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Abstract. In this paper, we study the stability of contact discontinuities that separate a C! su-
personic flow from a static gas, governed by the three dimensional steady non-isentropic compressible
Euler equations. The linear stability problem of this transonic contact discontinuity is formulated
as a one-phase free boundary value problem for a hyperbolic system with the boundary being char-
acteristics. By calculating the Kreiss-Lopatinskii determinant for this boundary value problem, we
conclude that this transonic contact discontinuity is always stable, but only in a weak sense because
the Kreiss—Lopatinskii condition fails exactly at the poles of the symbols associated with the lin-
earized hyperbolic operators. Both of planar and non-planar contact discontinuities are studied. We
establish the energy estimates of solutions to the linearized problem at a contact discontinuity, by
constructing the Kreiss symmetrizers microlocally away from the poles of the symbols, and study-
ing the equations directly at each pole. The non-planar case is studied by using the calculus of
paradifferential operators. The failure of the uniform Kreiss-Lopatinskii condition leads to a loss of
derivatives of solutions in estimates.
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1. Introduction. This work is devoted to investigating the stability of contact
discontinuities in three-dimensional steady non-isentropic compressible flows governed
by the full Euler equations that separate a C'! supersonic flow from a static gas (flow
with zero velocity, hence subsonic, see Fig. 1.1). Such transonic contact discontinuities
occur ubiquitously in supersonic jet flows, cf. [14, §148, p. 387]. They are either vortex
sheets or entropy waves or combination of them, since both tangential velocity and
entropy may experience jumps across the contact discontinuity fronts.

More specifically, suppose there is a solid convex corner given by {(z,y,2) € R3:
x <0,y €R,2 < 0} in the space R3. Set 1 = {z =0,y € R,z = 0}. We can construct
the following flow field containing a contact discontinuity front at {z > 0,y € R,z = 0}
that issuing from I: there are uniform supersonic flows with velocity (u, v, 0), pressure
p, density Py in the region {z € R,y € R,z > 0} (supersonic means u > c,, for
the sonic speed ¢, to be specified later), and the gas in {z > 0,y € R,z < 0} is
static (velocity is zero), with pressure p, density p . Now if there are suitable small
perturbations of the upcoming supersonic flow near the edge 1, we are wondering
whether such flow pattern would still exist in a neighborhood of the origin O.

For the two-dimensional case (i.e., the flow does not depend on y), Chen, Kukreja
and Yuan [5, 6] have shown that such transonic contact discontinuities are stable and
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Supersonic flow (I): (u, v, w, p, p)

Y

Supersonic flow /

Contact discontinyity

Static gas (II): (0,0,0,p,p )

Fic. 1.1. A contact discontinuity emerged from the edge (y-axis) that separates the gas
with velocity zero below from a supersonic flow above.

well-posed in the class of BV functions by using the front tracking method. The aim
of this paper is to study the linear stability of such contact discontinuities for the
genuinely multi-dimensional case, by obtaining some fundamental energy estimates
of solutions to the related linear problems. This is the crucial step for studying the
nonlinear stability of this transonic contact discontinuity. We remark that for the
time-dependent problem, it is known that the contact discontinuity is violently un-
stable for the three-dimensional Euler equations (see [20, pp. 222-225] or [13] and
references therein). For the two dimensional case, Coulombel and Secchi showed in
their celebrated works [11, 12] that for the isentropic Euler equations, certain rather
strong supersonic contact discontinuities are weakly stable. The linear stability of a
planar contact discontinuity for the unsteady non-isentropic Euler equations in two
space variables was studied by Morando and Trebeschi [19]. Recently, Wang and
Yu [22] also studied the linear stability of contact discontinuity for the three dimen-
sional steady Euler equations, but the flow on both sides of the contact discontinuity
are supposed to be supersonic. See also [1, 3, 7, 8, 10, 15, 16, 17, 21, 23, 24] and
references therein for other related works on the stability of elementary waves in
multidimensional hyperbolic conservation laws. Comparing to studies on transonic
shocks in steady flows (see, for example, [9]), the significant difference here is that the
free boundary is characteristic, and we will mainly study multidimensional hyperbolic
equations rather than elliptic-hyperbolic composite systems.

In contrast to the aforementioned works, the problem we considered here is ac-
tually a one-phase free boundary problem. At first glace since there involve both
supersonic and subsonic flows, the steady Euler equations are then of composite-
mixed elliptic-hyperbolic type with a free boundary (i.e., the contact discontinuity).
But a merit of our problem is that the gas will stay static in the elliptic region; it
will not be influenced by the supersonic flow. So we actually have a one-phase free
boundary problem for a hyperbolic system. It seems that this work is the first one
dealing with such one-phase hyperbolic free boundary problems.
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Like previous works, since the boundary is characteristics, the boundary matrix in
the linearized differential operators is singular, which leads to the reduced system for
the non-characteristic components of unknowns has poles. Even though in the steady
supersonic flows, the three dimensional Euler system is hyperbolic as the supersonic
direction of flows is time-like, however we notice that one of crucial differences from
the two-dimensional unsteady Euler equations studied in [11], is that there is a ve-
locity component along the “time" direction for the three dimensional steady Euler
system. Thus, the tangential velocity field of the three-dimensional transonic steady
contact discontinuity has dimension two while it is only one-dimensional along the
contact discontinuity front in the two-dimensional unsteady Euler flows (cf. [11]),
so the analysis of stability of the contact discontinuities in three dimensional steady
Euler system is more subtle. For example, in the following discussion we find a new
phenomenon not appeared in [11], namely the associated Lopatinskii determinant for
the reduced system of our problem vanishes exactly at the poles of the symbols. This
requires one to control the solutions near the poles in a quite delicate way to close
the estimates (see section 4.8).

In [22], the authors found that to have the weakly linear stability of a steady
supersonic contact discontinuity in three dimensional isentropic Euler systems requires
that the tangential velocity field on a space-like plane must be supersonic as well on
both sides of the contact discontinuity front. It is quite surprising to discover in this
paper that the steady transonic contact discontinuities in three dimensional Euler
systems are always weakly stable, even for the non-isentropic flows! This demonstrates
the observation that the transonic contact discontinuities are stronger, so it is likely
to be more robust.

To state our results of weakly linear stability, we first formulate the nonlinear
problem in section 2, where we also review some important properties of the steady
Euler system and the notion of contact discontinuities. In section 3 we study the linear
stability of a planar transonic contact discontinuity. We will see the Kreiss—Lopatinskii
condition holds for the corresponding linearized constant coefficient problem but the
uniform Kreiss—Lopatinskii condition always fails exactly at poles of the reduced prob-
lem for the associated non-characteristic components of unknowns. By constructing
Kreiss’ symmetrizers, we obtain the first main result of this paper, Theorem 3.7, a
basic L? estimate for the linearized problem of transonic contact discontinuity at a
planar discontinuity. This estimate exhibits a loss of one derivative, which shows that
this transonic contact discontinuity is weakly stable. Then with the argument of this
special while crucial case, in section 4, we use para-differential calculus and microlo-
calization techniques to derive energy estimate of solutions to the linearized problem
at a non-planar transonic contact discontinuity, that is Theorem 4.1, the second main
result of this paper. In particular, to estimate near the poles needs certain new idea
and techniques, since where the uniform Kreiss—Lopatinskii condition fails. We show
in detail how to treat this case in section 4.8. The definitions and basic properties of
para-differential calculus we used here can be found in appendices of [2] or [10, 11].

2. Formulation of nonlinear problems. In this section, after review some ba-
sic facts of the three-dimensional steady non-isentropic Euler equations, we formulate
the nonlinear problem on stability of a transonic contact discontinuity.

2.1. Three-dimensional steady non-isentropic Euler equations. The mo-
tion of steady non-isentropic flow of perfect gas without exterior force is governed by
the following three-dimensional (steady) full compressible Euler system expressing
conservation of mass, momentum and energy ([14, (7.09.2) in p.15, (8.02.2) in p.16,
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and (9.01) in p.17]):

(p)a + (p0)y + (o) = 0, (21)
(pu® + p)s + (puv)y + (puw). = 0, (2:2)
(pvu)s + (pv* +p)y + (prw): =0, (2.3)
(o) + () + (pu? +)- =0 (24)
(e + 594 + P + (pe + 390> + PJo)y + ((pe + 5pa” +p)w): =0, (2)

2 2

(In this work subscript means partial derivatives.) Here ¢ = vu? + v? + w? is the
speed of the flow, and e is the specific internal energy of the gas.

We consider specifically the polytropic gas. The state function is (cf. [14, (3.03)
inp.6]) p = A(S)p", with S the en‘cropy7 A(S) = (T'—1) exp((S—Sp)/cy), ¢, a positive
constant, Sy a given number, I' = £ 4 1 the adiabatic exponent (cf. (4.10) in [14
p.9]), and R a positive constant. Then the temperature of the gas is given by T' =

the internal energy e = ¢, T = %% = ﬁ%;
¢ = /I'p/p. For these relations, see [14, p.7].
Since we consider piecewise C! solutions, we may use the symmetric form of

(2.1)—(2.5) whenever the solution is C* and p > 0 (see [2, p.395]):

Rp’
and the local sonic speed is given by

A (U)0,U + Ay (U)0,U + As(U)0.U =0, (2.6)
where U = (u,v,w,p,S)T, and
pu 0 O 1 0 pv 0 0 0 O
0O pu 0 0 O 0 pv O 1 0
Al = 0 0 pu O 0 |, Ay= 0 0 pv 0 O |,
1 0 0 p% 0 0O 1 o0 p% 0
0 0 O 0 wu 0 0 O 0 w
pw 0 0 0 O
0 pw O 0 O
Az = 0 0 pw 1 0
0 0 1 p% 0
0o 0 O 0 w

For u > ¢, we can show the system (2.6) is symmetric hyperbolic with respect to
z. Let &, n € R. We solve the eigenvalue A by the characteristic equation

det(AA; — (€45 +nA3)) = 0. (2.7)

A direct calculation yields that there are two simple solutions A, A3, and one solution
A2 with multiplicity three (cf. [9, p.538]) given as follows:

M=dn-An h= ST oy, (2.8)

where

e/ e+ wn)? T (@ = A€+ 7).

w2 — 2

u
AR = foz(v@rwn), A=

u2
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One sees immediately that for \j 3 to be real, i.e., (v€ +wn)? > ¢* — u? whenever
€2 +n? = 1, there must hold |u| > ¢. Since A; should be nonsingular, we need |u| > c.
Also, if |u| > ¢, as can be checked directly, A1, A2, A3 are distinct. For ¢ < ¢, the
system would be elliptic-hyperbolic composite-mixed type as studied in [9].

Also, suppose U = (u,v,w,p, S)T satisfies |u| > c and p > 0, then the eigenvalues
A1, A3 are genuinely nonlinear:

VuAUs€&,m) er(Us€,m) # 0 forall € +1° =1,
and the eigenvalue A5 is linearly degenerate:

VulU;€,n)er(U;6,n) =0 forall €2 +9?=1.
Here r is the corresponding right eigenvector associated with the eigenvalue A. These
claims can also be proved by direct calculations.

2.2. Jump conditions and contact discontinuity. Let 2 : {¢(z,y,z) = 0}
be a C! surface in R? across which the piecewise C! solution U of the Euler system
(2.1)-(2.5) has a jump. With integration by parts, we get the Rankine-Hugoniot
jump conditions (cf. [15, (1.8.2) in p.21]):

lpulisa + ool + [pwlsz = 0, (29)
oo + Pl + lpuelyy, + [punly. =0, (2.10)
[ovultpz + [pv* + plioy + [prw]e: =0, (2.11)
[pwuliy [pwv]wy [ow? +p}wz:0 (2.12)
(5 + e + 050 + 5oy + owl(5a® + =)l = 0.(213)

Here as usual [] stands for the jump of a quantity across Z. Set m = pu, + pvip, +
pwi),, which is the mass transfer flux across 2. Let m* be the mass transfer flux

measured at the two sides of 2. Equation (2.9) means m™ —m~ = 0. We now specify
two special cases:
e mT™ =m~ =0on 2. In this case, 9 is called a contact discontinuity (front).

e mT =m~ #0on 2. In this case, Z is called a shock-front.
For a contact discontinuity, the Rankine-Hugoniot conditions (2.9)—(2.13) can be
significantly simplified as
ui% + ’Uid)y + wiwz =0,
pt—p =0

(2.14)
(2.15)
Obviously, the contact discontinuity is a characteristic surface associated with As.

2.3. A free boundary problem. Now we can formulate the transonic contact
discontinuity as a free boundary problem, with the characteristic free boundary being
the contact discontinuity front. Suppose its equation is

z=1¢(x,y) for >0, yeR, with ¥(0,y)=0.

Set Qy == {(2,y,2) ER3>:2 >0, z > 9(x,y), y € R}. Then the unknowns U and v
should solve:

(2.6), in Q,
U = Uy, on {x=0, 2>0, y€R}, (2.16)
p=p, on {z=1(z,y)}, '

uthy +vpy —w =0,

on {z=1(z,y)}
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The last two conditions follows from (2.14) (2.15) applied to the upper unknown su-
personic flow Ut = U and the lower given static gas U~ = (0,0,0,p,p ). We suppose
the initial data Up is a small perturbation of the reference state U, = (u,v,0,p, S, )
with u > ¢ := ¢, and expect 9 to be a small perturbation of z = 0 for > 0 small.

2.4. Nonlinear problem with a fixed boundary. The problem (2.16) has a
free boundary since ¥ (z,y) is also unknown. As in [11, 16], to fix the free boundary,
we use a change of independent variables (x,y, z) — (2/,y, 2") given by

x:mlﬂ y:y/’ Z:q](‘/El?y/?Z/)?
which transforms €, to R;r, x Ry x R:,, with ¥ being an unknown satisfying

\Il(ggl7y/70) = 1/’(17/,?/), az/\l/ Z K

for a positive constant s to make sure the change-of-variables is invertible.
Inspiring by the eikonal equation of v, the last line given in (2.16), we require the
function ¥(z',y’, 2') to be determined by the following problem

Y

Pu+v—w=0, in {2’>0, 2 >0},
B(0, 42 = . (2.17)

Denote by U(z',y/,2") = U(x',y',¥(2',y,2')). Then, from (2.6), U(z,y,2")
should satisfy, in {2’ > 0}, that

A1 (U)0pU + Ag(U)8y U + A3(U,d¥)d,. U = 0, (2.18)

where the tildes of U had been dropped for simplicity, and

A3(U,dW) = 0

(Ag(U) — A (U)0y T — Al(U)am,\p). (2.19)
We then get a fixed boundary problem:

(2.18), in {2’ >0, ¥y €R, 2/ >0},
U=Uy, on {2/=0,y eR, 2/ >0}, (2.20)
p=p, on {2/ >0, ¥y eR, 2/ =0},

which is coupled to (2.17), while ¢ (z’,y’) satisfies a transport equation

{u@wfz/) +voyp =w, in {2’>0, ¢y €R}, (2.21)

¥(0,y') =0, on {z'=0, y € R}.

In the sequel, for simplicity of writing, we replace (2/,y’,2’) by (z,y,z). Problem
(2.20) and (2.21) is the nonlinear problem we need to study.

3. Constant coefficient linearized problem. In this section, we linearize
problem (2.20) and (2.21) at a planar contact discontinuity. We first investigate the
related Kreiss—Lopatinskii condition, and then use the information to obtain energy
estimates by construction of Kreiss’ symmetrizers in the frequency space.



Stability of Transonic Contact Discontinuities 7

3.1. The constant coefficient problem. Let U = (u,v,0,p,S,), v =0,¥ =2
be the constant reference state (recall we assume u > ¢, > 0), and U,v, ¥ be their
corresponding perturbations. From (2.20), we get the following constant coefficient
linearized problem:

A1 (U)0,U + Ay (U)0,U + A3(U)0,U = f, in {x €Rt, yecR, 2> 0},
P=9, on {z eR" yeR, =0} (3.1)
Ulz<o = 0.

We also find, from (2.21), the linearized equation of ¥

{uammvayww—h, in {z €R*, yeR}, (32)

Placo = 0.

So U and ¢ are actually decoupled in (3.1) and (3.2).

3.2. The Kreiss—Lopatinskii condition. In this section, we are going to see
whether the Kreiss—Lopatinskii condition holds for the boundary value problem (3.1),
which is a crucial point to have the well-posedness of this problem.

For simplicity of notations, we shall drop the underlines of the background state
U in the problem (3.1) for the following calculations. So ¢ in the rest of this section
actually means c, .

First, let us introduce certain transformations in order to make the boundary
matrix A3(U) in (3.1) to be a diagonal one. For this, let us set

1 1
I'p 1
1 Tp
P = c c , Q= %p 1 ,
I'p —Tp & -1
1 1
and U = PV. Then, obviously one has
. . w J% w p '
Vi=da, Vo=0, Vs=—4+——, Vy=———, V=5
1 u, Vo v, V3 %2 + 2Fpa 4 % 2Fp7 5 )

B3 = QA3(Q)P = dlag{ov 07 203 —2¢, 0},

and

w0 1 -1 0
0 % 0 0 0

Bl = QAl(Q)P = 1 0 2u 0 0 s
-1 0 0 2u O
0O 0 0 0 w
L0 0 0
0 % 1 -10

By:=QAU)P=| 0 1 20 0 0
0 -1 0 20 0
0 0 0 0 v
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So (3.1) becomes

{Blamv +Byd,V + B30:V = Qf, in {z >0}, (33)

Vs —Vy=g/(Tp), on{z=0}

Next, we need to change the problem (3.3) into a dynamical system for the non-
characteristic components of the unknown vector V', henceforth define the associated
Lopatinskii determinant. In this way, we shall see that the coefficient matrix in the
reduced system has poles.

Denote by V(z,7,7) the Laplace transform with respect to 2 (with dual variable
T =741,y >0,d € R) and Fourier transform with respect to y (with dual variable

n) of V. From (3.3) it follows that V(z,7,7) satisfies the following problem

(7B +inB2)V + B3d.V = QFf, (5.4)
(0,0,1,~1,0)V|,—o = g/(Tp). '
We find
Ly”" 0 T -7 0
0 “Tj# n —in 0
TB1 4+ inBy = T i 2(ut + ivn) 0 0
—T —in 0 2(ut 4 vn) 0
0 0 0 0 ut + 1n

Therefore, recall ¢ = I'p/p, equations (3.4) may be written line by line as

p(ur + ion)Vi + Tpr(Vs — Vi) = Qf1,
)

p(ut + in) Vo + iTpn(Vs — Vi) = QFf,

(UT + ZUT})‘Z’) = Qf5a

avs 1, . . . uT +ivn s
W Lty ity + T,
dvi

1 N A _
+ — (Vi +inVa) — Qfs-

dz 2c

uT + wnm _
c

~ ~ 2 2 ~ ~
Note 7V} +inVs = ¢? JTJ:iTvn (V3 — V4), hence the last two equations can be written as

avee
dz

= B(r,m)V™ + (Qf 4, Qf5)", (3.5)

where V"¢ = (V3,V;)T are the non-characteristic unknown variables, and

c 772772 uT+1vn c 7]2772
B(T ) _ “\2urtivy + c 2 ut+ivn _ —a b (3 6)
1 R cm?=r? | urtivy —b a )
2 ut+ivn 2 ut+ivn c

The eigenvalues A of B(7,n) are given by

1
N=(a+b)(a—b)=n*—7>+ g(u7+ivn)2.
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We need to find the eigenspace E_(7,7n) associated with the eigenvalue A_ whose real
part is negative when Re7 > 0. For convenience of presentation, we introduce the
sets

={(mn) € (CxR)\{(0,0)} : ReT >0}, (3.7)
{(r,n) € E: |T|2+77 =1}

™ [I]
I

We note A is homogeneous degree one with respect to (7,7) in Z. By a simple com-
putation, we also see that the eigenvector associated to A_ can be given as

(ur +ivn)? ¢

e-(7,m) = (A~ (u + ivn) — S — ) S =), (ra) ez,

2 B c
and then extended to = with homogenous degree zero. e_(7,7) is a base of E_(7,7).
So the Lopatinskii determinant for the problem (3.1) is given by

A(r,n) = (1,-De_ = (ur +1vn) (A — %(UT +ivn)), (r,m) €X, (3.8)

and is homogenous degree zero in =. For the definitions of Kreiss—Lopatinskii condition
and Lopatinskii determinant, see [2, p.108, p.130].

The factor A — *(’UJT + wn) vanishes at 7 = =£|n|, while Re A_ < 0 whenever
Rer > 0. So A_ — *(UT + tvn) can never be zero for ReT > 0. We note the point
(1,m) where ut 4 fvn = 0 is a pole of the matrix B. Thus, we conclude

PROPOSITION 3.1. The Lopatinskii determinant A(r,n) for the problem (3.1)
vanishes only at the poles of the matriz B(t,n).

This is a new feature comparing to that of [11, 19].

3.3. Estimate of solutions in frequency space. Now we start to derive en-
ergy estimate of the solution to the constant coefficient problem (3.1). This mainly
relies on the construction of the Kreiss’ symmetrizers of the following system

dg; = [?’(T, n)VnC, in {z> 0},
pgvee =h, on {z=0}, with g=(1,-1),

(3.9)

for the frequency away from the poles, and a careful analysis of the problem (3.4)
near the poles. We note (3.9) is reduced from (3.5) and the boundary condition in
(3.4).

DEFINITION 3.2 (Kreiss’ Symmetrizers). For any (10,m0) € X, if there is a
neighborhood V and two C* mappings T : V — GLy(C) and r : ¥V — Mayo(C) so
that

i) For all (t,n) € V, the matriz r(7,n) is Hermitian, and homogeneous of degree
zero with respect to (1,7);
i1) There exist positive constants k and C' so that the following inequalities hold:

Re (r(r.)T(r,mBr.n)T(r,m) ") 2 kylo, ¥z eV, (3.10)
o)+ C(Brn () ) BT~ > I, (3.11)
Here Iy is the 2 x 2 identity matriz, Re M := (M + M*)/2, and A > B mean

the matriz A — B is positive-definite.
Then the matrixz r(7,n) is called a local Kreiss’ symmetrizer near (1o,1).
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3.3.1. Construction of local symmetrizers. First, let us use Kreiss’ idea to
construct the symmetrizers of the dynamic system (3.5) for frequencies away from the
poles. This will be done for two subcases:

a) Frequency interior points: {(r,n) € ¥: Rer > 0};

b) Frequency boundary points where Kreiss—Lopatinskii condition holds: {(7,7) €
Y : Rer =0 and A(r,n) # 0}. We know that these are those points
{(id,n) € ¥ : ud+vn#0}.

Case a): Frequency interior point. Suppose (79,7)) is a frequency interior point
(ReTp > 0), then it has a neighborhood V that is still contained in the interior of 3.
We know in V that, since the two eigenvalues of B must be distinct, the matrix B is
always diagonalizable. Actually, we have the eigenvectors

67(7—7 77) = ()‘* - a, _b)T7 6+(T, 77) = (b, Ay + a)T7 (T7 7)) S

and then B(Ta T’)(e— (Ta 77)3 €+ (Ta 77)) = (6— (7_5 77)7 €+ (Ta 77)) diag()‘—a >‘+) Here and in
the following Ay is the eigenvalue with positive real part for Re7 > 0. So it is natural
to define

T(r.n) = (e (mm)s e (ram) ™ = - ia)(;ﬁwbg ( Mepe 70 )

One may check that the denominator (A_ —a)(Ay +a) + 0% = 2(b? — a?) =2)\2 #0
in V. So T(7,7n) : V = GLy(C) is well-defined and smooth. Since

Tt = (5 ) ),

=3 %)

for some constant K > 1 to be chosen. It is easily seen that

Re (r(r, )T (1, 1)B(r,n)T(r, n)*l) = ( _RS A KR(G): Ay )

we can set

Because V is contained in the interior of 3, there must be a positive constant k& > 0
so that +Re Ay > k in V. Therefore, we get

Re (r(r.)T(r B T(rn) ") = kI = kyla, iV,

because 0 < v < 1.

Let E_(7,7n) (resp. E4(7,m)) be the stable (resp. unstable) subspace of B(7,n).
As the Kreiss—Lopatinskii condition holds in the neighborhood V of (79, 19), we have
ker SN E_(r,n) = {0} for (r,n) in V. Since dim E_(7,n) = 1 = dimker 8, we know
ker 3@ E_(7,1m) = C? and therefore 3 : E_(7,1) — %(3) = C is one-to-one. Then
under the change of unknowns W = TV“C, we explicitly get

pa= (% ) mw=() ). mec

and f is replaced by 8T~!. Now consider the mapping C? — C @ C given by

Z= < Z ) — (BT ! ( Z >,z+)T.
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This is one-to-one, since for zy = 0, using the fact that E_(7,n) is mapped one-to-

one to BT~YE_(r,n), then fT! < Za
mapping is invertible, and there is a constant Cy > 0 independent of (7,7) € V so

that |2_|? < |Z|? < Co(|BT~1Z|? + |24|?). Thus we have

= 0 implies z_ = 0. Therefore the above

ZTr(7,m)Z +2C0|BT(ry ) 22 > —[o_ P + Kz 2 + 22 2 — 2G|z |
> |22+ |22 = |2, VZ e

by choosing K = 2Cjy 4+ 1. The above inequality is equivalent to

r(m,n) +2Cy (5(77 T (r, n)‘l)*ﬁ(T, mT(r,n)~" > L.

Therefore we have proved

LEMMA 3.3. At each frequency interior point (19,10), there is a local Kreiss
symmetrizer.

Case b): Frequency boundary points away from the poles. For points {(1,7n) € ¥ :
T =10, ud + vn # 0}, we have

)

1
M=+ 6% - S(ud+ on)?.

The Cauchy-Schwartz inequality implies (ud + vn)? < (u? + v?)(6% 4+ n?), so recall
u > ¢, we infer the right-hand side may change sign. We discuss this problem for the
following three different cases of eigenvalues .

Subcase b1). For points {(r,7) € ¥ : 7 = id,ud + vn # 0} satisfying c2(n? + 62) —
(ud+wvn)? > 0, then Ay = i\/nQ + 02 — & (ud + vn)2, hence B(r,7) is diagonalizable.
One can discuss this case in a way totally similar to that given in Case a), since all
Ey(7,n),ex(7,n) and Ay can be continuously extended to this case.

Subcase b2). For the frequency boundary point satisfying ¢?(n?+462)—(ué+vn)? <

0, then A = iz\/c% (wd +vn)2 — (n? 4 62), hence B(7,7n) is still diagonalizable.

We need to decide which of the root should be A_. Since ReA_ < 0 for v > 0
ORe \_

and Re A\ =0 at v = 0, we have “5z"~|,—0 < 0. By the Cauchy-Riemann equation,
ORe A_ Olm \_ a0 /1
= =4+—/—(ud 2 _(p2 1452
Rer |y~ oy |, Tos\ @ et 0%
1 1
=+ ((u* = ®)6 +uvn).  (3.12)

C @ e — (1 + )

First, we note that in this Subcase b2), (u? — ¢?)d +uwvn # 0. Otherwise, we have
(ud +vn) = %6, hence (ud +vn)?/c? — (n* +62) = ((¢* —u?)/u?)6? —n? < 0 by using
¢ < u, which is a contradiction to the assumption of this case!

Thus, we get that

& When (u? — ¢?)§ + uvn > 0, we have

Ay = ﬁ:z’\/lg(u5+ vn)? — (n? + 62);
c
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& When (u? — ¢)§ + uvn < 0, we have

1
Ay = ﬂ\/CQ(ué +vn)? — (n? +02).

Now, we construct a symmetrizer in a neighborhood V of a point (19 = idg, 70)
of the Subcase b2). We can still use the transform T'(7,n), and r(7,n) = diag(—1, K)
with K > 1 to be chosen as before, and obtain that, for (7,7) € V that

Re (7’(7’, n)T(TJ))B(T,U)T(T,??)il) = ( _R(G))P KR?})\+ >

By (3.12), for V small enough, we have —Re A_ > k~, and similarly Re Ay > k~, for
some k > 0 depending only on (79, n9). This justifies (3.10). The verification of (3.11)
is then the same as for frequency interior points, since the stable subspace E_(7,7)
can be continuously extended to V.

Subcase b3). When c¢2(n? + §%) — (ué + vn)? = 0, then Ax = 0, hence B(r,n) is
not diagonalizable. These (7,7) are usually called glancing points. We shall discuss
this case in a way similar to that given in [4, pp. 452-460].

For a point (idp, 1) of this case, as

2 2
. c ng + 65 udg + vno
b = b(i = —. = %
(400, 70) 2i  udg + vng 2ic 0,

there is a small neighborhood V of (idg,n9) in X, such that b(r,n) = g% # 0 in
V. Define

=5 (0 5 ) o mew=(3 ).

They are smooth in V. Then

Tt =atn = ( gy oy ) 619

As in [11, p.965], at the point (idg, 179), we check that (note (a + b)(idg,n0) = 0)

a . udg +vng 0
9= —(2ib b)) = ——"—— b
S (2ibla+8) = ST ()
udy + vng 0 <u7+i(u6+w]) n? + 62 — 4?2 21’76)
= R cC -
¢ Oy ¢ uy + i(ud +vn) (v=0,6=60,1=m0)
ubo +vno (U cdo 2/ 9 4
=9 Z = - — )6, . 3.14
c (C u50+w;0> 02(( c) 0+uv770) ( )
We claim ¥ € R\ {0}. Otherwise, it holds dy = ——z"=no. Substituting this into

A(n? + 62) — (ud +vn)? = 0, we find Cgc_zuz (u? + 0% — *)ng = 0. Since u > ¢, we
conclude 79 = 0 and hence §y = 0, but (0,0) is not a member of ¥.

Now we define

= (%)= (450 8)-n (2 7)
.= E + F(r,n) — irG, (3.15)
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where es and ¢ are real numbers to be determined, and f(7,7) is a real-valued C'*°
function that vanishes at (19 = idg, 7o) [11]. Then

0 o!
7’(70»770) = 19—1 ey .

We first verify (3.11) at (79,70):

C1vx _ 4C|b|? 2iCb + 91
7l m) + COT () T ) = (it g1 e )

Choosing C > 0, ey > 0 quite large, the quadratic form satisfies (at (79, 70))
ACIHP 12 + 2Re (971 + 2iCB) 1% ) + (C + ea) |20l = 2(|2 2 + [22%),

So by shrinking V we may get, for (7,n) € V, that

r(r,n) + C(BT(r,n) ) (BT (r,n) ") > I

as desired. -
Next we choose f(7,7) and ¢ to guarantee (3.10). Note a(mg,n) = ( 8 é ) =

1N, we have
a‘(Ta 77) =1iN + (a(zd, 7]) - a(iéo, 7]0)) + (a(Ta 77) - a(i(S, 77))
By Taylor’s formula, it holds
. g .
a(r,n) —a(id,n) = v 5-alid.n) + VM (7, m),

with M a continuous matrix-valued function. We also compute that

. ' (us+vn P+ 62 ! 0
a(id,n) — a(idy,no) = @ ( e “wr v CZ;jrrgji -1

_( iby(id,m) 0 o
= (s sy )= P

Now choose

From) =971 (b1(i8,m) — b3(i6,1)) + e2b2(i6,7),

which is obviously smooth in V and vanishes at (79,70). One then checks that, with
such a choice of f,

. - fbl +’l971b2 f+1971b3
(E+ F(7,n)(N + b, 7)) = ( 9Ly + eby 9L+ eaby

is real and symmetric for all (7,n) € V. Consequently, for (7,1) € V,

9
+92M) +1G(N +b) = Gy +7°M))

Re (r(r.)a(r.n)) = Re (£ + F)(7 0 o

"5
0

— 7Re (Eai;I +GN) +L(r,1),
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where L(7,n) is smooth and L(7g,n9) = 0. Direct calculation yields

oa 1 =* 0 0
(i) -(11)+(3 1)

where * represents quantities determined by ¥~1, ez and (79,7). So by choosing g
large enough, the above matrix is bounded below by $I»; shrink V to make L(7,7)
small, we further could have Re (r(r,n)a(r,n)) > 171> as desired. So we proved that

LEMMA 3.4. For each frequency boundary point that is not a pole, there is a local
Kreiss’ symmetrizer.

3.3.2. Localization. Now, we are going to estimate the solution to the lin-
earized problem (3.1) in each neighborhood of different frequencies.

Since ¥ (cf. (3.7)) is compact, there are a finite number of such neighborhoods
Vi,--+, Vs that cover X. So there is an associated partition of unity {X? }]le; that is,
X; are nonnegative real-valued C* functions in ¥, supp x; C V;, Uf:1 supp x; = X,
and Z;-le x;j(1,m)? =1 for all (1,n) € .

For a given V;, there are two possibilities: either it contains only frequency points
of cases a) or b) studied in the previous subsection; or it contains a pole of the
coefficient matrix of (3.5), for which the estimates need to be done separately below.

3.3.3. Estimate at frequency points away from the poles. First we assume
that supp x; does not contain a point (7,7) € X so that ur+ivn = 0. In this situation
we have constructed a local symmetrizer r;(7,n) and a smooth mapping 7;(7,n) in
the previous subsection. We first extend r; and 7 to be defined in the whole X by
setting them to be zero outside of supp yx;, then extend x,(7,n), r;(7,n) and T;(,n)
to = (see (3.7)) so that they are homogeneous of degree zero.

Now define

W;(z;7,m) = x5 (T, 0) Ty (r,m) V™ (257, m). (3.16)

From (3.9), we know that W; satisfies
dW.(z;m,n _ .
% = Tj(T’ 77)6(7‘, n)Tj(Ta 77) 1Wj('z;7—7 77)’ m {Z > 0}’

7 (3.17)
BT, (r,m) " W;(0;7,m) = x;(T,m)h(T,n).

So by using (3.10), we have

d

T WilzTn) rs(rmW;(z7,m)

=iy (Wiena) ) + (W Enn) s

=W (roBTJfl)Wj + (Tjgz}fle)*rjwj

= Wi (ryTiBT; )W; + (rT; BT Wy ) W
= W} (ryT;BT; YW; + W, (r; T;BT; ) W;

= 2W}Re (r; T;BT; Y )W; = 2ky|Wj (257, ).
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Integrating the above both sides for z € [0, 00), we get

o0
2k7/ (W (z;7,m)|* dz < =W;(0; 7, ) r; (7, m)W; (05 7,m)
0
< —|W;(0;7,m) > + C|BT;(1,n) " "W;(0;7,m)?
< =W, (0;7,m) > + Clx; (r.n)h(r,n)?

via (3.11) and boundary condition in (3.17). Since T}(7,n) is invertible in supp x;, it
follows that

A ()2 / 07 (s ) P dz -+ [ () 21T 0: 7, )2

< Cilx (mm) Pl ) (3.18)
for a positive constant C; independent of (7,7) € supp x;.

3.3.4. Estimate near the poles. Consider the point (idg,70) € X so that
udg + vny = 0, which is a pole of the matrix B(7, 7). Let V be a small neighborhood
of the point (idg, 7o) in X. We define

—1
_{ m(A- —a) mb
T(rn) = ( —mb m(A_ —a) ) ’
with a,b defined in (3.6), and m = ur + ivn. Since (m(A- — a))? + (mb)?|(isy,n0) =
%(7]8 +02)% # 0, the T(7,n) given above makes sense. One checks in V' that

T(r,mB(7,mT(r,n) " = < A*(g ) fi((:f;)) ) (3.19)

We also note that Ay (idg,nm0) = £+/n2 + 03, and Ay is continuous in V, so there is a
positive constant k so that

ReAd_(m,n) < =k, Rely(m,n) >k, V(r,n) €. (3.20)

As above, denote by x;(7,n) the cut-off function supported in V, we can still
extend x;(7,m),T;(7,n) to be defined in = so that they are homogenous of degree
zero. Define W;(z;7,7) as in (3.16), then it solves, in {z > 0} that,

d (WizTm) \ _ [ A-(r,n)  2b(1,n) W}(z7,m) (3.21)
dz \ W7 (z7,m) 0 Ay (7,m) W2(zmm) ) '
By (3.20), to make sure W; € HZ2(]0,00)), we should have

W]-Q(Z;T, ) =0 Vz € [0,00), Y(r,nm) € V.

Hence although b(7,7n) has a pole (—i(v/u)ng,no) in V, the first equation in (3.21)
reads
d

&le(za T, 77) = )‘—(Ta W)ng (Z7 T, 77)

Therefore, from (3.20), note A_(7,7n) is extended to = to be homogeneous degree one,
then Re A_(7,n) < —k+/|7|?> + n? and it implies

d 10,. 2 10, * 10, / 1/,. 2
&|Wj (Z,Tv 77)| = 2VVj (ZvTv 77) Re)‘—(Ta n)Wj (Z,Tv 77) < —2k |T|2 Jr"72|ij (Z,T, 77)| :
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As W} (z;7,m) € H2([0,00)), we obtain

2k+/|T]? + 772/ |le(z;7, n|?dz < |Wj1(0;7', % (3.22)
0
The boundary condition on W} (z = 0;7,7) reads

m(r,m)(A=(r,n) = (a(r,n) = b(r,m)))W] (z = 0;7,n) = x;(r.)h(r,n), (3.23)

and recall m(7,n)(A—(7,n) — (a(7,n) —b(7,n))) is the Lopatinskii determinant A(r,n)
given by (3.8). We can easily verify that there is a positive constant C; so that

|A(T,m)| > ~/C;j Y(T,m) € V.

Note although it looks that A(7,n) is homogeneous degree two for (7,7) € =, however,
we actually extend T; with homogeneous degree zero, so actually A(7,7n) is extended
to (7,7m) € E homogeneous degree zero. Therefore

(AT, )| > /(CiVIr12+02)  Y(r,m) € {(tr',tn) : t eRT, (7',) €V}

We remark this estimate is the reason for the principle that the order of vanishing of
Lopatinskii determinant is the same as the order of loss of derivatives in the energy
estimate. From (3.23), it follows that

W) < SR
‘] b b —
Y

G (AT, )],

as well as
o0 C 72+n2 ~
s/ [ W s+ (Wi r P < SE D it
0

from (3.22). Since W7 = 0, and /|7|? + 7% > v, this implies
oo O R
7/ Wiz 7,m)? dz + [W;(0; 7, 1) < 7;|Xj(7'» mh(r,n) (171> + n?).
0
Remember T;(7,n) is also invertible in {(t7/,tn’) : t € R*, (7/,n') € V}, we find
2 R ncy .. 2 21Y/nc/n. 2
b [ s + PV )
C. R
< 7;|Xj(ﬂ P h(r ) P71 +n?) (3.24)

for a positive constant C; independent of (7,7) € V.

3.3.5. Conclusion. Considering (3.18) and (3.24), note (|7|*> +7n?)/v* > 1, we
see (3.24) actually holds for all j = 1,---,J. Then summing them up for j from 1 to
J, and as ijl Ix;j|? = 1, one obtains

PROPOSITION 3.5. For the solution of the problem (3.9) that vanishes as z — 00,
one has the estimate
C

o
’y/o V(2 mm) P de + [V (07, m)* < S h(mm)P(r +0%)  (3.25)

2

[

with a positive constant C' independent of (1,m) €
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3.4. Energy estimate for the constant coefficient problem. We continue
to establish energy estimate of the solutions to the problem (3.1). It is reduced
equivalently to the form (3.3) by introducing explicitly the characteristic variables
Ve = (V1, Vs, Vs) and non-characteristic variables V¢ = (V3,Vy). In the following
we further introduce some reductions of this problem, which simplifies greatly the
derivation of energy estimate.

3.4.1. Function spaces. First, we introduce several definitions and notations
of function spaces and norms, which will be used in the following estimates.

We define Hj . (R?) with index s € R and parameter v > 1 to be the Hilbert
space consists of those Sobolev functions u € H*(R?) so that [[ul|, ., < oo, where

1
2

fully = ([, 166mEG? 48 412 asan

Note [Jullg ., = [[u]l L2 g2y -
We then define a weighted Sobolev space

H:,,Y(R2) ={u€ 2'(R?): e u(x,y) € HS’,Y(Rg)}

with the norm [[ufl . = [le™"u(z,y)|, - Finally, we write the norm of a function
s,y )
flz,y,2) € L*(RY H (R ) to be

1
2

2
Hf||L2(H;‘7) = (/]R+ ||f(x7y7z)||H‘jv,Y(R‘211y) dZ)

3.4.2. Introducing of weight and elimination of interior source term.
For v > 1 a parameter, let V = exp(—vx)V. Then the problem (3.3) becomes

VBV + B0,V + B2d,V + B30,V = e *Qf, (3.26)

pVre = e7g/(Tp),  on{z=0}; here = (I,-1). '
Now consider an auxiliary problem for unknown Vi

731‘71 + B19, Vi + 323y‘71 + 3352‘71 =e 7Qf, 2>0, (3.27)

MVi =0, z=0; here M; =(0,0,1,0,0). '

It is easy to check that this boundary value problem is maximal dissipative (for the
definition, see [2, p.86]). It follows from standard result that there exists a solution
V1 (cf. 2, 18)).

Now set Vo =V — Vl, which solves

{731172 + B0,V + Byd, Vo + Bsd.Va =0, in {z >0}, (328)

BVPC = h = e‘“’wrip — BV, on {z=0}.

3.4.3. Estimate of V; by (‘72“°> |:=0. Multiplying Vs to the equations in (3.28),
and integrating on (z,y, z) € Q = R? x R*, we find

/ ((B10.72, V%) + (B20, V2, V2) + (Bs0.V3, Va) ) dadydz + 9 / (B1V2, V2) dadydz = 0.
Q Q
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As all By, (k = 1,2,3) are symmetric and V5 is real, integration by parts for the above
identity yields

- 1 -~ - -
»y/(BlVQ,VQ)dxdydz = 5/ (B3Va, Va)|.—o dz dy = c/ (V)2 = (Vah)?)| =0 d dy.
Q R2 R2

Recall By is positive-definite, we find a positive constant C' so that

7/000"‘72(-,2)’2 dz<C

2
. 5 (V“C)|Z:0‘ da dy. (3.29)

3.4.4. Estimate of (172nc> .0 . Now to estimate [p, |V (z,y,0)[?dzdy, we

apply the Fourier transform with respect to (z, ) € R? to (3.28). Let V= y(z’y)ﬁ((;’n)f/g,
and write 7 = v + id, we find

B30,V + (tBy +inBy)V =
BVe = h.
This is exactly (3.4) (with f = 0). Then as computation shown there, we get the ODE

(3.9) for V™. So we can use (3.25) now. Integrating it with respect to (6,7) € R2,
we have

. C .
/ 77+ 6, 0) dddy < / 1By + 8, m) Py + 6 + 7] dod.
R2 R2

Note here v > 1 is a parameter. Using Plancherel’s theorem, we find that
Y 7nc C 2
13m0l dady < S5 IR (3.30)
3.4.5. Conclusion. From (3.29) and (3.30) we directly have the estimate for Vs:

W/OOO HVQ(Z

Recall that for Vi, it holds [2, p.96]

o0 - 2 - C(
3 [ e [ I P ety < S [ [ e dody
0 L?(R?) R2 Y Jr+ Jr2

(3.32)
. vz 12 “n
Since [|BI13, < C(le gl + ||V

2 2
dad <—h . 31
— /' Jemol? drdy < AT, (331

2
), in order to close the estimates (3.31) and

(3.32), we still need an estimate of Hf/lnc )
o
From the problem (3.27), it can be proved that we actually have (refer to [2,

p-227, Proposition 9.1]):

C -z . 2
L < ? [R+ ||€ Qf( ’Z)HHl,w(R?m,y)) a

So combining (3.31) and (3.32), we find
0 2
'y/ HV(’Z)‘ L2(R?)

wos [ e QAN a3 el

~ C i
dz+/ |(V“C)|z:0|2dxdy§ —/ le™"*Qf|? dedy dz
R2

. (3.33)
(=,y)
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Since v > 1, using definition of the norm |||, _, one verifies that

[l Y ull,,,  for s<m. (3.34)

S"/—

Applying this to e ™7 Qf(+,2) with s = 0 and r = 1, we find the second term on
the right-hand side of (3.33) can control the first term there. So finally, note @ is a
constant matrix, we have

0
<C He 72| dz+9|}e*7m I3 (3.35)
=7\ Hio (R, ) 2 @, )

Returning to the linear problem (3.3), we conclude
PROPOSITION 3.6. For the solution of the problem (3.3), we have the estimate

2

Vnc _ 2d d
gy B2 177 of dady

2 n 2 1 2 1 2
IV gy 4 IV 0N <€ (55 1 g, + ol ) (330

Here v > 1 and C' is a constant independent of v and (f,g).

3.5. Estimate of the free boundary. We turn to study the initial value prob-

lem of transport equation (3.2) for the perturbation of the contact discontinuity front:

udpth + vdyh = 2¢(1, DVisy, in {z>0, yeR},

. (3.37)
1ZJ|:,::0 =0.

Let ¢ = exp(—yx)i. Then we have u(y + ;)1 4+ vd,0 = 2¢(1, 1)‘7‘2‘;0. After
taking the Fourier transform in x and y, with dual variables § and 7 as before, it
follows

(ur + ivn)z[} = 2¢(1, 1)VHC(O; T, 1),

with 7 = 4 4 id, and ) the Fourier transform of . Since |ur + ivn| > C, by (3.37)
we obtain that

C n
9 < IV °(0; 7, m)[*.

Integrating this over (8,7) € R?, Plancherel’s theorem and (3.25) yield
C’ C -
e U W]

41, = 5 7esol, < 52 (el + o],

Recall that (cf. [2, (9.1.15) in p.227])

C e
7 ™ QfHL2(HM )

we get

(3.38)

. 1
O ”g“Hf‘wJr\ﬁ”fHL?(Rj;Hl*W(R?I'y))) :
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Hence for the free boundary, there is still a loss of one derivative.

Finally, we summarize all the obtained estimates as the following theorem, which
is the first main result of this paper.

THEOREM 3.7. There is a constant C > 0 so that for all v > 1 and (U,v) €
H?(Q) x H*(R?), it holds

2 1 2 1 2
<C| = g )+ « .
H., (’7‘3 ||f||L2( 12) 1 A2 9Hm)

(3.39)

112 .
4 ool +° 4
d paqazg,y N Ple=olli 77 [

Here f := A1(Q)axU+A2(Q)ayU+A3<Q)aZU, g :=p(z,y,0), and ¥ satisfies udyt)+
vyt = on {z = 0}.

Proof. If U, 4 are smooth functions with compact support, the above inequality
follows directly from (3.38) and (3.36) (recall U = PV). It also holds for (U,1) €
H?(Q2) x H%(R?) just by standard approximation. O

4. The variable coefficient linear problem. Guided by the analysis of con-
stant coeflicient case developed in section 3, from now on we study the linear problem
for the general case. This variable coefficient linear problem is derived by linearizing
the nonlinear problem (2.20) and (2.21) around a non-planar transonic contact dis-
continuity. This analysis of linear problem is a crucial step towards the study of the
nonlinear problem. We first derive the linearized problem, then state the main esti-
mate in Theorem 4.1. The rest of this paper is devoted to reduction of the estimates
and finally proving it by using para-differential calculus.

4.1. Linearization of the nonlinear problem. We need linearize the nonlin-
ear problem

LU, VO)U = A (U)0,U + Ax(U)9,U + A3(U,V¥)0,U =0, z>0, (4.1)
p=p, z=0, (4.2)

where Ay (U, V) = 51 (Ag(U) — Ay(U)0, W — Al(U)aC\I/), U = (u,v,w,p,8)T, and
¥ should satisfy

w0V +0v0,¥ —w=0, 2z22>0, (4.3)
0,V >kg>0, 2>0 (4.4)

for a fixed constant kqg.

Let U and ¥ be a (non-planar) background state satisfying (4.3)(4.4) in the whole
domain {z > 0}, and denote by V and ® their small perturbations respectively. By
a direct computation (cf. [1]), we get the following linearized equation of (4.1) at
(U, 0):

A1 (U)0,V + A2 (U)8,V + A3(U, V)9,V + (dp A1(U) - V)8,U + (dy A2 (U) - V)0, U
+ (dUﬁg(U, V)V + doyAds (U, V) - v«p) a.U = f.
As Alinhac discovered in [1], to remove the mixture of the first derivatives of V' and

® in the above equation, by introducing the good unknowns:

®

V=V-ow

0.U, (4.5)
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the above equation for V' can be rewritten as the following one for U,

LU, VU + C(U, VU, V) - U + (GZ(L(U, v\p)U)) - (4.6)

0.v

where
C(U,VU, V) - U = (dy Ay (U) - U),U + (dy A2 (U) - U)3,U + (dy A3(U, V) - U)3,U.

In terms of the good unknowns, the linearized boundary condition for U is given
by

. P
D+ az—\lj@p =g, on {z=0}. (4.7

By a simple computation, we know that the linearized equation of the transport
equation (4.3) is given by

w0y ® + 00, ® + V10,V + V20,V — V3 = Iy

which can be rewritten as the following one for the good unknowns

U0y P + v0y® — W + 10,V + VO, ¥ — %(@w — 0,u0, ¥ — 0,00, V) = hy. (4.8)

4.2. The effective linear problem. Since the zero-th order term of ® appears

in a quadratic form together with U in the equation (4.6), as usual [11], to study

the linear stability of the transonic contact discontinuity it suffices to consider the

following effective linear equation with the zero-th order term of ® being emerged
into the source term f:

L'U = LU,NYYU +C(U,VU,V¥)-U = f, in {z>0}. (4.9)

A simple calculation yields that

* 0 0 -0,V 0
) X 0« 0 -8 0
AU, V0) = 5= | 0 0 o« 1 o |. (4.10)
& -0, ¥ -0, 1 x/(p*c*) 0
0 0 0 0  #/p

where * = p(w — u0, ¥ — v9, ¥). Under the assumption that the (non-planar) back-
ground state (U, ¥) satisfies the eikonal equation (4.3), the element  in (4.10) is identi-

cally zero for z > 0. So we can only expect control of Uy = p and —8, ¥U,; fay\IlU2+U3
on {z = 0}. Therefore we introduce as in [11], with ¢(z,y) = ¥(x,y,0), that

—0,Uy — 0y pUs + Us )

P00 = ( 2

, (4.11)
2=0

which is the non-characteristic part of the unknown U when restricted on the bound-
ary. We see the linearized boundary conditions (4.7) and (4.8) only involve these
non-characteristic part.
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As above, since the zero-th order term of ® in the boundary condition (4.7) is of
a quadratic form with U, one can shift this zero-th order term of ® into the source
term ¢g; in the boundary condition to have

p=g1, on {z=0}. (4.12)

Denote by b = < g 8 ) , Vo = (0:0,0,0)T, with ¢(x,y) = ®(z,y,0), and

;{0 By —1 0 0 (0 B —1 0 0
M‘(o o 0o o00) M=o o o0 10)

Then, from (4.12) and (4.8), the boundary conditions can be formulated as:
1
0,V

In the following we study the estimates of the solution to the variable coefficient linear
problem (4.9) and (4.13).

B'(U,¢) :=bV¢+ (M'8,U)¢+ MU = (hy,91)%, on {z=0}, (4.13)

4.3. Basic L? estimate of linear problem.

Assumptions. For the linear problem (4.9) and (4.13), the unknowns are a vector
U and a function ¢. The coefficients involve a vector-valued function U and a function
¥ defined in {z > 0}. By definition of good unknown (4.5), U actually contains a new
unknown ®, the perturbed front, whose restriction on {z = 0} is ¢. Also, ¢ = ¥|,_o.
In addition, we require that W and U to satisfy

w0, ¥ +v0,¥ =w in {z>0}, (4.14)
8.0 > 1 (4.15)

for a fixed positive constant kg.
Apart from these, we also need the following regularity and smallness conditions
on U and ¥:

UcW?>®(Q), VUecW?»>(Q),
U = Ullyz.ee ) + 1IVE = (0,0, 1)][y2.0(0) < Ko (4.16)

for a suitable constant Ky > 0. Finally, we also require both U —U and V(¥ — z) have
compact support in (y, z). Recall here that U = (u,v,0,p,S,) and ¥ = z represent
the planar reference state for which u > ¢, .

Main result on L? estimate. Under the above assumptions, we have the following
theorem, which is the second main result of this paper.

THEOREM 4.1. There exist constant C; and ~; > 1 that depend only on Kqy and
Ko 50 that for all v > ~1 and all (U, $) € H; _(Q) x H5_(R?), the following estimate
holds:

.12 . 2

Y Y TR
7| e LB PSSR P
<o (L ‘ L’U‘ ’ + L HB’(U ¢>)H2 (4.17)
=58 L2(Hy.) Ty ) '

We note that unlike the two-phase hyperbolic free boundary problem studied in
[11], where the perturbed front ¢ satisfies an elliptic equation and hence it gets one
more regularity, in our case ¢ only satisfies a transport equation on {z = 0} and its
regularity is the same as that of the trace of the non-characteristic components of the
state U. The rest of this section is devoted to proving this theorem.
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4.4. Some preliminary transformations.
4.4.1. Reduction of estimate. Set V = e~ 7*U. Then, from (4.9), V solves
AL (U)0,V + Ax(U)D,V + A3(U, V)9,V + A (U)V + C(U, VU, V) -V = e f.
(4.18)

Since this equation is symmetric hyperbolic with respect to z, taking inner product
with V and integrating over {z > 0}, it follows that

/ (az(Al(U)V, V) + 0, (Ax(U)V, V) + 0. (A3(U, V)V, V)) dadydz

{z>0}

+ / ({vAl(U) — (0. A1 (U) + 8, A9 (U) 4 8. A3(U, V)| }V, V) dzdydz
{z>0}

+ / (C(U,VU,VV) -V, V)dedydz = 2 / (e™ 7 f, V) dadydz.
{z>0} {z>0}

Note that A;(U) is positive-definite, so there is a constant ¢(Kp) such that A;(U) >
c(Ko)Is. We also observe

10, 41(U) 4+ 0,A2(U) + 0. As(U, V\I/)||W1m < C(Ko, ko),
((C(U, VU, V) -V, V)| < C(Ko, r0)| V%

hence, with the help of Young’s inequality,

. C .
(ye — C)/ [V|? dedydz < 76 \e_“””f|2dxdydz+57/ [V|? dedydz
{z=0}

{z=0} {z=0}

+/ (A3(U, VIV, V)| .= dady.
R2
A direct computation shows that
(A3(U7 V\I/)V7 V)|Z=O - 2‘/4(_81\11‘/1 - 8@;\1}‘/2 + VS)|2=O S |P(U))‘./|z:0|2'

Plugging this relation into the above inequality, and choosing a proper small ¢, we
get the following result:
LEMMA 4.2. There are constants C' > 0 and o > 1 so that for any v > o, it

holds
2
. 419
H) (4.19)

2

L’U‘

+ )@

12 1
0, < (G
L2(H5 ) 2

So we only need to obtain estimate of H]P’(w)(U)HH and ||¢HHS below.
o »w

L2(H5 )

4.4.2. Diagonalization of boundary matrix in interior equation. The
next step is to transform the linearized interior equation so that the coefficient matrix
of 0, is diagonal. )

Set ©(U) = diag{pu, pu, pu, SeTs u}. We solve the eigenvalues of A3 with respect
to ©, that is, numbers A so that

det (A@(U) ~ Ay (U, W)) —0.
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A direct calculation yields

>0

1+10,9|2 + 10,2 14+10,%¥|2 + 10, ¥|2
Moz =0, )\4:75\/ | | |0y V| <0, /\523\/ | | |0y Y|
- U 0,¥ U 0,0

with associated right eigenvectors being

r1 = (0,0,0,0,1)", ry=(1,0,0,¥,0,0)", r3=1(0,1,0,¥,0,0)7,
Ta5 = (—0: ¥, —0, ¥, 1, pury 50.¥,0)T.

So by taking T'(U, V) = (r1,r9,73,74,75), We have
T(U,V®)1O(U) L A3(U, V)T (U, V) = diag{0,0,0, A4, X5}
Set W = T(U,V¥)~'V. Then from (4.18), W satisfies

T 1A\ T, W + T~ A T,W + T 1O L A3To. W
FT'O7 | 410, + A20,T + A30.T + yAlT} W+ T o710 (TW)
= e Tl 1y,

Now introduce Ag(U, V¥) = diag{1,1,1,A;*, \; '}, then by multiplying Ay from left
to the above equation, we get

LW = yA W + A0, W + A0, W 4+ 150,W + CW = e ""F, (4.20)
with

A=A T'OTAIT(U VYY), Ay = AT 0 A,T(U, VD),
C = 4, [T*@*l (AlﬁxT + A28, T + A50.T)T + T*l@*lcﬂ (U, V),
Ts := diag{0,0,0,1,1}, F = A7 (U, V¥)O~'f.

Here, with some abuse of notations, we write T-10~1C - (TW) as T-10-1CTW. It
is easy to know that

A eWHe(Q),j=1,2 CeW"™(Q).

For later reference, by some tedious computations, we find that

0 0 0 0 1
140,02 —9,V0,¥ 9.
w2 w3z o 0
_ —0, V0,V 14|09,V 9,V
T~HU,V¥) = e +<|@52 b & 0 0
_1609  _10% 11 111
2 )2 2 2T T 2peTH)
_10,%  _19% 1.1 111
2 (0)2 202 2702 2pe (W)

Here we have used the notation

() = /14 (0,0 + [0, 72,



Stability of Transonic Contact Discontinuities 25

Since W = T*1V, we see W, = Vs and all W 34,5 have the dimension of velocity.
We also have

1 0 0 0 0
c 1+]9y ¥ ]? c 14[9, ¥)?
o 10 =i TR
0 0 1 9,70, ¥ ¢ 0,70, T
A= w” () u” () , (4.21)
10.% 2.V (u | 8.7
0 22 0 — @ ?+<\I'>) 0
9. 9, v 2, ¥
0 337 0 0 ) (% - W )
= 0 0 0 0
v c 0, T0,T ¢ 9,00,V
U W TR
0 0 v e 148, 7| ¢ 14]0, 7
10.¥ 0.¥ (v y
00 3% —@m (et <@>) 0
2. ¥ o, 9, ¥
0 0 3% 0 (2 - %)
Therefore, for 7 € C and n € R, we could compute that
w 0 0 0 0
0 w 0 - aq
TA1 + inAQ = 0 0 w ,81 —,81 . (423)
0 wpr inu —alw+6) 0
0 wpur inu 0 alw — )
For simplicity, we have introduced here
v c 1 10,V u 0,V
— s 0 _ CD\II ) \IJ s — N = — 5 4.24
w T+’L7} , u<\11>(Ta +1in0,¥), p > )2 a ) ( )
c 1 c 1
= 1 ] 10, VO,V = T,V —in(1 + 10, |?)].
=L (1418, 9*)7 — ind, WO, V], B BaE) (70, W0, ¥ — in(1 + [0, V[7)]

4.4.3. Boundary conditions. Next we consider the boundary conditions (4.13)
in terms of the new unknown W. Recall V = e 7*U, and now set ® = e 7%,
© = e "¢, then (4.13), in terms of V', becomes

Vy
( Vs + V1O + Vs Oyth + yup + udpp + v0yp — 55 (0w — 0,u0x1h — 0.v9y1)) )
=e g, g:=(g1,h)". (4.25)

and HQSHH(;7 by
utilizing problem (4.20) and (4.25). In terms of the unknowns listed in this problem,

In the following we will consider estimate of HIP’(w)U |z=0’

we just need to control ||¢||;. and HIP’(q/})V|Z:0H ,- Direct calculation shows that
L

Vi=Wy— 0,9 (Wy+Ws), Vo=Wsz—3d,U(Wy+ Ws),
Vs = 0, YWy + 0, OWs + Wy + Ws, Vi = pc(¥)(—Wy + Ws), Vs = Wi,
So

o (N (S )
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and it follows that

=

pony < CUDNa) o + W) 2) (420

Hence in the following we only need to estimate the traces of vector (W, Ws) on
{z =0}, and ||¢|| ... Meanwhile, the boundary condition (4.25) becomes

e "
—W4 + W5 = 91, = 07 (427)
per/1+ 092 + |9,0[?
1
uBap + 10,0 + go(’yu ~ g (O — e~ azvayzp))

— (14 09 + |0, )(Wy + W5) = e "hy, 2 =0. (4.28)

4.4.4. Estimate of |¢| .. As the equation (4.28) is a linear transport equation
for ¢, by a classical way, it is easy to have

2 2 2 — e~ 2
Y llollze < C(K07H0)(\|W4||Lz + [[Wsll72 + ||e ”thLz)

1
< O(Ko,m0) (|(Wa, Wolscolfe + gl ) (4:29)

Summarizing the above analysis ((4.19), (4.26) and (4.29)), we see to prove The-
orem 4.1, one only needs to prove for problem (4.20) and (4.27) the following result:

THEOREM 4.3. There exist constants C1 and v, > 1 that depend only on Ky and
ko so that for all v > v and all (W, ¢) € Ha () x Ha(R?), the following estimate
holds:

1 1
||(W4,W5)|z:0||iz < (73 H@_’YfoiQ(Hlﬁ) + ? He_’mngiw) . (4.30)

4.5. Paralinearization. Because the problem (4.20) (4.27) has non-smooth co-
efficients, we shall use the para-differential calculus to study it. In this step we replace
the differential operators by para-differential operators T, with suitable symbols «
and a parameter 7, and estimate the error. One can refer to the appendices of [2] or
[10, 11] for an introduction of para-differential operators and theorems we used below.

4.5.1. Error of paralinearization. For the boundary condition (4.27), we set
B8 =(1,-1) and write it as
W™ =G, on {z=0}.

e *

Here G =
per/ 1418292 +]8, p[2

known

g1, and we have introduced the non-characteristic un-

Wnc = (VV{,7 W4)T.
Since (8 is constant, the above boundary condition may be written directly as
TyW™ =G (4.31)

and there is no any error.
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We now turn to the equation (4.20). As done in [11], we replace each term on
the left-hand side of (4.20) by corresponding para-differential operator, and estimate
the error first for fixed z which is considered as a parameter in the symbol, and then
integrate with respect to z > 0. For example, by Theorem B.9 in [11] we have

2 2

:/ VAW (-, 2) = T, W(,2)||, . dz
0

1y

H7A1W—TJA1W‘

L2(Hy,)
scé|Mﬂwm%mwwwmmmwnusmmm%m@xﬁmammZ
< C(Ko) ||WH?:2(Q) .

Denote by § and 7 the dual variables of x and y respectively. Then similarly we have

2 —
LQ(HLW) o

* 2 2
gcA|mmewwwm@mmam

<C HAlH?/V?vOO(Q) ||WH%2(Q) < C(Ko) ||W||iz(9) ;

AIMﬁmm@—mMW@MFdZ

1y

1410 W = Tisa, W]|

and } A0, — T%AQW‘ L) < C(Ko) [[W 12(q) - Using the third inequality in
1,
Theorem C.20 of [2, p.490], we leso get

2
|CW —T2W |3,

= [ ICWED) = TEW I as

c [~ 2 2
< 72 ) ||C('7Z)HW1x°°(R2) ||W||L2(R2) dz
2 2 2
S ClCllw o) WLz ) < C(Ko, ko) [WllL2(q) -
Therefore the total error of para-linearization of (4.20) is (recall 7 = v +44.)

|EW = (Tp, i oW + T0W) | < O ) (W oy - (4:52)

LZ(HL’Y
4.5.2. The boundary value problem of para-differential equations. We
now consider the following boundary value problem of para-linearized system:

K (4.33)

TO-W + Tl sinagscW =F, 2>0,
TyW™ =G, z=0,

where F = e 7" A T 1071 f,
THEOREM 4.4. Assume there are constants Cy,~yo depending only on Kg and kg
so that the solution W to the problem (4.33) satisfies the estimate

’ + L HGH2 > (4.34)

1 ~
W collqeny < Co 5 | 7]
I |2=o0llp2(r2y < 0<73 L2(Hy,) 72 Loy

for all v > ~o. Then Theorem 4.3 holds.
Proof. The equation (4.20) may be written equivalently as

I53ZW + T;/A1+i7]A2+CW = _[L’YW - (I582W + TJA1+inA2+CW)] + Fa
TyW™ = G.
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Using (4.34) and (4.32), we find

nc 2 1 2
W azol 2 gae) < Co ( |Ew = @o.w + T agma e,
gl L2(Hi )
111 =112 11 =2
v L*(Hyy) 7Y Ly

2 111 <112
L2(Hi,) 72 H H

1 ) 1=
< Co (73 W2 + 7 HF‘

) . (4.35)

1,y

For the first term on the right-hand side, recall W = TV, then by Lemma 4.2 and
estimate (4.26),

5 P L1, 2 n 2
HW”L2(Q) < C(ko) HVHLQ(Q) < C(KOWO); ? He 7 fHL2(HM) + W C|Z:0||L2(R2) :

For the second and third terms on the right-hand side of (4.35), it is straightforward
to check that

=) 00 —yx — — 2 v 2
HF‘ L2(Hy ) :/0 le7* 4076 1f("Z)H1,«/ dz < C(Ko, ko) [[e™” fHLz(HM)»
2 e g ’ 9
.= < O(Ko.m0) e a2
.., b/ T o T et = S le™anlly,,

Substituting the above three inequalities into (4.35), we find that by taking -y further
larger (depending only on kg and Kj), there holds

1 1
9ol < o) (35 1 g, 32 el ).

This is exactly (4.30) claimed in Theorem 4.3. O

4.6. Microlocalization. From now on we focus on the problem (4.33) and our
aim is to derive estimate (4.34).

Since Zs = diag(0,0,0,1,1), the first three equations in (4.33) do not involve
0,W. The main idea is to solve W7, Wy, W3 from the first three equations and then
substitute them into the last two equations, and get a para-differential problem for
Wne = (Ws, Wy)T of the form

{@W“C = T,/W"® + TJW™" 4 source term, =z > 0, (4.36)

TgW“C\Z:O = source term, z=0.

Here A is a 2 x 2 matrix symbol of order one and E is a 2 x 2 matrix symbol of order
zero. We first illustrate in a formal way how to determine A.

Recall the symbol 7A; + inA, is given by (4.23). Denote by C = (cI,--- ,c¢I)T
for the matrix C appeared in (4.20), with each c¢; being a row. The second and third
equations in (4.33) read

TIWy + T Wy + T Wy = ~TLW + Fy,
TIWs + T3 Wy +T7 5 Ws = —TQW + Fs.
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Now acting Tg_l on both sides of these equations, and using symbolic calculus, we
find

Wo=T" Wi+T" Ws+RA\W+T"_,F,
{2 -1 Va T W+ LW+ 1 (4.37)

— 1w -
Ws=T" W4+Tg Ws+R_W +T]_ | Fs,

frw—1! 1wt

where R_; is some operator of order —1. Recall by (4.23), the forth and fifth equations
in (4.33) are

OWy+ T Wo+ T, Wa+T" Wi+ T W = Fy,

m —a(w+0)
O Ws + T Wa + Tp) Wa + T}, _g\Ws + TLW = F.

By using the expressions (4.37) of Wy and W3, and symbolic calculus of composition
of operators, we get that the above two equations can be written as the matrix form
(4.36), with

A(a—a&w—@) _a+2&+e>>’ (4.38)

where

_ , c 0,V (12 —n?) + (10,¥ — ind, ¥)?
o= uw 1(7’041—277/81):2<\I,>3( . ) ui-i-z;vﬁ ’ ) .

For the planar case ¥ = z and U = U, this matrix A is reduced exactly to B appeared
in (3.6).

We note that the symbol A depends on (z,y,z,7,m), with the corresponding
operator acting on functions of (z,y), and z > 0 is a parameter. Here 7 = v+, and
(6,m) € R? are dual variables of (x,y), and v > 1 is a parameter. It is obvious that

TP = {(x,y,z,T, 77) cQx=: U(l’,y,Z)T + im’(f’%z) = O}

/U(x7y7 Z) }

u(z,y, 2)

is the set of poles of A; recall here E := {(7,n) € (CxR)\ {(0,0)} : ReT > 0}. So the

above calculation should be taken away from Y.
The eigenvalues A\ of A are the roots to the equation

={(z,y,2, T=7+i0,n) €EQAXxE:v=0, § = —

(A —ah)? = (aw)? — 20aw.

We observe that there is no singularity for A as a function of (7,7) and it is ho-
mogeneous of degree one. The eigenvalue with positive (resp. negative) real part
when Rer > 0 is denoted by Ay (resp. A_). The stable subspace of A is given by
E_(z,y,z,7,n) = span{e_} with e_ = (ur + ivn)(A_ + a — aw — af, )T, so the
space F_ can be extended continuously to Re7 > 0. The Lopatinskii determinant is
then given by A(z,y,z,7,1n) = (ur +ivn)(A- — (aw + af)) and one may check that
the latter factor never vanishes. So A vanishes only at poles of the matrix A. All
these can be checked in the same fashion as for the constant coefficient case, under
the assumption that the perturbation U — U and V(¥ — z) has compact support with
respect to (y, z), and

IU=Ullpe < [VT=(0,0,1)] e <¥
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for v small.

To deal with different situations of points in €2 x =, that is, those points belong to
the set of poles T, where Kreiss-Lopatinskii condition fails at the boundary TpN{z =
0} and those points in Q x =\ T, where the Lopatinskii determinant is nonzero and
the matrix A is well-defined, we introduce the following two cut-off functions:

O xp is a C* function on © x =, homogeneous of degree zero with respect to
(r,m); xp = 1 on Yp, and supp xp C Vp, with V, an open subset of Q x =
that containing Yp;

Q Xu = 1—Xp- S0 xu is supported far away from the poles and supp xuN(ONXE)
consists only those points where the uniform Kreiss—Lopatinskii condition
holds.

In the following two subsections, we will estimate the traces of 777 W"¢ and
Ty W on {# = 0} in two different ways. Then as xu + xp = 1, we get W"® =
Ty wee+ T)Z Wn¢ and finally by taking into account of some errors appearing due
to symbohc calculus, we get the desired estimate of W"¢|,_.

4.7. Derivation of energy estimate: frequencies away from poles.

4.7.1. Derivation of the equations. We start again from problem (4.33). Set
Wy = T W. Noting that T is a para-differential operator acting on functions of
(z,y) with z being a parameter, we have

Z50.(Wa) = L5 0. (T} W) = IsT], 0:W + Is T} 2. o)W

=15, )W — T Tr A +inas+cW + T

By symbolic calculus, recalling that x, € Ty (k € N), TA; +inAs € I'}, and C € 'Y,
we find

=T, TLW = —TgT”Y W+ RAW = —TiWy + R4 W,

_TXuT‘l’A1+17]A2W = TTA1+177A2T W+R_ 1W + T’ ’L{TAlJrZT]AQ,Xu}W

where R_1 is an operator of order —1, and

0adb 0Oaodb 0Oadb Oa Ob

bt = ——
{a.b} = 5552 Y 300y~ ar 05 oy on
is the Poisson bracket. Recall ,xy € I'?), so if we set
r=i{TAL +inAz, Xu} — 0-xuls € TV,

which vanishes in a neighborhood of the pole set T, and also outside of Vp, then we
have an equation for Wy, :

T50-Wa + T)a, ina,Wa + TEWa + T)W = R W + T F. (4.39)

In the following we continue to use symbolic calculus to decouple the above alge-
braic para-differential system for the characteristic components and non-characteristic
components respectively. We shall denote by o' a generic symbol of class I'{”, and r
any symbol in I'Y that vanishes in a neighborhood of Y, and outside V,. The notation
R,, is also used to denote a generic operator of order m. We also write

Wu = (w17w27w37w47w5)T; W = (W17W27W37 W47 WS)T'
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Now the system (4.39) may be written line by line as

5
Tlwy + Y T w; + TyW = R W + T3 F, (4.40)
1=1

5 ~

Thwy + T, (ws — wa) + Y T w; + TYW = Ry W + T, P, (4.41)

=1
5 ~

Tlws + T2, (ws —wa) + Y T w; + T)W = RW + T F, (4.42)

=1

5
Ozwy + Tlows + T ws +T7 pwa + Y T w; + T7W = ROW + T Fy,
=1

(4.43)

inp a

5
Ozws + Tylyws + Ty ws + T, _gws + > T wi +T)W = R W + Ty F.
i=1

(4.44)

Recall that the symbols w etc. had been defined in (4.24).

We now try to solve wy, wg, ws from (4.40), (4.41) and (4.42), and substitute them
into (4.43) and (4.44). To apply a localized Géarding’s inequality later, we need to
introduce cut-off functions xg, x1 and x2 such that

— X0, X1 and X2 are C™ functions, taking values in [0, 1], and homogeneous of
degree zero with respect to (7,7);
— xo0 =1 on supp xu, X1 = 1 on supp xo, and y2 = 1 on supp xi;
— x2 (and therefore x1, xo) vanishes in a small neighborhood of the set of poles
Tp.
From these we see xow™" is well-defined and is a symbol of class I'; 1 Now applying
T;Zw,l to the equations (4.41)(4.42), by using symbolic calculus, we obtain

1

5
Thws + T o (w5 —wa) + > T w + T W =R, W+T] T P,
i=1
5 ~
ngwg + zj2,61w—1(w5 —wy) + Z Tg_lwi + ng,wqw =R W+ T;w—lT;uF?)'
=1

Observing that, as x2 = 1 on supp Xu, s0 {Xx2, xu} = 0, hence
TI Wy =T T) W=T! W+ R W=W,+ R W,

X277 Xu

we then solve

5
wy = T s (ws —wa) = T2 swi =17, W+ RoW +T7 T Fy,
i=1

X2Qiw™ X2rw
(4.45)
5 ~
ws - ngﬁlw*1 (’LU5 — U)4) - T(Z,lwi - T;er,lw + R,QW + T)Lw,lT;qu.

- (4.46)
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Similarly, from (4.40) we have

X2TwW

5
wy ==Y T wi —T0 W+ RW+T! T F. (4.47)
i=1
From (4.45) and (4.46) we easily have

T Wy = 7T’y

KT XepuTow™t

5
(ws —wa) + > Thow; + TJW + RAW + T, T\ T7 Fy,
i=1

5
ws —wa) + 3 Thow; + TYW + RW + 17, T7 T Fs.

Y — 77
T W3 = T i xow—1
i=1

thn —ix2unBiw=t (

We further note that for any o' € T'}, it holds

T) W =TLTY, Wy + RoWa = T, Wy + RoWy + R W.

X2041 u
So from (4.44) we have

5
O,ws = Y1 (ws —wy) — nga(w—e)w5 + Z Tgowi +T/W+ R W

=1

y

szu(Ttxl—i”]ﬁl
Y B Y Y Y R, Y Y Y R

T, 15 TiunTxgwflTqu?) T#TTxgwflTquQv

and from (4.43),

5
wy + Y Thyw; + T)W + R, W

—_ 7Y Y
Ozwy = TX2IL(T@1—iTIﬁl)w*1 (ws —wa) + TXQG(WJFe)
=1
+T;‘JF4 - ELnngw,lT;qu - TJTTQQW,nguFQ.

If we use (4.45)—(4.47) to replace the zero-th order terms w; (i = 1,2,3) on the
right-hand sides of the above two equations, then we get the following system

Ws ) _ Ws ws .
az( wy ) _TQQA< Wy )+T£< wa )+T?W+R1W+R0F. (4.48)

Here A € T} is the symbol given by (4.38), and E € T'Y.
Since ( is a constant vector, we have directly the boundary condition of W}¢ =

(ws,ws)":
B(ws, ws)" =0 = T, Gl.=o. (4.49)

4.7.2. Energy estimate. We now study the estimates of the non-characteristic
components of the unknown to the problem (4.48) (4.49) by the method of Kreiss’
symmetrizers. Since we know the Kreiss—Lopatinskii condition holds at the points
where y2 # 0, and A is also well-defined there, the construction of such symmetrizers
is quite standard. The estimate we will prove reads

2
v HT;(YuWHLz(

<< (20
Y N\Y

nc 2
R R Ol

2
1,

2 2 2 n 2
I iy + ITW G, + G|+ I c<o>|m) -
i

(4.50)

2
L2(H,,
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The reason why we give a L?(H, /2,4) estimate as above is that this is the only one
available near the poles T, to be derived in the next subsection. Recall here that
r € T'{ vanishes in a neighborhood of Tp, and out of V,, which is an error of microlo-
calization. The appearance of ||Wnc(0)||2Lg on the right-hand side of (4.50) is due to
an error when applying localized Garding’s inequality.
PROPOSITION 4.5 (Kreiss’ symmetrizers). There exists a mapping S : . x = —

Moy 2(C) so that the following properties hold:

o VX = (z,y,2,77 )EQXH, S(X) is Hermitian and S € T'};

o Set X7 = (|72 +|n|?)3. For any X € 09 x =, there holds

X39(X) + Cx3AY (1,m)B* B = exgA ™ (7,m) Ia; (4.51)

o There exists a finite set of matriz-valued mappings such that

Re(S(X)xA () = V(X (mfgﬂx) XQE?(X))WX),

(4.52)

where Vi (Ey resp.) is homogeneous of degree 1/2 (1 resp.) with respect to
1

(1,m), and belong to T'3 (T} resp) H; is homogeneous of degree zero with
respect to (7,m), and belongs to T, and the following inequalities hold:

SV TN 2 A ()

Xsz(X) > cxalo, x2Ei(X) = exo AV (7,m) L. (4.53)

This result will be proved in section 4.7.3. We adopt the ideas presented in [10]
to derive energy estimates using these symmetrizers.
Let {S7(z)} be given by

§7(2) = 5 ((T3)" +72).

with S(z) denoting the above symmetrizer and z a parameter. Since S € I'}, we know
{S™} are uniformly bounded self-adjoint operators from H ,(R2 ) to Hy_1,(R2 ).
The starting point to derive the energy estimate is to take the bcalar product of (4.48)
with SYW2¢ = 87 (w5, wy4)T, and integrating with respect to (z,y,2) € Q. Actually,
we have

d
3 (STWRS W) = 2Re (STO W, W) + ((9:8T)W©, W)
z
= 2Re (S"T} Wi, W) + 2Re (ST Wie, W)
+2Re (STT)W, WE) 4 2Re (ST R_, W, WEe)
+2Re (STRoF, Wi + ((9.87)Whe, W),
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which is equivalent to the identity

A+ B:=(87(0)Wy(0), Wg(0)) 2 (r2) +2/ / Re (S7T7 , Wae, W) dady dz
Rt JR2

Jk / / 2Re (SYT W3¢, W5°) dady d=
R+ JR2

/ 2Re (YT W, W3¢) dedy dz — / / 2Re (SYR_ W, W) dzedy dz
R2

/ ((0,SM)Wye, Wi°) dady dz —/ / 2Re (SYRoF, W;°) dady dz.

R+ ]R2 R+ JR2

Upper bound of A+ B. We now estimate each term on the above right-hand side.
Let A7 = T). ,, we may write 87 = AY27A=1/2787 Note A7 is self-adjoint and
A~1/2787 is of order 1/2, we have, by the Cauchy-Schwartz inequality,

nc||2 nec| 2
S CIWE o il < CIWE

[ Jo| < CHTIW| 2 IWacll 2

CE 2 nc||2
(Hy/s) (Hijo) S o ITW L, o)+ IWRE L2 a1y s )

nc C 2 nci2
ol € CMW oy IV N,y < 75 HW|\L2(L2) ey W2ty
C.

|Js| < C ||F||L2(H1/2,7) HWSC”H(HUZW) y

2
+ e IWalliza, o) -

L2(Hyy2,~)

It follows that

A+ B < (C+39) W72, ) <t

Lz H1/2 'y)

C. 2 2
(L + ||T:W||L2<HU2,W>) . (454

We continue to derive a lower bound for the term A 4+ B by means of Garding’s
inequalities. We first deal with A.

Lower bound of A. Since S7(0) — Tg(o) = %((Tg(o))* — Tg(o)) = %((Tg(o))*

T&(O))*) is of order 0, we have
A = (TgyWa(0), W°(0) 2 + O(1) [W(0)l; jo., W (O)l 1 2 -

From (4.51), we apply the localized Garding’s inequality [10, Theorem A.4] to obtain,
for W‘_?C(O) S H1/2>'Y that
Re ( S0)+ALvB* ,BTX1WHC( )’ T)’(Yl WIIC( ))(H—1/2,77H1/2,'y)

> T WO, ~ CIWEO

By the construction of x1, x2, we have T W3¢ = Wi¢ 4+ R_oW?"¢, so the right-hand

side of the above inequality is larger than or equal to ¢ || W3¢(0) ||§/2)W—C” ||[W™e(0) H2_1/277 ,
while the left-hand side is smaller than or equal to

Re (T;(O)+A1»Wﬁ*ﬁwlxllc(0)7 WSC(O))(Hfl/Z,'y»Hl/Z,'y) +C ”WHC(O)”Z—l/Z,’y .
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Hence we obtain that

Re (T3(0) 4105 s W (0), WE(0)) (11, o 111 o) 2 €lIWEO)3 j5 = CIW(0)12, 5 -
Observe that T\, , 5.5 — [Al/z’VTg]*[Al/QﬁTg] is of order 0, we have
Re (TY1 5. sWa(0), W (0)) (H_, 5. H1 o)
< (AVPITIWR(0), AP TIWEC(0)) (12, 22) + CIWE Oy joy IWES O /51
= 6], .+ IOy, WO,

Hence we discover that

A= (T30 W (0). We(0) — O WOl o, 72(0)

H_1/2,,H1/2,5) ”1/2,7 H*l/?,'y

~112
> WO oy = COW O 15, = €, = CIWEO oy WO

nc c nc =112
> WO, - S (701 + 6] ) (1.55)

Lower bound of B. We then consider the term B. Since Re S”T; A Tg
2 e (x2SA)
is of order one, we have

nc nc nc||2
B> /]R+ /R AT, () Wi, W) dady dz — O W2 2, -

For X € Q x =, define

a(X) = ( 7H10(X) EZ?X) ) (4.56)

Recall by (4.53) we have
XX Hi(X) > ex¥xals = exily,  XIx2E1(X) > ex2xe A (1,0) 2 = o3 (1,1) Lo

Note the remainder T;l*a,, v, — (Ty,)* T Ty, is of order 1. Therefore it holds
/R+ /R2 2TRe (ypsm Wa" W) dzdy dz
2 L] 20 W W) dady
Z ;/}m /]R 2((T3 ) T, T, Wi, Wi€) dady dz — C ||W30||§2(H1m)

nec2
=3 [ 20 W W dedydz = CIWE i, -
l

where for short we have introduced W; := Ty Wh¢. We may split W; = (W', W?)
according to the block structure of (4.56). So

/ /2 2(TY,,, Wi, W) dedy dz = I + I (4.57)
R+ JR

:;/ /2(T;27HLWZ1,Wl1)dxdde+/ /2(T;2EZWZ27WZ2)dmdydz.
Rt JR2 R+ JR2



36 YA-GUANG WANG AND HAIRONG YUAN

Lower bound of I;. We first show a lower bound of I;. By applying the localized
Garding’s inequality to xoH; (with m = 0), we obtain

Re (T;(YQHlT)’(YOWll’ T;oWll)(L2vL2) zc HTQOVVZ1 ”5 -C HVVII ||2—1,'y : (4'58)

Note that

T3,W) = (T3, Ty W) = (T3, T3, Wa)' + (RoWye)!

= (T W) + (RaW™)! + (ReWi)!
= W + (RAW™)! + (ReW), (4.59)

so the right-hand side of (4.58)
C
> WG = e IR W™l = el RoWicly — 5 WG
C C
> (c—?)HWzlﬂi—?HW“CHE—CHWSCH& (4.60)

and the left-hand side of (4.58) is bounded by (recall H; € T'9)

Re (T, 11, Wi W) 2,0y + [WHIg IR W™ g+ W] W3l + I R—aW™ |5

nc nc nc (|2
FIRAW o IWRello + Wl
2 nc (|2 nci2
< Re (T, 5, Wi W) (12,12) + 2| W] + CIWECllg + C IR W™

2 ne 2 C nen?
< Re (I, W7 W7 g2+ 26 W+ C I+ S5 1. (4.61)
Therefore by taking e = ¢/4, from (4.58), (4.60) and (4.61), we have

Re (T

c C 2 C ne 2 nep2
XZHZI/Vlla I/Vll)(LQ,L2) > (5 - ?) HVVllHO - ? ||W C”O -C HWuCHO .

Hence we obtain that,

C

¢ 2 ne|(2 ne (2
I > (ey — ;) ||W11HL2(L2) - ; W ||L2(L2) — Oy |[Wy ||L2(L2)

c 2 c nc||2 nc||2
> (ey — ;) HWlluLz(Lz) - ? W ||L2(L2) - Clwy ||L2(H1/2W) :

Lower bound of Iy. Next we show a lower bound of I5 given in (4.57). Applying
the localized Gérding’s inequality to x2FE; (with m = 1/2), we find that, for large ~,
it holds

Re (T, p, T3 W7, T WE)

2 2
e T )z el welly, - olwe|Z,

1 1 .
(H 2,H2 37

From (4.59) (applied to W}?), we have a lower bound of the right-hand side, so

2 2
Re (ngEzT;oWl ’T)ZOWZ )(H_% ,H%)

> c|WRIS, - CIwl?,, Wi, - C WP, . (462)
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It is also straightforward to check

2 2
Re (T3, 5, T, W7, T3, W, )(H’% H?)

2 nc nc
SRe(T;2E1Wl2’m2)(L27L2)+6HW12H%N+O||W ||i%,v+cuwu |\2%77.(4.63)

Hence by setting € = ¢/2 in (4.63), from (4.62) and (4.63), we get

Re (T, 5, W7, W) (12,12)

v

SIwel, —ciwe, - clweEl, - o we)l,

C C
(Ey- ) W2 - S Il = C Wl -

v

2
After integrating with respect to z on R, there follows

c

122(2

C 2 C ne 2 ne 2
Y- ;) HVVI2||L2(L2) - ; HW CHL2(L2) -C HWuCHL2(H1/2W) )
So up to now, summing up over all [ (recall it is finite), we have
C C nc nc
B> (cy— ;) Z ||Wl||2L2(L2) 5 W ||i2(L2) - Clwy ||22(H1/2W) :
1
Here we used the fact [|[W; || < [|[W}!||+||W?|| . We need a lower bound of 3, ”Wl”i2(L2)'
Lower bound of ), ||I/V1H22(L2). Since the symbol ), V;*V} is elliptic, it follows
(by Garding’s inequality, [11, Theorem B.7]) that
nc||2 nc nc
O W Ean oy < 3 [ [ Re (T W20, W) dadya
1
< C2ZHWZ||2L2(L2) 4’/+ /Q(ROWSC,WL‘:C)dxdydz
7 R+ JR
nc C nc
< Oy Z HWl||2L2(L2) +C Wy ||2Lz(L2) <Oy Z ||Wl||2L2(L2) + 5 Wa ||i2(H1/M) :
1 1

Therefore, by taking -y large, we have ), ||W1H22(L2) > Cp ||W30||12(H1/2W) . So we get

C n 2 C n 2 n 2
B> Coley = ) Wa e oy — = WV aquy = C W i, -(460)

Conclusion: estimate for frequencies away from the poles. Combining the lower
and upper bounds of A + B we proved in (4.54), (4.55) and (4.64), there comes

C nc nc
Coley = 2 Wl .y + O IV O 2y

< Sqwe@z+ e+ C W)z
< Z WOl + |G|+ IW™Mewa) + CIWE b2, )
C + 3ey) |Wae|| e’
HCH BN I Niaa o)+ = [F

C 1 2 2
S (LW + 1 W ).
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Coc
6

First taking € =
that

, and choosing a sufficiently large 7o, then for v > ~p, it follows

’YHWuCHLQ( ) + ||Wuc(0)||1/2,'y

Hys
2

<oz +lle” +1|7 i W3
=3 W20, + M"‘; )+|| Iz2L2y 1T W2 m, ,, ) ) -

L2(Hy,~

This is exactly (4.50).

4.7.3. Construction of symmetrizers. We now indicate how to construct the
symmetrizers claimed in Proposition 4.5.

Recall we have constructed local Kreiss’ symmetrizers r; of constant coefficient
problems near a frequency point in section 3.3.1. From the process we infer that
there is a pair (rj,7T;) with the properties (3.11) and (3.10) (with B replaced by A
now) given in section 3.3.1 in a neighborhood V; of X; € (99 x X) N supp x2, with
Q =R, xRf, and ¥ = {(r,n) € C xR : Rer > 0,|7]* 4+ [n|* = 1}. For a
neighborhood V; of X; € ((2\ 9Q) x ¥) Nsupp xa, the pair (r;,T}) satisfies (3.10).

We then define the symmetrizers of order zero on V;:

0 *
Sj = ,_TJ TjTj,

and it follows that Re(SJA) = T;Re (rojATj_l)Tj. For cases a) and bl), we see
Re (roJATj_l) is of the diagonal form E; that is a diagonal 2 x 2 matrix with order
one satisfying E; > cly; for cases b2) and b3), Re (roJATfl) = ~vH; with H; a
2 x 2 matrix of order 0 so that H; > cly. Therefore, for all these cases we may take
Vi = )\1/2”7Tj so that each term Re (Al’VS?A) satisfying the third requirement in the
Proposition 4.5. One easily checks that the second requirement there is guaranteed
by (3.11).

Since we assume that U, ¥ in the coefficients of the linearized problem are constant
outside a compact set of ) (recall the initial perturbations have compact set with
respect to (y, z) and we consider the case that x is only contained in a finite interval
later), we just construct symmetrizers in finite (say, V) open set V; for j =1,--- , N.
Then by a partition of unity 1 = >-", ¢;(X) with each ¢; € T} (k € N), we may
define the "global" symmetrizer S on (€ x ) Nsupp x2 to be

N
S(X) = 3 ta(XAS).
=1

Note each SJQ and r;,T; are homogeneous of degree 0 for (7,7) when extended to
Q x E, while V; and A are extended by degrees 1/2 and 1 respectively. Proposition
4.5 is the proved.

We remark the construction of symmetrizers S for more general hyperbolic prob-
lems are given in Theorem 5.1 of [2, p.144]. The S we need here is actually —3 given
in that theorem.

4.8. Derivation of energy estimate: the case of poles.

4.8.1. Derivation of equations. We now turn to the energy estimate near the
poles where the uniform Kreiss—Lopatinskii conditions fails and we also can not use
the reduced equations like (4.48). As in [11], the strategy is to consider the original
system after some kind of diagonalization and then estimate each unknown directly.
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Diagonalization of symbols. To derive the equations, we first carry out some alge-
braic manipulations to transform the matrix 7A;+inAs defined by (4.23) to an almost
diagonal form. To simplify the computations, we introduce here some notations. We

set
wlo M -1 g UT I
A (N A)’ (ﬁl —51)’ <MT inp )’
and A = diag{—a(w + 0),a(w — 6)}. We wish to find two matrices L and R defined

near the set of poles T, so that
1) Ldiag{0,0,1,1} R = diag{0,0,1,1},

w 0 0 =%
0 w 0 =x ,
2) LAR takes the form N E and the argument e (resp. €’) sat-
0 0 0 e
isfies Ree < 0 (resp. Ree’ > 0) near Tp N {|7|> +n* = 1}.

. (I 0 (2 R
To this end, we suppose L = ( L, Lo ) and R = ( 0 Ry > Then the first

requirement above is equivalent to
LoRy = Is. (4.65)
This also implies that both L and R are invertible. By a direct computation, we have

wly wRi + MRy )

LAR = < wli 4+ LoN  (wLy + LoN)Ry + (L1 M + LoA) Ry

Now suppose specifically that,

then we get
KT inp
wLhy 4+ LoN = | lsw+ (1 4+ma)ur  Lw+ (1+ma)inu |,
a1 a2
riw+(=s1+ 1) —oq

Ri+ MRy = b1

©m ? rswt(s1— 1) B

—_— ——

bo

By the above second requirement, all a1, as, b1, bs should be zero. These imply that

lar

my=—1— 2 M (4.66)
inp in
rsw T30
s1=1———, 71 =~ , 4.67
' B ! b1 (4.67)
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by noting here that n and 8, are nonzero near the poles. Also, (4.65) means

S1=—my oOr T3=——I,. (4.68)
inp

Using these relations, we further have

(WLl + LQN)Rl + (LlM + L2A)R2
urry +inurs + alw — 6) 0

(a1l3 — 5114)(16— 81) + 2am4w —(a113 — 5114) — CL(OJ + 0)

[0 e

Requirement 2) above also implies ¢ = 0. So it follows the equation

! <l4 >2 (ar7 — inpy). (4.69)

"= 20 iy

We should find my, $1,13, 14,71, 73 so that (4.66)—(4.69) hold, and, near the poles,

(Ree)/v/|T]? +n? :=Re ([—Z%(aﬁ —inBy) —alw+0)]/VI|TI?+ 172) < —cp <0

(4.70)

for some constant cy.

From (4.66) and (4.69), we see ¢ = l4/in should solve
(ot —inpy) + 2alw + 2ap = 0.

For any fixed point (x,y,z,7,m) so that w = 0 and the reference state ¥ = z,

we can solve that ¢ = 4w If we choose Iy = —i

2 .
Cmﬁ. 76\/;‘2ﬁ31gn(77), then
(Ree)/+\/|IT]2+n* = =1 < 0. By continuity, we see there is a neighborhood of T
and v small, so that one could solve I4 and (4.70) holds. Once Iy is known, all other
parameters are solved. We then obtain

w 0 0 —

0 w 0 B1
LAR = ) —e — 2ab 0

UT Inp e—2a

0 0 0 e

It is easily noted that there is a constant ¢j, so that (Ree’)/+/|7|?> +n? > ¢, > 0 near
the poles set YTp.
Finally, we introduce L = diag{1, L}, R = diag{1, R}, and

Ad = L(TAI —+ ZT]AQ)R = dlag{l, L.AR}

We remark that L and R constructed here, as well as their inverses, may be considered
as symbols of class T'S, and A4 € T
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Derivation of equations near poles. Similar to the beginning of section 4.7.1, set
Wp = T3 W. Then it solves

T50:Wp + Tlp, LinayWp + T&Wp + TOW = RLyW + T F, (4.71)

with
r = i{TA1 +inAsg, xp} — O:xpIs € F(l),

which vanishes in a neighborhood of the poles set T, and out of V. As before, we
also need some cut-off functions (;, j = 1,2, 3,4 such that

— (; are C* functions, taking values in [0, 1], and homogeneous of degree 0 with
respect to (7,7m);

~ Cilsuppxp = 1, and for k = 2,3,4, there hold (jlsupp¢, , = 1;
— (4 (and therefore (;,7 = 1,2,3) is supported in a neighborhood of the set of
poles Tp.

Then we introduce
V=T s W, (4.72)
From (4.72) and the equation (4.71), we find

I50.V = IsTy . g 1 Wp + IT, oum Wy + T 7 g 19:Wp  (using ZsR™' = LIy)
=TTy . g Wo + LT, wR_ Wy + CIL(L-,&W)
=TTy pWo + LT 5 g s Wo + T2 L (R W + T F)

y Y
TclLTTA1+znAzW TglLTCW TclLT w.

By symbolic calculus, note (2¢1 = (1,

TglLTTAlerAgW
,
=T Ly rinanWe + RoaW +T7 5 1o, (rA1+inAs)+8, (C1L)D (TA1+inA2)]W

=T aveyr-1yWo + RAW +T7

B TgA”’V T—l[asA”’O (GR-! )+6,,Aday(c1R—1)]Wp + R W

T 05 (L) 0, (r Ay +inAz)+0, (CLL)8, (rAq+inAs)] VP

= TgAdV + T],lwp + T;,QWp +R_W.

i[05(¢1L)0s (TA1+inA2)+0, (C1L)3y(TA1+znA2)]

Here we have set

st = —i[05(C1)LO (TA1 4+ inA2) + 0, (C1)LIy (TA1 + inAs))
+i[0e A0, (G)R™ + 0,A%0,(¢1)R ™,

so = —i(1[0s(L) 0z (TA1 + inA2) + 0, (L)dy(TA1 + inAs)]
+iG1[0: A0, (RTY) + 0,A%0,(R™)] := (1S

belonging to I'Y. So s} vanishes on support of ¢; and out side V,. We also have

T3Wo =T speor-yWe = TlsrV + R-1W, (SR eTY.
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Similarly, we get

TenTeWs = T, Lomyr—1)We + B W
T eV + RaW,  (LCReTY,
T o1 Wo =T,ro.rV + R-1W, GROR € 9,

and

TC’YlLT’YW Tg LT’W + Rfﬂ/V.

So in all, we find that V solves

T50.V + T paV + TV + TIW + R W = T7 T F. (4.73)

Here (;E, 7 € I'Y, and 7 also vanishes in a neighborhood of Y, and outside Vp; R_1
is an operator of order —1.

Finally, we write down the explicit form of (4.73). There are two "differential"
equations

c‘)ZVg,JrT7 Vs +T),V =F;, (4.74)
RV + T, Va+ 17, Vot T, Va+ TV =Fu, (4.75)
and three "algebraic" equations
T i+ T,V =7, (4.76)
T Ve + 12,0, Vs + TV = T, (4.77)
TCWVg + T"Yﬁ Vr + TV =Fs, (4.78)

with the lower order terms being coupled. Here for shortness, we set
F=(Fr,  Fs)" = =TIW + R4 W + T T F, (4.79)
and a™ is a generic symbol of class I'T* for an integer m.

4.8.2. Energy estimates. We now derive energy estimates of solutions to the
equations (4.74)—(4.78).
FEstimate on V;. Let us start from V5. Using (4.74), it holds

%(AI’VVE,, AMV5) = 2Re (A0, Vs, AYV5)

=I+J:= [QRe( V5,V5)}

—Gzer2Y
+[(RaV5, V5) = 2Re (AMIT, V, AL7V5) + 2Re (AM1F5, AMTV5) | (4.80)
Just using the Cauchy—Schwartz inequality, it is easy to obtain that
2 2 2 2 2
[T < CUIVaIL, +ellVllsjay + CellVIL e+ CellFIlL 2, +lValls e, )(4.81)

To handle I, we still need the localized Garding’s inequality ([11, Theorem B.§]).
Recall we have shown that there is a positive constant ¢ so that —(Ree)/AYY > ¢ in
the support of (4. Then we have

—C2AP Ree > 20N,
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So there is a constant C' > 0 and 9 > 1 such that for all v > 7 and smooth V5, it
holds

Re (T, T Ve TLVS) 2 5 || T2, Vi .~ CII,. (4.82)
Note that ng,V5 = Vs + R_oWp, we see
c 2
szl — vl = sl — CalWel2ys, — €IV,
Cq 2 Cy 2 1 2 1 2
> 5 Wl + 5 IVAIR L, = Cos Il = O VAL, (4.83)
and
Re (T7 ¢, o Te, Vo, T2, V)
<Re(T7, 000V, V3) + C [ Wall 2 Vsl + 1Woll 2 1Wall_y
C
<Re(T7, 0.V, V5) + c; IWoll7 + 32 V512 (4.84)

Therefore, combining (4.82), (4.83) with (4.84), and choosing 7o further large, we find
2 2 1 2
I>Ci(v Vsl + Vsl 2,) — 02; WhllLe - (4.85)

Now by plugging (4.81) and (4.85) into (4.80), and integrating over z € (0,00), and
remember by our assumption that V' should vanish for z — oo, we get

2 2 2
IVs(Oy, + Cry Vsllzea, ) + CrlIVsliaqa,,, )

C
< S IWallzeqe) + CUV e, )+ Wl Loy ) (4.86)

Estimate on V;. Next we consider estimate of V. Acting A/ to equation (4.76)
and then taking L?(R?) inner product with AY27Vy, we get, for the real part, that

Re (A>T Vi, A2 V7)
= —Re (AV27T,V, AV27V)) 4+ Re (AY27 Fy, AV27W). (4.87)

For the right-hand side, it is easy to be bounded by

C:
C' VI oy + v VAl o, + o 1117 2.,)- (4.88)
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For the left-hand side of (4.87), we have

Re (AY/2777 Vi, AV27V7)
=Re (T2, ,AY*7Vi, AV27V)) + Re (Ry 2V, A7)

((ng“’ (Tg?w)*)Al/Qﬁvl’ A1/2’7V1) + Re (R1/2V17 A1/2’7V1)

1
= (TCQ(w+w A2, A1/2771/1)+Re (R1/2Vi, A 1/2 V)

+(RoAY27vy, AY27 )
= YT A7V, AV2IVE) + Re (R) o Vi, AY2717)
= y(AY27 (Vi + Ry Wy ), AV27Vi) + Re (RY ) Vi, AY/2717)

> (v = O)IVall} 2y — Y(R_3/2Wp, AV27V7))]
> (y=0) ||V1||?/27'y -7 ||Wp||_3/2ﬁ ||V1||1/2,»y
1
> (v = O)IAllS ., — 7 Wollp2 1Villy oy
C
> (y=C) IVill} s — b~ [Wpll7. . (4.89)

From (4.87), (4.88) and (4.89), by taking € small and ~y > 1 rather large, we obtain
for v > 7o that

2 1 2 1 2
YIVillE oy < CUAVIT jory + 5 IF 12, + S Well72)
for a constant C' independent of v and V. Integrating this for z € (0, 00), we have
2
Vil a0y € CUV It + 2 1F i+ 2 [WolFaa)- (490)

Estimates on Vo and V3. Comparing to the estimate of V7, we need to consider
further the term Re (A1/2’7T1<2QIV5, AY29V) (or Re (Al/Q’VTgﬁlVg, AY2975)). We
take the first as an example. It is easy to see that we have the estimate

2 Ce 2
Re (A20T7 | Vs, AV20Vo)| < C([Vally o o [ Valls oy < Cey HV2||1/2,W+7 1Vsll3/2, -
Then totally similar as for Vi, from (4.77) we get
2 2 Ce 2 2 1 2 1 2
YIValli)a,y < CevIVallijn, + - Vslls 2, + CUVI 2, + 5 1711, + 5 Woll72)-

Choosing ¢ small and note v > 1, integrating for z € (0,00), and using (4.86) to
2
bound the term [|Vs][3,, ., one gets

Vel 0 < CUV a0 + 7 I By + = Wl ey (49)

The same inequality holds if V5 is replaced by V3 on the left-hand side.
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FEstimate on V4. By equation (4.75), we have

5
d
7 (V4 Vi) = 2Re (9:V4, Vi) : ZI] = —2Re (17, V1, Va) — 2Re (T7, ,, V2, Vi)
—2Re (T, Vs, v4) —2Re (T, V, Vi) + 2Re (Fy, V). (4.92)

Using the localized Garding’s inequality (recall Ree’ > cA!"Y by our construction), we
have

2 2 2
L >0 ||V4H1/2,7 - C2(HWPH_3/2;Y + ||V4||71/2,7 + HV4||1/2,W ||Wp||_3/2,»y)
Cl 1 2 2
2 (7 - ?) IValli /2, = ClIWslIZ5)0 . -
We also see that
L |+115] < CVally .y (1Velly jon Va1l 2.) < CeIVall] oy +C(IVall} o4 +IV5I j2.)s

and

(sl < Vally oy IVIZ1 /2, < IIVlll/g,w
I < < C Cs 2
51 < WVallyjo IF Il jo, < CellVallYjo,, + el IF 11 2,5 -

So by integrating (4.92) with respect to z over (0, 00), and for v large, € small, we get
2 2 2 1 2
VAl < © (VGO + Wl + 25 17

2
+0 (el + Vel + 2 1V i)
Multiplying this by - and using (4.91), we find
2 2
v HVZLHLz(Hl/M) < Cv|[Va(0)][72

40 (W10 4 2 W 4 Wil (499

Estimate of V4(0). Finally, we use boundary conditions to estimate - ||V4(0)[|7..
We write W, = (w1, w2, w3, ws,ws)” and V = (V4,---,V5)T. Then the boundary
condition in (4.33) for W, reads

— — T
Ws Wy _TXpG'

We could easily solve that

1
Ril = ]2 _R1L2 )
Lo
hence
Vi=wy, Vo= w2 Tglrlw5, %):Tglwg—TgITSUJf),

V4:T<1w5, Vs = T’Y’LU4+T

Gima W

(4.94)
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It follows that

T“Y(1 s )VZ;JrT Vs = €2(1+m4)T£’1 T T w4—T7Tg’1m4

= T7 (w5 — wq) + R_1(wy + ws) = TgTQpG + Ry (ws + ws).

Recall 1 — 51 = —57—4#0.), by acting the first-order operator 7" we find

muC 9

Vi + T IM, =G := Tj “mT'Y T G + Ro(ws +ws), on {z = 0}. (4.95)

(zw

Taking L?(R?) inner product with Vj, then the real part satisfies
Re (T, V4(0), Va(0))
= —Re (I7 1, V5(0), Va(0)) +Re (G, Va(0)) < C(IV5 (011, + G z2) [IVa(0)]l .2

C:
< ey Va(O)llz: + 7(||V5(0)||§,7 +19172), (4.96)

while

Re (T, Va(0), Va(0)) = v(V4(0), V4(0)) + y(R-2ws(0), V4(0)) + (RoVa(0), V4(0))
> 7 |[Va(0)||72 — Cy || R- 2w5(0)||L2 IVa(0)] > — C [[Va(0)]|7-

> (v = C) [Va(0)l[7= — Hwa( IZe - (4.97)
So from (4.96) and (4.97), for 79 > 1 large and v > 7, we have
2 c 2 ~||% 2 2
YIVa(0)lz- < ;(Ile(O)Hm + G‘ L, lwaOz + llws O)lf2)- (4.98)

Conclusion: estimate near poles. From the estimates (4.86), (4.90), (4.91), (4.93)
and (4.98), we have

5
VY WVillzaga, oy + 7 VO3 + 7 IVA(O)
j=1
2 1 2 2 ~I?
< O(IVIZaqat, ) + 5 P Eaar, oy + 1Py + |G
2 2
+ [wa () 3= + s (0)32) )

[Wae )],

By choosing v large, it follows
VIVIZ2a, ) + VIV O 72 + 7 [Va(0)][72 < H (4.99)
with
¢ 2 2 =% n 2
Hi= (1, + W 2oy + |G+ 177 0)152 ).
Now recall V; = Tgl ws = Tgl Ty W5 =T Ws5 + R_oWs, so

ws =Vi+R_oWs, wy=Vs—T]

C1ma

Vi+ R_ (W5 + W4)
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Using (4.99), it holds
7 [wa(0), ws (O)I|Z2 < Y IIVa (072 +7 V(0) 172 + } W™ (0)|I7» < 2.
Also, from (4.94), we could solve that

Wp = RoV + R_,W.

Hence

2 2 1 2
YIWollL2m, o) S CONVIL2 ) + 12 IWL2(r2)) < 2H.

2
LQ(Hl,n) )

2 1 ) 12 10 -
W) <o (1w el += 7]
, T H L P IWlz2r2y + - + 5

Finally, by the definition of F in (4.79), we have

2 2 1 2 1=
1700 < € (IR W,y 4 2 IV iy + = |

Summing up, we get the desired estimate near poles:

2
v o)

2
L L2(Hz,y)

n 2 2
W O)7: + 1T W 2, ., )-(4:100)

4.9. Proof of Theorem 4.4. Combining estimates (4.50) and (4.100), using
W=T] W+ TQPW, and recall r,7 € T'{, we have

2 112
+Jel)
L2(H, ) 1y

2
) H T WL

C (1) =
2 nec 2
YW+ 10750 < < (2]

C 2 n 2 2
2 (I ey + WO + 1T 2
<< (51
Y\
Therefore, by choosing vy > 1 large and then for all v > 7, we obtain

2 112
“Jef,.)-
L2(H -) 1y

This leads to (4.34) that was claimed in Theorem 4.4. The proof of Theorem 4.1 is
also completed after employ a standard approximation argument.

Hi/z (Hl/z,w)>

2

~|I? 1 2 nc 2 ’ 2
vy PG S I aar oy IO+ € IW R, )

C (1=
2 nc 2
I+ 1970 < < (2 7]
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