### Riccati foliations and Double Riccati foliations

JUN LU

Department of Mathematics East China Normal University

2021. 11.16



- X: algebaic surface,
   T<sub>X</sub>: tangent bundle of X.
   L<sup>-1</sup> ⊆ T<sub>X</sub>: maximal sub-line bundle.
- ullet Foliation  ${\mathcal F}$  is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}} = A(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial x_{\alpha}} + B(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial y_{\alpha}}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

• 
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$



X: algebaic surface,

 $T_X$ : tangent bundle of X.

 $\mathcal{L}^{-1} \subseteq T_X$ : maximal sub-line bundle.

• Foliation  $\mathcal{F}$  is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}} = A(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial x_{\alpha}} + B(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial y_{\alpha}}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

• 
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$



X: algebaic surface,

 $T_X$ : tangent bundle of X.

 $\mathcal{L}^{-1} \subseteq T_X$ : maximal sub-line bundle.

• Foliation  $\mathcal{F}$  is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}} = A(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial x_{\alpha}} + B(x_{\alpha}, y_{\alpha}) \frac{\partial}{\partial y_{\alpha}}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

• 
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$



- X: algebaic surface,
   T<sub>X</sub>: tangent bundle of X.
   L<sup>-1</sup> ⊆ T<sub>X</sub>: maximal sub-line bundle.
- Foliation  $\mathcal{F}$  is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}}=A(x_{\alpha},y_{\alpha})\frac{\partial}{\partial x_{\alpha}}+B(x_{\alpha},y_{\alpha})\frac{\partial}{\partial y_{\alpha}},\quad (x_{\alpha},y_{\alpha})\in U_{\alpha}.$$

• 
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$



- X: algebaic surface,
   T<sub>X</sub>: tangent bundle of X.
   L<sup>-1</sup> ⊆ T<sub>X</sub>: maximal sub-line bundle.
- ullet Foliation  ${\mathcal F}$  is a section

$$s \in H^0(X, T_X \otimes \mathcal{L}).$$

$$s|_{U_{\alpha}}=A(x_{\alpha},y_{\alpha})\frac{\partial}{\partial x_{\alpha}}+B(x_{\alpha},y_{\alpha})\frac{\partial}{\partial y_{\alpha}},\quad (x_{\alpha},y_{\alpha})\in U_{\alpha}.$$

• 
$$s|_{U_{\alpha}} = g_{\alpha\beta}s|_{U_{\beta}}, \ \mathcal{L} = \{g_{\alpha\beta}\}.$$



- $T_{\mathcal{F}} := \mathcal{L}^{-1}$  tangent bundle of  $\mathcal{F}$ ,  $K_{\mathcal{F}} := \mathcal{L}$  canonical bundle of  $\mathcal{F}$ .
- Exact sequence

$$0 \to T_{\mathcal{F}} \stackrel{\cdot s}{\to} T_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{N}_{\mathcal{F}} \to 0$$

 $N_{\mathcal{F}}$  line bundle,  $\mathcal{I}_{Z(s)}$  ideal sheaf of Z(s) (zero set of s)

Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$



- $T_{\mathcal{F}} := \mathcal{L}^{-1}$  tangent bundle of  $\mathcal{F}$ ,  $K_{\mathcal{F}} := \mathcal{L}$  canonical bundle of  $\mathcal{F}$ .
- Exact sequence

$$0 o T_{\mathcal{F}} \stackrel{\cdot s}{ o} T_X o \mathcal{I}_{Z(s)} \otimes \mathcal{N}_{\mathcal{F}} o 0$$

 $N_{\mathcal{F}}$  line bundle,  $\mathcal{I}_{Z(s)}$  ideal sheaf of Z(s) (zero set of s).

Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$



- $T_{\mathcal{F}} := \mathcal{L}^{-1}$  tangent bundle of  $\mathcal{F}$ ,  $K_{\mathcal{F}} := \mathcal{L}$  canonical bundle of  $\mathcal{F}$ .
- Exact sequence

$$0 \to \mathcal{T}_{\mathcal{F}} \stackrel{\cdot s}{\to} \mathcal{T}_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{N}_{\mathcal{F}} \to 0,$$

 $N_{\mathcal{F}}$  line bundle,  $\mathcal{I}_{Z(s)}$  ideal sheaf of Z(s) (zero set of s).

Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$



- $T_{\mathcal{F}} := \mathcal{L}^{-1}$  tangent bundle of  $\mathcal{F}$ ,  $K_{\mathcal{F}} := \mathcal{L}$  canonical bundle of  $\mathcal{F}$ .
- Exact sequence

$$0 \to \mathcal{T}_{\mathcal{F}} \stackrel{\cdot s}{\to} \mathcal{T}_{X} \to \mathcal{I}_{Z(s)} \otimes \mathcal{N}_{\mathcal{F}} \to 0,$$

 $N_{\mathcal{F}}$  line bundle,  $\mathcal{I}_{Z(s)}$  ideal sheaf of Z(s) (zero set of s).

Canonical bundle

$$\omega_X := \wedge^2 \Omega_X = K_{\mathcal{F}} \otimes N_{\mathcal{F}}^{-1}$$



Equivalently,

$$0 o N_{\mathcal{F}}^{-1} o \Omega_X o \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} o 0.$$

ullet The second definition of Foliation  ${\mathcal F}$ 

$$\omega \in H^0(X,\Omega_X \otimes N_{\mathcal{F}}).$$

0

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

• 
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
,  $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$ .

Equivalently,

$$0 \to N_{\mathcal{F}}^{-1} \to \Omega_X \to \mathcal{I}_{Z(s)} \otimes K_{\mathcal{F}} \to 0.$$

ullet The second definition of Foliation  ${\mathcal F}$ 

$$\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$$

•

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

• 
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
,  $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$ .



Equivalently,

$$0 \to N_{\mathcal{F}}^{-1} \to \Omega_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{K}_{\mathcal{F}} \to 0.$$

• The second definition of Foliation  $\mathcal{F}$ :

$$\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$$

0

$$\omega|_{U_{\alpha}}=B(x_{\alpha},y_{\alpha})dx_{\alpha}-A(x_{\alpha},y_{\alpha})dy_{\alpha},\quad (x_{\alpha},y_{\alpha})\in U_{\alpha}.$$

• 
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
,  $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$ .



Equivalently,

$$0 \to N_{\mathcal{F}}^{-1} \to \Omega_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{K}_{\mathcal{F}} \to 0.$$

• The second definition of Foliation  $\mathcal{F}$ :

$$\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$$

•

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

• 
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
,  $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$ .



Equivalently,

$$0 \to N_{\mathcal{F}}^{-1} \to \Omega_X \to \mathcal{I}_{Z(s)} \otimes \mathcal{K}_{\mathcal{F}} \to 0.$$

• The second definition of Foliation  $\mathcal{F}$ :

$$\omega \in H^0(X, \Omega_X \otimes N_{\mathcal{F}}).$$

•

$$\omega|_{U_{\alpha}} = B(x_{\alpha}, y_{\alpha}) dx_{\alpha} - A(x_{\alpha}, y_{\alpha}) dy_{\alpha}, \quad (x_{\alpha}, y_{\alpha}) \in U_{\alpha}.$$

• 
$$\omega|_{U_{\alpha}} = f_{\alpha\beta}\omega|_{U_{\beta}}$$
,  $\mathcal{N}_{\mathcal{F}} = \{f_{\alpha\beta}\}$ .



- Fibration f: X → C,
   C smooth curve, f holomorphic and surjective.
- Fiber  $F_t = f^{-1}(t), t \in C$ .
- Foliation  $\mathcal{F}$  generated by f:

$$\omega = \frac{1}{\mu(f)} \left( \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \quad \text{(local eq.)},$$

$$\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$

- Fibration f: X → C,
   C smooth curve, f holomorphic and surjective.
- Fiber  $F_t = f^{-1}(t), t \in C$ .
- Foliation  $\mathcal{F}$  generated by f:

$$\omega = \frac{1}{\mu(f)} \left( \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right)$$
 (local eq.),

$$\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$

- Fibration f: X → C,
   C smooth curve, f holomorphic and surjective.
- Fiber  $F_t = f^{-1}(t)$ ,  $t \in C$ .
- Foliation  $\mathcal{F}$  generated by f:

$$\omega = \frac{1}{\mu(f)} \left( \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right)$$
 (local eq.),

$$\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

- Fibration f: X → C,
   C smooth curve, f holomorphic and surjective.
- Fiber  $F_t = f^{-1}(t), t \in C$ .
- Foliation  $\mathcal{F}$  generated by f:

$$\omega = \frac{1}{\mu(f)} \left( \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \quad \text{(local eq.)},$$

$$\mu(f) = \gcd(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

• Canonical bundle of  $\mathcal{F}$ :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^*\Omega_C^{-1}$  (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$  (zero divisor of df).
- Conormal bundle of  $\mathcal{F}$ :

$$N_{\mathcal{F}}^{-1} = f^* \Omega_{\mathcal{C}}(D(f)).$$

• Canonical bundle of  $\mathcal{F}$ :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^* \Omega_C^{-1}$  (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$  (zero divisor of df).
- Conormal bundle of  $\mathcal{F}$ :

$$N_{\mathcal{F}}^{-1} = f^*\Omega_{\mathcal{C}}(D(f))$$

• Canonical bundle of  $\mathcal{F}$ :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^*\Omega_C^{-1}$  (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$  (zero divisor of df).
- Conormal bundle of  $\mathcal{F}$ :

$$N_{\mathcal{F}}^{-1} = f^*\Omega_C(D(f))$$

• Canonical bundle of  $\mathcal{F}$ :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^*\Omega_C^{-1}$  (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$  (zero divisor of df).
- Conormal bundle of  $\mathcal{F}$ :

$$N_{\mathcal{F}}^{-1} = f^*\Omega_C(D(f))$$

• Canonical bundle of  $\mathcal{F}$ :

$$K_{\mathcal{F}} = \omega_{X/C}(-D(f)),$$

- $\omega_{X/C} := \omega_X \otimes f^*\Omega_C^{-1}$  (relative canonical bundle)
- $D(f) := \sum_{t \in C} (F_t F_{t,red})$  (zero divisor of df).
- Conormal bundle of  $\mathcal{F}$ :

$$N_{\mathcal{F}}^{-1} = f^* \Omega_{\mathcal{C}}(D(f)).$$

- Ruled surface  $\varphi: X \to B$ . Riccati Foliation  $\mathcal{F}$  w.r.t.  $\varphi \stackrel{def}{\Longleftrightarrow}$  general fiber F of  $\varphi$  transverse to  $\mathcal{F}$ .
- $\mathcal{F}$  Riccati foliation  $\iff K_{\mathcal{F}}F = 0$ .
- Local equation:

$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy, \quad x \in B, \ y \in F.$$

Canonical bundle of \$\mathcal{F}\$: \$K\_{\mathcal{F}} = rF\$, degree of \$\mathcal{F}\$: \$r := \degree \text{deg}\$.

- Ruled surface  $\varphi: X \to B$ . Riccati Foliation  $\mathcal F$  w.r.t.  $\varphi \stackrel{def}{\Longleftrightarrow}$  general fiber F of  $\varphi$  transverse to  $\mathcal F$ .
- $\mathcal{F}$  Riccati foliation  $\iff K_{\mathcal{F}}F = 0$ .
- Local equation:

$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy, \quad x \in B, \ y \in F.$$

• Canonical bundle of  $\mathcal{F}$ :  $K_{\mathcal{F}} = rF$ , degree of  $\mathcal{F}$ :  $r := \deg \mathcal{F}$ .

- Ruled surface  $\varphi: X \to B$ . Riccati Foliation  $\mathcal F$  w.r.t.  $\varphi \stackrel{def}{\Longleftrightarrow}$  general fiber F of  $\varphi$  transverse to  $\mathcal F$ .
- $\mathcal{F}$  Riccati foliation  $\iff K_{\mathcal{F}}F = 0$ .
- Local equation:

$$\omega = \left(g_0(x)y^2 + g_1(x)y + g_2(x)\right)dx - dy, \quad x \in B, \ y \in F.$$

• Canonical bundle of  $\mathcal{F}$ :  $K_{\mathcal{F}} = rF$ , degree of  $\mathcal{F}$ :  $r := \deg \mathcal{F}$ .

- Ruled surface  $\varphi: X \to B$ . Riccati Foliation  $\mathcal F$  w.r.t.  $\varphi \stackrel{def}{\Longleftrightarrow}$  general fiber F of  $\varphi$  transverse to  $\mathcal F$ .
- $\mathcal{F}$  Riccati foliation  $\iff K_{\mathcal{F}}F = 0$ .
- Local equation:

$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy, \quad x \in B, \ y \in F.$$

• Canonical bundle of  $\mathcal{F}$ :  $K_{\mathcal{F}} = rF$ , degree of  $\mathcal{F}$ :  $r := \deg \mathcal{F}$ .

- Ruled surface  $\varphi: X \to B$ . Riccati Foliation  $\mathcal{F}$  w.r.t.  $\varphi \stackrel{def}{\Longleftrightarrow}$  general fiber F of  $\varphi$  transverse to  $\mathcal{F}$ .
- $\mathcal{F}$  Riccati foliation  $\iff K_{\mathcal{F}}F = 0$ .
- Local equation:

$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy, \quad x \in B, \ y \in F.$$

 Canonical bundle of F: K<sub>F</sub> = rF, degree of F: r := deg F.

- Double cover  $\pi: Y \to X$ .
- Riccati foliation  $\mathcal{F}$  w.r.t.  $\varphi: X \to B$ .
- Double Riccati foliation  $\pi^* \mathcal{F}$ :  $\omega_Y := \pi^* \omega_X$ , where

$$\omega_X = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy$$
 (local)

- Double cover  $\pi: Y \to X$ .
- Riccati foliation  $\mathcal{F}$  w.r.t.  $\varphi: X \to B$ .
- Double Riccati foliation  $\pi^* \mathcal{F}$ :  $\omega_Y := \pi^* \omega_X$ , where

$$\omega_X = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy$$
 (local).

- Double cover  $\pi: Y \to X$ .
- Riccati foliation  $\mathcal{F}$  w.r.t.  $\varphi: X \to B$ .
- Double Riccati foliation  $\pi^* \mathcal{F}$ :  $\omega_Y := \pi^* \omega_X$ , where

$$\omega_X = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy$$
 (local).

- Double cover  $\pi: Y \to X$ .
- Riccati foliation  $\mathcal{F}$  w.r.t.  $\varphi: X \to B$ .
- Double Riccati foliation  $\pi^* \mathcal{F}$ :  $\omega_Y := \pi^* \omega_X$ , where

$$\omega_X = (g_0(x)y^2 + g_1(x)y + g_2(x)) dx - dy$$
 (local).

#### 3. $\mathcal{F}$ -invariant curve

•  $\mathcal{F}$  foliation:  $\{(U_{\alpha}, \omega_{\alpha})\}$  (or  $\{(U_{\alpha}, s_{\alpha})\}$ ),

$$s_{\alpha} = A_{\alpha} \frac{\partial}{\partial x_{\alpha}} + B_{\alpha} \frac{\partial}{\partial y_{\alpha}}$$

or

$$\omega_{\alpha} = B_{\alpha} dx_{\alpha} - A_{\alpha} dy_{\alpha}.$$

•  $C \subseteq X$  curve defined by  $f_{\alpha} = 0$  on  $U_{\alpha}$ . C is  $\mathcal{F}$ -invariant  $\stackrel{def}{\Longleftrightarrow}$   $\forall p \in C$ , vector s(p) is tangent to C a

### 3. $\mathcal{F}$ -invariant curve

•  $\mathcal{F}$  foliation:  $\{(U_{\alpha}, \omega_{\alpha})\}$  (or  $\{(U_{\alpha}, s_{\alpha})\}$ ),

$$s_{\alpha} = A_{\alpha} \frac{\partial}{\partial x_{\alpha}} + B_{\alpha} \frac{\partial}{\partial y_{\alpha}}$$

or

$$\omega_{\alpha} = B_{\alpha} dx_{\alpha} - A_{\alpha} dy_{\alpha}.$$

•  $C \subseteq X$  curve defined by  $f_{\alpha} = 0$  on  $U_{\alpha}$ . C is  $\mathcal{F}$ -invariant  $\stackrel{def}{\Longleftrightarrow}$  $\forall p \in C$ , vector s(p) is tangent to C at p

### 3. $\mathcal{F}$ -invariant curve

•  $\mathcal{F}$  foliation:  $\{(U_{\alpha}, \omega_{\alpha})\}$  (or  $\{(U_{\alpha}, s_{\alpha})\}$ ),

$$s_{\alpha} = A_{\alpha} \frac{\partial}{\partial x_{\alpha}} + B_{\alpha} \frac{\partial}{\partial y_{\alpha}}$$

or

$$\omega_{\alpha} = B_{\alpha} dx_{\alpha} - A_{\alpha} dy_{\alpha}.$$

•  $C \subseteq X$  curve defined by  $f_{\alpha} = 0$  on  $U_{\alpha}$ . C is  $\mathcal{F}$ -invariant  $\stackrel{def}{\Longleftrightarrow}$  $\forall p \in C$ , vector s(p) is tangent to C at p.

#### C is $\mathcal{F}$ -invariant iff

q

$$f_{\alpha} \mid s(f_{\alpha})$$

• iff  $f_{\alpha}$  is the solution of ODE

$$\omega_{\alpha} = 0.$$

#### Example

#### C is $\mathcal{F}$ -invariant iff

•

$$f_{\alpha} \mid s(f_{\alpha})$$

• iff  $f_{\alpha}$  is the solution of ODE

$$\omega_{\alpha} = 0.$$

#### Example

C is  $\mathcal{F}$ -invariant iff

•

$$f_{\alpha} \mid s(f_{\alpha})$$

• iff  $f_{\alpha}$  is the solution of ODE

$$\omega_{\alpha}=0.$$

#### Example

C is  $\mathcal{F}$ -invariant iff

•

$$f_{\alpha} \mid s(f_{\alpha})$$

• iff  $f_{\alpha}$  is the solution of ODE

$$\omega_{\alpha}=0.$$

#### Example

- s :=the number of irreducible compact  $\mathcal{F}$ -invariant curves.
  - Question 1: When does  $s = \infty$ ?
  - $\mathcal{F}$  generated by a fibration (i.e.  $\mathcal{F}$  is algebraic)  $\Longrightarrow s = \infty$

#### Theorem (Jouanolou, 1978)

11

$$s \ge h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then  ${\mathcal F}$  is generated by a fibration.

- s :=the number of irreducible compact  $\mathcal{F}$ -invariant curves.
  - Question 1: When does  $s = \infty$ ?
  - $\mathcal{F}$  generated by a fibration (i.e.  $\mathcal{F}$  is algebraic)  $\Longrightarrow s = \infty$

#### Theorem (Jouanolou, 1978)

11

$$s \ge h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then  ${\mathcal F}$  is generated by a fibration.

- s :=the number of irreducible compact  $\mathcal{F}$ -invariant curves.
  - Question 1: When does  $s = \infty$ ?
  - $\mathcal{F}$  generated by a fibration (i.e.  $\mathcal{F}$  is algebraic)  $\Longrightarrow$   $\mathbf{s} = \infty$ .

#### Theorem (Jouanolou, 1978)

11

$$s \ge h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then  $\mathcal F$  is generated by a fibration

- s :=the number of irreducible compact  $\mathcal{F}$ -invariant curves.
  - Question 1: When does  $s = \infty$ ?
  - $\mathcal{F}$  generated by a fibration (i.e.  $\mathcal{F}$  is algebraic)  $\Longrightarrow s = \infty$ .

#### Theorem (Jouanolou, 1978)

If

$$s \geq h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then  $\mathcal{F}$  is generated by a fibration.



s :=the number of irreducible compact  $\mathcal{F}$ -invariant curves.

- Question 1: When does  $s = \infty$ ?
- $\mathcal{F}$  generated by a fibration (i.e.  $\mathcal{F}$  is algebraic)  $\Longrightarrow$   $s = \infty$ .

#### Theorem (Jouanolou, 1978)

If

$$s \ge h^0(X, K_{\mathcal{F}}) + h^{1,1}(X) - h^{1,0}(X) + 2,$$

then  $\mathcal{F}$  is generated by a fibration.

$$Kod(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(nK_{\mathcal{F}})}{\log n}.$$

- Numerical Kodaira dimension of  $\mathcal{F}$ :  $\nu(\mathcal{F})$ .
- (Brunella)  $Kod(\mathcal{F}) \neq \nu(\mathcal{F})$  iff  $Kod(\mathcal{F}) = -\infty$  and  $\nu(\mathcal{F}) = 1$ .
- Pluri-genus of  $\mathcal{F}$ :  $p_n(\mathcal{F}) := h^0(nK_{\mathcal{F}})$

$$Kod(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(nK_{\mathcal{F}})}{\log n}.$$

- Numerical Kodaira dimension of  $\mathcal{F}$ :  $\nu(\mathcal{F})$ .
- (Brunella)  $Kod(\mathcal{F}) \neq \nu(\mathcal{F})$  iff  $Kod(\mathcal{F}) = -\infty$  and  $\nu(\mathcal{F}) = 1$ .
- Pluri-genus of  $\mathcal{F}$ :  $p_n(\mathcal{F}) := h^0(nK_{\mathcal{F}})$

$$Kod(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(nK_{\mathcal{F}})}{\log n}.$$

- Numerical Kodaira dimension of  $\mathcal{F}$ :  $\nu(\mathcal{F})$ .
- (Brunella)  $Kod(\mathcal{F}) \neq \nu(\mathcal{F})$  iff  $Kod(\mathcal{F}) = -\infty$  and  $\nu(\mathcal{F}) = 1$ .
- Pluri-genus of  $\mathcal{F}$ :  $p_n(\mathcal{F}) := h^0(nK_{\mathcal{F}})$

$$Kod(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(nK_{\mathcal{F}})}{\log n}.$$

- Numerical Kodaira dimension of  $\mathcal{F}$ :  $\nu(\mathcal{F})$ .
- (Brunella)  $Kod(\mathcal{F}) \neq \nu(\mathcal{F})$  iff  $Kod(\mathcal{F}) = -\infty$  and  $\nu(\mathcal{F}) = 1$ .
- Pluri-genus of  $\mathcal{F}$ :  $p_n(\mathcal{F}) := h^0(nK_{\mathcal{F}})$

$$Kod(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(nK_{\mathcal{F}})}{\log n}.$$

- Numerical Kodaira dimension of  $\mathcal{F}$ :  $\nu(\mathcal{F})$ .
- (Brunella)  $Kod(\mathcal{F}) \neq \nu(\mathcal{F})$  iff  $Kod(\mathcal{F}) = -\infty$  and  $\nu(\mathcal{F}) = 1$ .
- Pluri-genus of  $\mathcal{F}$ :  $p_n(\mathcal{F}) := h^0(nK_{\mathcal{F}})$

• Chern number of  $\mathcal{F}$  (Tan 2015):

$$c_1^2(\mathcal{F}) \geq 0, c_2(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0$$

$$c_1^2(\mathcal{F}) + c_2(\mathcal{F}) = 12\chi(\mathcal{F}).$$

#### Example (Tan 2015)

Let  $\mathcal{F}$  be a foliation generated by a fibration  $f: X \to C$ . Then

$$c_1^2(\mathcal{F}) = \kappa(f), c_2(\mathcal{F}) = \delta(f), \chi(\mathcal{F}) = \lambda(f)$$

• Chern number of  $\mathcal{F}$  (Tan 2015):

$$c_1^2(\mathcal{F}) \geq 0, c_2(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0,$$

$$c_1^2(\mathcal{F})+c_2(\mathcal{F})=12\chi(\mathcal{F}).$$

#### Example (Tan 2015)

Let  $\mathcal{F}$  be a foliation generated by a fibration  $f: X \to C$ . Then

$$c_1^2(\mathcal{F}) = \kappa(f), c_2(\mathcal{F}) = \delta(f), \chi(\mathcal{F}) = \lambda(f)$$

• Chern number of  $\mathcal{F}$  (Tan 2015):

$$c_1^2(\mathcal{F}) \geq 0, c_2(\mathcal{F}) \geq 0, \chi(\mathcal{F}) \geq 0,$$

$$c_1^2(\mathcal{F}) + c_2(\mathcal{F}) = 12\chi(\mathcal{F}).$$

#### Example (Tan 2015)

Let  $\mathcal{F}$  be a foliation generated by a fibration  $f: X \to C$ . Then

$$c_1^2(\mathcal{F}) = \kappa(f), c_2(\mathcal{F}) = \delta(f), \chi(\mathcal{F}) = \lambda(f)$$

#### 1. Invariants

•  $\mathcal{F}$  Riccati foliation w.r.t. a Hirzebruch surface  $\varphi: X \to B$ 

#### Theorem (Lu, Tan)

(1) 
$$c_1^2(\mathcal{F}) = c_2(\mathcal{F}) = \chi(\mathcal{F}) = 0.$$

(2)  $kod(\mathcal{F}) \leq 1$ .

(3) 
$$p_n(\mathcal{F}) = \max \left\{ n \deg \mathcal{F} - \sum\limits_{p} \left\lceil rac{n}{n_p} \right\rceil + 1, 0 
ight\}$$

p singularity of  ${\mathcal F}$  with eigenvalue  $rac{m_p}{n_p}$ 

#### 1. Invariants

•  $\mathcal{F}$  Riccati foliation w.r.t. a Hirzebruch surface  $\varphi: X \to B$ .

#### Theorem (Lu, Tan)

(1) 
$$c_1^2(\mathcal{F}) = c_2(\mathcal{F}) = \chi(\mathcal{F}) = 0.$$

(2) 
$$kod(\mathcal{F}) \leq 1$$
.

(3) 
$$p_n(\mathcal{F}) = \max \left\{ n \deg \mathcal{F} - \sum\limits_{p} \left\lceil rac{n}{n_p} 
ight
ceil + 1, 0 
ight\}$$

**p** singularity of  $\mathcal{F}$  with eigenvalue  $\frac{m_p}{n_p}$ 

#### 1. Invariants

•  $\mathcal{F}$  Riccati foliation w.r.t. a Hirzebruch surface  $\varphi: X \to B$ .

#### Theorem (Lu, Tan)

(1) 
$$c_1^2(\mathcal{F}) = c_2(\mathcal{F}) = \chi(\mathcal{F}) = 0.$$

(2) 
$$kod(\mathcal{F}) \leq 1$$
.

(3) 
$$p_n(\mathcal{F}) = \max \left\{ n \deg \mathcal{F} - \sum_{p} \left\lceil \frac{n}{n_p} \right\rceil + 1, 0 \right\}$$

**p** singularity of  $\mathcal{F}$  with eigenvalue  $\frac{m_p}{n_p}$ .

• Classification of  $\mathcal{F}$  with  $kod(\omega) = -\infty$  (Lu, Tan)

#### Theorem

Up to a birational map, we have

- $\omega = \lambda v dx x dv \ (\lambda \in \mathbb{O}^+ \text{ and } \lambda < \frac{1}{2}$
- 4)  $\omega = (y^2 + (8x 4)y 5x)dx 12x(x 1)dy;$
- 6  $\omega = (y^2 + (40x 30)y 11x)dx 60x(x 1)dy;$
- $0 \omega = (y^2 + (30x 20)y 119x)dx 60x(x 1)dy$

• Classification of  $\mathcal{F}$  with  $kod(\omega) = -\infty$  (Lu, Tan)

#### Theorem

Up to a birational map, we have

- 2  $\omega = \lambda y dx x dy \ (\lambda \in \mathbb{Q}^+ \text{ and } \lambda \leq \frac{1}{2});$
- 4  $\omega = (y^2 + (8x 4)y 5x)dx 12x(x 1)dy;$

• Classification of  ${\mathcal F}$  with  $kod(\omega)=0$  (Lu, Tan

#### $\mathsf{Theorem}$

- 2  $\omega = \lambda y dx x dy \ (\lambda \not\in \mathbb{Q} \ and \ |\text{Re}\lambda| \le 1/2)$
- 3  $\omega = ((x-1)y^2 xy + \lambda^2)dx 2x(x-1)dy \ (\lambda \notin \mathbb{Q})$
- 4  $\omega = (1 + xy)dx 2x(x 1)dy$
- $6) \omega = (\epsilon y + 2xy)dx 3x(x 1)dy \ (\epsilon = 0, 1)$
- $0 \omega = (-y + 2xy + y^2)dx 3x(x 1)dy$
- 8  $\omega = (y^2 4xy + 2y 3)dx 12x(x 1)dy$
- 9 .....

• Classification of  $\mathcal{F}$  with  $kod(\omega) = 0$  (Lu, Tan)

#### Theorem

2 
$$\omega = \lambda y dx - x dy \ (\lambda \not\in \mathbb{Q} \ \text{and} \ |\mathrm{Re}\lambda| \le 1/2)$$

$$0 \omega = (-y + 2xy + y^2)dx - 3x(x - 1)dy$$

8 
$$\omega = (y^2 - 4xy + 2y - 3)dx - 12x(x - 1)dy$$

ullet When is  ${\mathcal F}$  an algebraic Riccati foliation ?

### Theorem (Gong, Lu, Tan)

 ${\cal F}$  is algebraic iff it occurs in one of the following cases (up to a birational map):

$$\begin{array}{ll} (\textit{O}) & \omega = \textit{dy}; \\ (\textit{A}_n) & \omega = \varphi' \textit{ydx} - \textit{n}\varphi \textit{dy}; \\ (\textit{D}_{n+2}) & \omega = \varphi' \left(y^2 + \textit{n}(\varphi - 1)\textit{y} - \varphi\right) \textit{dx} - 2\textit{n}\varphi(\varphi - 1)\textit{dy}; \\ (\textit{E}_6) & \omega = \varphi' \left(y^2 + 4(2\varphi - 1)\textit{y} - 5\varphi\right) \textit{dx} - 12\varphi(\varphi - 1)\textit{dy}; \\ (\textit{E}_7) & \omega = \varphi' \left(y^2 + 6(3\varphi - 2)\textit{y} - 7\varphi\right) \textit{dx} - 24\varphi(\varphi - 1)\textit{dy}; \\ (\textit{E}_8) & \omega = \varphi'(y^2 + 10(4\varphi - 3)\textit{y} - 11\varphi)\textit{dx} - 60\varphi(\varphi - 1)\textit{dy} \end{array}$$

where  $\varphi \in \mathbb{C}(x)$ .

ullet When is  ${\mathcal F}$  an algebraic Riccati foliation ?

# Theorem (Gong, Lu, Tan)

 $\mathcal{F}$  is algebraic iff it occurs in one of the following cases (up to a birational map):

$$\begin{array}{ll} (\textit{O}) & \omega = \textit{dy}; \\ (\textit{A}_n) & \omega = \varphi' \textit{ydx} - n\varphi \textit{dy}; \\ (\textit{D}_{n+2}) & \omega = \varphi' \left(y^2 + n(\varphi - 1)y - \varphi\right) \textit{dx} - 2n\varphi(\varphi - 1)\textit{dy}; \\ (\textit{E}_6) & \omega = \varphi' \left(y^2 + 4(2\varphi - 1)y - 5\varphi\right) \textit{dx} - 12\varphi(\varphi - 1)\textit{dy}; \\ (\textit{E}_7) & \omega = \varphi' \left(y^2 + 6(3\varphi - 2)y - 7\varphi\right) \textit{dx} - 24\varphi(\varphi - 1)\textit{dy}; \\ (\textit{E}_8) & \omega = \varphi'(y^2 + 10(4\varphi - 3)y - 11\varphi)\textit{dx} - 60\varphi(\varphi - 1)\textit{dy}. \end{array}$$

where  $\varphi \in \mathbb{C}(x)$ .

• Algebraic foliation of type  $A_n$ 

### Corollary (Gong, Lu, Tan)

```
\mathcal{F} is an algebraic foliation of type A_n
```

$$\iff$$
 it has two  $\mathcal{F}$ -invariant section of  $\varphi$ 

 $\iff$  it is from a fibration  $f:X\to\mathbb{P}^1$  with two singular fibers.

• A fibration  $f: X \to C$  is Riccatian of type  $A_n$   $(D_n, E_k,...)$  $\stackrel{def}{\Longleftrightarrow} \omega = df$  gives a Riccati foliation of type  $A_n$   $(D_n, E_k,...)$ 

• Algebraic foliation of type  $A_n$ 

# Corollary (Gong, Lu, Tan)

 $\mathcal{F}$  is an algebraic foliation of type  $A_n$ 

 $\iff$  it has two  $\mathcal{F}$ -invariant section of  $\varphi$ 

 $\iff$  it is from a fibration  $f:X\to \mathbb{P}^1$  with two singular fibers.

• A fibration  $f: X \to C$  is Riccatian of type  $A_n$   $(D_n, E_k,...)$  $\stackrel{def}{\longleftrightarrow} \omega = df$  gives a Riccati foliation of type  $A_n$   $(D_n, E_k,...)$ 

• Algebraic foliation of type  $A_n$ 

## Corollary (Gong, Lu, Tan)

 $\mathcal{F}$  is an algebraic foliation of type  $A_n$ 

 $\iff$  it has two  $\mathcal{F}$ -invariant section of  $\varphi$ 

 $\iff$  it is from a fibration  $f: X \to \mathbb{P}^1$  with two singular fibers.

• A fibration  $f: X \to C$  is Riccatian of type  $A_n$   $(D_n, E_k,...)$  $\stackrel{def}{\longleftrightarrow} \omega = df$  gives a Riccati foliation of type  $A_n$   $(D_n, E_k,...)$ 

#### Corollary

An elliptic fibration  $f: X \to C$  on a rational surface X is Riccatian

where

$$\mathbf{g_1} := (x^2 - 1)y^4 - 2xy^3 + 6y^2 - 6xy + 3, \quad \mathbf{g_2} := y^4 - 4xy^3 + 6y^2 - 3.$$

#### Corollary

An elliptic fibration  $f: X \to C$  on a rational surface X is Riccatian iff f is birational to

| Type           | Riccati foliations                | Families                   | Singular fibers          |
|----------------|-----------------------------------|----------------------------|--------------------------|
| $A_1$          | $(3x^2+1)ydx - 2(x^3+x+c)dy$      | $y^2 = t(x^3 + x + c)$     | $I_0^*, I_0^*$           |
| A <sub>2</sub> | (2x-1)ydx-3x(x-1)dy               | $y^3 = tx(x-1)$            | IV, IV*                  |
| A <sub>3</sub> | (2x-1)ydx - 4x(x-1)dy             | $y^4 = tx(x-1)$            | III, III*                |
| $A_5$          | (3x-2)ydx-6x(x-1)dy               | $y^6 = tx^2(x-1)$          | II, II*                  |
| $D_{4}$        | $(y^2 - xy - 1)dx - (3x^2 - 4)dy$ | $g_1^3 = t(3x^2 - 4)g_2^3$ | IV, IV*, 2I <sub>0</sub> |

where

$$g_1 := (x^2 - 1)y^4 - 2xy^3 + 6y^2 - 6xy + 3$$
,  $g_2 := y^4 - 4xy^3 + 6y^2 - 3$ .

$$\bullet \ \omega = (g_0 y^2 + g_1 y + g_2) dx - dy, \ g_i \in \mathbb{C}(x)$$

Take

$$g(x) = \begin{cases} \frac{1}{2}(g_1 + \frac{g_0'}{g_0}), & g_0 \neq 0, \\ \frac{1}{2}g_1, & g_0 = 0. \end{cases}$$

• Discriminant of  $\mathcal{F}$ :

$$\Delta(\omega) = g'(x) - g(x)^2 - g_0(x)g_2(x).$$

ullet  $\Delta(\omega) \in H^0(S^2\Omega_{\mathbb{P}^1}(\log T))$  where

$$T = \{ p \in \mathbb{P}^1 \mid Fp = \varphi^{-1}(p) \text{ is } \mathcal{F} - \text{invariant} \}.$$

$$\bullet \ \omega = (g_0y^2 + g_1y + g_2)dx - dy, \ g_i \in \mathbb{C}(x).$$

Take

$$g(x) = \begin{cases} \frac{1}{2}(g_1 + \frac{g_0'}{g_0}), & g_0 \neq 0, \\ \frac{1}{2}g_1, & g_0 = 0. \end{cases}$$

• Discriminant of  $\mathcal{F}$ :

$$\Delta(\omega) = g'(x) - g(x)^2 - g_0(x)g_2(x).$$

ullet  $\Delta(\omega)\in H^0(S^2\Omega_{\mathbb{P}^1}(\log T))$  where

$$T = \{ p \in \mathbb{P}^1 \mid Fp = \varphi^{-1}(p) \text{ is } \mathcal{F} - \text{invariant} \}.$$

$$\bullet \ \omega = (g_0y^2 + g_1y + g_2)dx - dy, \ g_i \in \mathbb{C}(x).$$

Take

$$g(x) = \begin{cases} \frac{1}{2}(g_1 + \frac{g_0'}{g_0}), & g_0 \neq 0, \\ \frac{1}{2}g_1, & g_0 = 0. \end{cases}$$

• Discriminant of  $\mathcal{F}$ :

$$\Delta(\omega) = g'(x) - g(x)^2 - g_0(x)g_2(x).$$

ullet  $\Delta(\omega)\in H^0(S^2\Omega_{\mathbb{P}^1}(\log T))$  where

$$T = \{ p \in \mathbb{P}^1 \mid Fp = \varphi^{-1}(p) \text{ is } \mathcal{F} - \text{invariant} \}.$$

$$\bullet \ \omega = (g_0y^2 + g_1y + g_2)dx - dy, \ g_i \in \mathbb{C}(x).$$

Take

$$g(x) = \begin{cases} \frac{1}{2}(g_1 + \frac{g_0'}{g_0}), & g_0 \neq 0, \\ \frac{1}{2}g_1, & g_0 = 0. \end{cases}$$

• Discriminant of  $\mathcal{F}$ :

$$\Delta(\omega) = g'(x) - g(x)^2 - g_0(x)g_2(x).$$

ullet  $\Delta(\omega) \in H^0(S^2\Omega_{\mathbb{P}^1}(\log T))$  where

$$T = \{ p \in \mathbb{P}^1 \mid Fp = \varphi^{-1}(p) \text{ is } \mathcal{F} - \text{invariant} \}.$$

• 
$$\omega = (g_0y^2 + g_1y + g_2)dx - dy, g_i \in \mathbb{C}(x).$$

Take

$$g(x) = \begin{cases} \frac{1}{2}(g_1 + \frac{g_0'}{g_0}), & g_0 \neq 0, \\ \frac{1}{2}g_1, & g_0 = 0. \end{cases}$$

Discriminant of F:

$$\Delta(\omega) = g'(x) - g(x)^2 - g_0(x)g_2(x).$$

•  $\Delta(\omega) \in H^0(S^2\Omega_{\mathbb{P}^1}(\log T))$  where

$$T = \{ p \in \mathbb{P}^1 \mid Fp = \varphi^{-1}(p) \text{ is } \mathcal{F} - \text{invariant} \}.$$

Invariance of Discriminant

#### Theorem (Gong,Lu,Tan)

 $\Delta(\omega) = \Delta(\tilde{\omega})$  iff  $\tilde{\mathcal{F}}$  can becomes  $\mathcal{F}$  by flipping maps and choosing suitable coordinates.

• Criterion for algebraic Riccati foliation

#### Theorem (Gong, Lu, Tan)

 $\mathcal{F}$  is algebraic iff  $\Delta(\omega) = \Delta(df)$  where df is the foliation with a standard equation in the above Theorem.

Invariance of Discriminant

#### Theorem (Gong, Lu, Tan)

 $\Delta(\omega) = \Delta(\tilde{\omega})$  iff  $\tilde{\mathcal{F}}$  can becomes  $\mathcal{F}$  by flipping maps and choosing suitable coordinates.

• Criterion for algebraic Riccati foliation

#### Theorem (Gong,Lu,Tan)

 $\mathcal{F}$  is algebraic iff  $\Delta(\omega) = \Delta(df)$  where df is the foliation with a standard equation in the above Theorem.

Invariance of Discriminant

#### $\mathsf{Theorem}\; \mathsf{(Gong,Lu,Tan)}$

 $\Delta(\omega) = \Delta(\tilde{\omega})$  iff  $\tilde{\mathcal{F}}$  can becomes  $\mathcal{F}$  by flipping maps and choosing suitable coordinates.

Criterion for algebraic Riccati foliation

#### $\mathsf{Theorem}\; \mathsf{(Gong,Lu,Tan)}$

 $\mathcal{F}$  is algebraic iff  $\Delta(\omega) = \Delta(df)$  where df is the foliation with a standard equation in the above Theorem.

ullet If all singularities of  ${\mathcal F}$  have non-zero eigenvalue, ther

$$\Delta(\omega) = \sum_{p} \frac{1 - \lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^2$  runs over all points whose inverse image  $F_p$  is  $\mathcal{F}$ -invariant.
- $\pm \lambda_p$  is the eigenvalue of the singularities lying on  $F_p$ .
- $\bullet \sum_{p} \mu_{p} = 0.$

ullet If all singularities of  ${\mathcal F}$  have non-zero eigenvalue, then

$$\Delta(\omega) = \sum_{p} \frac{1 - \lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^2$  runs over all points whose inverse image  $F_p$  is  $\mathcal{F}$ -invariant
- $\pm \lambda_p$  is the eigenvalue of the singularities lying on  $F_p$ .
- $\bullet \sum_{p} \mu_{p} = 0.$

ullet If all singularities of  ${\mathcal F}$  have non-zero eigenvalue, then

$$\Delta(\omega) = \sum_{p} \frac{1 - \frac{\lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^2$  runs over all points whose inverse image  $F_p$  is  $\mathcal{F}$ -invariant.
- $\pm \lambda_p$  is the eigenvalue of the singularities lying on  $F_p$ .
- $\bullet \sum_{p} \mu_{p} = 0.$

ullet If all singularities of  ${\mathcal F}$  have non-zero eigenvalue, then

$$\Delta(\omega) = \sum_{p} \frac{1 - \frac{\lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^2$  runs over all points whose inverse image  $F_p$  is  $\mathcal{F}$ -invariant.
- $\pm \lambda_p$  is the eigenvalue of the singularities lying on  $F_p$ .
- $\bullet \sum_{p} \mu_{p} = 0.$

ullet If all singularities of  ${\mathcal F}$  have non-zero eigenvalue, then

$$\Delta(\omega) = \sum_{p} \frac{1 - \frac{\lambda_{p}^{2}}{4(x - p)^{2}} + \sum_{p} \frac{\mu_{p}}{x - p}$$

- $p \in \mathbb{P}^2$  runs over all points whose inverse image  $F_p$  is  $\mathcal{F}$ -invariant.
- $\pm \lambda_p$  is the eigenvalue of the singularities lying on  $F_p$ .
- $\bullet \sum_{p} \mu_{p} = 0.$

#### 1. Formulae for Chern numbers

- Double cover  $\pi: X \to Y$  with branch locus R Riccati foliation  $\mathcal G$  on Y w.r.t.  $\varphi$  Double Riccati foliation  $\mathcal F = \pi^*\mathcal G$
- Formulae for Chern numbers.

#### Theorem (Hong, Lu, Tan)

$$\chi(\mathcal{F}) = \frac{1}{12} \sum_{p \in R} \mathbf{s_2(p)} + \frac{1}{4} (g+1) \deg \mathcal{G},$$

$$c_1^2(\mathcal{F}) = \sum_{p \in R} \mathbf{s_1(p)} + 3(g+1) \deg \mathcal{G} - 2 \sum_{a} \beta(a) \nu(\mathbf{I}_a) - \nu(\mathbf{IV}),$$

where  $p \in R$  runs over the nodes and the tangent points of R to  $\mathcal{G}$ ,  $s_1(p)$  and  $s_2(p)$  are local invariants of the branch locus with respect to  $\mathcal{G}$ , and  $\nu(I_a)$  is the number of fibers of type  $I_a$ .

### 1. Formulae for Chern numbers

- Double cover π: X → Y with branch locus R
   Riccati foliation G on Y w.r.t. φ
   Double Riccati foliation F = π\*G
- Formulae for Chern numbers.

#### Theorem (Hong, Lu, Tan)

$$\chi(\mathcal{F}) = \frac{1}{12} \sum_{p \in R} s_2(p) + \frac{1}{4}(g+1) \operatorname{deg} \mathcal{G},$$

$$c_1^2(\mathcal{F}) = \sum_{p \in R} s_1(p) + 3(g+1) \operatorname{deg} \mathcal{G} - 2 \sum_{a} \beta(a) \nu(I_a) - \nu(IV),$$

where  $p \in R$  runs over the nodes and the tangent points of R to  $\mathcal{G}$ ,  $s_1(p)$  and  $s_2(p)$  are local invariants of the branch locus with respect to  $\mathcal{G}$ , and  $\nu(I_a)$  is the number of fibers of type  $I_a$ .

#### 1. Formulae for Chern numbers

- Double cover π: X → Y with branch locus R
   Riccati foliation G on Y w.r.t. φ
   Double Riccati foliation F = π\*G
- Formulae for Chern numbers.

#### Theorem (Hong, Lu, Tan)

$$\begin{split} \chi(\mathcal{F}) &= \frac{1}{12} \sum_{p \in R} \mathbf{s_2(p)} + \frac{1}{4} (g+1) \deg \mathcal{G}, \\ c_1^2(\mathcal{F}) &= \sum_{p \in R} \mathbf{s_1(p)} + 3(g+1) \deg \mathcal{G} - 2 \sum_a \beta(a) \nu(\mathbf{I}_a) - \nu(\mathbf{IV}), \end{split}$$

where  $p \in R$  runs over the nodes and the tangent points of R to  $\mathcal{G}$ ,  $s_1(p)$  and  $s_2(p)$  are local invariants of the branch locus with respect to  $\mathcal{G}$ , and  $\nu(I_a)$  is the number of fibers of type  $I_a$ .

## 2.Inequality of slope

• Slope of  $\mathcal{F}$ :

$$\lambda(\mathcal{F}) := c_1^2(\mathcal{F})/\chi(\mathcal{F}).$$

Inequality of slope

Theorem (Hong, Lu, Tan)

$$4 \le \lambda(\mathcal{F}) < 12$$
.

## 2.Inequality of slope

• Slope of  $\mathcal{F}$ :

$$\lambda(\mathcal{F}) := c_1^2(\mathcal{F})/\chi(\mathcal{F}).$$

Inequality of slope

Theorem (Hong, Lu, Tan)

$$4 \le \lambda(\mathcal{F}) < 12$$
.

## 2.Inequality of slope

• Slope of  $\mathcal{F}$ :

$$\lambda(\mathcal{F}) := c_1^2(\mathcal{F})/\chi(\mathcal{F}).$$

Inequality of slope

Theorem (Hong, Lu, Tan)

$$4 \le \lambda(\mathcal{F}) < 12$$
.

### 3. Question

Question: Is it true that

$$\lambda(\mathcal{F}) \geq 4$$

for any non-algebraic foliation  $\mathcal{F}$  with  $\chi(\mathcal{F}) \neq 0$ ?

## 3. Question

• Question: Is it true that

$$\lambda(\mathcal{F}) \geq 4$$

for any non-algebraic foliation  $\mathcal{F}$  with  $\chi(\mathcal{F}) \neq 0$ ?

# Thank you!