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1. Definition of Foliation

@ X: algebaic surface,
Tx: tangent bundle of X.
L~ C Tx: maximal sub-line bundle.
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Foliations

1. Definition of Foliation

@ X: algebaic surface,

Tx: tangent bundle of X.

L~ C Tx: maximal sub-line bundle.
o Foliation F is a section

se HY(X, Tx ® £).
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Foliations

1. Definition of Foliation

@ X: algebaic surface,
Tx: tangent bundle of X.
L~ C Tx: maximal sub-line bundle.

@ Foliation F is a section
se HY(X, Tx ® £).

@ Open covering X = U, Uy,

)
+ B(Xoé,yoz)L

0
slu, = A(Xas Ya) = By
3

B (Xas Ya) € Usq.
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Foliations

1. Definition of Foliation

@ X: algebaic surface,
Tx: tangent bundle of X.
L~ C Tx: maximal sub-line bundle.

@ Foliation F is a section
se HY(X, Tx ® £).

@ Open covering X = U, Uy,

)
+ B(Xoé,yoz)L

Y [0 U()/
Dy (Xa» Ya) €

0
Slu, = A(Xm)/a)aT
(0%

® slu, = gapslus, £ = {8as}-
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1. Definition of Foliations
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Foliations

1. Definition of Foliations

@ Tr:=L"! tangent bundle of F,
Kz := L canonical bundle of F.
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Foliations

1. Definition of Foliations

@ Tr:=L"! tangent bundle of F,
Kz := L canonical bundle of F.

@ Exact sequence
0— Tr > Tx = Iz ® Nr — 0,

Nz line bundle,
T7(s) ideal sheaf of Z(s) (zero set of s).
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Foliations

1. Definition of Foliations

@ Tr:=L"! tangent bundle of F,
Kz := L canonical bundle of F.

@ Exact sequence
0— Tr > Tx = Iz ® Nr — 0,

Nz line bundle,
T7(s) ideal sheaf of Z(s) (zero set of s).

@ Canonical bundle
A2 _ -1
(,dX—/\QX—K]—"@IV]:

Qx cotangent bundle of X,
N]?l conormal bundle of F.
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1. Definition of Foliation
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Foliations

1. Definition of Foliation

e Equivalently,

0—>N‘;1—>QX —>IZ(5)®K]:—>0.
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Foliations

1. Definition of Foliation

e Equivalently,

0—>N‘;1—>QX —>IZ(5)®K]:—>0.

@ The second definition of Foliation F:

w e HY(X,Qx ® Nr).
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Foliations

1. Definition of Foliation

e Equivalently,

0—>N‘;1—>QX —>IZ(5)®K]:—>0.

@ The second definition of Foliation F:

w e HY(X,Qx ® Nr).

w|Uo¢ = B(Xaaya)dxa - A(Xaa}/a)d)/m (Xaa)/a) € Uy.
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Foliations

1. Definition of Foliation

e Equivalently,

0—>N‘;1—>QX —>IZ(5)®K]:—>0.

@ The second definition of Foliation F:

w e HY(X,Qx ® Nr).

w|Uo¢ = B(Xaaya)dxa - A(Xaa}/a)d)/m (Xaa)/a) € Uy.

« — Taf ) = 1apys-
° wly, = fapwlus Nr = {fus}
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Foliations

2. Example (1): fibration

@ Fibration f : X — C,
C smooth curve, f holomorphic and surjective.
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Foliations

2. Example (1): fibration

@ Fibration f : X — C,
C smooth curve, f holomorphic and surjective.

@ Fiber F; = f1(t), t € C.

Jun Lu Riccati foliations and Double Riccati foliations



Foliations

2. Example (1): fibration

@ Fibration f : X — C,
C smooth curve, f holomorphic and surjective.

e Fiber F; = f~1(¢t), t € C.
e Foliation F generated by f:

1 of of

= (Lo + & local eq.
w ) <8de+8ydy> (local eq.),

u(F) = ged(2E, 90).
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2. Example (1): fibration
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2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where
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2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where

@ wx/c = wx ® f*QEl (relative canonical bundle)
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Foliations

2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where
@ wx/c = wx ® f*QEl (relative canonical bundle)

@ D(f):= Y (Ft — Ftred) (zero divisor of df).
teC
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Foliations

2. Example (1): fibration

@ Canonical bundle of F:

Kr = wx,c(=D(f)),

where
@ wx/c = wx ® f*QEl (relative canonical bundle)

@ D(f):= Y (Ft — Ftred) (zero divisor of df).
teC
@ Conormal bundle of F:

Nz = f*Qc(D(f)).
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2. Example (2): Riccati foliations
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Foliations

2. Example (2): Riccati foliations

@ Ruled surface p : X — B.

. . . - def. .
Riccati Foliation F w.r.t. ¢ <= general fiber F of ¢
transverse to F.
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2. Example (2): Riccati foliations

@ Ruled surface p : X — B.

. . . - def. .
Riccati Foliation F w.r.t. ¢ <= general fiber F of ¢
transverse to F.

@ F Riccati foliation < KrF = 0.
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Foliations

2. Example (2): Riccati foliations

@ Ruled surface p : X — B.

. . . - def. .
Riccati Foliation F w.r.t. ¢ <= general fiber F of ¢
transverse to F.

@ F Riccati foliation < KrF = 0.

@ Local equation:

w = (go(x)y* + g1(x)y + g2(x)) dx —dy, x€ B, y € F.

Jun Lu Riccati foliations and Double Riccati foliations



Foliations

2. Example (2): Riccati foliations

@ Ruled surface p : X — B.

. . . - def. .
Riccati Foliation F w.r.t. ¢ <= general fiber F of ¢
transverse to F.

@ F Riccati foliation < KrF = 0.

@ Local equation:

w = (go(x)y* + g1(x)y + g2(x)) dx —dy, x€ B, y € F.

@ Canonical bundle of F: Kr = rF,
degree of F: r:= deg F.
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2. Example (3): Double Riccati foliations
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Foliations

2. Example (3): Double Riccati foliations

@ Double cover 7 : Y — X.
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Foliations

2. Example (3): Double Riccati foliations

@ Double cover 7 : Y — X.

@ Riccati foliation F w.r.t. ¢ : X — B.
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Foliations

2. Example (3): Double Riccati foliations

@ Double cover 7: Y — X.
@ Riccati foliation F w.r.t. ¢ : X — B.

@ Double Riccati foliation 7*F: wy := m*wx, where

wx = (go(x)y? + g1(x)y + g2(x)) dx — dy (local).
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Foliations

3. F-invariant curve
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Foliations

3. F-invariant curve

o F foliation: {(Uyn,wa)} (or {(Ua,sa)}),

0 0
o — Aafi Ba[i
> OXa i 0Ya

or
Wa = Ba dX(v - Aa d)/u, .
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Foliations

3. F-invariant curve

o F foliation: {(Uyn,wa)} (or {(Ua,sa)}),

0 0
o — Aafi Ba[i
> OXa i 0Ya

or
Wa = Ba dX(v - Aa d)/u, .

@ C C X curve defined by f, =0 on U,.

C is F-invariant €&
Vp € C, vector s(p) is tangent to C at p.
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3. F-invariant curve

C is F-invariant iff
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Foliations

3. F-invariant curve

C is F-invariant iff

fo | s(fa)
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Foliations

3. F-invariant curve

C is F-invariant iff

fo | s(fa)

o iff £, is the solution of ODE

W = 0.
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Foliations

3. F-invariant curve

C is F-invariant iff

fo | s(f)

o iff £, is the solution of ODE

W = 0.

Let F be a foliation generated by a fibrationf : X — C. Then
C C X is F-invariant iff C lies in the fibers of f.
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Foliations

3. F-invariant curve

s := the number of irreducible compact F-invariant curves.
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Foliations

3. F-invariant curve

s := the number of irreducible compact F-invariant curves.

@ Question 1: When does s = o0?
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Foliations

3. F-invariant curve

s := the number of irreducible compact F-invariant curves.
@ Question 1: When does s = o0?

o F generated by a fibration (i.e. F is algebraic) = s = .
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Foliations

3. F-invariant curve

s := the number of irreducible compact F-invariant curves.
@ Question 1: When does s = o0?

o F generated by a fibration (i.e. F is algebraic) = s = .

Theorem (Jouanolou, 1978)

If
s > hO(X, Kz) + htH(X) — htO(X) + 2,

then F is generated by a fibration.
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Foliations

3. F-invariant curve

s := the number of irreducible compact F-invariant curves.
@ Question 1: When does s = o0?

o F generated by a fibration (i.e. F is algebraic) = s = .

Theorem (Jouanolou, 1978)

If

s > hO(X, Kz) + hHH(X) — htO(X) + 2,

then F is generated by a fibration.

@ Question 2: How to determine all F-invariant curves when
s < o0?
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4. Invariants of F
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Foliations

4. Invariants of F

@ Kodaira dimension of F:

log h°(nK
Kod(F) := limsup log h”(nKz) f).
—kes logn
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Foliations

4. Invariants of F

@ Kodaira dimension of F:

log h°(nK
Kod(F) := limsup log h”(nKz) f).
—kes logn

@ Numerical Kodaira dimension of F: v(F).
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Foliations

4. Invariants of F

@ Kodaira dimension of F:

log h°(nK
Kod(F) := limsup log h”(nKz) f).
—kes logn

@ Numerical Kodaira dimension of F: v(F).
o (Brunella) Kod(F) # v(F) iff Kod(F) = —oo and v(F) = 1.
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Foliations

4. Invariants of F

@ Kodaira dimension of F:

log h°(nK
Kod(F) := limsup log h”(nKz) f).
—kes logn

Numerical Kodaira dimension of F: v(F).
(Brunella) Kod(F) # v(F) iff Kod(F) = —oc and v(F) = 1.
Pluri-genus of F: pn(F) := h°(nKx)
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4. Invariants of F
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Foliations

4. Invariants of F

@ Chern number of F (Tan 2015):

(F) >0, c(F) > 0,x(F) >0,

c2(F) + a(F) = 12x(F).
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Foliations

4. Invariants of F

@ Chern number of F (Tan 2015):

¢ (F) = 0,c(F) > 0,x(F) >0,

c2(F) + a(F) = 12x(F).

Example (Tan 2015)

Let F be a foliation generated by a fibrationf : X — C. Then

i (F) = w(F), a(F) = 6(F), x(F) = X(f)
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Riccati Foliations

1. Invariants

@ F Riccati foliation w.r.t. a Hirzebruch surface ¢ : X — B.
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Riccati Foliations

1. Invariants

@ F Riccati foliation w.r.t. a Hirzebruch surface ¢ : X — B.

Theorem (Lu, Tan)

(1) E(F) = co(F) = x(F) =0.
(2) kod(F) < 1.

(3) pn(F )—max{ndeg]: Z{ —‘+1 0}

p singularity of F with eigenvalue ™ T,,
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2. Classification
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Riccati Foliations

2. Classification

o Classification of F with kod(w) = —oo (Lu, Tan)

Up to a birational map, we have

o w = dy;

gw:)\ydx—xdy()\eQJrand)\S%);

e w = ((x — 1)y? — xy + A%)dx — 2x(x — 1)dy (A € QT and XA < %)
Q © = (2 + (8 — 4)y — 5x)dx — 12x(x — 1)dy;
e w= (y2 + (18x — 12)y — 7x)dx — 24x(x — 1)dy;

Q@ w = (v? + (40x — 30)y — 11x)dx — 60x(x — 1)dy;

@ © = (v + (30x — 20)y — 119x)dx — 60x(x — 1)dy
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Riccati Foliations

2. Classification

o Classification of F with kod(w) = 0 (Lu, Tan)

o w = ydx — dy
@ w = \ydx — xdy (A & Q and |[ReA| < 1/2)

Q w = ((x— 1)y — xy + A)dx — 2x(x — 1)dy (A ¢ Q)
Q v = (1 +x)dx — 2x(x — 1)dy

Q v = (% + (x+2)y + 1)dx — 2x2dy

Q v =(c—y+2xy)dx — 3x(x — 1)dy (¢ =0,1)

@ v = (—y + 2+ y?)dx — 3x(x — 1)dy

Q v = (v® — 4xy +2y — 3)dx — 12x(x — 1)dy
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3. Algebraic Riccati foliation
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Foliations
Riccati Foli

Double Riccati n

3. Algebraic Riccati foliation

@ When is F an algebraic Riccati foliation ?

Theorem (Gong, Lu, Tan)

F is algebraic iff it occurs in one of the following cases (up to a
birational map):

(0) w=dy;
(An)  w = ¢'ydx — npdy;

(Dny2) w=¢' (y>+ n(p — 1)y — ©) dx — 2np(p — 1)dy;
(Bs) w=¢' (y*+4(20— 1)y —5¢p) dx — 12¢(p — 1)dy;
(E7) w=¢ (y*+6(3p —2)y — Tp) dx — 24p(p — 1)dy;
(Bs) w=¢'(y*+10(4p — 3)y — 11p)dx — 600(p — 1)dy.

where p € C(x).
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3. Algebraic Riccati foliation

Jun Lu Riccati foliations and Double Riccati foliations



Riccati Foliations

3. Algebraic Riccati foliation

@ Algebraic foliation of type A,

Corollary (Gong, Lu, Tan)

F is an algebraic foliation of type A,
<= it has two F-invariant section of ¢
<= it is from a fibration f : X — P! with two singular fibers.
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Riccati Foliations

3. Algebraic Riccati foliation

@ Algebraic foliation of type A,

Corollary (Gong, Lu, Tan)

F is an algebraic foliation of type A,
<= it has two F-invariant section of ¢
<= it is from a fibration f : X — P! with two singular fibers.

e A fibrationf : X — C is Riccatian of type A, (D,, Ex,...)
& = df gives a Riccati foliation of type A, (Dp,Ex,...)
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3. Algebraic Riccati foliation
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3. Algebraic Riccati foliation

Corollary

An elliptic fibration f : X — C on a rational surface X is Riccatian
iff f is birational to

Type Riccati foliations Families Singular fibers

A (3><2 + 1)ydx — 2()(3 + x + ¢)dy y2 = t‘(x3 + x + ¢) Is, 16

Ao (2x — 1)ydx — 3x(x — 1)dy y3 = tx(x — 1) IV, IV*

As (2x — 1)ydx — 4x(x — 1)dy v = tx(x — 1) 111, I11*

Ag (3x — 2)ydx — 6x(x — 1)dy Vo = tP(x — 1) 11, 11"

Dy (Y2 —xy — 1)dx — (3x2 — 4)dy | &1° = t(3x° — 4)g° | IV,IV*,2I,
where

g1 = (x2 — l)y4 —2xy3 +6y% —6xy +3, @ :=y*—4xy>+6y>—3.
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4 Discriminant
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Riccati Foliations

4 Discriminant

o w=(goy? + g1y + &)dx — dy, g € C(x).
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Riccati Foliations

4 Discriminant

o w=(goy? + g1y + &)dx — dy, g € C(x).
o Take

g(X) = %(gl+%)7 g0#07
381, g =0.
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Riccati Foliations

4 Discriminant

o w=(goy? + g1y + &)dx — dy, g € C(x).
o Take

g(X) = %(gl+%)7 g0#07
381, g =0.

@ Discriminant of F:
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Riccati Foliations

4 Discriminant

o w=(goy? + g1y + &)dx — dy, g € C(x).
o Take

g(X) = %(gl+%)7 g0#07
381, g =0.

@ Discriminant of F:

o A(w) € H(S2Qp(log T)) where

T={pecP'|Fp=y¢(p)is F —invariant}.
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4 Discriminant
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Riccati Foliations

4 Discriminant

@ Invariance of Discriminant

Theorem (Gong,Lu,Tan)

A(w) = A(®) iff F can becomes F by flipping maps and choosing
suitable coordinates.
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Riccati Foliations

4 Discriminant

@ Invariance of Discriminant

Theorem (Gong,Lu,Tan)

A(w) = A(®) iff F can becomes F by flipping maps and choosing
suitable coordinates.

o Criterion for algebraic Riccati foliation

Theorem (Gong,Lu,Tan)

F is algebraic iff A(w) = A(df) where df is the foliation with a
standard equation in the above Theorem.
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4 Discriminant
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Riccati Foliations

4 Discriminant

o If all singularities of F have non-zero eigenvalue, then
I, — i~ 7
A — - P _Pp
=Tt T

where
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Riccati Foliations

4 Discriminant

o If all singularities of F have non-zero eigenvalue, then

I, — i~ 7
A — - P _Pp
) z,,:4(><—P)2Jr = X—p

where

@ p € IP? runs over all points whose inverse image Fp is
F-invariant.
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Riccati Foliations

4 Discriminant

o If all singularities of F have non-zero eigenvalue, then

I, — i~ 7
A — - P _Pp
) z,,:4(><—P)2Jr = X—p

where

@ p € IP? runs over all points whose inverse image Fp is
F-invariant.

@ £, is the eigenvalue of the singularities lying on Fp.
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Riccati Foliations

4 Discriminant

o If all singularities of F have non-zero eigenvalue, then

I, — i~ 7
A — - P _Pp
) z,,:4(><—P)2Jr = X—p

where

@ p € IP? runs over all points whose inverse image Fp is
F-invariant.

@ £, is the eigenvalue of the singularities lying on Fp.
@ > pp=0.
P
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Double Riccati Foliation

1.Formulae for Chern numbers
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Double Riccati Foliation

1.Formulae for Chern numbers

@ Double cover 7 : X — Y with branch locus R
Riccati foliation G on Y w.r.t. ¢
Double Riccati foliation F = 7#*G
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Double Riccati Foliation

1.Formulae for Chern numbers

@ Double cover m : X — Y with branch locus R
Riccati foliation G on Y w.r.t. ¢
Double Riccati foliation F = 7#*G

@ Formulae for Chern numbers.

Theorem (Hong, Lu, Tan)

X() = 15 Y 2(p) + 16+ 1)deg .
pPER
GF(F) =) s(p)+3(g+1)degG -2 Ba)v(l,) — v(IV),
pPER a

where p € R runs over the nodes and the tangent points of R to
G, si(p) and sy(p) are local invariants of the branch locus with
respect to G, and v(1,) is the number of fibers of type I,.
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Double Riccati Foliation

2.Inequality of slope
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Double Riccati Foliation

2.Inequality of slope

@ Slope of F:
NF) = G (F)/x(F).

Riccati foliations and Double Riccati foliations



Double Riccati Foliation

2.Inequality of slope

@ Slope of F:
NF) = G (F)/x(F).

@ Inequality of slope

Theorem (Hong, Lu, Tan)

4 < \F) <12,
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3.Question
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Double Riccati Foliation

3.Question

@ Question: Is it true that
ANF) =>4

for any non-algebraic foliation F with x(F) # 07
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Thank you!
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