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Abstract. In this paper, we study the stability of contact discontinuities that separate a C1 su-
personic flow from a static gas, governed by the three dimensional steady non-isentropic compressible
Euler equations. The linear stability problem of this transonic contact discontinuity is formulated
as a one-phase free boundary value problem for a hyperbolic system with the boundary being char-
acteristics. By calculating the Kreiss-Lopatinskii determinant for this boundary value problem, we
conclude that this transonic contact discontinuity is always stable, but only in a weak sense because
the Kreiss–Lopatinskii condition fails exactly at the poles of the symbols associated with the lin-
earized hyperbolic operators. Both of planar and non-planar contact discontinuities are studied. We
establish the energy estimates of solutions to the linearized problem at a contact discontinuity, by
constructing the Kreiss symmetrizers microlocally away from the poles of the symbols, and study-
ing the equations directly at each pole. The non-planar case is studied by using the calculus of
paradifferential operators. The failure of the uniform Kreiss-Lopatinskii condition leads to a loss of
derivatives of solutions in estimates.
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1. Introduction. This work is devoted to investigating the stability of contact
discontinuities in three-dimensional steady non-isentropic compressible flows governed
by the full Euler equations that separate a C1 supersonic flow from a static gas (flow
with zero velocity, hence subsonic, see Fig. 1.1). Such transonic contact discontinuities
occur ubiquitously in supersonic jet flows, cf. [14, §148, p. 387]. They are either vortex
sheets or entropy waves or combination of them, since both tangential velocity and
entropy may experience jumps across the contact discontinuity fronts.

More specifically, suppose there is a solid convex corner given by {(x, y, z) ∈ R3 :
x < 0, y ∈ R, z < 0} in the space R3. Set l = {x = 0, y ∈ R, z = 0}. We can construct
the following flow field containing a contact discontinuity front at {x > 0, y ∈ R, z = 0}
that issuing from l: there are uniform supersonic flows with velocity (u, v, 0), pressure
p, density ρ

+
, in the region {x ∈ R, y ∈ R, z > 0} (supersonic means u > c+, for

the sonic speed c+ to be specified later), and the gas in {x > 0, y ∈ R, z < 0} is
static (velocity is zero), with pressure p, density ρ−. Now if there are suitable small
perturbations of the upcoming supersonic flow near the edge l, we are wondering
whether such flow pattern would still exist in a neighborhood of the origin O.

For the two-dimensional case (i.e., the flow does not depend on y), Chen, Kukreja
and Yuan [5, 6] have shown that such transonic contact discontinuities are stable and
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Static gas (II): (0, 0, 0, p, ρ−)
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Fig. 1.1. A contact discontinuity emerged from the edge (y-axis) that separates the gas
with velocity zero below from a supersonic flow above.

well-posed in the class of BV functions by using the front tracking method. The aim
of this paper is to study the linear stability of such contact discontinuities for the
genuinely multi-dimensional case, by obtaining some fundamental energy estimates
of solutions to the related linear problems. This is the crucial step for studying the
nonlinear stability of this transonic contact discontinuity. We remark that for the
time-dependent problem, it is known that the contact discontinuity is violently un-
stable for the three-dimensional Euler equations (see [20, pp. 222–225] or [13] and
references therein). For the two dimensional case, Coulombel and Secchi showed in
their celebrated works [11, 12] that for the isentropic Euler equations, certain rather
strong supersonic contact discontinuities are weakly stable. The linear stability of a
planar contact discontinuity for the unsteady non-isentropic Euler equations in two
space variables was studied by Morando and Trebeschi [19]. Recently, Wang and
Yu [22] also studied the linear stability of contact discontinuity for the three dimen-
sional steady Euler equations, but the flow on both sides of the contact discontinuity
are supposed to be supersonic. See also [1, 3, 7, 8, 10, 15, 16, 17, 21, 23, 24] and
references therein for other related works on the stability of elementary waves in
multidimensional hyperbolic conservation laws. Comparing to studies on transonic
shocks in steady flows (see, for example, [9]), the significant difference here is that the
free boundary is characteristic, and we will mainly study multidimensional hyperbolic
equations rather than elliptic-hyperbolic composite systems.

In contrast to the aforementioned works, the problem we considered here is ac-
tually a one-phase free boundary problem. At first glace since there involve both
supersonic and subsonic flows, the steady Euler equations are then of composite-
mixed elliptic-hyperbolic type with a free boundary (i.e., the contact discontinuity).
But a merit of our problem is that the gas will stay static in the elliptic region; it
will not be influenced by the supersonic flow. So we actually have a one-phase free
boundary problem for a hyperbolic system. It seems that this work is the first one
dealing with such one-phase hyperbolic free boundary problems.
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Like previous works, since the boundary is characteristics, the boundary matrix in
the linearized differential operators is singular, which leads to the reduced system for
the non-characteristic components of unknowns has poles. Even though in the steady
supersonic flows, the three dimensional Euler system is hyperbolic as the supersonic
direction of flows is time-like, however we notice that one of crucial differences from
the two-dimensional unsteady Euler equations studied in [11], is that there is a ve-
locity component along the “time" direction for the three dimensional steady Euler
system. Thus, the tangential velocity field of the three-dimensional transonic steady
contact discontinuity has dimension two while it is only one-dimensional along the
contact discontinuity front in the two-dimensional unsteady Euler flows (cf. [11]),
so the analysis of stability of the contact discontinuities in three dimensional steady
Euler system is more subtle. For example, in the following discussion we find a new
phenomenon not appeared in [11], namely the associated Lopatinskii determinant for
the reduced system of our problem vanishes exactly at the poles of the symbols. This
requires one to control the solutions near the poles in a quite delicate way to close
the estimates (see section 4.8).

In [22], the authors found that to have the weakly linear stability of a steady
supersonic contact discontinuity in three dimensional isentropic Euler systems requires
that the tangential velocity field on a space-like plane must be supersonic as well on
both sides of the contact discontinuity front. It is quite surprising to discover in this
paper that the steady transonic contact discontinuities in three dimensional Euler
systems are always weakly stable, even for the non-isentropic flows! This demonstrates
the observation that the transonic contact discontinuities are stronger, so it is likely
to be more robust.

To state our results of weakly linear stability, we first formulate the nonlinear
problem in section 2, where we also review some important properties of the steady
Euler system and the notion of contact discontinuities. In section 3 we study the linear
stability of a planar transonic contact discontinuity. We will see the Kreiss–Lopatinskii
condition holds for the corresponding linearized constant coefficient problem but the
uniform Kreiss–Lopatinskii condition always fails exactly at poles of the reduced prob-
lem for the associated non-characteristic components of unknowns. By constructing
Kreiss’ symmetrizers, we obtain the first main result of this paper, Theorem 3.7, a
basic L2 estimate for the linearized problem of transonic contact discontinuity at a
planar discontinuity. This estimate exhibits a loss of one derivative, which shows that
this transonic contact discontinuity is weakly stable. Then with the argument of this
special while crucial case, in section 4, we use para-differential calculus and microlo-
calization techniques to derive energy estimate of solutions to the linearized problem
at a non-planar transonic contact discontinuity, that is Theorem 4.1, the second main
result of this paper. In particular, to estimate near the poles needs certain new idea
and techniques, since where the uniform Kreiss–Lopatinskii condition fails. We show
in detail how to treat this case in section 4.8. The definitions and basic properties of
para-differential calculus we used here can be found in appendices of [2] or [10, 11].

2. Formulation of nonlinear problems. In this section, after review some ba-
sic facts of the three-dimensional steady non-isentropic Euler equations, we formulate
the nonlinear problem on stability of a transonic contact discontinuity.

2.1. Three-dimensional steady non-isentropic Euler equations. The mo-
tion of steady non-isentropic flow of perfect gas without exterior force is governed by
the following three-dimensional (steady) full compressible Euler system expressing
conservation of mass, momentum and energy ([14, (7.09.2) in p.15, (8.02.2) in p.16,
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and (9.01) in p.17]):

(ρu)x + (ρv)y + (ρw)z = 0, (2.1)
(ρu2 + p)x + (ρuv)y + (ρuw)z = 0, (2.2)
(ρvu)x + (ρv2 + p)y + (ρvw)z = 0, (2.3)
(ρwu)x + (ρwv)y + (ρw2 + p)z = 0, (2.4)

((ρe+
1

2
ρq2 + p)u)x + ((ρe+

1

2
ρq2 + p)v)y + ((ρe+

1

2
ρq2 + p)w)z = 0. (2.5)

(In this work subscript means partial derivatives.) Here q =
√
u2 + v2 + w2 is the

speed of the flow, and e is the specific internal energy of the gas.
We consider specifically the polytropic gas. The state function is (cf. [14, (3.03)

in p.6]) p = A(S)ρΓ, with S the entropy, A(S) = (Γ−1) exp((S−S0)/cν), cν a positive
constant, S0 a given number, Γ = R

cν
+ 1 the adiabatic exponent (cf. (4.10) in [14,

p.9]), and R a positive constant. Then the temperature of the gas is given by T = p
Rρ ;

the internal energy e = cνT = cν
R
p
ρ = 1

Γ−1
p
ρ ; and the local sonic speed is given by

c =
√

Γp/ρ. For these relations, see [14, p.7].
Since we consider piecewise C1 solutions, we may use the symmetric form of

(2.1)–(2.5) whenever the solution is C1 and ρ > 0 (see [2, p.395]):

A1(U)∂xU +A2(U)∂yU +A3(U)∂zU = 0, (2.6)

where U = (u, v, w, p, S)T , and

A1 =


ρu 0 0 1 0
0 ρu 0 0 0
0 0 ρu 0 0
1 0 0 u

ρc2 0

0 0 0 0 u

 , A2 =


ρv 0 0 0 0
0 ρv 0 1 0
0 0 ρv 0 0
0 1 0 v

ρc2 0

0 0 0 0 v

 ,

A3 =


ρw 0 0 0 0
0 ρw 0 0 0
0 0 ρw 1 0
0 0 1 w

ρc2 0

0 0 0 0 w

 .

For u > c, we can show the system (2.6) is symmetric hyperbolic with respect to
x. Let ξ, η ∈ R. We solve the eigenvalue λ by the characteristic equation

det(λA1 − (ξA2 + ηA3)) = 0. (2.7)

A direct calculation yields that there are two simple solutions λ1, λ3, and one solution
λ2 with multiplicity three (cf. [9, p.538]) given as follows:

λ1 = λR − λI , λ2 =
vξ + wη

u
, λ3 = λR + λI , (2.8)

where

λR =
u

u2 − c2
(vξ + wη), λI =

c
√

(vξ + wη)2 + (u2 − c2)(ξ2 + η2)

u2 − c2
.



Stability of Transonic Contact Discontinuities 5

One sees immediately that for λ1,3 to be real, i.e., (vξ + wη)2 ≥ c2 − u2 whenever
ξ2 +η2 = 1, there must hold |u| ≥ c. Since A1 should be nonsingular, we need |u| > c.
Also, if |u| > c, as can be checked directly, λ1, λ2, λ3 are distinct. For q < c, the
system would be elliptic-hyperbolic composite-mixed type as studied in [9].

Also, suppose U = (u, v, w, p, S)T satisfies |u| > c and ρ > 0, then the eigenvalues
λ1, λ3 are genuinely nonlinear:

∇Uλ(U ; ξ, η) • r(U ; ξ, η) 6= 0 for all ξ2 + η2 = 1,

and the eigenvalue λ2 is linearly degenerate:

∇Uλ(U ; ξ, η) • r(U ; ξ, η) ≡ 0 for all ξ2 + η2 = 1.

Here r is the corresponding right eigenvector associated with the eigenvalue λ. These
claims can also be proved by direct calculations.

2.2. Jump conditions and contact discontinuity. Let D : {ψ(x, y, z) = 0}
be a C1 surface in R3 across which the piecewise C1 solution U of the Euler system
(2.1)–(2.5) has a jump. With integration by parts, we get the Rankine–Hugoniot
jump conditions (cf. [15, (1.8.2) in p.21]):

[ρu]ψx + [ρv]ψy + [ρw]ψz = 0, (2.9)
[ρu2 + p]ψx + [ρuv]ψy + [ρuw]ψz = 0, (2.10)
[ρvu]ψx + [ρv2 + p]ψy + [ρvw]ψz = 0, (2.11)
[ρwu]ψx + [ρwv]ψy + [ρw2 + p]ψz = 0, (2.12)

[ρu(
1

2
q2 +

c2

Γ− 1
)]ψx + [ρv(

1

2
q2 +

c2

Γ− 1
)]ψy + [ρw(

1

2
q2 +

c2

Γ− 1
)]ψz = 0.(2.13)

Here as usual [·] stands for the jump of a quantity across D . Set m = ρuψx + ρvψy +
ρwψz, which is the mass transfer flux across D . Let m± be the mass transfer flux
measured at the two sides of D . Equation (2.9) means m+−m− = 0. We now specify
two special cases:

• m+ = m− = 0 on D . In this case, D is called a contact discontinuity (front).
• m+ = m− 6= 0 on D . In this case, D is called a shock-front.

For a contact discontinuity, the Rankine–Hugoniot conditions (2.9)–(2.13) can be
significantly simplified as

u±ψx + v±ψy + w±ψz = 0, (2.14)
p+ − p− = 0. (2.15)

Obviously, the contact discontinuity is a characteristic surface associated with λ2.

2.3. A free boundary problem. Now we can formulate the transonic contact
discontinuity as a free boundary problem, with the characteristic free boundary being
the contact discontinuity front. Suppose its equation is

z = ψ(x, y) for x ≥ 0, y ∈ R, with ψ(0, y) = 0.

Set Ωψ := {(x, y, z) ∈ R3 : x > 0, z > ψ(x, y), y ∈ R}. Then the unknowns U and ψ
should solve: 

(2.6), in Ωψ,

U = U0, on {x = 0, z > 0, y ∈ R},
p = p, on {z = ψ(x, y)},
uψx + vψy − w = 0, on {z = ψ(x, y)}.

(2.16)
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The last two conditions follows from (2.14) (2.15) applied to the upper unknown su-
personic flow U+ = U and the lower given static gas U− = (0, 0, 0, p, ρ−). We suppose
the initial data U0 is a small perturbation of the reference state U+ = (u, v, 0, p, S+)
with u > c := c+ and expect ψ to be a small perturbation of z = 0 for x > 0 small.

2.4. Nonlinear problem with a fixed boundary. The problem (2.16) has a
free boundary since ψ(x, y) is also unknown. As in [11, 16], to fix the free boundary,
we use a change of independent variables (x, y, z) 7→ (x′, y′, z′) given by

x = x′, y = y′, z = Ψ(x′, y′, z′),

which transforms Ωψ to R+
x′ × Ry′ × R+

z′ , with Ψ being an unknown satisfying

Ψ(x′, y′, 0) = ψ(x′, y′), ∂z′Ψ ≥ κ

for a positive constant κ to make sure the change-of-variables is invertible.
Inspiring by the eikonal equation of ψ, the last line given in (2.16), we require the

function Ψ(x′, y′, z′) to be determined by the following problem{
∂Ψ
∂x′u+ ∂Ψ

∂y′ v − w = 0, in {x′ > 0, z′ > 0},
Ψ(0, y′, z′) = z′.

(2.17)

Denote by Ũ(x′, y′, z′) = U(x′, y′,Ψ(x′, y′, z′)). Then, from (2.6), Ũ(x′, y′, z′)
should satisfy, in {z′ > 0}, that

A1(U)∂x′U +A2(U)∂y′U + Ã3(U,dΨ)∂z′U = 0, (2.18)

where the tildes of U had been dropped for simplicity, and

Ã3(U,dΨ) :=
1

∂z′Ψ

(
A3(U)−A2(U)∂y′Ψ−A1(U)∂x′Ψ

)
. (2.19)

We then get a fixed boundary problem:
(2.18), in {x′ > 0, y′ ∈ R, z′ > 0},
U = U0, on {x′ = 0, y′ ∈ R, z′ > 0},
p = p, on {x′ > 0, y′ ∈ R, z′ = 0},

(2.20)

which is coupled to (2.17), while ψ(x′, y′) satisfies a transport equation{
u∂x′ψ + v∂y′ψ = w, in {x′ > 0, y′ ∈ R},
ψ(0, y′) = 0, on {x′ = 0, y′ ∈ R}.

(2.21)

In the sequel, for simplicity of writing, we replace (x′, y′, z′) by (x, y, z). Problem
(2.20) and (2.21) is the nonlinear problem we need to study.

3. Constant coefficient linearized problem. In this section, we linearize
problem (2.20) and (2.21) at a planar contact discontinuity. We first investigate the
related Kreiss–Lopatinskii condition, and then use the information to obtain energy
estimates by construction of Kreiss’ symmetrizers in the frequency space.
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3.1. The constant coefficient problem. Let U = (u, v, 0, p, S+), ψ ≡ 0,Ψ = z

be the constant reference state (recall we assume u > c+ > 0), and U̇ , ψ̇, Ψ̇ be their
corresponding perturbations. From (2.20), we get the following constant coefficient
linearized problem:

A1(U)∂xU̇ +A2(U)∂yU̇ +A3(U)∂zU̇ = f, in {x ∈ R+, y ∈ R, z > 0},
ṗ = g, on {x ∈ R+, y ∈ R, z = 0},
U̇ |x≤0 = 0.

(3.1)

We also find, from (2.21), the linearized equation of ψ̇:{
u∂xψ̇ + v∂yψ̇ − ẇ = h, in {x ∈ R+, y ∈ R},
ψ̇|x≤0 = 0.

(3.2)

So U̇ and ψ̇ are actually decoupled in (3.1) and (3.2).

3.2. The Kreiss–Lopatinskii condition. In this section, we are going to see
whether the Kreiss–Lopatinskii condition holds for the boundary value problem (3.1),
which is a crucial point to have the well-posedness of this problem.

For simplicity of notations, we shall drop the underlines of the background state
U in the problem (3.1) for the following calculations. So c in the rest of this section
actually means c+.

First, let us introduce certain transformations in order to make the boundary
matrix A3(U) in (3.1) to be a diagonal one. For this, let us set

P =


1

1
c c

Γp −Γp
1

 , Q =


1

Γp
1

Γp
c

Γp 1
c

Γp −1

1

 ,

and U̇ = PV . Then, obviously one has

V1 = u̇, V2 = v̇, V3 =
ẇ

2c
+

ṗ

2Γp
, V4 =

ẇ

2c
− ṗ

2Γp
, V5 = Ṡ,

B3 := QA3(U)P = diag{0, 0, 2c,−2c, 0},

and

B1 := QA1(U)P =


u
c2 0 1 −1 0
0 u

c2 0 0 0
1 0 2u 0 0
−1 0 0 2u 0
0 0 0 0 u

 ,

B2 := QA2(U)P =


v
c2 0 0 0 0
0 v

c2 1 −1 0
0 1 2v 0 0
0 −1 0 2v 0
0 0 0 0 v

 .
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So (3.1) becomes{
B1∂xV +B2∂yV +B3∂zV = Qf, in {z > 0},
V3 − V4 = g/(Γp), on {z = 0}.

(3.3)

Next, we need to change the problem (3.3) into a dynamical system for the non-
characteristic components of the unknown vector V , henceforth define the associated
Lopatinskii determinant. In this way, we shall see that the coefficient matrix in the
reduced system has poles.

Denote by V̂ (z, τ, η) the Laplace transform with respect to x (with dual variable
τ = γ + iδ, γ ≥ 0, δ ∈ R) and Fourier transform with respect to y (with dual variable
η) of V . From (3.3) it follows that V̂ (z, τ, η) satisfies the following problem{

(τB1 + iηB2)V̂ +B3∂zV̂ = Q̂f,

(0, 0, 1,−1, 0)V̂ |z=0 = ĝ/(Γp).
(3.4)

We find

τB1 + iηB2 =


uτ+ivη
c2 0 τ −τ 0

0 uτ+ivη
c2 iη −iη 0

τ iη 2(uτ + ivη) 0 0
−τ −iη 0 2(uτ + ivη) 0
0 0 0 0 uτ + ivη

 .

Therefore, recall c2 = Γp/ρ, equations (3.4) may be written line by line as

ρ(uτ + ivη)V̂1 + Γpτ(V̂3 − V̂4) = Q̂f1,

ρ(uτ + ivη)V̂2 + iΓpη(V̂3 − V̂4) = Q̂f2,

(uτ + ivη)V̂5 = Q̂f5,

dV̂3

dz
+

1

2c
(τ V̂1 + iηV̂2) +

uτ + ivη

c
V̂3 = Q̂f4,

dV̂4

dz
+

1

2c
(τ V̂1 + iηV̂2)− uτ + ivη

c
V̂4 = Q̂f5.

Note τ V̂1 + iηV̂2 = c2 η2−τ2

uτ+ivη (V̂3 − V̂4), hence the last two equations can be written as

dV̂ nc

dz
= B(τ, η)V̂ nc + (Q̂f4, Q̂f5)T , (3.5)

where V̂ nc = (V̂3, V̂4)T are the non-characteristic unknown variables, and

B(τ, η) =

 −( c2 η2−τ2

uτ+ivη + uτ+ivη
c

)
c
2
η2−τ2

uτ+ivη

− c
2
η2−τ2

uτ+ivη
c
2
η2−τ2

uτ+ivη + uτ+ivη
c

 =

(
−a b
−b a

)
. (3.6)

The eigenvalues λ of B(τ, η) are given by

λ2 = (a+ b)(a− b) = η2 − τ2 +
1

c2
(uτ + ivη)2.
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We need to find the eigenspace E−(τ, η) associated with the eigenvalue λ− whose real
part is negative when Re τ > 0. For convenience of presentation, we introduce the
sets

Ξ = {(τ, η) ∈ (C× R) \ {(0, 0)} : Re τ ≥ 0}, (3.7)
Σ = {(τ, η) ∈ Ξ : |τ |2 + η2 = 1}.

We note λ is homogeneous degree one with respect to (τ, η) in Ξ. By a simple com-
putation, we also see that the eigenvector associated to λ− can be given as

e−(τ, η) = (λ−(uτ + ivη)− c

2
(η2 − τ2)− (uτ + ivη)2

c
,− c

2
(η2 − τ2))T , (τ, η) ∈ Σ,

and then extended to Ξ with homogenous degree zero. e−(τ, η) is a base of E−(τ, η).
So the Lopatinskii determinant for the problem (3.1) is given by

∆(τ, η) = (1,−1)e− = (uτ + ivη)(λ− −
1

c
(uτ + ivη)), (τ, η) ∈ Σ, (3.8)

and is homogenous degree zero in Ξ. For the definitions of Kreiss–Lopatinskii condition
and Lopatinskii determinant, see [2, p.108, p.130].

The factor λ − 1
c (uτ + ivη) vanishes at τ = ±|η|, while Reλ− < 0 whenever

Re τ > 0. So λ− − 1
c (uτ + ivη) can never be zero for Re τ ≥ 0. We note the point

(τ, η) where uτ + ivη = 0 is a pole of the matrix B. Thus, we conclude
Proposition 3.1. The Lopatinskii determinant ∆(τ, η) for the problem (3.1)

vanishes only at the poles of the matrix B(τ, η).
This is a new feature comparing to that of [11, 19].

3.3. Estimate of solutions in frequency space. Now we start to derive en-
ergy estimate of the solution to the constant coefficient problem (3.1). This mainly
relies on the construction of the Kreiss’ symmetrizers of the following system{

dV̂ nc

dz = B(τ, η)V̂ nc, in {z > 0},
βV̂ nc = ĥ, on {z = 0}, with β = (1,−1),

(3.9)

for the frequency away from the poles, and a careful analysis of the problem (3.4)
near the poles. We note (3.9) is reduced from (3.5) and the boundary condition in
(3.4).

Definition 3.2 (Kreiss’ Symmetrizers). For any (τ0, η0) ∈ Σ, if there is a
neighborhood V and two C∞ mappings T : V → GL2(C) and r : V → M2×2(C) so
that

i) For all (τ, η) ∈ V, the matrix r(τ, η) is Hermitian, and homogeneous of degree
zero with respect to (τ, η);

ii) There exist positive constants k and C so that the following inequalities hold:

Re
(
r(τ, η)T (τ, η)B(τ, η)T (τ, η)−1

)
≥ kγI2, ∀(τ, η) ∈ V, (3.10)

r(τ, η) + C
(
β(τ, η)T (τ, η)−1

)∗
β(τ, η)T (τ, η)−1 ≥ I2. (3.11)

Here I2 is the 2× 2 identity matrix, ReM := (M +M∗)/2, and A ≥ B mean
the matrix A−B is positive-definite.

Then the matrix r(τ, η) is called a local Kreiss’ symmetrizer near (τ0, η0).
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3.3.1. Construction of local symmetrizers. First, let us use Kreiss’ idea to
construct the symmetrizers of the dynamic system (3.5) for frequencies away from the
poles. This will be done for two subcases:

a) Frequency interior points: {(τ, η) ∈ Σ : Re τ > 0};
b) Frequency boundary points where Kreiss–Lopatinskii condition holds: {(τ, η) ∈

Σ : Re τ = 0 and ∆(τ, η) 6= 0}. We know that these are those points
{(iδ, η) ∈ Σ : uδ + vη 6= 0}.

Case a): Frequency interior point. Suppose (τ0, η0) is a frequency interior point
(Re τ0 > 0), then it has a neighborhood V that is still contained in the interior of Σ.
We know in V that, since the two eigenvalues of B must be distinct, the matrix B is
always diagonalizable. Actually, we have the eigenvectors

e−(τ, η) = (λ− − a,−b)T , e+(τ, η) = (b, λ+ + a)T , (τ, η) ∈ V,

and then B(τ, η)(e−(τ, η), e+(τ, η)) = (e−(τ, η), e+(τ, η)) diag(λ−, λ+). Here and in
the following λ+ is the eigenvalue with positive real part for Re τ > 0. So it is natural
to define

T (τ, η) = (e−(τ, η), e+(τ, η))−1 =
1

(λ− − a)(λ+ + a) + b2

(
λ+ + a −b
b λ− − a

)
.

One may check that the denominator (λ− − a)(λ+ + a) + b2 = 2(b2 − a2) = 2λ2
± 6= 0

in V. So T (τ, η) : V → GL2(C) is well-defined and smooth. Since

T (τ, η)B(τ, η)T (τ, η)−1 =

(
λ− 0
0 λ+

)
,

we can set

r(τ, η) =

(
−1 0
0 K

)
for some constant K ≥ 1 to be chosen. It is easily seen that

Re
(
r(τ, η)T (τ, η)B(τ, η)T (τ, η)−1

)
=

(
−Reλ− 0

0 KReλ+

)
.

Because V is contained in the interior of Σ, there must be a positive constant k > 0
so that ±Reλ± > k in V. Therefore, we get

Re
(
r(τ, η)T (τ, η)B(τ, η)T (τ, η)−1

)
≥ kI2 ≥ kγI2, in V,

because 0 < γ ≤ 1.
Let E−(τ, η) (resp. E+(τ, η)) be the stable (resp. unstable) subspace of B(τ, η).

As the Kreiss–Lopatinskii condition holds in the neighborhood V of (τ0, η0), we have
kerβ ∩ E−(τ, η) = {0} for (τ, η) in V. Since dimE−(τ, η) = 1 = dim kerβ, we know
kerβ � E−(τ, η) = C2 and therefore β : E−(τ, η) → R(β) = C is one-to-one. Then
under the change of unknowns Ŵ = T V̂ nc, we explicitly get

E−(τ, η) =

(
z−
0

)
, E+(τ, η) =

(
0
z+

)
, z± ∈ C,

and β is replaced by βT−1. Now consider the mapping C2 → C � C given by

Z =

(
z−
z+

)
7→ (βT−1

(
z−
z+

)
, z+)T .
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This is one-to-one, since for z+ = 0, using the fact that E−(τ, η) is mapped one-to-

one to βT−1E−(τ, η), then βT−1

(
z−
0

)
= 0 implies z− = 0. Therefore the above

mapping is invertible, and there is a constant C0 > 0 independent of (τ, η) ∈ V so
that |z−|2 ≤ |Z|2 ≤ C0(|βT−1Z|2 + |z+|2). Thus we have

ZT r(τ, η)Z + 2C0|βT (τ, η)−1Z|2 ≥ −|z−|2 +K|z+|2 + 2|z−|2 − 2C0|z+|2

≥ |z−|2 + |z+|2 = |Z|2, ∀Z ∈ C2

by choosing K = 2C0 + 1. The above inequality is equivalent to

r(τ, η) + 2C0

(
β(τ, η)T (τ, η)−1

)∗
β(τ, η)T (τ, η)−1 ≥ I2.

Therefore we have proved
Lemma 3.3. At each frequency interior point (τ0, η0), there is a local Kreiss’

symmetrizer.
Case b): Frequency boundary points away from the poles. For points {(τ, η) ∈ Σ :

τ = iδ, uδ + vη 6= 0}, we have

λ2 = η2 + δ2 − 1

c2
(uδ + vη)2.

The Cauchy–Schwartz inequality implies (uδ + vη)2 ≤ (u2 + v2)(δ2 + η2), so recall
u > c, we infer the right-hand side may change sign. We discuss this problem for the
following three different cases of eigenvalues λ.

Subcase b1). For points {(τ, η) ∈ Σ : τ = iδ, uδ+ vη 6= 0} satisfying c2(η2 + δ2)−
(uδ+vη)2 > 0, then λ± = ±

√
η2 + δ2 − 1

c2 (uδ + vη)2, hence B(τ, η) is diagonalizable.
One can discuss this case in a way totally similar to that given in Case a), since all
E±(τ, η), e±(τ, η) and λ± can be continuously extended to this case.

Subcase b2). For the frequency boundary point satisfying c2(η2+δ2)−(uδ+vη)2 <

0, then λ = ±i
√

1
c2 (uδ + vη)2 − (η2 + δ2), hence B(τ, η) is still diagonalizable.

We need to decide which of the root should be λ−. Since Reλ− < 0 for γ > 0

and Reλ− = 0 at γ = 0, we have ∂Reλ−
∂Re τ |γ=0 < 0. By the Cauchy–Riemann equation,

∂Reλ−
∂Re τ

∣∣∣∣
γ=0

=
∂Imλ−
∂Im τ

∣∣∣∣
γ=0

= ± ∂

∂δ

√
1

c2
(uδ + vη)2 − (η2 + δ2)

= ± 1

c2
1√

1
c2 (uδ + vη)2 − (η2 + δ2)

(
(u2 − c2)δ + uvη

)
. (3.12)

First, we note that in this Subcase b2), (u2− c2)δ+uvη 6= 0. Otherwise, we have
(uδ+ vη) = c2

u δ, hence (uδ+ vη)2/c2− (η2 + δ2) = ((c2−u2)/u2)δ2− η2 < 0 by using
c < u, which is a contradiction to the assumption of this case!

Thus, we get that
♦ When (u2 − c2)δ + uvη > 0, we have

λ± = ±i
√

1

c2
(uδ + vη)2 − (η2 + δ2);
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♦ When (u2 − c2)δ + uvη < 0, we have

λ± = ∓i
√

1

c2
(uδ + vη)2 − (η2 + δ2).

Now, we construct a symmetrizer in a neighborhood V of a point (τ0 = iδ0, η0)
of the Subcase b2). We can still use the transform T (τ, η), and r(τ, η) = diag(−1,K)
with K ≥ 1 to be chosen as before, and obtain that, for (τ, η) ∈ V that

Re
(
r(τ, η)T (τ, η)B(τ, η)T (τ, η)−1

)
=

(
−Reλ− 0

0 KReλ+

)
.

By (3.12), for V small enough, we have −Reλ− ≥ kγ, and similarly Reλ+ ≥ kγ, for
some k > 0 depending only on (τ0, η0). This justifies (3.10). The verification of (3.11)
is then the same as for frequency interior points, since the stable subspace E−(τ, η)
can be continuously extended to V.

Subcase b3). When c2(η2 + δ2) − (uδ + vη)2 = 0, then λ± = 0, hence B(τ, η) is
not diagonalizable. These (τ, η) are usually called glancing points. We shall discuss
this case in a way similar to that given in [4, pp. 452–460].

For a point (iδ0, η0) of this case, as

b = b(iδ0, η0) =
c

2i
· η2

0 + δ2
0

uδ0 + vη0
=
uδ0 + vη0

2ic
6= 0,

there is a small neighborhood V of (iδ0, η0) in Σ, such that b(τ, η) = c
2
η2−τ2

uτ+ivη 6= 0 in
V. Define

T (τ, η) =
1

ib

(
0 i
−b −b

)
, so T (τ, η)−1 =

(
−b −i
b 0

)
.

They are smooth in V. Then

T (τ, η)B(τ, η)T (τ, η)−1 = a(τ, η) :=

(
a+ b i

2ib(a+ b) −(a+ b)

)
. (3.13)

As in [11, p.965], at the point (iδ0, η0), we check that (note (a+ b)(iδ0, η0) = 0)

ϑ :=
∂

∂γ
(2ib(a+ b)) =

uδ0 + vη0

c

∂

∂γ
(a+ b)

=
uδ0 + vη0

c

∂

∂γ

(
uγ + i(uδ + vη)

c
+ c

η2 + δ2 − γ2 − 2iγδ

uγ + i(uδ + vη)

)∣∣∣∣
(γ=0,δ=δ0,η=η0)

= 2
uδ0 + vη0

c

(
u

c
− cδ0
uδ0 + vη0

)
=

2

c2

(
(u2 − c2)δ0 + uvη0

)
. (3.14)

We claim ϑ ∈ R \ {0}. Otherwise, it holds δ0 = − uv
u2−c2 η0. Substituting this into

c2(η2 + δ2) − (uδ + vη)2 = 0, we find c2

c2−u2 (u2 + v2 − c2)η0 = 0. Since u > c, we
conclude η0 = 0 and hence δ0 = 0, but (0, 0) is not a member of Σ.

Now we define

r(τ, η) =

(
0 ϑ−1

ϑ−1 e2

)
+

(
f(τ, η) 0

0 0

)
− iγ

(
0 −g
g 0

)
:= E + F (τ, η)− iγG, (3.15)
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where e2 and g are real numbers to be determined, and f(τ, η) is a real-valued C∞
function that vanishes at (τ0 = iδ0, η0) [11]. Then

r(τ0, η0) =

(
0 ϑ−1

ϑ−1 e2

)
.

We first verify (3.11) at (τ0, η0):

r(τ0, η0) + C(βT (τ0, η0)−1)∗(βT (τ0, η0)−1) =

(
4C|b|2 2iCb̄+ ϑ−1

−2iCb+ ϑ−1 C + e2

)
.

Choosing C > 0, e2 > 0 quite large, the quadratic form satisfies (at (τ0, η0))

4C|b|2|z1|2 + 2Re
(

(ϑ−1 + 2iCb̄)z1z̄2

)
+ (C + e2)|z2|2 ≥ 2(|z1|2 + |z2|2).

So by shrinking V we may get, for (τ, η) ∈ V, that

r(τ, η) + C(βT (τ, η)−1)∗(βT (τ, η)−1) ≥ I2

as desired.
Next we choose f(τ, η) and g to guarantee (3.10). Note a(τ0, η0) =

(
0 i
0 0

)
=

iN, we have

a(τ, η) = iN + (a(iδ, η)− a(iδ0, η0)) + (a(τ, η)− a(iδ, η)).

By Taylor’s formula, it holds

a(τ, η)− a(iδ, η) = γ
∂

∂γ
a(iδ, η) + γ2M(τ, η),

with M a continuous matrix-valued function. We also compute that

a(iδ, η)− a(iδ0, η0) = i

(
uδ + vη

c
− c η

2 + δ2

uδ + vη

)(
1 0

c η
2+δ2

uδ+vη −1

)

:=

(
ib1(iδ, η) 0
ib2(iδ, η) ib3(iδ, η)

)
:= ib(iδ, η).

Now choose

f(τ, η) = ϑ−1(b1(iδ, η)− b3(iδ, η)) + e2b2(iδ, η),

which is obviously smooth in V and vanishes at (τ0, η0). One then checks that, with
such a choice of f ,

(E + F (τ, η))(N + b(iδ, η)) =

(
fb1 + ϑ−1b2 f + ϑ−1b3
ϑ−1b1 + e2b2 ϑ−1 + e2b3

)
is real and symmetric for all (τ, η) ∈ V. Consequently, for (τ, η) ∈ V,

Re (r(τ, η)a(τ, η)) = Re
(

(E + F )(γ
∂a

∂γ
+ γ2M) + γG(N + b)− iγG(γ

∂a

∂γ
+ γ2M)

)
= γRe

(
E
∂a

∂γ
+GN

)
+ γL(τ, η),
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where L(τ, η) is smooth and L(τ0, η0) = 0. Direct calculation yields

Re
(
E
∂a

∂γ
(τ0, η0) +GN

)
=

(
1 ∗
∗ ∗

)
+

(
0 0
0 g

)
,

where ∗ represents quantities determined by ϑ−1, e2 and (τ0, η0). So by choosing g
large enough, the above matrix is bounded below by 1

2I2; shrink V to make L(τ, η)
small, we further could have Re (r(τ, η)a(τ, η)) ≥ 1

4γI2 as desired. So we proved that
Lemma 3.4. For each frequency boundary point that is not a pole, there is a local

Kreiss’ symmetrizer.

3.3.2. Localization. Now, we are going to estimate the solution to the lin-
earized problem (3.1) in each neighborhood of different frequencies.

Since Σ (cf. (3.7)) is compact, there are a finite number of such neighborhoods
V1, · · · ,VJ that cover Σ. So there is an associated partition of unity {χ2

j}Jj=1; that is,
χj are nonnegative real-valued C∞ functions in Σ, suppχj ⊂ Vj , ∪Jj=1 suppχj = Σ,

and
∑J
j=1 χj(τ, η)2 ≡ 1 for all (τ, η) ∈ Σ.

For a given Vj , there are two possibilities: either it contains only frequency points
of cases a) or b) studied in the previous subsection; or it contains a pole of the
coefficient matrix of (3.5), for which the estimates need to be done separately below.

3.3.3. Estimate at frequency points away from the poles. First we assume
that suppχj does not contain a point (τ, η) ∈ Σ so that uτ+ivη = 0. In this situation
we have constructed a local symmetrizer rj(τ, η) and a smooth mapping Tj(τ, η) in
the previous subsection. We first extend rj and Tj to be defined in the whole Σ by
setting them to be zero outside of suppχj , then extend χj(τ, η), rj(τ, η) and Tj(τ, η)
to Ξ (see (3.7)) so that they are homogeneous of degree zero.

Now define

Wj(z; τ, η) = χj(τ, η)Tj(τ, η)V̂ nc(z; τ, η). (3.16)

From (3.9), we know that Wj satisfies
dWj(z; τ, η)

dz
= Tj(τ, η)B(τ, η)Tj(τ, η)−1Wj(z; τ, η), in {z > 0},

βTj(τ, η)−1Wj(0; τ, η) = χj(τ, η)ĥ(τ, η).
(3.17)

So by using (3.10), we have

d

dz
(Wj(z; τ, η)∗rj(τ, η)Wj(z; τ, η))

= Wj(z; τ, η)∗rj(τ, η)

(
d

dz
Wj(z; τ, η)

)
+

(
d

dz
Wj(z; τ, η)

)∗
rj(τ, η)Wj(z; τ, η)

= W ∗j (rjTBT−1
j )Wj + (TjBT−1

j Wj)
∗rjWj

= W ∗j (rjTjBT−1
j )Wj + (rjTjBT−1

j Wj)
∗Wj

= W ∗j (rjTjBT−1
j )Wj +W ∗j (rjTjBT−1

j )∗Wj

= 2W ∗j Re (rjTjBT−1
j )Wj ≥ 2kγ|Wj(z; τ, η)|2.
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Integrating the above both sides for z ∈ [0,∞), we get

2kγ

∫ ∞
0

|Wj(z; τ, η)|2 dz ≤ −Wj(0; τ, η)∗rj(τ, η)Wj(0; τ, η)

≤ −|Wj(0; τ, η)|2 + C|βTj(τ, η)−1Wj(0; τ, η)|2

≤ −|Wj(0; τ, η)|2 + C|χj(τ, η)ĥ(τ, η)|2

via (3.11) and boundary condition in (3.17). Since Tj(τ, η) is invertible in suppχj , it
follows that

γ|χj(τ, η)|2
∫ ∞

0

|V̂ nc(z; τ, η)|2 dz + |χj(τ, η)|2|V̂ nc(0; τ, η)|2

≤ Cj |χj(τ, η)|2|ĥ(τ, η)|2 (3.18)

for a positive constant Cj independent of (τ, η) ∈ suppχj .

3.3.4. Estimate near the poles. Consider the point (iδ0, η0) ∈ Σ so that
uδ0 + vη0 = 0, which is a pole of the matrix B(τ, η). Let V be a small neighborhood
of the point (iδ0, η0) in Σ. We define

T (τ, η) =

(
m(λ− − a) mb
−mb m(λ− − a)

)−1

,

with a, b defined in (3.6), and m = uτ + ivη. Since (m(λ− − a))2 + (mb)2|(iδ0,η0) =
c2

2 (η2
0 + δ2

0)2 6= 0, the T (τ, η) given above makes sense. One checks in V that

T (τ, η)B(τ, η)T (τ, η)−1 =

(
λ−(τ, η) 2b(τ, η)

0 λ+(τ, η)

)
. (3.19)

We also note that λ±(iδ0, η0) = ±
√
η2

0 + δ2
0 , and λ± is continuous in V, so there is a

positive constant k so that

Reλ−(τ, η) < −k, Reλ+(τ, η) > k, ∀(τ, η) ∈ V. (3.20)

As above, denote by χj(τ, η) the cut-off function supported in V, we can still
extend χj(τ, η), Tj(τ, η) to be defined in Ξ so that they are homogenous of degree
zero. Define Wj(z; τ, η) as in (3.16), then it solves, in {z ≥ 0} that,

d

dz

(
W 1
j (z; τ, η)

W 2
j (z; τ, η)

)
=

(
λ−(τ, η) 2b(τ, η)

0 λ+(τ, η)

)(
W 1
j (z; τ, η)

W 2
j (z; τ, η)

)
. (3.21)

By (3.20), to make sure Wj ∈ H2
z ([0,∞)), we should have

W 2
j (z; τ, η) ≡ 0 ∀z ∈ [0,∞), ∀(τ, η) ∈ V.

Hence although b(τ, η) has a pole (−i(v/u)η0, η0) in V, the first equation in (3.21)
reads

d

dz
W 1
j (z; τ, η) = λ−(τ, η)W 1

j (z; τ, η).

Therefore, from (3.20), note λ−(τ, η) is extended to Ξ to be homogeneous degree one,
then Reλ−(τ, η) < −k

√
|τ |2 + η2 and it implies

d

dz
|W 1

j (z; τ, η)|2 = 2W 1
j (z; τ, η)∗Reλ−(τ, η)W 1

j (z; τ, η) ≤ −2k
√
|τ |2 + η2|W 1

j (z; τ, η)|2.
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As W 1
j (z; τ, η) ∈ H2

z ([0,∞)), we obtain

2k
√
|τ |2 + η2

∫ ∞
0

|W 1
j (z; τ, η)|2 dz ≤ |W 1

j (0; τ, η)|2. (3.22)

The boundary condition on W 1
j (z = 0; τ, η) reads

m(τ, η)(λ−(τ, η)− (a(τ, η)− b(τ, η)))W 1
j (z = 0; τ, η) = χj(τ, η)ĥ(τ, η), (3.23)

and recall m(τ, η)(λ−(τ, η)− (a(τ, η)− b(τ, η))) is the Lopatinskii determinant ∆(τ, η)
given by (3.8). We can easily verify that there is a positive constant Cj so that

|∆(τ, η)| ≥ γ/Cj ∀(τ, η) ∈ V.

Note although it looks that ∆(τ, η) is homogeneous degree two for (τ, η) ∈ Ξ, however,
we actually extend Tj with homogeneous degree zero, so actually ∆(τ, η) is extended
to (τ, η) ∈ Ξ homogeneous degree zero. Therefore

|∆(τ, η)| ≥ γ/(Cj
√
|τ |2 + η2) ∀(τ, η) ∈ {(tτ ′, tη′) : t ∈ R+, (τ ′, η′) ∈ V}.

We remark this estimate is the reason for the principle that the order of vanishing of
Lopatinskii determinant is the same as the order of loss of derivatives in the energy
estimate. From (3.23), it follows that

|W 1
j (0; τ, η)| ≤

Cj
√
|τ |2 + η2

γ
|χj(τ, η)ĥ(τ, η)|,

as well as

2k
√
|τ |2 + η2

∫ ∞
0

|W 1
j (z; τ, η)|2 dz + |W 1

j (0; τ, η)|2 ≤ Cj(|τ |2 + η2)

γ2
|χj(τ, η)ĥ(τ, η)|2

from (3.22). Since W 2
j ≡ 0, and

√
|τ |2 + η2 ≥ γ, this implies

γ

∫ ∞
0

|Wj(z; τ, η)|2 dz + |Wj(0; τ, η)|2 ≤ Cj
γ2
|χj(τ, η)ĥ(τ, η)|2(|τ |2 + η2).

Remember Tj(τ, η) is also invertible in {(tτ ′, tη′) : t ∈ R+, (τ ′, η′) ∈ V}, we find

γ|χj(τ, η)|2
∫ ∞

0

|V̂ nc(z; τ, η)|2 dz + |χj(τ, η)|2|V̂ nc(0; τ, η)|2

≤ Cj
γ2
|χj(τ, η)|2|ĥ(τ, η)|2(|τ |2 + η2) (3.24)

for a positive constant Cj independent of (τ, η) ∈ V.

3.3.5. Conclusion. Considering (3.18) and (3.24), note (|τ |2 + η2)/γ2 ≥ 1, we
see (3.24) actually holds for all j = 1, · · · , J . Then summing them up for j from 1 to
J , and as

∑J
j=1 |χj |2 ≡ 1, one obtains

Proposition 3.5. For the solution of the problem (3.9) that vanishes as z →∞,
one has the estimate

γ

∫ ∞
0

|V̂ nc(z; τ, η)|2 dz + |V̂ nc(0; τ, η)|2 ≤ C

γ2
|ĥ(τ, η)|2(|τ |2 + η2) (3.25)

with a positive constant C independent of (τ, η) ∈ Ξ.



Stability of Transonic Contact Discontinuities 17

3.4. Energy estimate for the constant coefficient problem. We continue
to establish energy estimate of the solutions to the problem (3.1). It is reduced
equivalently to the form (3.3) by introducing explicitly the characteristic variables
V c = (V1, V2, V5) and non-characteristic variables V nc = (V3, V4). In the following
we further introduce some reductions of this problem, which simplifies greatly the
derivation of energy estimate.

3.4.1. Function spaces. First, we introduce several definitions and notations
of function spaces and norms, which will be used in the following estimates.

We define Hs,γ(R2) with index s ∈ R and parameter γ ≥ 1 to be the Hilbert
space consists of those Sobolev functions u ∈ Hs(R2) so that ‖u‖s,γ <∞, where

‖u‖s,γ =

(∫
R2

|û(δ, η)|2(γ2 + δ2 + η2)s dδdη

) 1
2

.

Note ‖u‖0,γ = ‖u‖L2(R2) .
We then define a weighted Sobolev space

H∗s,γ(R2) := {u ∈ D ′(R2) : e−γxu(x, y) ∈ Hs,γ(R2)}

with the norm ‖u‖H∗s,γ := ‖e−γxu(x, y)‖s,γ . Finally, we write the norm of a function
f(x, y, z) ∈ L2(R+

z ;H∗s,γ(R2
x,y)) to be

‖f‖L2(H∗s,γ) =

(∫
R+

‖f(x, y, z)‖2H∗s,γ(R2
x,y) dz

) 1
2

.

3.4.2. Introducing of weight and elimination of interior source term.
For γ ≥ 1 a parameter, let Ṽ = exp(−γx)V. Then the problem (3.3) becomes{

γB1Ṽ +B1∂xṼ +B2∂yṼ +B3∂zṼ = e−γxQf,

βṼ nc = e−γxg/(Γp), on {z = 0}; here β = (1,−1).
(3.26)

Now consider an auxiliary problem for unknown Ṽ1:{
γB1Ṽ1 +B1∂xṼ1 +B2∂yṼ1 +B3∂zṼ1 = e−γxQf, z > 0,

M1Ṽ1 = 0, z = 0; here M1 = (0, 0, 1, 0, 0).
(3.27)

It is easy to check that this boundary value problem is maximal dissipative (for the
definition, see [2, p.86]). It follows from standard result that there exists a solution
Ṽ1 (cf. [2, 18]).

Now set Ṽ2 = Ṽ − Ṽ1, which solves{
γB1Ṽ2 +B1∂xṼ2 +B2∂yṼ2 +B3∂zṼ2 = 0, in {z > 0},
βṼ nc

2 = h := e−γx g
Γp − βṼ

nc
1 , on {z = 0}.

(3.28)

3.4.3. Estimate of Ṽ2 by
(
Ṽ nc

2

)
|z=0. Multiplying Ṽ2 to the equations in (3.28),

and integrating on (x, y, z) ∈ Ω = R2 × R+, we find∫
Ω

(
(B1∂xṼ2, Ṽ2) + (B2∂yṼ2, Ṽ2) + (B3∂zṼ2, Ṽ2)

)
dxdydz + γ

∫
Ω

(B1Ṽ2, Ṽ2) dxdydz = 0.
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As all Bk (k = 1, 2, 3) are symmetric and Ṽ2 is real, integration by parts for the above
identity yields

γ

∫
Ω

(B1Ṽ2, Ṽ2) dxdydz =
1

2

∫
R2

(B3Ṽ2, Ṽ2)|z=0 dxdy = c

∫
R2

((Ṽ 3
2 )2 − (Ṽ 4

2 )2)|z=0 dx dy.

Recall B1 is positive-definite, we find a positive constant C so that

γ

∫ ∞
0

∥∥∥Ṽ2(·, z)
∥∥∥2

L2(R2)
dz ≤ C

∫
R2

∣∣∣(Ṽ nc
2 )|z=0

∣∣∣2 dxdy. (3.29)

3.4.4. Estimate of
(
Ṽ nc

2

)
|z=0 . Now to estimate

∫
R2 |Ṽ nc

2 (x, y, 0)|2 dxdy, we

apply the Fourier transform with respect to (x, y) ∈ R2 to (3.28). Let V̂ = F(x,y)→(δ,η)Ṽ2,
and write τ = γ + iδ, we find{

B3∂zV̂ + (τB1 + iηB2)V̂ = 0,

βV̂ nc = ĥ.

This is exactly (3.4) (with f = 0). Then as computation shown there, we get the ODE
(3.9) for V̂ nc. So we can use (3.25) now. Integrating it with respect to (δ, η) ∈ R2,
we have∫

R2

|V̂ nc(γ + iδ, η, 0)|2 dδdη ≤ C

γ2

∫
R2

|ĥ(γ + iδ, η)|2|γ2 + δ2 + η2|dδdη.

Note here γ ≥ 1 is a parameter. Using Plancherel’s theorem, we find that∫
R2

|(Ṽ nc
2 )|z=0|2 dxdy ≤ C

γ2
‖h‖21,γ . (3.30)

3.4.5. Conclusion. From (3.29) and (3.30) we directly have the estimate for Ṽ2:

γ

∫ ∞
0

∥∥∥Ṽ2(·, z)
∥∥∥2

L2(R2)
dz +

∫
R2

|(Ṽ nc
2 )|z=0|2 dxdy ≤ C

γ2
‖h‖21,γ . (3.31)

Recall that for Ṽ1, it holds [2, p.96]

γ

∫ ∞
0

∥∥∥Ṽ1(·, z)
∥∥∥2

L2(R2)
dz +

∫
R2

|(Ṽ nc
1 )|z=0|2 dxdy ≤ C

γ

∫
R+

∫
R2

|e−γxQf |2 dxdy dz.

(3.32)

Since ‖h‖21,γ ≤ C(‖e−γxg‖21,γ +
∥∥∥Ṽ nc

1

∥∥∥2

1,γ
), in order to close the estimates (3.31) and

(3.32), we still need an estimate of
∥∥∥Ṽ nc

1

∥∥∥
1,γ

.

From the problem (3.27), it can be proved that we actually have (refer to [2,
p.227, Proposition 9.1]):∥∥∥Ṽ nc

1

∥∥∥2

1,γ
≤ C

γ

∫
R+

∥∥e−γxQf(·, z)
∥∥2

H1,γ(R2
(x,y)

)
dz.

So combining (3.31) and (3.32), we find

γ

∫ ∞
0

∥∥∥Ṽ (·, z)
∥∥∥2

L2(R2)
dz +

∫
R2

|(Ṽ nc)|z=0|2 dxdy ≤ C

γ

∫
R+

∫
R2

|e−γxQf |2 dxdy dz

+
C

γ3

∫
R+

∥∥e−γxQf(·, z)
∥∥2

H1,γ(R2
(x,y)

)
dz +

C

γ2

∥∥e−γxg∥∥2

H1,γ(R2
(x,y)

)
. (3.33)
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Since γ ≥ 1, using definition of the norm ‖·‖s,γ , one verifies that

‖u‖s,γ ≤ γ
s−r ‖u‖r,γ for s < r. (3.34)

Applying this to e−γ·Qf(·, z) with s = 0 and r = 1, we find the second term on
the right-hand side of (3.33) can control the first term there. So finally, note Q is a
constant matrix, we have

γ

∫ ∞
0

∥∥∥Ṽ (·, z)
∥∥∥2

L2(R2)
dz +

∫
R2

|(Ṽ nc)|z=0|2 dxdy

≤ C
(

1

γ3

∫
R+

∥∥e−γxf(·, z)
∥∥2

H1,γ(R2
(x,y)

)
dz +

C

γ2

∥∥e−γxg∥∥2

H1,γ(R2
(x,y)

)

)
. (3.35)

Returning to the linear problem (3.3), we conclude
Proposition 3.6. For the solution of the problem (3.3), we have the estimate

γ ‖V ‖2L2(H∗0,γ) + ‖V nc(·, 0)‖2H∗0,γ ≤ C
(

1

γ3
‖f‖2L2(H∗1,γ) +

1

γ2
‖g‖2H∗1,γ

)
. (3.36)

Here γ ≥ 1 and C is a constant independent of γ and (f, g).

3.5. Estimate of the free boundary. We turn to study the initial value prob-
lem of transport equation (3.2) for the perturbation of the contact discontinuity front:u∂xψ̇ + v∂yψ̇ = 2c(1, 1)V nc

|z=0, in {x > 0, y ∈ R},

ψ̇|x=0 = 0.
(3.37)

Let ψ̃ = exp(−γx)ψ̇. Then we have u(γ + ∂x)ψ̃ + v∂yψ̃ = 2c(1, 1)Ṽ nc
|z=0. After

taking the Fourier transform in x and y, with dual variables δ and η as before, it
follows

(uτ + ivη)ψ̂ = 2c(1, 1)V̂ nc(0; τ, η),

with τ = γ + iδ, and ψ̂ the Fourier transform of ψ̃. Since |uτ + ivη| ≥ Cγ, by (3.37)
we obtain that

|ψ̂|2 ≤ C

γ2
|V̂ nc(0; τ, η)|2.

Integrating this over (δ, η) ∈ R2, Plancherel’s theorem and (3.25) yield∥∥∥ψ̃∥∥∥
0,γ
≤ C

γ

∥∥∥Ṽ nc|z=0

∥∥∥
0,γ
≤ C

γ2

(∥∥e−γxg∥∥
1,γ

+
∥∥∥(Ṽ nc

1 )|z=0

∥∥∥
1,γ

)
.

Recall that (cf. [2, (9.1.15) in p.227])∥∥∥(Ṽ nc
1 )|z=0

∥∥∥
1,γ
≤ C
√
γ

∥∥e−γxQf∥∥
L2
z(H1,γ(R2

(x,y)
))
,

we get ∥∥∥ψ̇∥∥∥
H∗0,γ

≤ C

γ2

(
‖g‖H∗1,γ +

1
√
γ
‖f‖L2(R+

z ;H∗1,γ(R2
(x,y)

))

)
. (3.38)
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Hence for the free boundary, there is still a loss of one derivative.
Finally, we summarize all the obtained estimates as the following theorem, which

is the first main result of this paper.
Theorem 3.7. There is a constant C > 0 so that for all γ ≥ 1 and (U̇ , ψ̇) ∈

H2(Ω)×H2(R2), it holds

γ
∥∥∥U̇∥∥∥2

L2(H∗0,γ)
+ ‖(ẇ, ṗ)|z=0‖2H∗0,γ + γ2

∥∥∥ψ̇∥∥∥2

H∗0,γ

≤ C
(

1

γ3
‖f‖2L2(H∗1,γ) +

1

γ2
‖g‖2H∗1,γ

)
.

(3.39)

Here f := A1(U)∂xU̇+A2(U)∂yU̇+A3(U)∂zU̇ , g := ṗ(x, y, 0), and ψ̇ satisfies u∂xψ̇+

v∂yψ̇ = ẇ on {z = 0}.
Proof. If U̇ , ψ̇ are smooth functions with compact support, the above inequality

follows directly from (3.38) and (3.36) (recall U̇ = PV ). It also holds for (U̇ , ψ̇) ∈
H2(Ω)×H2(R2) just by standard approximation.

4. The variable coefficient linear problem. Guided by the analysis of con-
stant coefficient case developed in section 3, from now on we study the linear problem
for the general case. This variable coefficient linear problem is derived by linearizing
the nonlinear problem (2.20) and (2.21) around a non-planar transonic contact dis-
continuity. This analysis of linear problem is a crucial step towards the study of the
nonlinear problem. We first derive the linearized problem, then state the main esti-
mate in Theorem 4.1. The rest of this paper is devoted to reduction of the estimates
and finally proving it by using para-differential calculus.

4.1. Linearization of the nonlinear problem. We need linearize the nonlin-
ear problem

L(U,∇Ψ)U = A1(U)∂xU +A2(U)∂yU + Ã3(U,∇Ψ)∂zU = 0, z > 0, (4.1)
p = p, z = 0, (4.2)

where Ã3(U,∇Ψ) = 1
∂zΨ

(
A3(U)−A2(U)∂yΨ−A1(U)∂xΨ

)
, U = (u, v, w, p, S)T , and

Ψ should satisfy

u∂xΨ + v∂yΨ− w = 0, z ≥ 0, (4.3)
∂zΨ ≥ κ0 > 0, z ≥ 0 (4.4)

for a fixed constant κ0.
Let U and Ψ be a (non-planar) background state satisfying (4.3)(4.4) in the whole

domain {z ≥ 0}, and denote by V and Φ their small perturbations respectively. By
a direct computation (cf. [1]), we get the following linearized equation of (4.1) at
(U,Ψ):

A1(U)∂xV +A2(U)∂yV + Ã3(U,∇Ψ)∂zV + (dUA1(U) · V )∂xU + (dUA2(U) · V )∂yU

+
(

dU Ã3(U,∇Ψ) · V + d∇ΨÃ3(U,∇Ψ) · ∇Φ
)
∂zU = f.

As Alinhac discovered in [1], to remove the mixture of the first derivatives of V and
Φ in the above equation, by introducing the good unknowns:

U̇ = V − Φ

∂zΨ
∂zU, (4.5)
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the above equation for V can be rewritten as the following one for U̇ ,

L(U,∇Ψ)U̇ + C(U,∇U,∇Ψ) · U̇ +
Φ

∂zΨ

(
∂z(L(U,∇Ψ)U)

)
= f. (4.6)

where

C(U,∇U,∇Ψ) · U̇ = (dUA1(U) · U̇)∂xU + (dUA2(U) · U̇)∂yU + (dU Ã3(U,∇Ψ) · U̇)∂zU.

In terms of the good unknowns, the linearized boundary condition for U̇ is given
by

ṗ+
Φ

∂zΨ
∂zp = g1, on {z = 0}. (4.7)

By a simple computation, we know that the linearized equation of the transport
equation (4.3) is given by

u∂xΦ + v∂yΦ + V1∂xΨ + V2∂yΨ− V3 = h1

which can be rewritten as the following one for the good unknowns

u∂xΦ + v∂yΦ− ẇ + u̇∂xΨ + v̇∂yΨ− Φ

∂zΨ
(∂zw − ∂zu∂xΨ− ∂zv∂yΨ) = h1. (4.8)

4.2. The effective linear problem. Since the zero-th order term of Φ appears
in a quadratic form together with U in the equation (4.6), as usual [11], to study
the linear stability of the transonic contact discontinuity it suffices to consider the
following effective linear equation with the zero-th order term of Φ being emerged
into the source term f :

L′U̇ = L(U,∇Ψ)U̇ + C(U,∇U,∇Ψ) · U̇ = f, in {z > 0}. (4.9)

A simple calculation yields that

Ã3(U,∇Ψ) =
1

∂zΨ


∗ 0 0 −∂xΨ 0
0 ∗ 0 −∂yΨ 0
0 0 ∗ 1 0

−∂xΨ −∂yΨ 1 ∗/(ρ2c2) 0
0 0 0 0 ∗/ρ

 , (4.10)

where ∗ = ρ(w − u∂xΨ − v∂yΨ). Under the assumption that the (non-planar) back-
ground state (U,Ψ) satisfies the eikonal equation (4.3), the element ∗ in (4.10) is identi-
cally zero for z ≥ 0. So we can only expect control of U̇4 = ṗ and−∂xΨU̇1−∂yΨU̇2+U̇3

on {z = 0}. Therefore we introduce as in [11], with ψ(x, y) = Ψ(x, y, 0), that

P(ψ)U̇ |z=0 =

(
−∂xψU̇1 − ∂yψU̇2 + U̇3

U̇4

)∣∣∣∣
z=0

, (4.11)

which is the non-characteristic part of the unknown U̇ when restricted on the bound-
ary. We see the linearized boundary conditions (4.7) and (4.8) only involve these
non-characteristic part.
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As above, since the zero-th order term of Φ in the boundary condition (4.7) is of
a quadratic form with U , one can shift this zero-th order term of Φ into the source
term g1 in the boundary condition to have

ṗ = g1, on {z = 0}. (4.12)

Denote by b =

(
u v
0 0

)
, ∇φ = (∂xφ, ∂yφ)T , with φ(x, y) = Φ(x, y, 0), and

M ′ =

(
∂xψ ∂yψ −1 0 0

0 0 0 0 0

)
, M =

(
∂xψ ∂yψ −1 0 0

0 0 0 1 0

)
.

Then, from (4.12) and (4.8), the boundary conditions can be formulated as:

B′(U̇ , φ) := b∇φ+
1

∂zΨ
(M ′∂zU)φ+MU̇ = (h1, g1)T , on {z = 0}, (4.13)

In the following we study the estimates of the solution to the variable coefficient linear
problem (4.9) and (4.13).

4.3. Basic L2 estimate of linear problem.
Assumptions. For the linear problem (4.9) and (4.13), the unknowns are a vector

U̇ and a function φ. The coefficients involve a vector-valued function U and a function
Ψ defined in {z ≥ 0}. By definition of good unknown (4.5), U̇ actually contains a new
unknown Φ, the perturbed front, whose restriction on {z = 0} is φ. Also, ψ = Ψ|z=0.
In addition, we require that Ψ and U to satisfy

u∂xΨ + v∂yΨ = w in {z ≥ 0}, (4.14)
∂zΨ ≥ κ0 (4.15)

for a fixed positive constant κ0.
Apart from these, we also need the following regularity and smallness conditions

on U and Ψ:

U ∈W 2,∞(Ω), ∇Ψ ∈W 2,∞(Ω),

‖U − U‖W 2,∞(Ω) + ‖∇Ψ− (0, 0, 1)‖W 2,∞(Ω) ≤ K0 (4.16)

for a suitable constant K0 > 0. Finally, we also require both U−U and ∇(Ψ−z) have
compact support in (y, z). Recall here that U = (u, v, 0, p, S+) and Ψ = z represent
the planar reference state for which u > c+.

Main result on L2 estimate. Under the above assumptions, we have the following
theorem, which is the second main result of this paper.

Theorem 4.1. There exist constant C1 and γ1 ≥ 1 that depend only on K0 and
κ0 so that for all γ ≥ γ1 and all (U̇ , φ) ∈ H∗2,γ(Ω)×H∗2,γ(R2), the following estimate
holds:

γ
∥∥∥U̇∥∥∥2

L2(H∗0,γ)
+
∥∥∥P(ψ)U̇ |z=0

∥∥∥2

H∗0,γ

+ γ2 ‖φ‖2H∗0,γ

≤ C1

(
1

γ3

∥∥∥L′U̇∥∥∥2

L2(H∗1,γ)
+

1

γ2

∥∥∥B′(U̇ , φ)
∥∥∥2

H∗1,γ

)
. (4.17)

We note that unlike the two-phase hyperbolic free boundary problem studied in
[11], where the perturbed front φ satisfies an elliptic equation and hence it gets one
more regularity, in our case φ only satisfies a transport equation on {z = 0} and its
regularity is the same as that of the trace of the non-characteristic components of the
state U̇ . The rest of this section is devoted to proving this theorem.
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4.4. Some preliminary transformations.

4.4.1. Reduction of estimate. Set V̇ = e−γxU̇ . Then, from (4.9), V̇ solves

A1(U)∂xV̇ +A2(U)∂yV̇ + Ã3(U,∇Ψ)∂zV̇ + γA1(U)V̇ + C(U,∇U,∇Ψ) · V̇ = e−γxf.
(4.18)

Since this equation is symmetric hyperbolic with respect to x, taking inner product
with V̇ and integrating over {z ≥ 0}, it follows that∫

{z≥0}

(
∂x(A1(U)V̇ , V̇ ) + ∂y(A2(U)V̇ , V̇ ) + ∂z(Ã3(U,∇Ψ)V̇ , V̇ )

)
dxdydz

+

∫
{z≥0}

(
{γA1(U)− [∂xA1(U) + ∂yA2(U) + ∂zA3(U,∇Ψ)]}V̇ , V̇

)
dxdydz

+

∫
{z≥0}

(C(U,∇U,∇Ψ) · V̇ , V̇ ) dxdydz = 2

∫
{z≥0}

(e−γxf, V̇ ) dxdydz.

Note that A1(U) is positive-definite, so there is a constant c(K0) such that A1(U) ≥
c(K0)I5. We also observe

‖∂xA1(U) + ∂yA2(U) + ∂zA3(U,∇Ψ)‖W 1,∞ ≤ C(K0, κ0),

|(C(U,∇U,∇Ψ) · V̇ , V̇ )| ≤ C(K0, κ0)|V̇ |2;

hence, with the help of Young’s inequality,

(γc− C)

∫
{z≥0}

|V̇ |2 dxdydz ≤ Cε
γ

∫
{z≥0}

|e−γxf |2 dxdydz + εγ

∫
{z≥0}

|V̇ |2 dxdydz

+

∫
R2

(Ã3(U,∇Ψ)V̇ , V̇ )|z=0 dxdy.

A direct computation shows that

(Ã3(U,∇Ψ)V̇ , V̇ )|z=0 = 2V̇4(−∂xΨV̇1 − ∂yΨV̇2 + V̇3)|z=0 ≤ |P(ψ)V̇|z=0|2.

Plugging this relation into the above inequality, and choosing a proper small ε, we
get the following result:

Lemma 4.2. There are constants C > 0 and γ0 > 1 so that for any γ ≥ γ0, it
holds

γ
∥∥∥U̇∥∥∥2

L2(H∗0,γ)
≤ C

(
1

γ

∥∥∥L′U̇∥∥∥2

L2(H∗0,γ)
+
∥∥∥P(ψ)(U̇)

∥∥∥2

H∗0,γ

)
. (4.19)

So we only need to obtain estimate of
∥∥∥P(ψ)(U̇)

∥∥∥
H∗0,γ

and ‖φ‖H∗0,γ below.

4.4.2. Diagonalization of boundary matrix in interior equation. The
next step is to transform the linearized interior equation so that the coefficient matrix
of ∂z is diagonal.

Set Θ(U) = diag{ρu, ρu, ρu, u
ρc2 , u}. We solve the eigenvalues of Ã3 with respect

to Θ, that is, numbers λ so that

det
(
λΘ(U)− Ã3(U,∇Ψ)

)
= 0.
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A direct calculation yields

λ1,2,3 = 0, λ4 = − c
u

√
1 + |∂xΨ|2 + |∂yΨ|2

∂zΨ
< 0, λ5 =

c

u

√
1 + |∂xΨ|2 + |∂yΨ|2

∂zΨ
> 0

with associated right eigenvectors being

r1 = (0, 0, 0, 0, 1)T , r2 = (1, 0, ∂xΨ, 0, 0)T , r3 = (0, 1, ∂yΨ, 0, 0)T ,

r4,5 = (−∂xΨ,−∂yΨ, 1, ρuλ4,5∂zΨ, 0)T .

So by taking T (U,∇Ψ) = (r1, r2, r3, r4, r5), we have

T (U,∇Ψ)−1Θ(U)−1Ã3(U,∇Ψ)T (U,∇Ψ) = diag{0, 0, 0, λ4, λ5}.

Set W = T (U,∇Ψ)−1V̇ . Then from (4.18), W satisfies

T−1Θ−1A1T∂xW + T−1Θ−1A2T∂yW + T−1Θ−1Ã3T∂zW

+T−1Θ−1
[
A1∂xT +A2∂yT + Ã3∂zT + γA1T

]
W + T−1Θ−1C · (TW )

= e−γxT−1Θ−1f.

Now introduce A0(U,∇Ψ) = diag{1, 1, 1, λ−1
4 , λ−1

5 }, then by multiplying A0 from left
to the above equation, we get

LγW := γA1W + A1∂xW + A2∂yW + I5∂zW + CW = e−γxF, (4.20)

with

A1 := A0T
−1Θ−1A1T (U,∇Ψ), A2 := A0T

−1Θ−1A2T (U,∇Ψ),

C := A0

[
T−1Θ−1

(
A1∂xT +A2∂yT + Ã3∂zT

)
T + T−1Θ−1CT

]
(U,∇Ψ),

I5 := diag{0, 0, 0, 1, 1}, F = A0T
−1(U,∇Ψ)Θ−1f.

Here, with some abuse of notations, we write T−1Θ−1C · (TW ) as T−1Θ−1CTW . It
is easy to know that

Aj ∈W 2,∞(Ω), j = 1, 2; C ∈W 1,∞(Ω).

For later reference, by some tedious computations, we find that

T−1(U,∇Ψ) =



0 0 0 0 1
1+|∂yΨ|2
〈Ψ〉2

−∂xΨ∂yΨ
〈Ψ〉2

∂xΨ
〈Ψ〉2 0 0

−∂xΨ∂yΨ
〈Ψ〉2

1+|∂xΨ|2
〈Ψ〉2

∂yΨ
〈Ψ〉2 0 0

− 1
2
∂xΨ
〈Ψ〉2 − 1

2
∂yΨ
〈Ψ〉2

1
2

1
〈Ψ〉2 − 1

2
1
ρc

1
〈Ψ〉 0

− 1
2
∂xΨ
〈Ψ〉2 − 1

2
∂yΨ
〈Ψ〉2

1
2

1
〈Ψ〉2

1
2

1
ρc

1
〈Ψ〉 0

 .

Here we have used the notation

〈Ψ〉 =
√

1 + |∂xΨ|2 + |∂yΨ|2.
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Since W = T−1V̇ , we see W1 = V̇5 and all W2,3,4,5 have the dimension of velocity.
We also have

A1 =



1 0 0 0 0

0 1 0 − c
u

1+|∂yΨ|2
〈Ψ〉

c
u

1+|∂yΨ|2
〈Ψ〉

0 0 1 c
u
∂xΨ∂yΨ
〈Ψ〉 − c

u
∂xΨ∂yΨ
〈Ψ〉

0 1
2
∂zΨ
〈Ψ〉2 0 −∂zΨ

〈Ψ〉

(
u
c + ∂xΨ

〈Ψ〉

)
0

0 1
2
∂zΨ
〈Ψ〉2 0 0 ∂zΨ

〈Ψ〉

(
u
c −

∂xΨ
〈Ψ〉

)


, (4.21)

A2 =



v
u 0 0 0 0

0 v
u 0 c

u
∂xΨ∂yΨ
〈Ψ〉 − c

u
∂xΨ∂yΨ
〈Ψ〉

0 0 v
u − c

u
1+|∂xΨ|2
〈Ψ〉

c
u

1+|∂xΨ|2
〈Ψ〉

0 0 1
2
∂zΨ
〈Ψ〉2 −∂zΨ

〈Ψ〉

(
v
c +

∂yΨ
〈Ψ〉

)
0

0 0 1
2
∂zΨ
〈Ψ〉2 0 ∂zΨ

〈Ψ〉

(
v
c −

∂yΨ
〈Ψ〉

)


. (4.22)

Therefore, for τ ∈ C and η ∈ R, we could compute that

τA1 + iηA2 =


ω 0 0 0 0
0 ω 0 −α1 α1

0 0 ω β1 −β1

0 µτ iηµ −a(ω + θ) 0
0 µτ iηµ 0 a(ω − θ)

 . (4.23)

For simplicity, we have introduced here

ω = τ + iη
v

u
, θ =

c

u

1

〈Ψ〉
(τ∂xΨ + iη∂yΨ), µ =

1

2

∂zΨ

〈Ψ〉2
, a =

u

c

∂zΨ

〈Ψ〉
, (4.24)

α1 =
c

u

1

〈Ψ〉
[(1 + |∂yΨ|2)τ − iη∂xΨ∂yΨ], β1 =

c

u

1

〈Ψ〉
[τ∂xΨ∂yΨ− iη(1 + |∂xΨ|2)].

4.4.3. Boundary conditions. Next we consider the boundary conditions (4.13)
in terms of the new unknown W . Recall V̇ = e−γxU̇ , and now set Φ̃ = e−γxΦ,
ϕ = e−γxφ, then (4.13), in terms of V̇ , becomes(

V̇4

−V̇3 + V̇1∂xψ + V̇2∂yψ + γuϕ+ u∂xϕ+ v∂yϕ− ϕ
∂zΨ (∂zw − ∂zu∂xψ − ∂zv∂yψ)

)
= e−γxg, g := (g1, h1)T . (4.25)

In the following we will consider estimate of
∥∥∥P(ψ)U̇ |z=0

∥∥∥
H∗0,γ

and ‖φ‖H∗0,γ by

utilizing problem (4.20) and (4.25). In terms of the unknowns listed in this problem,
we just need to control ‖ϕ‖L2 and

∥∥∥P(ψ)V̇ |z=0

∥∥∥
L2
. Direct calculation shows that

V̇1 = W2 − ∂xΨ(W4 +W5), V̇2 = W3 − ∂yΨ(W4 +W5),

V̇3 = ∂xΨW2 + ∂yΨW3 +W4 +W5, V̇4 = ρc〈Ψ〉(−W4 +W5), V̇5 = W1.

So

PV̇ =

(
V̇3 − V̇1∂xψ − V̇2∂yψ

V̇4

)
=

(
〈Ψ〉2(W4 +W5)
ρc〈Ψ〉(−W4 +W5)

)
,
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and it follows that∥∥∥PV̇ |z=0

∥∥∥
L2(R2)

≤ C(K0)(
∥∥(W4)|z=0

∥∥
L2 +

∥∥(W5)|z=0

∥∥
L2). (4.26)

Hence in the following we only need to estimate the traces of vector (W4,W5) on
{z = 0}, and ‖ϕ‖L2 . Meanwhile, the boundary condition (4.25) becomes

−W4 +W5 =
e−γx

ρc
√

1 + |∂xψ|2 + |∂yψ|2
g1, z = 0, (4.27)

u∂xϕ+ v∂yϕ+ ϕ
(
γu− 1

∂zΨ
(∂zw − ∂zu∂xψ − ∂zv∂yψ)

)
−(1 + |∂xψ|2 + |∂yψ|2)(W4 +W5) = e−γxh1, z = 0. (4.28)

4.4.4. Estimate of ‖ϕ‖L2 . As the equation (4.28) is a linear transport equation
for ϕ, by a classical way, it is easy to have

γ2 ‖ϕ‖2L2 ≤ C(K0, κ0)
(
‖W4‖2L2 + ‖W5‖2L2 +

∥∥e−γxh1

∥∥2

L2

)
≤ C(K0, κ0)

(
‖(W4,W5)|z=0‖2L2 +

1

γ2
‖h1‖2H∗1,γ

)
. (4.29)

Summarizing the above analysis ((4.19), (4.26) and (4.29)), we see to prove The-
orem 4.1, one only needs to prove for problem (4.20) and (4.27) the following result:

Theorem 4.3. There exist constants C1 and γ1 ≥ 1 that depend only on K0 and
κ0 so that for all γ ≥ γ1 and all (W,ϕ) ∈ H2,γ(Ω)×H2,γ(R2), the following estimate
holds:

‖(W4,W5)|z=0‖2L2 ≤ C1

(
1

γ3

∥∥e−γxf∥∥2

L2(H1,γ)
+

1

γ2

∥∥e−γxg1

∥∥2

1,γ

)
. (4.30)

4.5. Paralinearization. Because the problem (4.20) (4.27) has non-smooth co-
efficients, we shall use the para-differential calculus to study it. In this step we replace
the differential operators by para-differential operators T γα with suitable symbols α
and a parameter γ, and estimate the error. One can refer to the appendices of [2] or
[10, 11] for an introduction of para-differential operators and theorems we used below.

4.5.1. Error of paralinearization. For the boundary condition (4.27), we set
β = (1,−1) and write it as

βW nc = G̃, on {z = 0}.

Here G̃ = e−γx

ρc
√

1+|∂xψ|2+|∂yψ|2
g1, and we have introduced the non-characteristic un-

known

W nc = (W5,W4)T .

Since β is constant, the above boundary condition may be written directly as

T γβW
nc = G̃ (4.31)

and there is no any error.
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We now turn to the equation (4.20). As done in [11], we replace each term on
the left-hand side of (4.20) by corresponding para-differential operator, and estimate
the error first for fixed z which is considered as a parameter in the symbol, and then
integrate with respect to z > 0. For example, by Theorem B.9 in [11] we have∥∥∥γA1W − T γγA1

W
∥∥∥2

L2(H1,γ)
=

∫ ∞
0

γ2
∥∥A1W (·, z)− T γA1

W (·, z)
∥∥2

1,γ
dz

≤ C
∫ ∞

0

‖A1(·, z)‖2W 2,∞(R2) ‖W (·, z)‖2L2(R2) dz ≤ C ‖A1‖2W 2,∞(Ω)

∫
Ω

|W |2 dxdydz

≤ C(K0) ‖W‖2L2(Ω) .

Denote by δ and η the dual variables of x and y respectively. Then similarly we have∥∥A1∂xW − T γiδA1
W
∥∥2

L2(H1,γ)
=

∫ ∞
0

∥∥A1∂xW (·, z)− T γiδA1
W (·, z)

∥∥2

1,γ
dz

≤ C
∫ ∞

0

‖A1‖2W 2,∞(R2) ‖W (·, z)‖2L2(R2) dz

≤ C ‖A1‖2W 2,∞(Ω) ‖W‖
2
L2(Ω) ≤ C(K0) ‖W‖2L2(Ω) ,

and
∥∥∥A2∂yW − T γiηA2

W
∥∥∥
L2(H1,γ)

≤ C(K0) ‖W‖L2(Ω) . Using the third inequality in

Theorem C.20 of [2, p.490], we also get

‖CW − T γCW‖
2

L2(H1,γ) =

∫ ∞
0

‖CW (·, z)− T γCW (·, z)‖21,γ dz

≤ C

γ2

∫ ∞
0

‖C(·, z)‖2W 1,∞(R2) ‖W‖
2
L2(R2) dz

≤ C ‖C‖2W 1,∞(Ω) ‖W‖
2
L2(Ω) ≤ C(K0, κ0) ‖W‖2L2(Ω) .

Therefore the total error of para-linearization of (4.20) is (recall τ = γ + iδ.)∥∥∥LγW − (T γτA1+iηA2+CW + I5∂zW )
∥∥∥
L2(H1,γ)

≤ C(K0, κ0) ‖W‖L2(Ω) . (4.32)

4.5.2. The boundary value problem of para-differential equations. We
now consider the following boundary value problem of para-linearized system:{

I5∂zW + T γτA1+iηA2+CW = F̃ , z > 0,

T γβW
nc = G̃, z = 0,

(4.33)

where F̃ = e−γxA0T
−1Θ−1f.

Theorem 4.4. Assume there are constants C0, γ0 depending only on K0 and κ0

so that the solution W to the problem (4.33) satisfies the estimate

‖W nc|z=0‖2L2(R2) ≤ C0

(
1

γ3

∥∥∥F̃∥∥∥2

L2(H1,γ)
+

1

γ2

∥∥∥G̃∥∥∥2

1,γ

)
(4.34)

for all γ > γ0. Then Theorem 4.3 holds.
Proof. The equation (4.20) may be written equivalently as

I5∂zW + T γτA1+iηA2+CW = −[LγW − (I5∂zW + T γτA1+iηA2+CW )] + F̃ ,

T γβW
nc = G̃.
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Using (4.34) and (4.32), we find

‖W nc|z=0‖2L2(R2) ≤ C0

(
1

γ3

∥∥∥LγW − (I5∂zW + T γτA1+iηA2+CW )
∥∥∥2

L2(H1,γ)

+
1

γ3

∥∥∥F̃∥∥∥2

L2(H1,γ)
+

1

γ2

∥∥∥G̃∥∥∥2

1,γ

)
≤ C0

(
1

γ3
‖W‖2L2(Ω) +

1

γ3

∥∥∥F̃∥∥∥2

L2(H1,γ)
+

1

γ2

∥∥∥G̃∥∥∥2

1,γ

)
. (4.35)

For the first term on the right-hand side, recall W = T−1V̇ , then by Lemma 4.2 and
estimate (4.26),

‖W‖2L2(Ω) ≤ C(κ0)
∥∥∥V̇ ∥∥∥2

L2(Ω)
≤ C(K0, κ0)

1

γ

(
1

γ3

∥∥e−γxf∥∥2

L2(H1,γ)
+ ‖W nc|z=0‖2L2(R2)

)
.

For the second and third terms on the right-hand side of (4.35), it is straightforward
to check that∥∥∥F̃∥∥∥2

L2(H1,γ)
=

∫ ∞
0

∥∥e−γxA0T
−1Θ−1f(·, z)

∥∥2

1,γ
dz ≤ C(K0, κ0)

∥∥e−γxf∥∥2

L2(H1,γ)
,

∥∥∥G̃∥∥∥2

1,γ
=

∥∥∥∥∥ e−γxg1

ρc
√

1 + |∂xψ|2 + |∂yψ|2

∥∥∥∥∥
2

1,γ

≤ C(K0, κ0)
∥∥e−γxg1

∥∥2

1,γ
.

Substituting the above three inequalities into (4.35), we find that by taking γ0 further
larger (depending only on κ0 and K0), there holds

‖W nc|z=0‖2L2 ≤ C(K0, κ0)

(
1

γ3

∥∥e−γxf∥∥2

L2(H1,γ)
+

1

γ2

∥∥e−γxg1

∥∥2

1,γ

)
.

This is exactly (4.30) claimed in Theorem 4.3.

4.6. Microlocalization. From now on we focus on the problem (4.33) and our
aim is to derive estimate (4.34).

Since I5 = diag(0, 0, 0, 1, 1), the first three equations in (4.33) do not involve
∂zW . The main idea is to solve W1,W2,W3 from the first three equations and then
substitute them into the last two equations, and get a para-differential problem for
W nc = (W5,W4)T of the form{

∂zW
nc = T γAW

nc + T γEW
nc + source term, z > 0,

T γβW
nc|z=0 = source term, z = 0.

(4.36)

Here A is a 2× 2 matrix symbol of order one and E is a 2× 2 matrix symbol of order
zero. We first illustrate in a formal way how to determine A.

Recall the symbol τA1 + iηA2 is given by (4.23). Denote by C = (cT1 , · · · , cT5 )T

for the matrix C appeared in (4.20), with each cj being a row. The second and third
equations in (4.33) read

T γωW2 + T γ−α1
W4 + T γα1

W5 = −T γc2
W + F̃2,

T γωW3 + T γβ1
W4 + T γ−β1

W5 = −T γc3
W + F̃3.
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Now acting T γω−1 on both sides of these equations, and using symbolic calculus, we
find {

W2 = T γα1ω−1W4 + T γ−α1ω−1W5 +R−1W + T γω−1 F̃2,

W3 = T γ−β1ω−1W4 + T γβ1ω−1W5 +R−1W + T γω−1 F̃3,
(4.37)

where R−1 is some operator of order −1. Recall by (4.23), the forth and fifth equations
in (4.33) are

∂zW4 + T γµτW2 + T γiηµW3 + T γ−a(ω+θ)W4 + T γc4
W = F̃4,

∂zW5 + T γµτW2 + T γiηµW3 + T γa(ω−θ)W5 + T γc5
W = F̃5.

By using the expressions (4.37) of W2 and W3, and symbolic calculus of composition
of operators, we get that the above two equations can be written as the matrix form
(4.36), with

A =

(
α− a(ω − θ) −α

α −α+ a(ω + θ)

)
, (4.38)

where

α := µω−1(τα1 − iηβ1) =
c

2

∂zΨ

〈Ψ〉3
(τ2 − η2) + (τ∂yΨ− iη∂xΨ)2

uτ + ivη
.

For the planar case Ψ = z and U = U , this matrix A is reduced exactly to B appeared
in (3.6).

We note that the symbol A depends on (x, y, z, τ, η), with the corresponding
operator acting on functions of (x, y), and z > 0 is a parameter. Here τ = γ+ iδ, and
(δ, η) ∈ R2 are dual variables of (x, y), and γ ≥ 1 is a parameter. It is obvious that

Υp = {(x, y, z, τ, η) ∈ Ω× Ξ : u(x, y, z)τ + iηv(x, y, z) = 0}

= {(x, y, z, τ = γ + iδ, η) ∈ Ω× Ξ : γ = 0, δ = − v(x, y, z)

u(x, y, z)
η}

is the set of poles of A; recall here Ξ := {(τ, η) ∈ (C×R) \ {(0, 0)} : Re τ ≥ 0}. So the
above calculation should be taken away from Υp.

The eigenvalues λ of A are the roots to the equation

(λ− aθ)2 = (aω)2 − 2αaω.

We observe that there is no singularity for λ as a function of (τ, η) and it is ho-
mogeneous of degree one. The eigenvalue with positive (resp. negative) real part
when Re τ > 0 is denoted by λ+ (resp. λ−). The stable subspace of A is given by
E−(x, y, z, τ, η) = span{e−} with e− = (uτ + ivη)(λ− + α − aw − aθ, α)T , so the
space E− can be extended continuously to Re τ ≥ 0. The Lopatinskii determinant is
then given by ∆(x, y, z, τ, η) = (uτ + ivη)(λ− − (aw + aθ)) and one may check that
the latter factor never vanishes. So ∆ vanishes only at poles of the matrix A. All
these can be checked in the same fashion as for the constant coefficient case, under
the assumption that the perturbation U −U and ∇(Ψ− z) has compact support with
respect to (y, z), and

‖U − U‖L∞ ≤ ν, ‖∇Ψ− (0, 0, 1)‖L∞ ≤ ν
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for ν small.
To deal with different situations of points in Ω×Ξ, that is, those points belong to

the set of poles Υp where Kreiss–Lopatinskii condition fails at the boundary Υp∩{z =
0} and those points in Ω× Ξ \Υp where the Lopatinskii determinant is nonzero and
the matrix A is well-defined, we introduce the following two cut-off functions:

♥ χp is a C∞ function on Ω × Ξ, homogeneous of degree zero with respect to
(τ, η); χp ≡ 1 on Υp, and suppχp ⊂ Vp, with Vp an open subset of Ω × Ξ
that containing Υp;

♥ χu = 1−χp. So χu is supported far away from the poles and suppχu∩(∂Ω×Ξ)
consists only those points where the uniform Kreiss–Lopatinskii condition
holds.

In the following two subsections, we will estimate the traces of T γχu
W nc and

T γχp
W nc on {z = 0} in two different ways. Then as χu + χp = 1, we get W nc =

T γχu
W nc + T γχp

W nc and finally by taking into account of some errors appearing due
to symbolic calculus, we get the desired estimate of W nc|z=0.

4.7. Derivation of energy estimate: frequencies away from poles.

4.7.1. Derivation of the equations. We start again from problem (4.33). Set
Wu = T γχu

W. Noting that T γχu
is a para-differential operator acting on functions of

(x, y) with z being a parameter, we have

I5∂z(Wu) = I5∂z(T
γ
χu
W ) = I5T

γ
χu
∂zW + I5T

γ
∂z(χu)W

= I5T
γ
∂z(χu)W − T

γ
χu
T γτA1+iηA2+CW + T γχu

F̃ .

By symbolic calculus, recalling that χu ∈ Γ0
k (k ∈ N), τA1 + iηA2 ∈ Γ1

2, and C ∈ Γ0
1,

we find

−T γχu
T γCW = −T γCT

γ
χu
W +R−1W = −T γCWu +R−1W,

−T γχu
T γτA1+iηA2

W = −T γτA1+iηA2
T γχu

W +R−1W + T γ−i{τA1+iηA2,χu}W,

where R−1 is an operator of order −1, and

{a, b} =
∂a

∂δ

∂b

∂x
+
∂a

∂η

∂b

∂y
− ∂a

∂x

∂b

∂δ
− ∂a

∂y

∂b

∂η

is the Poisson bracket. Recall ∂zχu ∈ Γ0
k, so if we set

r = i{τA1 + iηA2, χu} − ∂zχuI5 ∈ Γ0
1,

which vanishes in a neighborhood of the pole set Υp and also outside of Vp, then we
have an equation for Wu :

I5∂zWu + T γτA1+iηA2
Wu + T γCWu + T γrW = R−1W + T γχu

F̃ . (4.39)

In the following we continue to use symbolic calculus to decouple the above alge-
braic para-differential system for the characteristic components and non-characteristic
components respectively. We shall denote by αm a generic symbol of class Γm1 , and r
any symbol in Γ0

1 that vanishes in a neighborhood of Υp and outside Vp. The notation
Rm is also used to denote a generic operator of order m. We also write

Wu = (w1, w2, w3, w4, w5)T , W = (W1,W2,W3,W4,W5)T .



Stability of Transonic Contact Discontinuities 31

Now the system (4.39) may be written line by line as

T γωw1 +

5∑
i=1

T γα0
wi + T γrW = R−1W + T γχu

F̃1, (4.40)

T γωw2 + T γα1
(w5 − w4) +

5∑
i=1

T γα0
wi + T γrW = R−1W + T γχu

F̃2, (4.41)

T γωw3 + T γ−β1
(w5 − w4) +

5∑
i=1

T γα0
wi + T γrW = R−1W + T γχu

F̃3, (4.42)

∂zw4 + T γµτw2 + T γiηµw3 + T γ−a(ω+θ)w4 +

5∑
i=1

T γα0
wi + T γrW = R−1W + T γχu

F̃4,

(4.43)

∂zw5 + T γµτw2 + T γiηµw3 + T γa(ω−θ)w5 +

5∑
i=1

T γα0
wi + T γrW = R−1W + T γχu

F̃5.

(4.44)

Recall that the symbols ω etc. had been defined in (4.24).
We now try to solve w1, w2, w3 from (4.40), (4.41) and (4.42), and substitute them

into (4.43) and (4.44). To apply a localized Gårding’s inequality later, we need to
introduce cut-off functions χ0, χ1 and χ2 such that

– χ0, χ1 and χ2 are C∞ functions, taking values in [0, 1], and homogeneous of
degree zero with respect to (τ, η);

– χ0 ≡ 1 on suppχu, χ1 ≡ 1 on suppχ0, and χ2 ≡ 1 on suppχ1;
– χ2 (and therefore χ1, χ0) vanishes in a small neighborhood of the set of poles

Υp.
From these we see χ2ω

−1 is well-defined and is a symbol of class Γ−1
2 . Now applying

T γχ2ω−1 to the equations (4.41)(4.42), by using symbolic calculus, we obtain

T γχ2
w2 + T γχ2α1ω−1(w5 − w4) +

5∑
i=1

T γα−1wi + T γχ2rω−1W = R−2W + T γχ2ω−1T
γ
χu
F̃2,

T γχ2
w3 + T γ−χ2β1ω−1(w5 − w4) +

5∑
i=1

T γα−1wi + T γχ2rω−1W = R−2W + T γχ2ω−1T
γ
χu
F̃3.

Observing that, as χ2 ≡ 1 on suppχu, so {χ2, χu} ≡ 0, hence

T γχ2
Wu = T γχ2

T γχu
W = T γχu

W +R−2W = Wu +R−2W,

we then solve

w2 = −T γχ2α1ω−1(w5 − w4)−
5∑
i=1

T γα−1wi − T γχ2rω−1W +R−2W + T γχ2ω−1T
γ
χu
F̃2,

(4.45)

w3 = −T γ−χ2β1ω−1(w5 − w4)−
5∑
i=1

T γα−1wi − T γχ2rω−1W +R−2W + T γχ2ω−1T
γ
χu
F̃3.

(4.46)
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Similarly, from (4.40) we have

w1 = −
5∑
i=1

T γα−1wi − T γχ2rω−1W +R−2W + T γχ2ω−1T
γ
χu
F̃1. (4.47)

From (4.45) and (4.46) we easily have

T γµτw2 = −T γχ2µτα1ω−1(w5 − w4) +

5∑
i=1

T γα0wi + T γrW +R−1W + T γµτT
γ
χ2ω−1T

γ
χu
F̃2,

T γiµηw3 = −T γ−iχ2µηβ1ω−1(w5 − w4) +

5∑
i=1

T γα0wi + T γrW +R−1W + T γiµηT
γ
χ2ω−1T

γ
χu
F̃3.

We further note that for any α1 ∈ Γ1
1, it holds

T γχ2α1Wu = T γα1T
γ
χ2
Wu +R0Wu = T γα1Wu +R0Wu +R−1W.

So from (4.44) we have

∂zw5 = T γχ2µ(τα1−iηβ1)ω−1(w5 − w4)− T γχ2a(ω−θ)w5 +

5∑
i=1

T γα0wi + T γrW +R−1W

+T γχu
F̃5 − T γiµηT

γ
χ2ω−1T

γ
χu
F̃3 − T γµτT

γ
χ2ω−1T

γ
χu
F̃2,

and from (4.43),

∂zw4 = T γχ2µ(τα1−iηβ1)ω−1(w5 − w4) + T γχ2a(ω+θ)w4 +

5∑
i=1

T γα0wi + T γrW +R−1W

+T γχu
F̃4 − T γiµηT

γ
χ2ω−1T

γ
χu
F̃3 − T γµτT

γ
χ2ω−1T

γ
χu
F̃2.

If we use (4.45)–(4.47) to replace the zero-th order terms wi (i = 1, 2, 3) on the
right-hand sides of the above two equations, then we get the following system

∂z

(
w5

w4

)
= T γχ2A

(
w5

w4

)
+ T γE

(
w5

w4

)
+ T γrW +R−1W +R0F̃ . (4.48)

Here A ∈ Γ1
2 is the symbol given by (4.38), and E ∈ Γ0

1.
Since β is a constant vector, we have directly the boundary condition of W nc

u =
(w5, w4)T :

β(w5, w4)T |z=0 = T γχu
G̃|z=0. (4.49)

4.7.2. Energy estimate. We now study the estimates of the non-characteristic
components of the unknown to the problem (4.48) (4.49) by the method of Kreiss’
symmetrizers. Since we know the Kreiss–Lopatinskii condition holds at the points
where χ2 6= 0, and A is also well-defined there, the construction of such symmetrizers
is quite standard. The estimate we will prove reads

γ
∥∥T γχu

W
∥∥2

L2(H1/2,γ)
+
∥∥T γχu

W nc(0)
∥∥2

1/2,γ

≤ C

γ

(
1

γ

∥∥∥F̃∥∥∥2

L2(H1,γ)
+ ‖W‖2L2(L2) + ‖T γrW‖

2
L2(H1/2,γ) +

∥∥∥G̃∥∥∥2

1,γ
+ ‖W nc(0)‖2L2

)
.

(4.50)
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The reason why we give a L2(H1/2,γ) estimate as above is that this is the only one
available near the poles Υp, to be derived in the next subsection. Recall here that
r ∈ Γ0

1 vanishes in a neighborhood of Υp and out of Vp, which is an error of microlo-
calization. The appearance of ‖W nc(0)‖2L2 on the right-hand side of (4.50) is due to
an error when applying localized Gårding’s inequality.

Proposition 4.5 (Kreiss’ symmetrizers). There exists a mapping S : Ω̄ × Ξ →
M2×2(C) so that the following properties hold:

• ∀X = (x, y, z, γ, η) ∈ Ω̄× Ξ, S(X) is Hermitian and S ∈ Γ1
2;

• Set λs,γ = (|τ |2 + |η|2)
s
2 . For any X ∈ ∂Ω× Ξ, there holds

χ2
2S(X) + Cχ2

2λ
1,γ(τ, η)β∗β ≥ cχ2

2λ
1,γ(τ, η)I2; (4.51)

• There exists a finite set of matrix-valued mappings such that

Re (S(X)χ2A(X)) =
∑
l

Vl(X)∗
(
χ2γHl(X) 0

0 χ2El(X)

)
Vl(X),

(4.52)

where Vl (El resp.) is homogeneous of degree 1/2 ( 1 resp.) with respect to
(τ, η), and belong to Γ

1
2
2 (Γ1

2 resp.); Hl is homogeneous of degree zero with
respect to (τ, η), and belongs to Γ0

2, and the following inequalities hold:

∑
l

Vl(X)∗Vl(X) ≥ cλ1,γ(τ, η)I2,

χ2Hl(X) ≥ cχ2I2, χ2El(X) ≥ cχ2λ
1,γ(τ, η)I2. (4.53)

This result will be proved in section 4.7.3. We adopt the ideas presented in [10]
to derive energy estimates using these symmetrizers.

Let {Sγ(z)} be given by

Sγ(z) =
1

2

(
(T γS(z))

∗ + T γS(z)

)
,

with S(z) denoting the above symmetrizer and z a parameter. Since S ∈ Γ1
2, we know

{Sγ} are uniformly bounded self-adjoint operators from Hs,γ(R2
x,y) to Hs−1,γ(R2

x,y).
The starting point to derive the energy estimate is to take the scalar product of (4.48)
with SγW nc

u = Sγ(w5, w4)T , and integrating with respect to (x, y, z) ∈ Ω. Actually,
we have

d

dz
(SγW nc

u ,W nc
u ) = 2Re (Sγ∂zW

nc
u ,W nc

u ) + ((∂zS
γ)W nc

u ,W nc
u )

= 2Re (SγT γAχ2
W nc

u ,W nc
u ) + 2Re (SγT γEW

nc
u ,W nc

u )

+2Re (SγT γrW,W
nc
u ) + 2Re (SγR−1W,W

nc
u )

+2Re (SγR0F,W
nc
u ) + ((∂zS

γ)W nc
u ,W nc

u ),
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which is equivalent to the identity

A+B := (Sγ(0)W nc
u (0),W nc

u (0))L2(R2) + 2

∫
R+

∫
R2

Re (SγT γχ2AW
nc
u ,W nc

u ) dxdy dz

=

5∑
k=1

Jk := −
∫
R+

∫
R2

2Re (SγT γEW
nc
u ,W nc

u ) dxdy dz

−
∫
R+

∫
R2

2Re (SγT γrW,W
nc
u ) dxdy dz −

∫
R+

∫
R2

2Re (SγR−1W,W
nc
u ) dxdy dz

−
∫
R+

∫
R2

((∂zS
γ)W nc

u ,W nc
u ) dxdy dz −

∫
R+

∫
R2

2Re (SγR0F,W
nc
u ) dxdy dz.

Upper bound of A+B. We now estimate each term on the above right-hand side.
Let Λs,γ = T γλs,γ , we may write Sγ = Λ1/2,γΛ−1/2,γSγ . Note Λs,γ is self-adjoint and
Λ−1/2,γSγ is of order 1/2, we have, by the Cauchy–Schwartz inequality,

|J1| ≤ C ‖W nc
u ‖

2
L2(H1/2,γ) , |J4| ≤ C ‖W nc

u ‖
2
L2(H1/2,γ) ,

|J2| ≤ C ‖T γrW‖L2(H1/2,γ) ‖W
nc
u ‖L2(H1/2,γ) ≤

Cε
γ
‖T γrW‖

2
L2(H1/2,γ) + εγ ‖W nc

u ‖
2
L2(H1/2,γ) ,

|J3| ≤ C ‖W‖L2(H−1/2,γ) ‖W
nc
u ‖L2(H1/2,γ) ≤

Cε
γ2
‖W‖2L2(L2) + εγ ‖W nc

u ‖
2
L2(H1/2,γ) ,

|J5| ≤ C ‖F‖L2(H1/2,γ) ‖W
nc
u ‖L2(H1/2,γ) ≤

Cε
γ

∥∥∥F̃∥∥∥2

L2(H1/2,γ)
+ εγ ‖W nc

u ‖
2
L2(H1/2,γ) .

It follows that

A+B ≤ (C + 3εγ) ‖W nc
u ‖

2
L2(H1/2,γ) +

Cε
γ

∥∥∥F̃∥∥∥2

L2(H1/2,γ)

+
Cε
γ

(
1

γ
‖W‖2L2(L2) + ‖T γrW‖

2
L2(H1/2,γ)

)
. (4.54)

We continue to derive a lower bound for the term A + B by means of Gårding’s
inequalities. We first deal with A.

Lower bound of A. Since Sγ(0) − T γS(0) = 1
2 ((T γS(0))

∗ − T γS(0)) = 1
2 ((T γS(0))

∗ −
T γ(S(0))∗) is of order 0, we have

A = (T γS(0)W
nc
u (0),W nc

u (0))L2 +O(1) ‖W nc
u (0)‖1/2,γ ‖W

nc
u (0)‖−1/2,γ .

From (4.51), we apply the localized Gårding’s inequality [10, Theorem A.4] to obtain,
for W nc

u (0) ∈ H1/2,γ that

Re (T γS(0)+λ1,γβ∗βT
γ
χ1
W nc

u (0), T γχ1
W nc

u (0))(H−1/2,γ ,H1/2,γ)

≥ c
∥∥T γχ1

W nc
u (0)

∥∥2

1/2,γ
− C ‖W nc

u (0)‖2−1/2,γ .

By the construction of χ1, χ2, we have T γχ1
W nc

u = W nc
u +R−2W

nc, so the right-hand
side of the above inequality is larger than or equal to c ‖W nc

u (0)‖21/2,γ−C ′ ‖W nc(0)‖2−1/2,γ ,
while the left-hand side is smaller than or equal to

Re (T γS(0)+λ1,γβ∗βW
nc
u (0),W nc

u (0))(H−1/2,γ ,H1/2,γ) + C ‖W nc(0)‖2−1/2,γ .
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Hence we obtain that

Re (T γS(0)+λ1,γβ∗βW
nc
u (0),W nc

u (0))(H−1/2,γ ,H1/2,γ) ≥ c ‖W nc
u (0)‖21/2,γ − C ‖W

nc(0)‖2−1/2,γ .

Observe that T γλ1,γβ∗β − [Λ1/2,γT γβ ]∗[Λ1/2,γT γβ ] is of order 0, we have

Re (T γλ1,γβ∗βW
nc
u (0),W nc

u (0))(H−1/2,γ ,H1/2,γ)

≤ (Λ1/2,γT γβW
nc
u (0),Λ1/2,γT γβW

nc
u (0))(L2,L2) + C ‖W nc

u (0)‖−1/2,γ ‖W
nc
u (0)‖1/2,γ

=
∥∥∥G̃∥∥∥2

1/2,γ
+ C ‖W nc

u (0)‖−1/2,γ ‖W
nc
u (0)‖1/2,γ .

Hence we discover that

A ≥ (T γS(0)W
nc
u (0),W nc

u (0))(H−1/2,γ ,H1/2,γ) − C ‖W nc
u (0)‖1/2,γ ‖W

nc
u (0)‖−1/2,γ

≥ c ‖W nc
u (0)‖21/2,γ − C ‖W

nc(0)‖2−1/2,γ −
∥∥∥G̃∥∥∥2

1/2,γ
− C ‖W nc

u (0)‖−1/2,γ ‖W
nc
u (0)‖1/2,γ

≥ c′ ‖W nc
u (0)‖21/2,γ −

C

γ

(
‖W nc(0)‖2L2 +

∥∥∥G̃∥∥∥2

1,γ

)
. (4.55)

Lower bound of B. We then consider the term B. Since ReSγT γχ2A − T
γ
Re (χ2SA)

is of order one, we have

B ≥
∫
R+

∫
R2

2(T γRe (χ2SA)W
nc
u ,W nc

u ) dxdy dz − C ‖W nc
u ‖

2
L2(H1/2,γ) .

For X ∈ Ω× Ξ, define

al(X) =

(
γHl(X) 0

0 El(X)

)
. (4.56)

Recall by (4.53) we have

χ2
1χ2Hl(X) ≥ cχ2

1χ2I2 = cχ2
1I2, χ2

1χ2El(X) ≥ cχ2
1χ2λ

1,γ(τ, η)I2 = cχ2
1λ

1,γ(τ, η)I2.

Note the remainder T γV ∗l alVl − (T γVl)
∗T γalT

γ
Vl

is of order 1. Therefore it holds∫
R+

∫
R2

2(T γRe (χ2SA)W
nc
u ,W nc

u ) dxdy dz

=
∑
l

∫
R+

∫
R2

2(T γV ∗l χ2alVl
W nc

u ,W nc
u ) dxdy dz

≥
∑
l

∫
R+

∫
R2

2((T γVl)
∗T γχ2al

T γVlW
nc
u ,W nc

u ) dxdy dz − C ‖W nc
u ‖

2
L2(H1/2,γ)

=
∑
l

∫
R+

∫
R2

2(T γχ2al
Wl,Wl) dxdy dz − C ‖W nc

u ‖
2
L2(H1/2,γ) ,

where for short we have introduced Wl := T γVlW
nc
u . We may split Wl = (W 1

l ,W
2
l )

according to the block structure of (4.56). So∫
R+

∫
R2

2(T γχ2al
Wl,Wl) dxdy dz = I1 + I2 (4.57)

=:

∫
R+

∫
R2

2(T γχ2γHl
W 1
l ,W

1
l ) dxdy dz +

∫
R+

∫
R2

2(T γχ2El
W 2
l ,W

2
l ) dxdy dz.
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Lower bound of I1. We first show a lower bound of I1. By applying the localized
Gårding’s inequality to χ2Hl (with m = 0), we obtain

Re (T γχ2Hl
T γχ0

W 1
l , T

γ
χ0
W 1
l )(L2,L2) ≥ c

∥∥T γχ0
W 1
l

∥∥2

0
− C

∥∥W 1
l

∥∥2

−1,γ
. (4.58)

Note that

T γχ0
W 1
l = (T γχ0

T γVlW
nc
u )1 = (T γVlT

γ
χ0
W nc

u )1 + (R0W
nc
u )1

= (T γVlW
nc
u )1 + (R−1W

nc)1 + (R0W
nc
u )1

= W 1
l + (R−1W

nc)1 + (R0W
nc
u )1, (4.59)

so the right-hand side of (4.58)

≥ c
∥∥W 1

l

∥∥2

0
− c ‖R−1W

nc‖20 − c ‖R0W
nc
u ‖

2
0 −

C

γ2

∥∥W 1
l

∥∥2

0

≥ (c− C

γ2
)
∥∥W 1

l

∥∥2

0
− C

γ2
‖W nc‖20 − C ‖W

nc
u ‖

2
0 , (4.60)

and the left-hand side of (4.58) is bounded by (recall Hl ∈ Γ0
2)

Re (T γχ2Hl
W 1
l ,W

1
l )(L2,L2) +

∥∥W 1
l

∥∥
0
‖R−1W

nc‖0 +
∥∥W 1

l

∥∥
0
‖W nc

u ‖0 + ‖R−1W
nc‖20

+ ‖R−1W
nc‖0 ‖W

nc
u ‖0 + ‖W nc

u ‖
2
0

≤ Re (T γχ2Hl
W 1
l ,W

1
l )(L2,L2) + 2ε

∥∥W 1
l

∥∥2

0
+ C ‖W nc

u ‖
2
0 + C ‖R−1W

nc‖20

≤ Re (T γχ2Hl
W 1
l ,W

1
l )(L2,L2) + 2ε

∥∥W 1
l

∥∥2

0
+ C ‖W nc

u ‖
2
0 +

C

γ2
‖W nc‖20 . (4.61)

Therefore by taking ε = c/4, from (4.58), (4.60) and (4.61), we have

Re (T γχ2Hl
W 1
l ,W

1
l )(L2,L2) ≥ (

c

2
− C

γ2
)
∥∥W 1

l

∥∥2

0
− C

γ2
‖W nc‖20 − C ‖W

nc
u ‖

2
0 .

Hence we obtain that,

I1 ≥ (cγ − C

γ
)
∥∥W 1

l

∥∥2

L2(L2)
− C

γ
‖W nc‖2L2(L2) − Cγ ‖W

nc
u ‖

2
L2(L2)

≥ (cγ − C

γ
)
∥∥W 1

l

∥∥2

L2(L2)
− C

γ
‖W nc‖2L2(L2) − C ‖W

nc
u ‖

2
L2(H1/2,γ) .

Lower bound of I2. Next we show a lower bound of I2 given in (4.57). Applying
the localized Gårding’s inequality to χ2El (with m = 1/2), we find that, for large γ,
it holds

Re (T γχ2El
T γχ0

W 2
l , T

γ
χ0
W 2
l )

(H−
1
2 ,H

1
2 )
≥ c

∥∥T γχ0
W 2
l

∥∥2
1
2 ,γ
− C

∥∥W 2
l

∥∥2

− 1
2 ,γ

.

From (4.59) (applied to W 2
l ), we have a lower bound of the right-hand side, so

Re (T γχ2El
T γχ0

W 2
l , T

γ
χ0
W 2
l )

(H−
1
2 ,H

1
2 )

≥ c
∥∥W 2

l

∥∥2
1
2 ,γ
− C ‖W nc‖2− 1

2 ,γ
− C ‖W nc

u ‖
2
1
2 ,γ
− C

∥∥W 2
l

∥∥2

− 1
2 ,γ

. (4.62)
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It is also straightforward to check

Re (T γχ2El
T γχ0

W 2
l , T

γ
χ0
W 2
l )

(H−
1
2 ,H

1
2 )

≤ Re (T γχ2El
W 2
l ,W

2
l )(L2,L2) + ε

∥∥W 2
l

∥∥2
1
2 ,γ

+ C ‖W nc‖2− 1
2 ,γ

+ C ‖W nc
u ‖

2
1
2 ,γ

.(4.63)

Hence by setting ε = c/2 in (4.63), from (4.62) and (4.63), we get

Re (T γχ2El
W 2
l ,W

2
l )(L2,L2) ≥

c

2

∥∥W 2
l

∥∥2
1
2 ,γ
− C ‖W nc‖2− 1

2 ,γ
− C ‖W nc

u ‖
2
1
2 ,γ
− C

∥∥W 2
l

∥∥2

− 1
2 ,γ

≥ (
c

2
γ − C

γ
)
∥∥W 2

l

∥∥2

0
− C

γ
‖W nc‖20 − C ‖W

nc
u ‖

2
1/2,γ .

After integrating with respect to z on R+, there follows

I2 ≥ (
c

2
γ − C

γ
)
∥∥W 2

l

∥∥2

L2(L2)
− C

γ
‖W nc‖2L2(L2) − C ‖W

nc
u ‖

2
L2(H1/2,γ) .

So up to now, summing up over all l (recall it is finite), we have

B ≥ (cγ − C

γ
)
∑
l

‖Wl‖2L2(L2) −
C

γ
‖W nc‖2L2(L2) − C ‖W

nc
u ‖

2
L2(H1/2,γ) .

Here we used the fact ‖Wl‖ ≤
∥∥W 1

l

∥∥+
∥∥W 2

l

∥∥ .We need a lower bound of
∑
l ‖Wl‖2L2(L2).

Lower bound of
∑
l ‖Wl‖2L2(L2). Since the symbol

∑
l V
∗
l Vl is elliptic, it follows

(by Gårding’s inequality, [11, Theorem B.7]) that

C1 ‖W nc
u ‖

2
L2(H1/2,γ) ≤

∑
l

∫
R+

∫
R2

Re (T γV ∗l Vl
W nc

u ,W nc
u ) dxdydz

≤ C2

∑
l

‖Wl‖2L2(L2) +

∫
R+

∫
R2

(R0W
nc
u ,W nc

u ) dxdydz

≤ C2

∑
l

‖Wl‖2L2(L2) + C ‖W nc
u ‖

2
L2(L2) ≤ C2

∑
l

‖Wl‖2L2(L2) +
C

γ
‖W nc

u ‖
2
L2(H1/2,γ) .

Therefore, by taking γ large, we have
∑
l ‖Wl‖2L2(L2) ≥ C0 ‖W nc

u ‖
2
L2(H1/2,γ) . So we get

B ≥ C0(cγ − C

γ
) ‖W nc

u ‖
2
L2(H1/2,γ) −

C

γ
‖W nc‖2L2(L2) − C ‖W

nc
u ‖

2
L2(H1/2,γ) .(4.64)

Conclusion: estimate for frequencies away from the poles. Combining the lower
and upper bounds of A+B we proved in (4.54), (4.55) and (4.64), there comes

C0(cγ − C

γ
) ‖W nc

u ‖
2
L2(H1/2,γ) + C ′ ‖W nc

u (0)‖21/2,γ

≤ C

γ
(‖W nc(0)‖20 +

∥∥∥G̃∥∥∥2

1,γ
+ ‖W nc‖2L2(L2)) + C ‖W nc

u ‖
2
L2(H1/2,γ)

+(C + 3εγ) ‖W nc
u ‖

2
L2(H1/2,γ) +

C

γ

∥∥∥F̃∥∥∥2

L2(H1/2,γ)

+
C

γ

(
1

γ
‖W‖2L2(L2) + ‖T γrW‖

2
L2(H1/2,γ)

)
.
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First taking ε = C0c
6 , and choosing a sufficiently large γ0, then for γ ≥ γ0, it follows

that

γ ‖W nc
u ‖

2
L2(H1/2,γ) + ‖W nc

u (0)‖21/2,γ

≤ C

γ

(
‖W nc(0)‖20 +

∥∥∥G̃∥∥∥2

1,γ
+

1

γ

∥∥∥F̃∥∥∥2

L2(H1,γ)
+ ‖W‖2L2(L2) + ‖T γrW‖

2
L2(H1/2,γ)

)
.

This is exactly (4.50).

4.7.3. Construction of symmetrizers. We now indicate how to construct the
symmetrizers claimed in Proposition 4.5.

Recall we have constructed local Kreiss’ symmetrizers rj of constant coefficient
problems near a frequency point in section 3.3.1. From the process we infer that
there is a pair (rj , Tj) with the properties (3.11) and (3.10) (with B replaced by A
now) given in section 3.3.1 in a neighborhood Vj of Xj ∈ (∂Ω × Σ) ∩ suppχ2, with
Ω = R2

x,y × R+
z , and Σ = {(τ, η) ∈ C × R : Re τ ≥ 0, |τ |2 + |η|2 = 1}. For a

neighborhood Vj of Xj ∈ ((Ω̄ \ ∂Ω)× Σ) ∩ suppχ2, the pair (rj , Tj) satisfies (3.10).
We then define the symmetrizers of order zero on Vj :

S0
j = T ∗j rjTj ,

and it follows that Re (S0
jA) = T ∗j Re (rjTjAT−1

j )Tj . For cases a) and b1), we see
Re (rjTjAT−1

j ) is of the diagonal form Ej that is a diagonal 2× 2 matrix with order
one satisfying Ej ≥ cI2; for cases b2) and b3), Re (rjTjAT−1

j ) = γHj with Hj a
2× 2 matrix of order 0 so that Hj ≥ cI2. Therefore, for all these cases we may take
Vj = λ1/2,γTj so that each term Re (λ1,γS0

jA) satisfying the third requirement in the
Proposition 4.5. One easily checks that the second requirement there is guaranteed
by (3.11).

Since we assume that U,Ψ in the coefficients of the linearized problem are constant
outside a compact set of Ω̄ (recall the initial perturbations have compact set with
respect to (y, z) and we consider the case that x is only contained in a finite interval
later), we just construct symmetrizers in finite (say, N) open set Vj for j = 1, · · · , N .
Then by a partition of unity 1 =

∑n
j=1 ψj(X) with each ψj ∈ Γ0

k (k ∈ N), we may
define the "global" symmetrizer S on (Ω̄× Σ) ∩ suppχ2 to be

S(X) =

N∑
l=1

ψl(X)λ1,γS0
l .

Note each S0
j and rj , Tj are homogeneous of degree 0 for (τ, η) when extended to

Ω̄ × Ξ, while Vj and A are extended by degrees 1/2 and 1 respectively. Proposition
4.5 is the proved.

We remark the construction of symmetrizers S for more general hyperbolic prob-
lems are given in Theorem 5.1 of [2, p.144]. The S we need here is actually −Σ given
in that theorem.

4.8. Derivation of energy estimate: the case of poles.

4.8.1. Derivation of equations. We now turn to the energy estimate near the
poles where the uniform Kreiss–Lopatinskii conditions fails and we also can not use
the reduced equations like (4.48). As in [11], the strategy is to consider the original
system after some kind of diagonalization and then estimate each unknown directly.
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Diagonalization of symbols. To derive the equations, we first carry out some alge-
braic manipulations to transform the matrix τA1+iηA2 defined by (4.23) to an almost
diagonal form. To simplify the computations, we introduce here some notations. We
set

A =

(
ωI2 M
N Λ

)
, M =

(
−α1 α1

β1 −β1

)
, N =

(
µτ iηµ
µτ iηµ

)
,

and Λ = diag{−a(ω + θ), a(ω − θ)}. We wish to find two matrices L and R defined
near the set of poles Υp so that

1) Ldiag{0, 0, 1, 1}R = diag{0, 0, 1, 1},

2) LAR takes the form


ω 0 0 ∗
0 ω 0 ∗
∗ ∗ e′ 0
0 0 0 e

, and the argument e (resp. e′) sat-

isfies Re e < 0 (resp. Re e′ > 0) near Υp ∩ {|τ |2 + η2 = 1}.

To this end, we suppose L =

(
I2 0
L1 L2

)
and R =

(
I2 R1

0 R2

)
. Then the first

requirement above is equivalent to

L2R2 = I2. (4.65)

This also implies that both L and R are invertible. By a direct computation, we have

LAR =

(
ωI2 ωR1 +MR2

ωL1 + L2N (ωL1 + L2N)R1 + (L1M + L2Λ)R2

)
.

Now suppose specifically that,

L1 =

(
0 0
l3 l4

)
, L2 =

(
0 1
1 m4

)
,

R1 =

(
r1 0
r3 0

)
, R2 =

(
s1 1
1 0

)
,

then we get

ωL1 + L2N =

 µτ iηµ
l3ω + (1 +m4)µτ︸ ︷︷ ︸

a1

l4ω + (1 +m4)iηµ︸ ︷︷ ︸
a2

 ,

ωR1 +MR2 =


r1ω + (−s1 + 1)α1︸ ︷︷ ︸

b1

−α1

r3ω + (s1 − 1)β1︸ ︷︷ ︸
b2

β1

 .

By the above second requirement, all a1,a2,b1,b2 should be zero. These imply that

m4 = −1− l4ω

iηµ
, l3 =

l4τ

iη
, (4.66)

s1 = 1− r3ω

β1
, r1 = −r3α1

β1
, (4.67)



40 YA-GUANG WANG AND HAIRONG YUAN

by noting here that η and β1 are nonzero near the poles. Also, (4.65) means

s1 = −m4 or r3 = − β1

iηµ
l4. (4.68)

Using these relations, we further have

(ωL1 + L2N)R1 + (L1M + L2Λ)R2

=


µτr1 + iηµr3 + a(ω − θ)︸ ︷︷ ︸

e′

0

(α1l3 − β1l4)(1− s1) + 2am4ω︸ ︷︷ ︸
c

−(α1l3 − β1l4)− a(ω + θ)︸ ︷︷ ︸
e

 .

Requirement 2) above also implies c = 0. So it follows the equation

m4 =
1

2aµ

(
l4
iη

)2

(α1τ − iηβ1). (4.69)

We should find m4, s1, l3, l4, r1, r3 so that (4.66)–(4.69) hold, and, near the poles,

(Re e)/
√
|τ |2 + η2 := Re

(
[− l4
iη

(α1τ − iηβ1)− a(ω + θ)]/
√
|τ |2 + η2

)
< −c0 < 0

(4.70)

for some constant c0.
From (4.66) and (4.69), we see ζ = l4/iη should solve

ζ2(α1τ − iηβ1) + 2aζω + 2aµ = 0.

For any fixed point (x, y, z, τ, η) so that ω = 0 and the reference state Ψ = z,
we can solve that ζ = ± u2

c
√
u2+v2

1
|η| . If we choose l4 = −i u2

c
√
u2+v2

sign(η), then

(Re e)/
√
|τ |2 + η2 = −1 < 0. By continuity, we see there is a neighborhood of Υp

and ν small, so that one could solve l4 and (4.70) holds. Once l4 is known, all other
parameters are solved. We then obtain

LAR =


ω 0 0 −α1

0 ω 0 β1

µτ iηµ −e− 2aθ︸ ︷︷ ︸
e′

0

0 0 0 e

 .

It is easily noted that there is a constant c′0 so that (Re e′)/
√
|τ |2 + η2 > c′0 > 0 near

the poles set Υp.
Finally, we introduce L = diag{1, L}, R = diag{1, R}, and

Ad := L(τA1 + iηA2)R = diag{1, LAR}.

We remark that L andR constructed here, as well as their inverses, may be considered
as symbols of class Γ0

2, and Ad ∈ Γ1
2.
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Derivation of equations near poles. Similar to the beginning of section 4.7.1, set
Wp = T γχp

W. Then it solves

I5∂zWp + T γτA1+iηA2
Wp + T γCWp + T γr′W = R−1W + T γχp

F, (4.71)

with

r′ = i{τA1 + iηA2, χp} − ∂zχpI5 ∈ Γ0
1,

which vanishes in a neighborhood of the poles set Υp and out of Vp. As before, we
also need some cut-off functions ζj , j = 1, 2, 3, 4 such that

– ζj are C∞ functions, taking values in [0, 1], and homogeneous of degree 0 with
respect to (τ, η);

– ζ1|suppχp ≡ 1, and for k = 2, 3, 4, there hold ζj |supp ζj−1
≡ 1;

– ζ4 (and therefore ζj , j = 1, 2, 3) is supported in a neighborhood of the set of
poles Υp.

Then we introduce

V = T γζ1R−1Wp. (4.72)

From (4.72) and the equation (4.71), we find

I5∂zV = I5T
γ
∂zζ1R−1Wp + I5T

γ
ζ1∂zR−1Wp + T γζ1I5R−1∂zWp (using I5R

−1 = LI5)

= I5T
γ
∂zζ1R−1Wp + I5T

γ
ζ1∂zR−1Wp + T γζ1L(I5∂zWp)

= I5T
γ
∂zζ1R−1Wp + I5T

γ
ζ1∂zR−1Wp + T γζ1L(R−1W + T γχp

F̃ )

−T γζ1LT
γ
τA1+iηA2

Wp − T γζ1LT
γ
CWp − T γζ1LT

γ
r′W.

By symbolic calculus, note ζ2ζ1 = ζ1,

T γζ1LT
γ
τA1+iηA2

Wp

= T γζ1L(τA1+iηA2)Wp +R−1W + T γ−i[∂δ(ζ1L)∂x(τA1+iηA2)+∂η(ζ1L)∂y(τA1+iηA2)]Wp

= T γ
ζ2Ad(ζ1R−1)

Wp +R−1W + T γ−i[∂δ(ζ1L)∂x(τA1+iηA2)+∂η(ζ1L)∂y(τA1+iηA2)]Wp

= T γ
ζ2AdV − T γ−i[∂ξAd∂x(ζ1R−1)+∂ηAd∂y(ζ1R−1)]

Wp +R−1W

+T γ−i[∂δ(ζ1L)∂x(τA1+iηA2)+∂η(ζ1L)∂y(τA1+iηA2)]Wp

= T γ
ζ2AdV + T γs′1

Wp + T γs′2
Wp +R−1W.

Here we have set

s′1 = −i[∂δ(ζ1)L∂x(τA1 + iηA2) + ∂η(ζ1)L∂y(τA1 + iηA2)]

+i[∂ξA
d∂x(ζ1)R−1 + ∂ηA

d∂y(ζ1)R−1],

s′2 = −iζ1[∂δ(L)∂x(τA1 + iηA2) + ∂η(L)∂y(τA1 + iηA2)]

+iζ1[∂ξA
d∂x(R−1) + ∂ηA

d∂y(R−1)] := ζ1S

belonging to Γ0
1. So s′1 vanishes on support of ζ1 and out side Vp. We also have

T γs′2
Wp = T γζ2SR(ζ1R−1)Wp = T γζ2SRV +R−1W, ζ2SR ∈ Γ0

1.
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Similarly, we get

T γζ1LT
γ
CWp = T γ(ζ2LCR)(ζ1R−1)Wp +R−1W

= T γζ2LCRV +R−1W, ζ2LCR ∈ Γ0
1,

T γζ1∂zR−1Wp = T γζ2R∂zRV +R−1W, ζ2R∂zR ∈ Γ0
1,

and

T γζ1LT
γ
r′W = T γζ1Lr′W +R−1W.

So in all, we find that V solves

I5∂zV + T γ
ζ2AdV + T γζ2EV + T γr̃W +R−1W = T γζ1LT

γ
χp
F̃ . (4.73)

Here ζ2E, r̃ ∈ Γ0
1, and r̃ also vanishes in a neighborhood of Υp and outside Vp; R−1

is an operator of order −1.
Finally, we write down the explicit form of (4.73). There are two "differential"

equations

∂zV5 + T γζ2eV5 + T γα0V = F5, (4.74)

∂zV4 + T γζ2e′V4 + T γζ2µτV2 + T γiζ2µηV3 + T γα0V = F4, (4.75)

and three "algebraic" equations

T γζ2ωV1 + T γα0V = F1, (4.76)

T γζ2ωV2 + T γ−ζ2α1
V5 + T γα0V = F2, (4.77)

T γζ2ωV3 + T γζ2β1
V5 + T γα0V = F3, (4.78)

with the lower order terms being coupled. Here for shortness, we set

F = (F1, · · · ,F5)T = −T γr̃W +R−1W + T γζ1LT
γ
χp
F̃ , (4.79)

and αm is a generic symbol of class Γm1 for an integer m.

4.8.2. Energy estimates. We now derive energy estimates of solutions to the
equations (4.74)–(4.78).

Estimate on V5. Let us start from V5. Using (4.74), it holds

d

dz
(Λ1,γV5,Λ

1,γV5) = 2Re (Λ1,γ∂zV5,Λ
1,γV5)

= I + J :=
[
2Re (T γ−ζ2eλ2,γV5, V5)

]
+
[
(R2V5, V5)− 2Re (Λ1,γT γα0V,Λ

1,γV5) + 2Re (Λ1,γF5,Λ
1,γV5)

]
. (4.80)

Just using the Cauchy–Schwartz inequality, it is easy to obtain that

|J | ≤ C(‖V5‖21,γ + ε ‖V5‖23/2,γ + Cε ‖V ‖21/2,γ + Cε ‖F‖21/2,γ + ε ‖V5‖23/2,γ).(4.81)

To handle I, we still need the localized Gårding’s inequality ([11, Theorem B.8]).
Recall we have shown that there is a positive constant c so that −(Re e)/λ1,γ > c in
the support of ζ4. Then we have

−ζ2
3ζ2λ

2,γRe e ≥ cζ2
3ζ2λ

3.γ .
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So there is a constant C > 0 and γ0 ≥ 1 such that for all γ ≥ γ0 and smooth V5, it
holds

Re (T γ−eζ2λ2,γT
γ
ζ3
V5, T

γ
ζ3
V5) ≥ c

2

∥∥∥T γζ3V5

∥∥∥2

3
2 ,γ
− C ‖V5‖21

2 ,γ
. (4.82)

Note that T γζ3V5 = V5 +R−2Wp, we see

c

2

∥∥∥T γζ3V5

∥∥∥2

3
2 ,γ
− C ‖V5‖21

2 ,γ
≥ C1 ‖V5‖23/2,γ − C2 ‖Wp‖2−1/2,γ − C ‖V5‖21

2 ,γ

≥ C1

2
‖V5‖23/2,γ +

C1

2
γ ‖V5‖21,γ − C2

1

γ
‖Wp‖2L2 − C

1

γ
‖V5‖21,γ , (4.83)

and

Re (T γ−eζ2λ2,γT
γ
ζ3
V5, T

γ
ζ3
V5)

≤ Re (T γ−eζ2λ2,γV5, V5) + C ‖Wp‖L2 ‖V5‖1,γ + ‖Wp‖L2 ‖Wp‖−1,γ

≤ Re (T γ−eζ2λ2,γV5, V5) + C
1

γ
‖Wp‖2L2 +

C1γ

2
‖V5‖21,γ . (4.84)

Therefore, combining (4.82), (4.83) with (4.84), and choosing γ0 further large, we find

I ≥ C1(γ ‖V5‖21,γ + ‖V5‖23/2,γ)− C2
1

γ
‖Wp‖2L2 . (4.85)

Now by plugging (4.81) and (4.85) into (4.80), and integrating over z ∈ (0,∞), and
remember by our assumption that V should vanish for z →∞, we get

‖V5(0)‖21,γ + C1γ ‖V5‖2L2(H1,γ) + C1 ‖V5‖2L2(H3/2,γ)

≤ C

γ
‖Wp‖2L2(L2) + C(‖V ‖2L2(H1/2,γ) + ‖F‖2L2(H1/2,γ)). (4.86)

Estimate on V1. Next we consider estimate of V1. Acting Λ1/2,γ to equation (4.76)
and then taking L2(R2) inner product with Λ1/2,γV1, we get, for the real part, that

Re (Λ1/2,γT γζ2ωV1,Λ
1/2,γV1)

= −Re (Λ1/2,γT γα0V,Λ
1/2,γV1) + Re (Λ1/2,γF1,Λ

1/2,γV1). (4.87)

For the right-hand side, it is easy to be bounded by

C ′(‖V ‖21/2,γ + εγ ‖V1‖21/2,γ +
Cε
γ
‖F‖21/2,γ). (4.88)
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For the left-hand side of (4.87), we have

Re (Λ1/2,γT γζ2ωV1,Λ
1/2,γV1)

= Re (T γζ2ωΛ1/2,γV1,Λ
1/2,γV1) + Re (R1/2V1,Λ

1/2,γV1)

=
1

2
((T γζ2ω + (T γζ2ω)∗)Λ1/2,γV1,Λ

1/2,γV1) + Re (R1/2V1,Λ
1/2,γV1)

=
1

2
(T γζ2(ω+ω̄)Λ

1/2,γV1,Λ
1/2,γV1) + Re (R1/2V1,Λ

1/2,γV1)

+(R0Λ1/2,γV1,Λ
1/2,γV1)

= γ(T γζ2Λ1/2,γV1,Λ
1/2,γV1) + Re (R′1/2V1,Λ

1/2,γV1)

= γ(Λ1/2,γ(V1 +R−2Wp),Λ1/2,γV1) + Re (R′′1/2V1,Λ
1/2,γV1)

≥ (γ − C) ‖V1‖21/2,γ − γ|(R−3/2Wp,Λ
1/2,γV1)|

≥ (γ − C) ‖V1‖21/2,γ − γ ‖Wp‖−3/2,γ ‖V1‖1/2,γ

≥ (γ − C) ‖V1‖21/2,γ −
1
√
γ
‖Wp‖L2 ‖V1‖1/2,γ

≥ (γ − C ′) ‖V1‖21/2,γ −
C

γ
‖Wp‖2L2 . (4.89)

From (4.87), (4.88) and (4.89), by taking ε small and γ0 ≥ 1 rather large, we obtain
for γ ≥ γ0 that

γ ‖V1‖21/2,γ ≤ C(‖V ‖21//2,γ +
1

γ
‖F‖21/2,γ +

1

γ
‖Wp‖2L2)

for a constant C independent of γ and V . Integrating this for z ∈ (0,∞), we have

γ ‖V1‖2L2(H1/2,γ) ≤ C(‖V ‖2L2(H1/2,γ) +
1

γ
‖F‖2L2(H1/2,γ) +

1

γ
‖Wp‖2L2(L2)). (4.90)

Estimates on V2 and V3. Comparing to the estimate of V1, we need to consider
further the term Re (Λ1/2,γT γ−ζ2α1

V5,Λ
1/2,γV2) (or Re (Λ1/2,γT γζ2β1

V5,Λ
1/2,γV3)). We

take the first as an example. It is easy to see that we have the estimate

|Re (Λ1/2,γT γ−ζ2α1
V5,Λ

1/2,γV2)| ≤ C ‖V2‖1/2,γ ‖V5‖3/2,γ ≤ Cεγ ‖V2‖21/2,γ+
Cε
γ
‖V5‖23/2,γ .

Then totally similar as for V1, from (4.77) we get

γ ‖V2‖21/2,γ ≤ Cεγ ‖V2‖21/2,γ +
Cε
γ
‖V5‖23/2,γ + C(‖V ‖21/2,γ +

1

γ
‖F‖21,γ +

1

γ
‖Wp‖2L2).

Choosing ε small and note γ ≥ 1, integrating for z ∈ (0,∞), and using (4.86) to
bound the term ‖V5‖23/2,γ , one gets

γ ‖V2‖2L2(H1/2,γ) ≤ C(‖V ‖2L2(H1/2,γ) +
1

γ
‖F‖2L2(H1/2,γ) +

1

γ
‖Wp‖2L2(L2)). (4.91)

The same inequality holds if V2 is replaced by V3 on the left-hand side.
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Estimate on V4. By equation (4.75), we have

d

dz
(V4, V4) = 2Re (∂zV4, V4) :=

5∑
j=1

Ij = −2Re (T γζ2e′V4, V4)− 2Re (T γζ2µτV2, V4)

−2Re (T γζ2iµηV3, V4)− 2Re (T γα0V, V4) + 2Re (F4, V4). (4.92)

Using the localized Gårding’s inequality (recall Re e′ > cλ1,γ by our construction), we
have

−I1 ≥ C1 ‖V4‖21/2,γ − C2(‖Wp‖2−3/2,γ + ‖V4‖2−1/2,γ + ‖V4‖1/2,γ ‖Wp‖−3/2,γ)

≥ (
C1

2
− 1

γ2
) ‖V4‖21/2,γ − C ‖Wp‖2−3/2,γ .

We also see that

|I2|+|I3| ≤ C ‖V4‖1/2,γ (‖V2‖1/2,γ+‖V3‖1/2,γ) ≤ Cε ‖V4‖21/2,γ+Cε(‖V2‖21/2,γ+‖V3‖21/2,γ),

and

|I4| ≤ ‖V4‖1/2,γ ‖V ‖−1/2,γ ≤
C

γ
‖V ‖21/2,γ ,

|I5| ≤ ‖V4‖1/2,γ ‖F‖−1/2,γ ≤ Cε ‖V4‖21/2,γ +
Cε
γ2
‖F‖21/2,γ .

So by integrating (4.92) with respect to z over (0,∞), and for γ large, ε small, we get

‖V4‖2L2(H1/2,γ) ≤ C
(
‖V4(0)‖2L2 + ‖Wp‖2L2(H−3/2,γ) +

1

γ2
‖F‖2L2(H1/2,γ)

)
+C

(
‖V2‖2L2(H1/2,γ) + ‖V3‖2L2(H1/2,γ) +

1

γ
‖V ‖2L2(H1/2,γ)

)
.

Multiplying this by γ and using (4.91), we find

γ ‖V4‖2L2(H1/2,γ) ≤ Cγ ‖V4(0)‖2L2

+C

(
‖V ‖2L2(H1/2,γ) +

1

γ
‖F‖2L2(H1/2,γ) +

1

γ
‖Wp‖2L2(L2)

)
. (4.93)

Estimate of V4(0). Finally, we use boundary conditions to estimate γ ‖V4(0)‖2L2 .
We write Wp = (w1, w2, w3, w4, w5)T and V = (V1, · · · , V5)T . Then the boundary
condition in (4.33) for Wp reads

w5 − w4 = T γχp
G̃.

We could easily solve that

R−1 =

 1
I2 −R1L2

L2

 ,

hence

V1 = w1, V2 = T γζ1w2 − T γζ1r1w5, V3 = T γζ1w3 − T γζ1r3w5,

V4 = T γζ1w5, V5 = T γζ1w4 + T γζ1m4
w5. (4.94)
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It follows that

T γζ2(1−s1)V4 + T γ−ζ2V5 = T γζ2(1+m4)T
γ
ζ1
w5 − T γζ2T

γ
ζ1
w4 − T γζ2T

γ
ζ1m4

w5

= T γζ1(w5 − w4) +R−1(w4 + w5) = T γζ1T
γ
χp
G̃+R−1(w4 + w5).

Recall 1− s1 = − l4
iηµω, by acting the first-order operator T γ− iηµl4 ζ3

, we find

T γζ2ωV4 + T γ
ζ2
iµη
l4

V5 = G := T γ−ζ3 iµηl4
T γζ1T

γ
χp
G̃+R0(w4 + w5), on {z = 0}. (4.95)

Taking L2(R2) inner product with V4, then the real part satisfies

Re (T γζ2ωV4(0), V4(0))

= −Re (T γ
ζ2
iµη
l4

V5(0), V4(0)) + Re (G, V4(0)) ≤ C(‖V5(0)‖1,γ + ‖G‖L2) ‖V4(0)‖L2

≤ εγ ‖V4(0)‖2L2 +
Cε
γ

(‖V5(0)‖21,γ + ‖G‖2L2), (4.96)

while

Re (T γζ2ωV4(0), V4(0)) = γ(V4(0), V4(0)) + γ(R−2w5(0), V4(0)) + (R0V4(0), V4(0))

≥ γ ‖V4(0)‖2L2 − Cγ ‖R−2w5(0)‖L2 ‖V4(0)‖L2 − C ‖V4(0)‖2L2

≥ (γ − C) ‖V4(0)‖2L2 −
C

γ2
‖w5(0)‖2L2 . (4.97)

So from (4.96) and (4.97), for γ0 ≥ 1 large and γ ≥ γ0, we have

γ ‖V4(0)‖2L2 ≤
C

γ
(‖V5(0)‖21,γ +

∥∥∥G̃∥∥∥2

1,γ
+ ‖w4(0)‖2L2 + ‖w5(0)‖2L2). (4.98)

Conclusion: estimate near poles. From the estimates (4.86), (4.90), (4.91), (4.93)
and (4.98), we have

γ

5∑
j=1

‖Vj‖2L2(H1/2,γ) + γ ‖V5(0)‖2L2 + γ ‖V4(0)‖2L2

≤ C
(
‖V ‖2L2(H1/2,γ) +

1

γ
(‖F‖2L2(H1/2,γ) + ‖Wp‖2L2(L2) +

∥∥∥G̃∥∥∥2

1,γ

+ ‖w4(0)‖2L2 + ‖w5(0)‖2L2︸ ︷︷ ︸
‖Wnc

p (0)‖2
L2

)
)
.

By choosing γ large, it follows

γ ‖V ‖2L2(H1/2,γ) + γ ‖V5(0)‖2L2 + γ ‖V4(0)‖2L2 ≤ H (4.99)

with

H :=
C

γ

(
‖F‖2L2(H1/2,γ) + ‖W‖2L2(L2) +

∥∥∥G̃∥∥∥2

1,γ
+ ‖W nc(0)‖2L2

)
.

Now recall V4 = T γζ1w5 = T γζ1T
γ
χp
W5 = T γχp

W5 +R−2W5, so

w5 = V4 +R−2W5, w4 = V5 − T γζ1m4
V4 +R−2(W5 +W4).
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Using (4.99), it holds

γ ‖w4(0), w5(0)‖2L2 ≤ γ ‖V4(0)‖2L2 + γ ‖V5(0)‖2L2 +
1

γ3
‖W nc(0)‖2L2 ≤ 2H.

Also, from (4.94), we could solve that

Wp = R0V +R−2W.

Hence

γ ‖Wp‖2L2(H1/2,γ) ≤ C(γ ‖V ‖2L2(H1/2,γ) +
1

γ2
‖W‖2L2(L2)) ≤ 2H.

Finally, by the definition of F in (4.79), we have

‖F‖2L2(H1/2,γ) ≤ C
(
‖T γr̃W‖

2
L2(H1/2,γ) +

1

γ
‖W‖2L2(L2) +

1

γ

∥∥∥F̃∥∥∥2

L2(H1,γ)

)
.

Summing up, we get the desired estimate near poles:

γ
∥∥∥T γχp

W nc(0)
∥∥∥2

L2
+ γ

∥∥∥T γχp
W
∥∥∥2

L2(H1/2,γ)
≤ C 1

γ

(
‖W‖2L2(L2) +

∥∥∥G̃∥∥∥2

1,γ
+

1

γ

∥∥∥F̃∥∥∥2

L2(H1,γ)

+ ‖W nc(0)‖2L2 + ‖T γr̃W‖
2
L2(H1/2,γ)

)
.(4.100)

4.9. Proof of Theorem 4.4. Combining estimates (4.50) and (4.100), using
W = T γχu

W + T γχp
W , and recall r, r̃ ∈ Γ0

1, we have

γ ‖W‖2L2(H1/2,γ) + γ ‖W nc(0)‖2L2 ≤
C

γ

(
1

γ

∥∥∥F̃∥∥∥2

L2(H1,γ)
+
∥∥∥G̃∥∥∥2

1,γ

)
+
C

γ

(
‖W‖2L2(L2) + ‖W nc(0)‖2L2 + ‖T γrW‖

2
L2(H1/2,γ) + ‖T γr̃W‖

2
L2(H1/2,γ)

)
≤ C

γ

(
1

γ

∥∥∥F̃∥∥∥2

L2(H1,γ)
+
∥∥∥G̃∥∥∥2

1,γ
+

1

γ
‖W‖2L2(H1/2,γ) + ‖W nc(0)‖2L2 + C ′ ‖W‖2L2(H1/2,γ)

)
.

Therefore, by choosing γ0 ≥ 1 large and then for all γ ≥ γ0, we obtain

γ ‖W‖2L2(H1/2,γ) + γ ‖W nc(0)‖2L2 ≤
C

γ

(
1

γ

∥∥∥F̃∥∥∥2

L2(H1,γ)
+
∥∥∥G̃∥∥∥2

1,γ

)
.

This leads to (4.34) that was claimed in Theorem 4.4. The proof of Theorem 4.1 is
also completed after employ a standard approximation argument.
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