent bundle of X.
$\mathcal{L}^{-1} \subseteq T_{X}$: maximal sub-line bundle.
- Foliation \mathcal{F} is a section

$$
s \in H^{0}\left(X, T_{X} \otimes \mathcal{L}\right)
$$

- Open covering $X=\cup_{\alpha} U_{\alpha}$,

$$
\left.s\right|_{U_{\alpha}}=A\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial x_{\alpha}}+B\left(x_{\alpha}, y_{\alpha}\right) \frac{\partial}{\partial y_{\alpha}}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.s\right|_{U_{\alpha}}=\left.g_{\alpha \beta} s\right|_{U_{\beta}}, \mathcal{L}=\left\{g_{\alpha \beta}\right\}$.

1. Definition of Foliations

- Exact sequence

$N_{\mathcal{F}}$ line bundle,

$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

$$
\omega_{X}:=\Lambda^{2} \Omega_{X}=K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}
$$

Ω_{X} cotangent bundle of X,
$N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliations

- $T_{\mathcal{F}}:=\mathcal{L}^{-1}$ tangent bundle of \mathcal{F}, $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact sequence

$N_{\mathcal{F}}$ line bundle,

$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

$$
\omega_{X}:=\Lambda^{2} \Omega_{X}=K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}
$$

Ω_{X} cotangent bundle of X,
$N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliations

- $T_{\mathcal{F}}:=\mathcal{L}^{-1}$ tangent bundle of \mathcal{F}, $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact sequence

$$
0 \rightarrow T_{\mathcal{F}} \xrightarrow{\cdot s} T_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \rightarrow 0
$$

$N_{\mathcal{F}}$ line bundle, $\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

Ω_{X} cotangent bundle of X,
$N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliations

- $T_{\mathcal{F}}:=\mathcal{L}^{-1}$ tangent bundle of \mathcal{F}, $K_{\mathcal{F}}:=\mathcal{L}$ canonical bundle of \mathcal{F}.
- Exact sequence

$$
0 \rightarrow T_{\mathcal{F}} \xrightarrow{.5} T_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes N_{\mathcal{F}} \rightarrow 0
$$

$N_{\mathcal{F}}$ line bundle,
$\mathcal{I}_{Z(s)}$ ideal sheaf of $Z(s)$ (zero set of s).

- Canonical bundle

$$
\omega_{X}:=\wedge^{2} \Omega_{X}=K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}
$$

Ω_{X} cotangent bundle of X, $N_{\mathcal{F}}^{-1}$ conormal bundle of \mathcal{F}.

1. Definition of Foliation

- Equivalently,

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

$$
\left.\omega\right|_{u_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha}
$$

$\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N} \mathcal{F}=\left\{f_{\alpha \beta}\right\}$

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right) .
$$

$$
\omega \mid U_{\alpha}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

$$
\omega \mid U_{\alpha}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

-

$$
\left.\omega\right|_{U_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

1. Definition of Foliation

- Equivalently,

$$
0 \rightarrow N_{\mathcal{F}}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \rightarrow 0
$$

- The second definition of Foliation \mathcal{F} :

$$
\omega \in H^{0}\left(X, \Omega_{X} \otimes N_{\mathcal{F}}\right)
$$

-

$$
\left.\omega\right|_{U_{\alpha}}=B\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha}-A\left(x_{\alpha}, y_{\alpha}\right) d y_{\alpha}, \quad\left(x_{\alpha}, y_{\alpha}\right) \in U_{\alpha} .
$$

- $\left.\omega\right|_{U_{\alpha}}=\left.f_{\alpha \beta} \omega\right|_{U_{\beta}}, \mathcal{N}_{\mathcal{F}}=\left\{f_{\alpha \beta}\right\}$.

2. Example (1): fibration

- Fiber $F_{t}=f^{-1}(t), t \in C$.
- Foliation \mathcal{F} generated by f :

$\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.

2. Example (1): fibration

- Fibration $f: X \rightarrow C$,
C smooth curve, f holomorphic and surjective.
- Foliation \mathcal{F} generated by f :

$\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.

2. Example (1): fibration

- Fibration $f: X \rightarrow C$,
C smooth curve, f holomorphic and surjective.
- Fiber $F_{t}=f^{-1}(t), t \in C$.
- Foliation \mathcal{F} generated by f

$\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.

2. Example (1): fibration

- Fibration $f: X \rightarrow C$,
C smooth curve, f holomorphic and surjective.
- Fiber $F_{t}=f^{-1}(t), t \in C$.
- Foliation \mathcal{F} generated by f :

$$
\begin{gathered}
\omega=\frac{1}{\mu(f)}\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y\right) \quad \text { (local eq.), } \\
\mu(f)=\operatorname{gcd}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
\end{gathered}
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f))
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{1}=f^{*} \Omega_{C}(D(f)) .
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t=c}\left(F_{t}-F_{t, \text { red }}\right)($ zero divisor of $d f)$.
- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f)) .
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t \in C}\left(F_{t}-F_{t, \text { red }}\right)$ (zero divisor of $d f$).
- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f)) .
$$

2. Example (1): fibration

- Canonical bundle of \mathcal{F} :

$$
K_{\mathcal{F}}=\omega_{X / C}(-D(f))
$$

where

- $\omega_{X / C}:=\omega_{X} \otimes f^{*} \Omega_{C}^{-1}$ (relative canonical bundle)
- $D(f):=\sum_{t \in C}\left(F_{t}-F_{t, \text { red }}\right)$ (zero divisor of $d f$).
- Conormal bundle of \mathcal{F} :

$$
N_{\mathcal{F}}^{-1}=f^{*} \Omega_{C}(D(f))
$$

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$.

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\longrightarrow}$ general fiber F of φ
transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Iocal equation:

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$, degree of $\mathcal{F}: r:=\operatorname{deg} \mathcal{F}$.

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$.

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Local equation:
$\omega=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y, \quad x \in B, y \in F$
- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$,
degree of \mathcal{F} : $r:=\operatorname{deg} \mathcal{F}$.

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$.

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Local equation:
$\omega=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y, \quad x \in B, y \in F$.
- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$,
degree of \mathcal{F} : $r:=\operatorname{deg} \mathcal{F}$.

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$.

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Local equation:

$$
\omega=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y, \quad x \in B, y \in F
$$

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$, degree of \mathcal{F} : $r:=\operatorname{deg} \mathcal{F}$.

2. Example (2): Riccati foliations

- Ruled surface $\varphi: X \rightarrow B$.

Riccati Foliation \mathcal{F} w.r.t. $\varphi \stackrel{\text { def }}{\Longleftrightarrow}$ general fiber F of φ transverse to \mathcal{F}.

- \mathcal{F} Riccati foliation $\Longleftrightarrow K_{\mathcal{F}} F=0$.
- Local equation:

$$
\omega=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y, \quad x \in B, y \in F
$$

- Canonical bundle of $\mathcal{F}: K_{\mathcal{F}}=r F$, degree of $\mathcal{F}: r:=\operatorname{deg} \mathcal{F}$.

2. Example (3): Double Riccati foliations

- Double cover $\pi: Y \rightarrow X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \rightarrow B$. - Double Riccati foliation $\pi^{*} \mathcal{F}: \omega_{Y}:=\pi^{*} \omega_{X}$, where

$$
\omega_{x}=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y \text { (local). }
$$

2. Example (3): Double Riccati foliations

- Double cover $\pi: Y \rightarrow X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \rightarrow B$.
- Double Riccati foliation $\pi^{*} \mathcal{F}: \omega_{Y}:=\pi^{*} \omega_{X}$, where

$$
\omega_{x}=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y \text { (local). }
$$

2. Example (3): Double Riccati foliations

- Double cover $\pi: Y \rightarrow X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \rightarrow B$.
- Double Riccati foliation $\pi^{*} \mathcal{F}: \omega_{Y}:=\pi^{*} \omega X$, where

$$
\omega x=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y \text { (local). }
$$

2. Example (3): Double Riccati foliations

- Double cover $\pi: Y \rightarrow X$.
- Riccati foliation \mathcal{F} w.r.t. $\varphi: X \rightarrow B$.
- Double Riccati foliation $\pi^{*} \mathcal{F}: \omega_{Y}:=\pi^{*} \omega_{X}$, where

$$
\omega_{x}=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y \text { (local). }
$$

3. \mathcal{F}-invariant curve

\mathcal{F} foliation: $\left\{\left(U_{\alpha}, \omega_{\alpha}\right)\right\}$ (or $\left\{\left(U_{\alpha}, s_{\alpha}\right)\right\}$),

or

$$
\omega_{\alpha}=B_{\alpha} d x_{\alpha}-A_{\alpha} d y_{\alpha} .
$$

- $C \subseteq X$ curve defined by $f_{\alpha}=0$ on U_{α}.
C is \mathcal{F}-invariant $\stackrel{\text { def }}{\Longleftrightarrow}$

$$
\forall p \in C \text {, vector } s(p) \text { is tangent to } C \text { at } p .
$$

3. \mathcal{F}-invariant curve

- \mathcal{F} foliation: $\left\{\left(U_{\alpha}, \omega_{\alpha}\right)\right\}$ (or $\left.\left\{\left(U_{\alpha}, s_{\alpha}\right)\right\}\right)$,

$$
s_{\alpha}=A_{\alpha} \frac{\partial}{\partial x_{\alpha}}+B_{\alpha} \frac{\partial}{\partial y_{\alpha}}
$$

or

$$
\omega_{\alpha}=B_{\alpha} d x_{\alpha}-A_{\alpha} d y_{\alpha}
$$

- $C \subseteq X$ curve defined by $f_{\alpha}=0$ on U_{α}.
C is \mathcal{F}-invariant $\stackrel{\text { def }}{\Longleftrightarrow}$
$\forall p \in C$, vector $s(p)$ is tangent to C at p.

3. \mathcal{F}-invariant curve

- \mathcal{F} foliation: $\left\{\left(U_{\alpha}, \omega_{\alpha}\right)\right\}$ (or $\left.\left\{\left(U_{\alpha}, s_{\alpha}\right)\right\}\right)$,

$$
s_{\alpha}=A_{\alpha} \frac{\partial}{\partial x_{\alpha}}+B_{\alpha} \frac{\partial}{\partial y_{\alpha}}
$$

or

$$
\omega_{\alpha}=B_{\alpha} d x_{\alpha}-A_{\alpha} d y_{\alpha}
$$

- $C \subseteq X$ curve defined by $f_{\alpha}=0$ on U_{α}.
C is \mathcal{F}-invariant $\stackrel{\text { def }}{\Longleftrightarrow}$
$\forall p \in C$, vector $s(p)$ is tangent to C at p.

3. \mathcal{F}-invariant curve

\mathcal{C} is \mathcal{F}-invariant iff

- iff f_{α} is the solution of ODE

Example

Let \mathcal{F} be a foliation generated by a fibration $f: X \rightarrow C$. Then $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.

3. \mathcal{F}-invariant curve

\mathcal{C} is \mathcal{F}-invariant iff
0

$$
f_{\alpha} \mid s\left(f_{\alpha}\right)
$$

- iff f_{α} is the solution of ODE

$$
\omega_{\alpha}=0
$$

Example

Let \mathcal{F} be a foliation generated by a fibration $f: X \rightarrow C$. Then $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.

3. \mathcal{F}-invariant curve

\mathcal{C} is \mathcal{F}-invariant iff

0

$$
f_{\alpha} \mid s\left(f_{\alpha}\right)
$$

- iff f_{α} is the solution of ODE

$$
\omega_{\alpha}=0 .
$$

Example
 Let \mathcal{F} be a foliation generated by a fibration $f: X \rightarrow C$. Then $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f

3. \mathcal{F}-invariant curve

C is \mathcal{F}-invariant iff
-

$$
f_{\alpha} \mid s\left(f_{\alpha}\right)
$$

- iff f_{α} is the solution of ODE

$$
\omega_{\alpha}=0 .
$$

Example

Let \mathcal{F} be a foliation generated by a fibration $f: X \rightarrow C$. Then $C \subseteq X$ is \mathcal{F}-invariant iff C lies in the fibers of f.

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration (i.e. \mathcal{F} is algebraic)

Theorem (Jouanolou, 1978)

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration (i.e. \mathcal{F} is algebraic)

Theorem (Jouanolou, 1978)

If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration (i.e. \mathcal{F} is algebraic) $\Longrightarrow s=\infty$.

Theorem (Jouanolou, 1978)
If

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration (i.e. \mathcal{F} is algebraic) $\Longrightarrow s=\infty$.

Theorem (Jouanolou, 1978)

If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

3. \mathcal{F}-invariant curve

$s:=$ the number of irreducible compact \mathcal{F}-invariant curves.

- Question 1: When does $s=\infty$?
- \mathcal{F} generated by a fibration (i.e. \mathcal{F} is algebraic) $\Longrightarrow s=\infty$.

Theorem (Jouanolou, 1978)

If

$$
s \geq h^{0}\left(X, K_{\mathcal{F}}\right)+h^{1,1}(X)-h^{1,0}(X)+2
$$

then \mathcal{F} is generated by a fibration.

- Question 2: How to determine all \mathcal{F}-invariant curves when $s<\infty$?

4. Invariants of \mathcal{F}

- Kodaira dimension of \mathcal{F} :

$$
\operatorname{Kod}(\mathcal{F}):=\limsup _{n \rightarrow+\infty} \frac{\log h^{0}\left(n K_{\mathcal{F}}\right)}{\log n}
$$

- Numerical Kodaira dimension of $\mathcal{F}: \nu(\mathcal{F})$.
- (Brunella) $\operatorname{Kod}(\mathcal{F}) \neq \nu(\mathcal{F})$ iff $\operatorname{Kod}(\mathcal{F})=-\infty$ and $\nu(\mathcal{F})=1$.
- Pluri-genus of $\mathcal{F}: p_{n}(\mathcal{F}):=h^{0}\left(n K_{\mathcal{F}}\right)$

4. Invariants of \mathcal{F}

- Kodaira dimension of \mathcal{F} :

$$
\operatorname{Kod}(\mathcal{F}):=\limsup _{n \rightarrow+\infty} \frac{\log h^{0}\left(n K_{\mathcal{F}}\right)}{\log n}
$$

- Numerical Kodaira dimension of $\mathcal{F}: \nu(\mathcal{F})$.
- (Brunella) $\operatorname{Kod}(\mathcal{F}) \neq \nu(\mathcal{F})$ iff $\operatorname{Kod}(\mathcal{F})=-\infty$ and $\nu(\mathcal{F})=1$.
- Pluri-genus of $\mathcal{F}: p_{n}(\mathcal{F}):=h^{0}\left(n K_{\mathcal{F}}\right)$

4. Invariants of \mathcal{F}

- Kodaira dimension of \mathcal{F} :

$$
\operatorname{Kod}(\mathcal{F}):=\limsup _{n \rightarrow+\infty} \frac{\log h^{0}\left(n K_{\mathcal{F}}\right)}{\log n}
$$

- Numerical Kodaira dimension of $\mathcal{F}: \nu(\mathcal{F})$.
- (Brunella) $\operatorname{Kod}(\mathcal{F}) \neq \nu(\mathcal{F})$ iff $\operatorname{Kod}(\mathcal{F})=-\infty$ and $\nu(\mathcal{F})=1$.
- Pluri-genus of $\mathcal{F}: p_{n}(\mathcal{F}):=h^{0}\left(n K_{\mathcal{F}}\right)$

4. Invariants of \mathcal{F}

- Kodaira dimension of \mathcal{F} :

$$
\operatorname{Kod}(\mathcal{F}):=\limsup _{n \rightarrow+\infty} \frac{\log h^{0}\left(n K_{\mathcal{F}}\right)}{\log n}
$$

- Numerical Kodaira dimension of $\mathcal{F}: \nu(\mathcal{F})$.
- (Brunella) $\operatorname{Kod}(\mathcal{F}) \neq \nu(\mathcal{F})$ iff $\operatorname{Kod}(\mathcal{F})=-\infty$ and $\nu(\mathcal{F})=1$.
- Pluri-genus of $\mathcal{F}: p_{n}(\mathcal{F}):=h^{0}\left(n K_{\mathcal{F}}\right)$

4. Invariants of \mathcal{F}

- Kodaira dimension of \mathcal{F} :

$$
\operatorname{Kod}(\mathcal{F}):=\limsup _{n \rightarrow+\infty} \frac{\log h^{0}\left(n K_{\mathcal{F}}\right)}{\log n}
$$

- Numerical Kodaira dimension of $\mathcal{F}: \nu(\mathcal{F})$.
- (Brunella) $\operatorname{Kod}(\mathcal{F}) \neq \nu(\mathcal{F})$ iff $\operatorname{Kod}(\mathcal{F})=-\infty$ and $\nu(\mathcal{F})=1$.
- Pluri-genus of $\mathcal{F}: p_{n}(\mathcal{F}):=h^{0}\left(n K_{\mathcal{F}}\right)$

4. Invariants of \mathcal{F}

4. Invariants of \mathcal{F}

- Chern number of $\mathcal{F}(\operatorname{Tan} 2015):$

$$
\begin{gathered}
c_{1}^{2}(\mathcal{F}) \geq 0, c_{2}(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0 \\
c_{1}^{2}(\mathcal{F})+c_{2}(\mathcal{F})=12 \chi(\mathcal{F})
\end{gathered}
$$

Example (Tan 2015)

Let \mathcal{F} be a foliation ge nerated by a fibration $: X \rightarrow C$. Then

$$
c_{1}^{2}(\mathcal{F})=\kappa(f), c_{2}(\mathcal{F})=\delta(f), \chi(\mathcal{F})=\lambda(f)
$$

4. Invariants of \mathcal{F}

- Chern number of $\mathcal{F}(\operatorname{Tan} 2015):$

$$
\begin{gathered}
c_{1}^{2}(\mathcal{F}) \geq 0, c_{2}(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0 \\
c_{1}^{2}(\mathcal{F})+c_{2}(\mathcal{F})=12 \chi(\mathcal{F})
\end{gathered}
$$

Example (Tan 2015)

Let \mathcal{F} be a foliation generated by a fibration $f: X \rightarrow C$. Then

$$
c_{1}^{2}(\mathcal{F})=\kappa(f), c_{2}(\mathcal{F})=\delta(f), \chi(\mathcal{F})=\lambda(f)
$$

1. Invariants

- \mathcal{F} Riccati foliation w.r.t. a Hirzebruch surface

Theorem (Lu, Tan)

(1) $c_{1}^{2}(\mathcal{F})=c_{2}(\mathcal{F})=\chi(\mathcal{F})=0$.
(2) $\operatorname{kod}(\mathcal{F}) \leq 1$.
(3) $p_{n}(\mathcal{F})=\max \left\{n \operatorname{deg} \mathcal{F}-\sum_{p}\left\lceil\frac{n}{n_{p}}\right\rceil+1,0\right\}$
p singularity of \mathcal{F} with eigenvalue $\frac{m_{p}}{n_{p}}$.

1. Invariants

- \mathcal{F} Riccati foliation w.r.t. a Hirzebruch surface $\varphi: X \rightarrow B$.

Theorem (Lu, Tan)

(1) $c_{1}^{2}(\mathcal{F})=c_{2}(\mathcal{F})=\chi(\mathcal{F})=0$. (2) $\operatorname{kod}(\mathcal{F}) \leq 1$.
(3) $p_{n}(\mathcal{F})=\max \left\{n \operatorname{deg} \mathcal{F}-\sum_{p}\left\lceil\frac{n}{n_{p}}\right\rceil+1,0\right\}$
p singularity of \mathcal{F} with eigenvalue

1. Invariants

- \mathcal{F} Riccati foliation w.r.t. a Hirzebruch surface $\varphi: X \rightarrow B$.

Theorem (Lu, Tan)

(1) $c_{1}^{2}(\mathcal{F})=c_{2}(\mathcal{F})=\chi(\mathcal{F})=0$.
(2) $\operatorname{kod}(\mathcal{F}) \leq 1$.
(3) $p_{n}(\mathcal{F})=\max \left\{n \operatorname{deg} \mathcal{F}-\sum_{p}\left\lceil\frac{n}{n_{p}}\right\rceil+1,0\right\}$
p singularity of \mathcal{F} with eigenvalue $\frac{m_{p}}{n_{p}}$.

2. Classification

- Classification of \mathcal{F} with $\operatorname{kod}(\omega)$

Theorem

Up to a birational map, we have$(18 x-12) y-7 x) d x-24 x(x-1) d y$(10.. 30)... 11.. di. $50 .(x-1) d y$$(30 x-20) y-119 x) d x-60 x(x-1) d y$

2. Classification

- Classification of \mathcal{F} with $\operatorname{kod}(\omega)=-\infty($ Lu, Tan $)$

Theorem

Up to a birational map, we have
(1) $\omega=d y$;
(2) $\omega=\lambda y d x-x d y\left(\lambda \in \mathbb{Q}^{+}\right.$and $\left.\lambda \leq \frac{1}{2}\right)$;
(3) $\omega=\left((x-1) y^{2}-x y+\lambda^{2}\right) d x-2 x(x-1) d y\left(\lambda \in \mathbb{Q}^{+}\right.$and $\left.\lambda \leq \frac{1}{2}\right)$;

4 $\omega=\left(y^{2}+(8 x-4) y-5 x\right) d x-12 x(x-1) d y$;
(5) $\omega=\left(y^{2}+(18 x-12) y-7 x\right) d x-24 x(x-1) d y$;
(6) $\omega=\left(y^{2}+(40 x-30) y-11 x\right) d x-60 x(x-1) d y$;
(7) $\omega=\left(y^{2}+(30 x-20) y-119 x\right) d x-60 x(x-1) d y$

2. Classification

- Classification of \mathcal{F} with $\operatorname{kod}(\omega)=0(L u, \operatorname{Tan})$

Theorem

2. Classification

- Classification of \mathcal{F} with $\operatorname{kod}(\omega)=0$ (Lu, Tan)

Theorem

(1) $\omega=y d x-d y$
(2) $\omega=\lambda y d x-x d y(\lambda \notin \mathbb{Q}$ and $|\operatorname{Re} \lambda| \leq 1 / 2)$
(3) $\omega=\left((x-1) y^{2}-x y+\lambda^{2}\right) d x-2 x(x-1) d y(\lambda \notin \mathbb{Q})$
(4) $\omega=(1+x y) d x-2 x(x-1) d y$
(5) $\omega=\left(y^{2}+(x+2) y+1\right) d x-2 x^{2} d y$
(6) $\omega=(\epsilon-y+2 x y) d x-3 x(x-1) d y(\epsilon=0,1)$
(7) $\omega=\left(-y+2 x y+y^{2}\right) d x-3 x(x-1) d y$
(8) $\omega=\left(y^{2}-4 x y+2 y-3\right) d x-12 x(x-1) d y$

3. Algebraic Riccati foliation

- When is \mathcal{F} an algebraic Riccati foliation ?

```
Theorem (Gong, Lu, Tan)
\mathcal{F}}\mathrm{ is algebraic ff it occurs in one of the following cases (up to 
birational map):
```



```
\omega}=dy
(An)
(Dn+2)
\omega = \varphi ^ { \prime } v d x - n \varphi d y ;
(\mp@subsup{E}{6}{})
\omega= \varphi
(E6) \omega= \varphi'(y2}+4(2\varphi-1)y-5\varphi)dx-12\varphi(\varphi-1)dy
(E7) \omega}=\mp@subsup{\varphi}{}{\prime}(\mp@subsup{y}{}{2}+6(3\varphi-2)y-7\varphi)dx-24\varphi(\varphi-1)dy
(E8) \omega= \varphi'(\mp@subsup{y}{}{2}+10(4\varphi-3)y-11\varphi)dx-60\varphi(\varphi-1)dy.
```

where $\varphi \in \mathbb{C}(x)$.

3. Algebraic Riccati foliation

- When is \mathcal{F} an algebraic Riccati foliation ?

Theorem (Gong, Lu, Tan)

\mathcal{F} is algebraic iff it occurs in one of the following cases (up to a birational map):
(O) $\omega=d y$;
$\left(A_{n}\right) \omega=\varphi^{\prime} y d x-n \varphi d y$;
$\left(D_{n+2}\right) \omega=\varphi^{\prime}\left(y^{2}+n(\varphi-1) y-\varphi\right) d x-2 n \varphi(\varphi-1) d y$;
(E6) $\omega=\varphi^{\prime}\left(y^{2}+4(2 \varphi-1) y-5 \varphi\right) d x-12 \varphi(\varphi-1) d y$;
$\left(E_{7}\right) \quad \omega=\varphi^{\prime}\left(y^{2}+6(3 \varphi-2) y-7 \varphi\right) d x-24 \varphi(\varphi-1) d y$;
(E $\left.E_{8}\right) \quad \omega=\varphi^{\prime}\left(y^{2}+10(4 \varphi-3) y-11 \varphi\right) d x-60 \varphi(\varphi-1) d y$.
where $\varphi \in \mathbb{C}(x)$.

3. Algebraic Riccati foliation

- Algebraic foliation of type A_{n}

Corollary (Gong, Lu, Tan)
is an algebraic foliation of type A_{n}
\Longleftrightarrow it has two \mathcal{F}-invariant section of φ
\Longleftrightarrow it is from a fibration $f: X \rightarrow \mathbb{P}^{1}$ with two singular fibers.

- A fibration $f: X \rightarrow C$ is Riccatian of type $A_{n}\left(D_{n}, E_{k}, \ldots\right)$
$\stackrel{\text { def }}{\Longleftrightarrow} \omega=d f$ gives a Riccati foliation of type $A_{n}\left(D_{n}, E_{k}, \ldots\right)$

3. Algebraic Riccati foliation

- Algebraic foliation of type A_{n}

Corollary (Gong, Lu, Tan)

\mathcal{F} is an algebraic foliation of type A_{n}
\Longleftrightarrow it has two \mathcal{F}-invariant section of φ
\Longleftrightarrow it is from a fibration $f: X \rightarrow \mathbb{P}^{1}$ with two singular fibers.

- A fibration $f: X \rightarrow C$ is Riccatian of type $A_{n}\left(D_{n}, E_{k}, \ldots\right)$ $\stackrel{\text { def }}{\Longleftrightarrow} \omega=d f$ gives a Riccati foliation of type $A_{n}\left(D_{n}, E_{k}, \ldots\right)$

3. Algebraic Riccati foliation

- Algebraic foliation of type A_{n}

Corollary (Gong, Lu, Tan)

\mathcal{F} is an algebraic foliation of type A_{n}
\Longleftrightarrow it has two \mathcal{F}-invariant section of φ
\Longleftrightarrow it is from a fibration $f: X \rightarrow \mathbb{P}^{1}$ with two singular fibers.

- A fibration $f: X \rightarrow C$ is Riccatian of type $A_{n}\left(D_{n}, E_{k}, \ldots\right)$ $\stackrel{\text { def }}{\Longleftrightarrow} \omega=d f$ gives a Riccati foliation of type $A_{n}\left(D_{n}, E_{k}, \ldots\right)$

3. Algebraic Riccati foliation

\section*{Corollary
 An elliptic fibration $f: X \rightarrow C$ on a rational surface X is Riccatian iff f is birational to
 | Type | Riccati foliations | Families | Singular fibers |
| :--- | :--- | :--- | :--- |
| A_{1} | $\left(3 x^{2}+1\right) y d x-2\left(x^{3}+x+c\right) d y$ | $y^{2}=t\left(x^{3}+x+c\right)$ | I_{0}^{*}, I_{0}^{*} |
| A_{2} | $(2 x-1) y d x-3 x(x-1) d y$ | $y^{3}=t x(x-1)$ | IV, IV |
| A_{3} | $(2 x-1) y d x-4 x(x-1) d y$ | $y^{4}=t x(x-1)$ | III, III* |
| A_{5} | $(3 x-2) y d x-6 x(x-1) d y$ | $y^{6}=t x^{2}(x-1)$ | $\mathrm{II}, \mathrm{II}^{*}$ |
| D_{4} | $\left(y^{2}-x y-1\right) d x-\left(3 x^{2}-4\right) d y$ | $g_{1}^{3}=t\left(3 x^{2}-4\right) g 2^{3}$ | $\mathrm{IV}, \mathrm{IV}^{*}, 2 I_{0}$ |
 Where}

3. Algebraic Riccati foliation

Corollary

An elliptic fibration $f: X \rightarrow C$ on a rational surface X is Riccatian iff f is birational to

Type	Riccati foliations	Families	Singular fibers
A_{1}	$\left(3 x^{2}+1\right) y d x-2\left(x^{3}+x+c\right) d y$	$y^{2}=t\left(x^{3}+x+c\right)$	$\mathrm{I}_{0}^{*}, \mathrm{I}_{0}^{*}$
A_{2}	$(2 x-1) y d x-3 x(x-1) d y$	$y^{3}=t x(x-1)$	IV, IV
A_{3}	$(2 x-1) y d x-4 x(x-1) d y$	$y^{4}=t x(x-1)$	III, III
A_{5}	$(3 x-2) y d x-6 x(x-1) d y$	$y^{6}=t x^{2}(x-1)$	II, II ${ }^{*}$
D_{4}	$\left(y^{2}-x y-1\right) d x-\left(3 x^{2}-4\right) d y$	$g_{1}{ }^{3}=t\left(3 x^{2}-4\right) g_{2}{ }^{3}$	IV, IV, 2 I

where

$$
g_{1}:=\left(x^{2}-1\right) y^{4}-2 x y^{3}+6 y^{2}-6 x y+3, \quad g_{2}:=y^{4}-4 x y^{3}+6 y^{2}-3
$$

4.Discriminant

- $\omega=\left(g_{0} y^{2}+g_{1} y+g_{2}\right) d x-d y, g_{i} \in \mathbb{C}(x)$.
- Take

- Discriminant of \mathcal{F} :

$$
\Delta(\omega)=g^{\prime}(x)-g(x)^{2}-g_{0}(x) g_{2}(x) .
$$

- $\Delta(\omega) \in H^{0}\left(S^{2} \Omega_{\mathbb{P}^{1}}(\log T)\right)$ where

$$
T=\left\{p \in \mathbb{P}^{1} \mid \Gamma p=\varphi^{-1}(p) \text { is } \mathcal{F} \text { - invariant }\right\} .
$$

4.Discriminant

- $\omega=\left(g_{0} y^{2}+g_{1} y+g_{2}\right) d x-d y, g_{i} \in \mathbb{C}(x)$.
- Discriminant of \mathcal{F} :

$$
\Delta(\omega)=g^{\prime}(x)-g(x)^{2}-g_{0}(x) g_{2}(x)
$$

- $\Delta(\omega) \in H^{0}\left(S^{2} \Omega_{\mathbb{P}^{1}}(\log T)\right)$ where

$$
T=\left\{p \in \mathbb{P}^{1} \mid F p=\varphi^{-1}(p) \text { is } \mathcal{F} \text {-invariant }\right\} .
$$

4.Discriminant

- $\omega=\left(g_{0} y^{2}+g_{1} y+g_{2}\right) d x-d y, g_{i} \in \mathbb{C}(x)$.
- Take

$$
g(x)=\left\{\begin{array}{cl}
\frac{1}{2}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right), & g_{0} \neq 0 \\
\frac{1}{2} g_{1}, & g_{0}=0
\end{array}\right.
$$

- Discriminant of \mathcal{F} :

$$
\Delta(w)=g^{\prime}(x)-g(x)^{2}-g_{0}(x) g_{2}(x)
$$

- $\Delta(\omega) \in H^{0}\left(S^{2} \Omega_{\mathbb{P}^{1}}(\log T)\right)$ where

$$
T=\left\{p \in \mathbb{P}^{1} \mid F p=\varphi^{-1}(p) \text { is } \mathcal{F}-\text { invariant }\right\} .
$$

4.Discriminant

- $\omega=\left(g_{0} y^{2}+g_{1} y+g_{2}\right) d x-d y, g_{i} \in \mathbb{C}(x)$.
- Take

$$
g(x)=\left\{\begin{array}{cc}
\frac{1}{2}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right), & g_{0} \neq 0 \\
\frac{1}{2} g_{1}, & g_{0}=0
\end{array}\right.
$$

- Discriminant of \mathcal{F} :

$$
\Delta(\omega)=g^{\prime}(x)-g(x)^{2}-g_{0}(x) g_{2}(x)
$$

- $\Delta(\omega) \in H^{0}\left(S^{2} \Omega_{\mathbb{P}^{1}}(\log T)\right)$ where

$$
T=\left\{p \in \mathbb{D}^{1} \mid F p=\varphi^{-1}(p) \text { is } \mathcal{F} \text { - invariant }\right\} .
$$

4.Discriminant

- $\omega=\left(g_{0} y^{2}+g_{1} y+g_{2}\right) d x-d y, g_{i} \in \mathbb{C}(x)$.
- Take

$$
g(x)=\left\{\begin{array}{cc}
\frac{1}{2}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right), & g_{0} \neq 0 \\
\frac{1}{2} g_{1}, & g_{0}=0
\end{array}\right.
$$

- Discriminant of \mathcal{F} :

$$
\Delta(\omega)=g^{\prime}(x)-g(x)^{2}-g_{0}(x) g_{2}(x)
$$

- $\Delta(\omega) \in H^{0}\left(S^{2} \Omega_{\mathbb{P}^{1}}(\log T)\right)$ where

$$
T=\left\{p \in \mathbb{P}^{1} \mid F p=\varphi^{-1}(p) \text { is } \mathcal{F}-\text { invariant }\right\}
$$

4.Discriminant

- Invariance of Discriminant

Theorem (Gong, Lu, Tan)

$\Delta(\omega)=\Delta(\tilde{\omega})$ iff $\widetilde{\mathcal{F}}$ can becomes \mathcal{F} by flipping maps and choosing suitable coordinates.

- Criterion for algebraic Riccati foliation

```
Theorem (Gong,Lu,Tan)
F}\mathrm{ is algebraic iff }\Delta(\omega)=\Delta(df)\mathrm{ where df is the foliation with a
standard equation in the above Theorem.
```


4.Discriminant

- Invariance of Discriminant

Theorem (Gong,Lu,Tan)

$\Delta(\omega)=\Delta(\tilde{\omega})$ iff $\widetilde{\mathcal{F}}$ can becomes \mathcal{F} by flipping maps and choosing suitable coordinates.

- Criterion for algebraic Riccati foliation

Theorem (Gong,Lu, Tan)

\mathcal{F} is algebraic iff $\Delta(\omega)=\Delta(d f)$ where $d f$ is the foliation with a standard equation in the above Theorem.

4.Discriminant

- Invariance of Discriminant

Theorem (Gong,Lu,Tan)

$\Delta(\omega)=\Delta(\tilde{\omega})$ iff $\widetilde{\mathcal{F}}$ can becomes \mathcal{F} by flipping maps and choosing suitable coordinates.

- Criterion for algebraic Riccati foliation

Theorem (Gong,Lu,Tan)

\mathcal{F} is algebraic iff $\Delta(\omega)=\Delta(d f)$ where $d f$ is the foliation with a standard equation in the above Theorem.

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

> where
> - $p \in \mathbb{P}^{2}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
> - $\pm \lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}.
> - $\sum \mu_{p}=0$.
> p

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

$$
\Delta(\omega)=\sum_{p} \frac{1-\lambda_{p}^{2}}{4(x-p)^{2}}+\sum_{p} \frac{\mu_{p}}{x-p}
$$

where

- $p \in \mathbb{P}^{2}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
- $+\lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}.

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

$$
\Delta(\omega)=\sum_{p} \frac{1-\lambda_{p}^{2}}{4(x-p)^{2}}+\sum_{p} \frac{\mu_{p}}{x-p}
$$

where

- $p \in \mathbb{P}^{2}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
- $\pm \lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}.

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

$$
\Delta(\omega)=\sum_{p} \frac{1-\lambda_{p}^{2}}{4(x-p)^{2}}+\sum_{p} \frac{\mu_{p}}{x-p}
$$

where

- $p \in \mathbb{P}^{2}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
- $\pm \lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}.

4.Discriminant

- If all singularities of \mathcal{F} have non-zero eigenvalue, then

$$
\Delta(\omega)=\sum_{p} \frac{1-\lambda_{p}^{2}}{4(x-p)^{2}}+\sum_{p} \frac{\mu_{p}}{x-p}
$$

where

- $p \in \mathbb{P}^{2}$ runs over all points whose inverse image F_{p} is \mathcal{F}-invariant.
- $\pm \lambda_{p}$ is the eigenvalue of the singularities lying on F_{p}.
- $\sum_{p} \mu_{p}=0$.

1.Formulae for Chern numbers

- Double cover π

Riccati foliation \mathcal{G} on Y w.r.t.
Double Riccati foliation $\mathcal{F}=\pi^{*}$

- Formulae for Chern numbers.

Theorem (Hong, Lu, Tan)

where $p \in R$ runs over the nodes and the tangent points of R to $\mathcal{G}, s_{1}(p)$ and $s_{2}(p)$ are local invariants of the branch locus with respect to \mathcal{G}, and $\nu\left(\mathrm{I}_{a}\right)$ is the number of fibers of type I_{a}.

1.Formulae for Chern numbers

- Double cover $\pi: X \rightarrow Y$ with branch locus R Riccati foliation \mathcal{G} on Y w.r.t. φ Double Riccati foliation $\mathcal{F}=\pi^{*} \mathcal{G}$
- Formulae for Chern numbers.

Theorem (Hong, Lu, Tan)

where $p \in R$ runs over the nodes and the tangent points of R to G. $s_{1}(D)$ and $s_{2}(D)$ are local invariants of the branch locus with respect to \mathcal{G}, and $\nu\left(I_{a}\right)$ is the number of fibers of type I_{a}.

1.Formulae for Chern numbers

- Double cover $\pi: X \rightarrow Y$ with branch locus R Riccati foliation \mathcal{G} on Y w.r.t. φ
Double Riccati foliation $\mathcal{F}=\pi^{*} \mathcal{G}$
- Formulae for Chern numbers.

Theorem (Hong, Lu, Tan)

$$
\begin{aligned}
\chi(\mathcal{F}) & =\frac{1}{12} \sum_{p \in R} s_{2}(p)+\frac{1}{4}(g+1) \operatorname{deg} \mathcal{G} \\
c_{1}^{2}(\mathcal{F}) & =\sum_{p \in R} s_{1}(p)+3(g+1) \operatorname{deg} \mathcal{G}-2 \sum_{a} \beta(a) \nu\left(\mathrm{I}_{a}\right)-\nu(\mathrm{IV}),
\end{aligned}
$$

where $p \in R$ runs over the nodes and the tangent points of R to $\mathcal{G}, s_{1}(p)$ and $s_{2}(p)$ are local invariants of the branch locus with respect to \mathcal{G}, and $\nu\left(\mathrm{I}_{a}\right)$ is the number of fibers of type I_{a}.

2.Inequality of slope

- Inequality of slope

Theorem (Hong, Lu, Tan)

$$
4 \leq \lambda(\mathcal{F})<12
$$

2. Inequality of slope

- Slope of \mathcal{F} :

$$
\lambda(\mathcal{F}):=c_{1}^{2}(\mathcal{F}) / \chi(\mathcal{F}) .
$$

- Inequality of slope

Theorem (Hong Lu, Tan)

$$
4 \leq \lambda(\mathcal{F})<12
$$

2. Inequality of slope

- Slope of \mathcal{F} :

$$
\lambda(\mathcal{F}):=c_{1}^{2}(\mathcal{F}) / \chi(\mathcal{F}) .
$$

- Inequality of slope

Theorem (Hong, Lu, Tan)

$$
4 \leq \lambda(\mathcal{F})<12
$$

3.Question

- Question: Is it true that

for any non-algebraic foliation \mathcal{F} with $\chi(\mathcal{F}) \neq 0$?

3.Question

- Question: Is it true that

$$
\lambda(\mathcal{F}) \geq 4
$$

for any non-algebraic foliation \mathcal{F} with $\chi(\mathcal{F}) \neq 0$?

Thank you!

