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Abstract
For steady supersonic flow past a solid convex corner surrounded by quiescent gas, if

the pressure of the upcoming supersonic flow is lower than the pressure of the quiescent
gas, there may appear a strong shock to increase the pressure and then a transonic char-
acteristic discontinuity to separate the supersonic flow behind the shock-front from the
still gas. In this paper we prove global existence, uniqueness, and stability of such flow
patterns under suitable conditions on the upstream supersonic flow and the pressure of
the surrounding quiescent gas, for the two-dimensional steady complete compressible
Euler system. Mathematically, a global weak solution to a characteristic free boundary
problem of hyperbolic conservation laws is constructed and shown to be unique and
stable under the framework of front tracking method. The main part of the proof is to
reformulate the problem in the Lagrangian coordinates, then solve several typical Rie-
mann problems and obtain estimates for wave interactions/reflections/refractions, and
define a Glimm functional using suitable weights, which guarantees that the solution
can be constructed by standard front tracking method. The uniqueness and stability
is proved by showing that the Lyapunov functional introduced by Bressan-Liu-Yang is
non-increasing.
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1 Introduction

As illustrated in Figure 1, for a steady supersonic flow passing a solid convex corner sur-
rounded by static gas, if the pressure of the quiescent gas is larger than the pressure of the
upcoming supersonic flow, there may appear a shock to increase the pressure of the super-
sonic flow to that of the quiescent gas, and a characteristic discontinuity (also called contact
discontinuity in gas dynamics, which is a combination of vortex sheet and/or entropy wave)
to separate the supersonic flow behind of the shock-front from the static gas. In this paper,
we are going to prove the existence and uniqueness, as well as stability of such a flow pat-
tern using the two-dimensional steady complete compressible Euler system, under reasonable
assumptions on the upstream supersonic flow and the lower downstream quiescent gas.
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Figure 1: A characteristic discontinuity (blue line) and a shock (red line) emerged from the solid
corner. The characteristic discontinuity separates quiescent gas below from supersonic flow behind
the shock-front.

The Euler system that governing two-dimensional steady compressible flows consists of
the following conservation laws of mass, momentum and energy:

∂x(ρu) + ∂y(ρv) = 0,

∂x(ρu
2 + p) + ∂y(ρuv) = 0,

∂x(ρuv) + ∂y(ρv
2 + p) = 0,

∂x(ρuE + pu) + ∂y(ρvE + pv) = 0,

(1.1)

where E = 1
2
(u2+v2)+e is the (total) energy density. The unknowns ρ, p, e and (u, v) repre-

sent the density, pressure, internal energy, and velocity of the fluid, respectively. Specifically,
for a polytropic gas, the constitutive relation is p = κ0ρ

γ exp( s
cv
) and e = 1

γ−1
p
ρ
. Here s is the

entropy, κ0 and cv are positive constants, and γ > 1 is the adiabatic exponent. The sonic
speed c is determined by c =

√
∂p
∂ρ

=
√

γp
ρ

. It is well-known that for supersonic flow u > c,
the system (1.1) is hyperbolic in the positive x-direction.

Since the quiescent gas below the characteristic discontinuity should not be affected by
the supersonic flow above it (that is, it will always be static as suggested by physics), we
only need to determine the characteristic discontinuity C, which is a free boundary, and the
supersonic flow above it. Suppose that C is given by an equation y = g(x), x ≥ 0 with
g(0) = 0. By the Rankine-Hugoniot conditions across a characteristic discontinuity (see
equation (3) in [5, p.3]), we have the following boundary conditions on C:

p = p
b
, g′(x) =

v

u
(x, g(x)). (1.2)
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Here p
b
is a constant, which is the pressure of the quiescent gas. Also, suppose the supersonic

flow on I = {(x, y) ∈ R2 : x = 0, y > 0} is given:

U(0, y) = U0(y), U = (u, v, p, ρ), and u0(y) > c0(y). (1.3)

Then we have an initial-free boundary problem of (1.1) in the planar domain bounded by
C and I. We call this as problem (E) below. We note that the second condition in (1.2)
implies that C is a characteristic curve for the Euler system.

A weak entropy solution of problem (E) could be defined in the same way as in the
Definition 1 of [5, p.4].

A special (weak) solution to the problem (E) could be constructed by using the well-
known p-w shock polar (see [10, p. 325, p.347] or Figure 2), with w = v/u:

w = ±
p
p0

− 1

γM2
0 − ( p

p0
− 1)

√√√√ 2γ
γ+1

(M2
0 − 1)− ( p

p0
− 1)

p
p0

+ γ−1
γ+1

. (1.4)

This curve represents all possible states (p, w) behind a shock, for giving uniform supersonic
flow U0 = (u = u0, v = 0, p = p0, ρ = ρ0) ahead of the shock, and M0 = u0

c0
is the Mach

number. Once p, w are determined, all u, v, p, ρ and the slope of the shock-front could be
uniquely solved from the Rankine-Hugoniot conditions.

We could see from Figure 2 that there is an interval (p0, p1) so that if p
b
(the pressure of the

static gas) lies in (p0, p1), then there will be a unique wb > 0 so that (wb, pb) lies on the shock
polar, and it determines a supersonic shock. Let the state behind the shock be denoted by
U b, and write U0 as Ua, we get a special piecewise constant solution U = (Ua, U b) to problem
(E), which is separated by a straight shock-front (the slope s = sb is already determined),
and the characteristic discontinuity is given by the equation y =

vb
ub
x. We call such a solution

as a background solution in the sequel.
The main result of this paper is the following theorem.

Theorem 1.1. For a given constant supersonic data Ua = (ua, 0, pa, ρa), there is a number
p∗ ∈ (p

a
, p1) determined by Ua. For any background solution U = (Ua, U b) so that p

b
∈

(p
a
, p∗), there exist constants ε0 and C so that if the initial data U0 in problem (E) satisfies

∥U0 − Ua∥BV([0,∞)) ≤ ε ≤ ε0, (1.5)

then problem (E) has a unique weak entropy solution (U, g) constructed by the front tracking
method, and

i) g(x) is a Lipschitz function for x ≥ 0 with g(0) = 0, representing the characteristic
discontinuity, and

∥g′ − vb/ub∥L∞([0,∞)) ≤ Cε; (1.6)
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Figure 2: A p-w shock polar. C = (0, p0) represents the upcoming supersonic flow; the open arc
ĈS and ĈS′ represent all possible supersonic shocks. E = (w, p

b
) represents a supersonic shock for

given pressure p
b

behind the shock.

ii) there exists a vector U0 ∈ R4 so that limy→∞ U0(y) = U0, and

U − U0 ∈ C([0,∞);L1(g(x),∞)); (1.7)

iii) there is a Lipschitz function y = s(x) representing the shock-front, with s(0) = 0, and

∥s′ − sb∥L∞([0,∞)) ≤ Cε; (1.8)

∥(U − Ua)(x, ·)∥BV((s(x),∞)) ≤ Cε, ∀x > 0; (1.9)

∥(U − U b)(x, ·)∥BV(g(x),s(x)) ≤ Cε, ∀x > 0. (1.10)

Furthermore, reformulating this problem in Lagrangian coordinates, then the L1–stability
holds in the sense that∥∥V 1(ξ)− V 2(ξ)

∥∥
L1(R+)

≤ C
∥∥V 1(0)− V 2(0)

∥∥
L1(R+)

for any two solutions V 1, V 2 with initial data V 1(0), V 2(0) respectively.

We remark that the existence of U0 in ii) follows easily from (1.5) and a property of
bounded variation (BV) functions. The number p∗ could be determined by the inequality
(4.26) in section 4.4. We only claim the L1 stability in the Lagrangian coordinates, since
it is not clear how to express the stability for such free boundary problems in the Eulerian
coordinates.

We review some related works in the literature. In [5, 6], the authors had studied transonic
characteristic discontinuity for the case that the still gas pressure p

b
is very close to the
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pressure of the upstream supersonic flows, hence there will not appear any strong shock
in the downstream supersonic flow. A complete existence and well-posedness theory has
been established. A similar problem is the supersonic shock attached to the vertex of a slim
wedge which is against uniform supersonic flow [8], for which only the solid wall of the wedge
is perturbed and the wall is a known characteristic boundary. The authors constructed a
solution by the Glimm scheme and later Chen and Li established well-posedness in [7]. Wang
and Zhang also studied the problem of steady supersonic flow past a curved cone in [17].
Another well studied problem is the piston problem for unsteady Euler equations (and its
generalizations), see for example, [4, 12, 18] and references therein.

We note that for the piston problem or for the problem of supersonic flow past a wedge,
there will not appear a free boundary to separate supersonic flow from subsonic flow, across
which the Euler system changes type. To handle the characteristic free boundary, we use
the Lagrangian coordinates as in [6], which was introduced by S. Chen in the studies of
transonic shocks (see [9, 15, 19]). The advantage of working in the Lagrangian coordinates is
that the characteristic free boundary becomes fixed and flattened, and also the Euler system
simplifies to be strictly hyperbolic. The equivalence of weak entropy solution in the Eulerian
coordinates and Lagrangian coordinates is guaranteed by a theorem of Wagnar [16], which
is also repeated in [6, p.1724]. Accordingly we only need to study an initial-boundary value
problem in the Lagrangian coordinates. We then study several typical Riemann problems and
obtain estimates on wave interactions/reflections/refractions, and finally construct Glimm
functional by adapting suitable weights on wave strengths. We remark that waves might
reflect from the boundary and the strong shock infinitely many times, so it is crucial that
they become weaker after reflections. However, in our case the reflection coefficient K2 off
the characteristic boundary is strictly larger than 1. So what makes the flow pattern we
described above to be stable is that the reflection coefficient C13 off the strong shock is quite
small so that |K2C13| < 1. This is the reason why we need the parameter p∗ in Theorem
1.1. Since we also need to consider the refractions of waves above the strong shock due to
perturbations of the upcoming supersonic flow, the determination of various weights in the
Glimm functional is more complicate.

The rest of the paper is organized as follows. In section 2 we reformulate problem (E) to
be problem (L) in the Lagrangian coordinates. In section 3 we solve four typical Riemman
problems, and section 4 is devoted to establishing some waves interaction estimates. In
section 5 we construct a Glimm functional necessary for the front tracking method. Once
a suitable Glimm functional is identified, we could construction the approximate solutions
by front tracking and apply the compactness arguments to establish the convergence of
approximate solutions to a global entropy solution. Thus the existence claimed in Theorem
1.1 is proved. Finally, in section 6 we prove the uniqueness and L1 stability part of Theorem
1.1 by adapting the arguments in [2, 6] and [7].
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2 Problem (L) in Lagrangian coordinates

In this section, we reformulate problem (E) in the Lagrangian coordinates (ξ, η) given by
(x, y) 7→ (ξ, η) = (x, η(x, y)) with

∂(ξ, η)

∂(x, y)
=

(
1 0

−ρv ρu

)
.

For details, please see [6, p.1713]. This transform is Lipschitz continuous and one–to–one
provided that ρu > 0. The transonic characteristic discontinuity is transformed to the
positive ξ-axis, and I becomes the positive η-axis, see Figure 3.

ξ

η

O

supersonic flow

shock-front

Figure 3: The problem in the Lagrangian coordinates (ξ, η). The characteristic discontinuity
becomes the positive ξ-axis.

The Euler system (1.1) in the (ξ, η) coordinates may be written in divergence form as
∂ξ

( 1

ρu

)
− ∂η

(v
u

)
= 0,

∂ξ(u+ p
ρu
)− ∂η

(
pv
u

)
= 0,

∂ξv + ∂ηp = 0,

(2.1)

or, as a symmetric system for U = (u, v, p)⊤,

A∂ξU + B∂ηU = 0, (2.2)

with

A =

 u 0 1
ρ

0 u 0
1
ρ

0 u
ρ2c2

 , B =

 0 0 −v

0 0 u

−v u 0

 , (2.3)
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and the conservation of energy becomes ∂ξ(
u2+v2

2
+ c2

γ−1
) = 0; that is,

u2 + v2

2
+

c2

γ − 1
= b(η). (2.4)

This is called the Bernoulli law. We note that it holds even across shock-fronts by Rankine-
Hugoniot conditions. Hence we observed that b(η) is a given function determined by the
initial data. In the following we focus on system (2.1) with ρ determined by U = (u, v, p)⊤

through (2.4).
For later usage, we repeat here the eigenvalues λ of (2.2):

λ1 =
ρc2u

u2 − c2

(v
u
−

√
M2 − 1

)
< 0, (2.5)

λ2 = 0, (2.6)

λ3 =
ρc2u

u2 − c2

(v
u
+
√
M2 − 1

)
> 0, (2.7)

where M =
√
u2+v2

c
is the Mach number of the flow. Then, for u > c, system (2.2) is strictly

hyperbolic. The associated right-eigenvectors are

r1 = κ1(
λ1

ρ
+ v,−u,−λ1u)

⊤, (2.8)

r2 = (u, v, 0)⊤, (2.9)

r3 = κ3(
λ3

ρ
+ v,−u,−λ3u)

⊤, (2.10)

where κj < 0 can be chosen so that rj · ∇λj ≡ 1, since the j-th characteristic fields (j =

1, 3) are genuinely nonlinear. Note that the second characteristic field is always linearly
degenerate: r2 · ∇λ2 = 0 and ξ-axis is a characteristic curve.

The fact that κj < 0 is a consequence of the following lemma.

Lemma 2.1. If λ is the first or third eigenvalue of (2.2) (i.e. |λA − B| = 0) , and r =

κ(λ
ρ
+ v,−u,−λu)⊤ is the corresponding eigenvector, where r · ∇λ ≡ 1. Then

2

u

[(
1− u2

c2

)
λ

ρu
+ w

]
= (1 + γ)

u2

c2
λ

ρu

λ2

ρc2
· κ. (2.11)

Proof. The factor κ is determined by r ·∇λ ≡ 1, so we need to calculate ∇λ = (∂λ
∂u
, ∂λ
∂v
, ∂λ
∂p
)⊤.

Since λi (i = 1, 3) is the root of

(1− u2

c2
)(

λ

ρu
)2 + 2

λ

ρu
w + w2 + 1 = 0, (2.12)
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we could differentiate it to obtain

(a1, a2, a3)
⊤ , 2

[
(1− u2

c2
)
λ

ρu
+ w

]
1

ρu
∇λ

= −2

[
(1− u2

c2
)
λ

ρu
+ w

]
λ∇
(

1

ρu

)
− 2

(
λ

ρu
+ w

)
∇w − (

λ

ρu
)2∇

(
1− u2

c2

)
.

We use (a1, a2, a3)
⊤ instead of ∇λ to take the scalar product with r = κ

(
λ
ρ
+ v,−u,−λu

)⊤
,

and it follows that

κu

[(
λ

ρu
+ w

)
a1 − a2 − λa3

]
= 2

[(
1− u2

c2

)
λ

ρu
+ w

]
1

ρu
.

Observing that

w
∂( 1

ρu
)

∂u
−

∂( 1
ρu
)

∂v
= − w

ρu2
, w

∂w

∂v
+

∂w

∂u
= 0,

w
∂
(
1− u2

c2

)
∂u

−
∂
(
1− u2

c2

)
∂v

= −2v

c2
,

we have

2
[(

1− u2

c2

)
λ
ρu

+ w
]

1
ρu

κu

= 2λ

[
(1− u2

c2
)
λ

ρu
+ w

] [
− λ

ρu
∂u(

1

ρu
) +

w

ρu2
+ λ∂p(

1

ρu
)

]
−2

[(
1− u2

c2

)
λ

ρu
+ w

]
1

u

(
λ

ρu
+ w

)
λ

ρu
+ (

λ

ρu
)2
[
− λ

ρu
∂1

(
1− u2

c2

)
+

2v

c2

]
= −2

[(
1− u2

c2

)
λ

ρu
+ w

]
λ

γp

λ

ρu
+ (

λ

ρu
)2
[(

λ

ρu
+ w

)
2u

c2
+

u2

c2
(γ − 1)λ

γp

]
.

Multiplying both sides by ρu
λ2 yields

2

κ

[(
1− u2

c2

)
λ

ρu
+ w

]
1

λ2u
= (1 + γ)

u2

c2
λ

ρu

1

γp
.

Therefore we proved (2.11).

Suppose the equation of the shock-front is η = s(ξ). The Rankine-Hugoniot conditions
of the system (2.1) read (recall we set w = v/u, and as usual, [·] here represents jump of a
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quantity across the shock-front):

s′
[
1

ρu

]
+ [w] = 0, (2.13)

s′
[
u+

p

ρu

]
+ [pw] = 0, (2.14)

s′[v]− [p] = 0. (2.15)

We now formulate problem (E) as the following problem (L), which is an initial-boundary
value problem for equations (2.1):

(2.1) in ξ > 0, η > 0,

U(0, η) = U0(η) on ξ = 0, η > 0,

p = p
b

on ξ > 0, η = 0.

(2.16)

The weak entropy solutions of problem (2.16) can be defined in the standard way via the
integration by parts. The equivalence of weak solutions of problem (E) and problem (L) is
given by Theorem 2 in [16]. We remark that the initial data U0(ξ) here could totally be
solved from the initial data U0(y) in problem (E), see the proof of Lemma 6.1 in [6, p.1725].
If (1.5) holds, then it follows that

∥U0 − Ua∥BV((0,∞)) ≤ C0ε ≤ C0ε0, (2.17)

with a positive constant C0 depending only on Ua. Also, once U is solved from problem (L),
we can recover the characteristic discontinuity in Eulerian coordinates by

g(x) =

∫ x

0

v

u
(ξ, 0) dξ. (2.18)

Hence, to prove Theorem 1.1, we only need to prove the following theorem.

Theorem 2.2. Under the assumptions of Theorem 1.1, there exist constants ε0 and C so
that if the initial data U0 in problem (L) satisfies

∥U0 − Ua∥BV([0,∞)) ≤ ε ≤ ε0, (2.19)

then problem (L) has a unique weak entropy solution U constructed by the front tracking
method, and

i) there exists a vector U0 ∈ R4 so that limy→∞ U0(y) = U0, and

U − U0 ∈ C([0,∞);L1(0,∞)); (2.20)
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ii) there is a Lipschitz function η = s(ξ) representing the shock-front, with s(0) = 0, and

∥s′ − s∥L∞([0,∞)) ≤ Cε; (2.21)

∥(U − Ua)(ξ, ·)∥BV((s(ξ),∞)) ≤ Cε, ∀ξ > 0; (2.22)

∥(U − U b)(ξ, ·)∥BV((0,s(ξ))) ≤ Cε, ∀ξ > 0. (2.23)

Here s is the slope of the shock-front of the background solution U in its Lagrangian
coordinates;

iii) for any two initial data U1
0 and U2

0 satisfy (2.19) and assumptions in Theorem 1.1, it
holds that ∥∥U1(ξ)− U2(ξ)

∥∥
L1(R+)

≤ C
∥∥U1

0 − U2
0

∥∥
L1(R+)

for any ξ ≥ 0. Here U1 and U2 are the solutions of problem (L) corresponding to U1
0

and U2
0 , respectively, constructed by front tracking method.

The rest of this paper is devoted to proving this theorem.

3 Solvability of Riemann problems

In this section we study solvability of several typical Riemann problems that appear in the
process of front tracking. In the sequel, we will call the shock like that appearing in the back-
ground solution as the strong shock or the main shock, and all other waves/discontinuities
that comes from the upstream supersonic flows or wave interactions as weak waves. Because
the magnitude of the strong shock is much larger than the strengths of the other weak waves,
they should be treated differently.

3.1 Standard Riemann problem generating only weak waves

We now consider the standard Riemann problem, that is, system (2.1) with the piecewise
constant (supersonic) initial data

U |ξ=τ =

{
U+ η > η0,

U− η < η0,
(3.1)

where U+ and U− are the constant states which are regarded as the above/right state and
below/left state with respect to the line η = η0, respectively (cf. Figure 4).

The following solvability result is the well-known Lax’s theorem (see, for example, The-
orem 5.17 in [13, p.196] or Theorem 9.4.1 in [11, p.279]).

Lemma 3.1. For given constant supersonic data U0, there exists ϵ > 0 such that for any
states U−, U+ lie in the ball Oϵ(U0) ⊂ R4 with radius ϵ and center U0, the above Riemann

11



U−

U+

ξ

η
α3

α2

α1

Figure 4: A solution to the standard Riemann problem.

problem admits a unique admissible solution consisting of three elementary waves. In addi-
tion, the state U+ can be represented by

U+ = Φ(α3, α2, α1;U−). (3.2)

Here Φ is the wave curves determined by the system (2.1) near U0.

It is well-known that one can use the parameters αj to bound |U+ − U−|: there is a
positive constant B depending continuously on U0 and ϵ so that for U± connected by (3.2),
there holds

1

B

3∑
j=1

|αj| ≤ |U+ − U−| ≤ B
3∑

j=1

|αj|.

For later applications, it is also important to express the Riemann solver from right
(upper) state U+ to left (lower) state U− rather than the usual way given above. For U+ =

Φj(αj;U−), we may have a C2 map U− = Ψj(αj;U+) with Ψj(0;U) = U and ∂αj
Ψj(0;U) =

−rj(U). So for U+ = Φ(α3, α2, α1;U−), we may express U− in terms of U+ by

U− = Ψ(α1, α2, α3;U+) = Ψ1(α1; Ψ2(α2; Ψ3(α3;U+))),

and of course there holds Ψ(0, 0, 0;U) = U , as well as ∂αj
Ψ(0, 0, 0;U) = −rj(U).

3.2 Boundary Riemann problems that generating only weak waves

We show the following boundary Riemann problem with the boundary data p = p
b

on the
characteristic boundary {η = 0} is uniquely solvable (cf. Figure 5).

Lemma 3.2. Consider the following boundary Riemann problem:
(2.1) in ξ > 0, η > 0,

U = U+ on ξ = 0, η > 0,

p = p
b

on ξ > 0, η = 0.

(3.3)

12



ξ
p = p

β

η

U+

Figure 5: A 3-shock in a solution of the boundary Riemann problem.

There exists ε > 0 so that, if U+ lies in the ball Oε(Ub) with center Ub and radius ε, then
there is a unique admissible solution that contains only a 3-wave.

Proof. 1. Note that system (2.1) is strictly hyperbolic for u > c. For each point U with
u > c, in its small neighborhood, we have the C2-wave curves Φj(α;U), j = 1, 2, 3, so that
Φj(0;U) = U and dΦj

dα
|α=0 = rj(U). Φj(α;U) is connected to U from the upper side by a

simple wave of j-family with strength |α|: for α > 0 and j = 1, 3, this wave is a rarefaction
wave; while for α < 0 and j = 1, 3, this wave is a shock. For j = 2, the wave is always a
characteristic discontinuity.

For our purpose, we note that there is also a C2-curve Ψ3(β;U) which consists of those
states that can be connected to U from below by a 3-wave of strength β. We have Ψ3(0;U) =

U and dΦj

dβ
|β=0 = −r3(U).

2. We set U = (u, v, p)⊤ in Lagrangian coordinates and use U(3) to represent the third
argument of the vector U (i.e. p). Then, to solve the boundary Riemann problem, it suffices
to show that there exists a unique β so that (Ψ3(β;U+))(3) = p

b
. Therefore, we consider the

following function:
L(β;U+) = Ψ3(β;U+))(3) −Ψ3(0;Ub))(3).

It is clear that L(0;Ub) = 0, and

∂L(0;Ub)

∂β
= −r3(Ub)(3) = K0 ,

(
κ3λ3u

)∣∣∣
Ub

< 0.

By the implicit function theorem, there exists ϵ > 0 such that, for U+ ∈ Oϵ(Ub), there is
a function β = β(U+) so that L(β(U+);U+) = 0. Then using the Taylor expansion up to
second order (recall that Ψj is C2 except at β = 0), we obtain the following estimate:

β = K(p+ − p
b
) +O(1)|U+ − Ub|2, (3.4)

with a constant K = −1/K0 > 0 depending only on Ub.
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3.3 Boundary Riemann problem generating a strong shock

We have shown the existence of background solutions. Now we consider the boundary
Riemann problem when U+ is a small perturbations of the background state Ua. A strong
shock should resolve this problem.

Lemma 3.3. For the boundary Riemann problem (3.3), there exist constants C and ε > 0

so that, if U+ lies in the ball Oε(Ua), then there is a unique admissible solution that contains
only a strong 3-shock with speed s′. The state of the flow behind the shock-front lies in
OCε(Ub), and |s′ − s| ≤ Cε.

Proof. 1. Let s′ be a parameter, we may write the Rankine-Hugoniot conditions (2.13) as
U = Υ(s′;U+), with U being the state of the gas behind the shock-front. Set

L(s′, U+) = Υ(s′;U+)(3) − p =
(
Υ(s′;U+)−Υ(s;Ua)

)
(3)
.

Recall that Ub = Υ(s;Ua), we have L(s, Ua) = 0.

2. Next we compute ∂s′L(s, Ua) = ∂s′Υ(s, Ua)(3). Consider U as a function of s′ for fixed
U+ in (2.13), we have [

1

ρu

]
− s′

ρu

(
1

u

∂u

∂s′
+

1

ρ

∂ρ

∂s′

)
+

∂w

∂s′
= 0,[

u+
p

ρu

]
+ s′

(
∂u

∂s′
+

1

ρu

∂p

∂s′
− p

ρu

(
1

u

∂u

∂s′
+

1

ρ

∂ρ

∂s′

))
+ p

∂w

∂s′
+ w

∂p

∂s′
= 0,

[v] + s′
∂v

∂s′
− ∂p

∂s′
= 0.

Note that
∂w

∂s′
=

1

u

∂v

∂s′
− v

u2

∂u

∂s′

and from the Bernoulli law:

u
∂u

∂s′
+ v

∂v

∂s′
+

γ

γ − 1

(
1

ρ

∂p

∂s′
− p

ρ2
∂ρ

∂s′

)
= 0,

that is,
1

ρ

∂ρ

∂s′
=

γ − 1

c2

(
u
∂u

∂s′
+ v

∂v

∂s′
+

γ

γ − 1

1

ρ

∂p

∂s′

)
.

Then we get that(
s′

ρu

(
1 + (γ − 1)

u2

c2

)
+

v

u

)
1

u

∂u

∂s′
−
(
1− s′

ρ

γ − 1

c2
v

)
1

u

∂v

∂s′
+

s′

ρu

1

p

∂p

∂s′
=

[
1

ρu

]
,(

s′u

γ

(
1− c2

u2

)
− pv

u

)
1

u

∂u

∂s′
+

(
p− s′

γ − 1

γ
v

)
1

u

∂v

∂s′
+ pw

1

p

∂p

∂s′
= −

[
u+

p

ρu

]
,

s′u
1

u

∂v

∂s′
− p

1

p

∂p

∂s′
= − [v] .
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We consider this as a linear algebraic system for the unknowns 1
u

∂u
∂s′

, 1
u

∂v
∂s′

and 1
p
∂p
∂s′

. The
determinant of the coefficient matrix is

∆ , −s′pu

(
1 + w2 + 2w

(
s′

ρu

)
+ (1− u2

c2
)

(
s′

ρu

)2
)
.

We claim that ∆|U=Ub,s
′=s ̸= 0. Suppose this is not true, then set t = s′/(ρu) and there

must hold (1− u2

c2
)t2 + 2wt + w2 + 1 = 0, or, recall t > 0 for the background solution, that

t =
w+

√
u2+v2

c2
−1

u2

c2
−1

∣∣∣∣
Ub

. In other words, it holds that

s =
ρuc2

u2 − c2
(w +

√
M2 − 1)

∣∣∣∣
Ub

= λ3(Ub).

This means that the background shock-front is a characteristic curve, while we know that
this is impossible since such shocks satisfy the Lax entropy condition (see [11, p.242] or [13,
p.189]), which requires that λ3(Ub) > s. From this we also see that ∆ < 0 at the background
state.

We also obtain that (at the background state U = Ub, s
′ = s)

∆3 , det


(

s
ρu

(
1 + (γ − 1)u

2

c2

)
+ v

u

)
−
(
1− s

ρ
γ−1
c2

v
)

−w
s(

su
γ

(
1− c2

u2

)
− pv

u

)
p− γ−1

γ
sv pw

s

0 su −v

 = suv

(
sv

p

γ − 1

γ
− 2

)
.

It is nonzero. Otherwise we should have [p] = sv = 2γp
γ−1

, that is, p > p − p
a
= 2γp

γ−1
> p, a

contradiction! Actually we see that ∆3 < 0.

Therefore by Cramer’s rule, we have ∂s′L(s;Ua) =
∂p
∂s′

=
(
p∆3

∆

)
> 0 at the background

state.
3. Hence by implicit function theorem, we could find a C1 function s′ = S (U+) so that

s = S (Ua) and L(S (U+);U+) = 0 in a neighborhood Oε(Ua). Then by continuity of Υ on s′

and U+, we find a constant C > 0 so that Υ(S (U+);U+) ∈ OCε(Ub). Since λ3(Υ(s;Ua)) > s,
by continuity we also have λ3(Υ(S (U+);U+)) > S (U+) for U+ ∈ OCε(Ub). Thus the
discontinuity we constructed is a 3-shock.

3.4 Riemann problem involving a strong shock

Lemma 3.4. There exist positive constants C, ε so that for U+ ∈ Oε(Ua) and U− ∈ OCε(Ub),
there is uniquely one admissible solution to the Riemann problem with initial data (3.1),
which contains a strong 3-shock and two weak waves of the first and second characteristic
family.
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O
ξ

η

U+

U

U−

s

β

α

Figure 6: The solution of Riemann problem (3.1) consists of a strong shock (red line) and two weak
waves (blue line).

Proof. 1. As illustrated in Figure 6, if such a solution does exist, it must satisfy

U+ = Υ(s,Φ2(β,Φ1(α,U−))),

where U+ = Υ(s, U) is the Rankine-Hugoniot conditions, and Φi represents the wave curve
of the i-th family in a neighborhood of Ub. In the following, we will employ the implicit
function theorem to complete the proof.

2. Set
L(s, β, α;U−, U+) = Υ(s,Φ2(β,Φ1(α,U−)))− U+.

We already know that L(s, 0, 0;Ub, Ua) = 0, hence there are constants C and ε such that
for U+ ∈ Oε(Ua) and U− ∈ OCε(Ub), we can solve uniquely one triple (s, β, α) depend-
ing continuously on (U+, U−), if the Jacobian ∂L

∂(s,β,α)
is nonsingular at (s, β, α;U−, U+) =

(s, 0, 0;Ub, Ua). We see that

∂L

∂(s, β, α)
=

(
∂Υ(s, U)

∂s
,
∂Υ(s, U)

∂U
· ∂U
∂β

,
∂Υ(s, U)

∂U
· ∂U
∂α

)
, (3.5)

and
∂U

∂β

∣∣∣
(s,0,0,Ub,Ua)

= r2(Ub), (3.6)

∂U

∂α

∣∣∣
(s,0,0,Ub,Ua)

= r1(Ub). (3.7)

Note that at the background state (s, 0, 0, Ub, Ua), the state U appeared above should be
Ub.

3. In order to evaluate ∂Υ(s,U)
∂s

and ∂Υ(s,U)
∂U

at (s, 0, 0, Ub, Ua), we differentiate the Rankine–

16



Hugoniot conditions U+ = Υ(s, U) with respect to s and U respectively.
The Rankine–Hugoniot conditions can be written in a symmetric form as follow:

sF (U+) +G(U+) = sF (U) +G(U), (3.8)

where

F (U) =


1
ρu

u+ p
ρu

v

 , and G(U) =

 w

pw

−p

 . (3.9)

Differentiation of (3.8) leads to

Q(U+)
∂U+

∂U
= Q(U), (3.10)

Q(U+)
∂U+

∂s
= F (U)− F (U+), (3.11)

where
Q(U) = s

∂F (U)

∂U
+

∂G(U)

∂U
. (3.12)

If Q(U+) (with U+ = Ua) is nonsingular, we could multiply it on the left-hand side of (3.5) to
simplify some computations later. Fortunately, Q(U+) is indeed nonsingular unless s equals
either λ1, λ2 or λ3, which is impossible due to the Lax entropy conditions of shocks.

4. We now verify the claim. A straightforward and direct calculation yields

∂F (U)

∂U
=


∂
∂u
( 1
ρu
) ∂

∂v
( 1
ρu
) ∂

∂p
( 1
ρu
)

p ∂
∂u
( 1
ρu
) + 1 p ∂

∂v
( 1
ρu
) p ∂

∂p
( 1
ρu
) + 1

ρu

0 1 0

 , (3.13)

∂G(U)

∂U
=

 ∂w
∂u

∂w
∂v

0

p∂w
∂u

p∂w
∂v

w

0 0 −1

 , (3.14)

hence

Q(U) =

 s ∂
∂u
( 1
ρu
) + ∂w

∂u
s ∂
∂v
( 1
ρu
) + ∂w

∂v
s ∂
∂p
( 1
ρu
)

ps ∂
∂u
( 1
ρu
) + p∂w

∂u
+ s sp ∂

∂v
( 1
ρu
) + p∂w

∂v
ps ∂

∂p
( 1
ρu
) + s

ρu
+ w

0 s −1

 . (3.15)

We also introduce a matrix M21(−p) =

 1 0 0

−p 1 0

0 0 1

 .

Set Q′(U) = M21(−p)Q(U). In the following we actually multiply Q′(U) on the left-hand
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side of (3.5) instead of Q(U). We calculate that

Q′(U) =

 s ∂
∂u
( 1
ρu
) + ∂w

∂u
s ∂
∂v
( 1
ρu
) + ∂w

∂v
s ∂
∂p
( 1
ρu
)

s 0 s
ρu

+ w

0 s −1


=

 −γ−1
γ

· s
p
− 1

u
( s
ρu

+ w) −γ−1
γ

· s
p
w + 1

u
−1

p
· s
ρu

s 0 s
ρu

+ w

0 s −1

 , (3.16)

and
detQ(U) = detQ′(U) =

s

u
(1− u2

c2
)(

s

ρu
− λ1

ρu
)(

s

ρu
− λ3

ρu
). (3.17)

Hence detQ(U+) ̸= 0.

5. Now our task is to verify that Q(U+)
∂L

∂(s,β,α)
is nonsingular if (s, β, α;U−, U+) =

(s, 0, 0;Ub, Ua). Noticing (3.10) and (3.11), we have

Q(U+)
∂L

∂(s, β, α)
=

(
F (U)− F (U+), Q(U)

∂U

∂β
,Q(U)

∂U

∂α

)
. (3.18)

In the following, we will write (s, Ub, Ua) as (s, U, U0) for simplicity. So the value of
(3.18) at (s, 0, 0;Ub, Ua) is simply (F (U)− F (U0), Q(U)r2(U), Q(U)r1(U)). We find that the
employment of M21(−p) will bring us a great deal of convenience. So we instead consider
the matrix

(M21(−p)[F (U)− F (U0)], Q
′(U)r2(U), Q′(U)r1(U)) . (3.19)

We start to calculate M21(−p)[F (U)−F (U0)]. According to (3.9) and Rankine-Hugoniot
conditions, we have

F (U)(1) − F (U0)(1) = −1

s
(G(U)(1) −G(U0)(1)) = −w

s
, (3.20)

F (U)(2) − F (U0)(2) = −1

s
(G(U)(2) −G(U0)(2)) = −pw

s
, (3.21)

F (U)(3) − F (U0)(3) = v − v0 = v. (3.22)

Thus, F (U)− F (U0) = (−w
s
,−pw

s
, v)⊤ and

M21(−p)[F (U)− F (U0)] = (−w

s
, 0, v)⊤. (3.23)

The second column Q′(U)r2(U) as well can be easily obtained:

Q′(U)r2(U) =

(
− s

ρu
[1 +M2(γ − 1)], su, sv

)⊤

. (3.24)
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As for Q′(U)r1(U), recall by setting r′1(U) = (v,−u, 0)⊤ and r′′1(U) = (λ1

ρ
, 0,−λ1)

⊤, then
r1(U) = κ1(U)(r′1(U) + r′′1(U)); and

Q′(U)r′1(U) =

(
−(

s

ρu
+ w2 + 1), sv,−su

)⊤

, (3.25)

Q′(U)r′′1(U) =

(
−[(1− u2

c2
)
s

ρu
+ w]

λ1

ρu
,−λ1v, λ1u

)⊤

. (3.26)

All together we get that

Q′(U)r1(U) = κ1(U)

 −(1− u2

c2
) s
ρu

λ1

ρu
− λ1

ρu
w − s

ρu
w − w2 − 1

(s− λ1)v

(s− λ1)(−u)


= κ1(U)

 [(1− u2

c2
)λ3

ρu
+ w]( s

ρu
− λ1

ρu
)

(s− λ1)v

(s− λ1)(−u)

 . (3.27)

Therefore we find

(M21(−p)[F (U)− F (U0)], Q
′(U)r2(U), Q′(U)r1(U))

=

 −w
s

− s
ρu
[1 +M2(γ − 1)] κ1(U)[(1− u2

c2
)λ3

ρu
+ w]( s

ρu
− λ1

ρu
)

0 su κ1(U)(s− λ1)v

v sv κ1(U)(s− λ1)(−u)

 . (3.28)

This matrix can be factored as the product M11(
1
ρu
)AM22(s)M33(κ1(U)(s − λ1)), with the

3× 3 matrix Mii(x) obtained by replacing the (i, i) entry of I3 by x, and

A =

 −ρv
s

−[1 +M2(γ − 1)] (1− u2

c2
)λ3

ρu
+ w

0 u v

v v −u

 . (3.29)

Clearly, none of the matrices Mii(i = 1, 2, 3) are singular. So we complete the proof if we
show that detA ̸= 0. This is true since

s

ρu

detA

uv
= 1 + w2 − w[2 +M2(γ − 1)]

s

ρu
− (1− u2

c2
)
λ1

ρu

= [(1− γ − 1

γ
· sv
p
)
λ3

ρu
+

s

ρu
](1− u2

c2
)
λ1

ρu
̸= 0. (3.30)

.
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4 Estimates on interactions of waves

In this section we consider four cases of wave interactions appearing in the front tracking
algorithm which lead to changes of flow field, namely: i) collisions of two weak waves; ii)
reflection of a weak wave off the boundary; iii) reflection of a weak wave from the strong
shock; iv) refraction of a weak wave by the strong shock from above.

4.1 Collision of weak waves

The interaction of two waves can be resolved by solutions of the corresponding Riemann
problems (cf. Figure 7). More importantly, we have the following well-known interaction
estimates of weak waves (see Theorem 9.9.1 in [11, p.312] or (6.11) in [13, p.212]):

Lemma 4.1. Suppose that U+, Um and U− are three states in a small neighborhood of U0

with U+ = Φ(α3, α2, α1;Um), Um = Φ(β3, β2, β1;U−), and U+ = Φ(γ3, γ2, γ1;U−). Then

γj = αj + βj +O(1)△(α, β), (4.1)

where △(α, β) = |β3|(|α1|+ |α2|) + |β2||α1|+
∑

j=1,3 △j(α, β), with

△j(α, β) =

{
0, αj ≥ 0, βj ≥ 0,

|αj||βj|, otherwise.

U−
β

U+

Umξ

η α

Figure 7: Interaction of two waves α, β.

4.2 Reflection of weak waves off boundary

Next we consider the reflection of a weak 1-wave off the boundary {η = 0}, that could only
produce a weak 3-wave (cf. Figure 8).
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ξ

α1 α3

Figure 8: A 1-wave α1 meets the boundary η = 0 and reflects to produce a 3-wave α3.

Lemma 4.2. Suppose that U l, Um, and U r are three states in Oϵ(Ub) for sufficiently small
ϵ, with Um = Φ1(α1;U

l) = Φ3(α3;U
r). Then

α3 = −K2α1 +M2|α1|2, (4.2)

with the constant K2 > 1 and the quantity M2 bounded in Oϵ(Ub).

Proof. We have Ur = Ψ3(α3,Φ1(α1, Ul)). By boundary conditions, it holds (Ur)(3) = (Ul)(3).
So we construct a function

L(α3, α1) = (Ψ3(α3,Φ1(α1, Ul))− Ul)(3).

Obviously L(0, 0) = 0, and

∂L

∂α3

(0, 0) = −(r3(Ul))(3),
∂L

∂α1

(0, 0) = (r1(Ul))(3).

So expanding the function α3 = α3(α1) at α1 = 0 leads to (4.2), with

K2 =
∂α3

∂α1

(0) = −
(r1(Ul))(3)
(r3(Ul))(3)

.

We note that

−
(r1(U b))(3)
(r3(U b))(3)

= −κ1λ1

κ3λ3

(U b) =

(
λ3

λ1

(U b)

)2

=

(√
M2 − 1 + w√
M2 − 1− w

∣∣∣∣
Ub

)2

> 1.

Here we used the identity κ3/κ1 = −λ3
1/λ

3
3 proved in (2.11), and the fact that w > 0 for the

background state U b. Therefore, K2 > 1 in a neighborhood of U b as claimed.
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4.3 Reflection of weak waves off strong shock

Now we consider the case that a weak 3-wave meets the strong shock and then reflects to
produce two weak waves and a deflected strong shock. See Figure 9.

Lemma 4.3. Suppose that U+ ∈ Oε(Ua) and U−, U
l
−, U

r
− ∈ Oε(Ub) for sufficiently small ε,

with U− = Ψ3(α3, U
l
−) = Ψ1(β1,Ψ2(β2, U

r
−)), and U+ = Υ(sk, U

l
−) = Υ(sk+1, U

r
−). Then

sk+1 − sk = C33α3 + C ′
3(|α3(sk − s)|+ |α3|2), (4.3)

β2 = C23α3 + C ′
2(|α3(sk − s)|+ |α3|2), (4.4)

β1 = C13α3 + C ′
1(|α3(sk − s)|+ |α3|2), (4.5)

where C13 and C23, C33 are constants depending only on the background solution U , and
particularly,

C13 = −(s− λ3)

(s− λ1)
·

[(
1− γ−1

γ
sv
p

)
λ1 + s

]
[(

1− γ−1
γ

sv
p

)
λ3 + s

] · λ2
1

λ2
3

∣∣∣∣∣∣
U=Ub,s=s

. (4.6)

Also, C ′
i (i = 1, 2, 3) are bounded quantities with bounds determined by the background solu-

tion.

O ξ

η

U+ Ur
−

U−

Ul
−

sk

sk+1

β2

β1

α3

Figure 9: A weak 3–wave (blue solid line) meets the strong shock sk (red solid line) from below and
reflects to produce a 1–wave β1 and a 2–wave β2 (blue dot line), while the strong shock is deflected
(red dot line) to sk+1.

Proof. 1. According to Lemma 3.4, there exists a vector-valued C2 function f , such that
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(sk+1 − s, β2, β1) = f(sk − s, αi). Since

f(x, y) = −f(0, 0) + f(x, 0) + f(0, y) + xy

∫ 1

0

∫ 1

0

∂2f

∂x∂y
(tx, sy) dt ds,

and note that f(0, 0) = 0, while D2f is bounded, we have

f(sk − s, αi) = −f(0, 0) + f(sk − s, 0) + f(0, αi) +O(αi(sk − s))

= f(sk − s, 0) +
∂f

∂αi

αi +O(α2
i + αi(sk − s))

= (sk − s, 0) + Cαi + C ′(α2
i + αi(sk − s)). (4.7)

So in the following, we need to calculate

C =
∂(sk+1 − s, β2, β1)

∂(α3, α2, α1)

∣∣∣
(s,0,0;Ub,Ua)

=

C33 C32 C31

C23 C22 C21

C13 C12 C11

 . (4.8)

Of course we will see that only the first column (C33, C23, C13)
⊤ is necessary, because the

other two columns will turn out to be (0, 1, 0)T and (0, 0, 1)T , which matches the fact that
α1 and α2 could never meet the strong shock from below.

2. By chain rule we have

∂U−

∂αi

=
∂U−

∂(sk+1, β2, β1)
· ∂(sk+1 − s, β2, β1)

∂αi

= (
∂U−

∂U r
−

∂U r
−

∂sk+1

,
∂U−

∂β2

,
∂U−

∂β1

) · ∂(sk+1 − s, β2, β1)

∂αi

.

(4.9)

Evaluating this equality at the state αi = 0, β1 = β2 = 0 and sk = sk+1 = s (so ∂U−
∂Ur

−
= I3,

and U r
− = U−), because of (3.10), we get

Q(U−)
∂U−

∂αi

= (Q(U r
−)

∂U r
−

∂sk+1

, Q(U−)
∂U−

∂β2

, Q(U−)
∂U−

∂β1

) · ∂(sk+1 − s, β2, β1)

∂αi

. (4.10)

If we plug the background state U− = Ub into (4.10), it follows that

−Q(Ub)ri(Ub) = (F (Ua − F (Ub),−Q(Ub)r2(Ub),−Q(Ub)r1(Ub)) · Ci. (4.11)

Here we have used the fact that U r
− = Υ(sk+1, U+) which follows from U+ = Υ(sk+1, U

r
−).

For convenience, we write (4.11) all together as

−Q(U)(r3(U), r2(U), r1(U)) = (F (U0)− F (U),−Q(U)r2(U),−Q(U)r1(U)) · C, (4.12)
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which is equivalent to

(F (U)− F (U0), Q(U)r2(U), Q(U)r1(U)) · C = Q(U)(r3(U), r2(U), r1(U)). (4.13)

3. Now we find that the effect of C is just to convert the first column F (U)− F (U0) to
Q(U)r3(U), while the second and the third column of C should be (0, 1, 0)⊤ and (0, 0, 1)⊤

respectively. So the first column of C, that is, C3 = (C33, C23, C13)
⊤, is our only concern.

To solve C, we resort again to M21(−p) and multiply it to both sides of (4.13) from the
left. This leads to

(M21(−p)(F (U)− F (U0)), Q
′(U)r2(U), Q′(U)r1(U)) · C = Q′(U)(r3(U), r2(U), r1(U)),

(4.14)

which is equivalent to

A ·M22(s) ·M33(κ1(U)(s− λ1)) · C
= B ·M11(κ3(s− λ3))M22(s) ·M33(κ1(U)(s− λ1)).

(4.15)

Here, A is the same as in (3.29), and

B =

 (1− u2

c2
)λ1

ρu
+ w −[1 +M2(γ − 1)] (1− u2

c2
)λ3

ρu
+ w

v u v

−u v −u

 . (4.16)

Because only (A−1B)(1) (which is the first column of A−1B) is necessary, we will not
bother with the rest of columns. In accordance with C, we write A as (A3, A2, A1) and B as
(B3, B2, B1), while Ai = (a3i, a2i, a1i)

⊤, Bi = (b3i, b2i, b1i)
⊤ are column vectors. Notice that

A2 = B2 and A1 = B1. Then

(A−1B)(1) = A−1B3 = A−1A1 + A−1(B3 − A1) = A−1A1 + A−1(B3 −B1)

=

0

0

1

+ (1− u2

c2
)(
λ1

ρu
− λ3

ρu
) · 1

|A|
·

 −u2 − v2

v2

−uv



=


−(1− u2

c2
)(λ1

ρu
− λ3

ρu
)u

2+v2

|A|

(1− u2

c2
)(λ1

ρu
− λ3

ρu
) v2

|A|

1− (1− u2

c2
)(λ1

ρu
− λ3

ρu
) uv
|A|

 . (4.17)

24



According to (4.16), we can solve C3 out as follows:

M33

(
1

κ1(U)(s− λ1)

)
M22

(
1

s

)
(A−1B)(1)(κ3(U)(s− λ3))

=



− 1
|A|

(
1− u2

c2

)(
λ1

ρu
− λ3

ρu

)
(u2 + v2)κ3(U)(s− λ3)

1
s

1
|A|

(
1− u2

c2

)(
λ1

ρu
− λ3

ρu

)
v2κ3(U)(s− λ3)

κ3(U)(s−λ3)
k1(U)(s−λ1)

[
1− 1

|A|

(
1− u2

c2

)(
λ1

ρu
− λ3

ρu

)
uv
]


. (4.18)

From (3.30), we know that

s

ρu

|A|
uv

−
(
1− u2

c2

)(
λ1

ρu
− λ3

ρu

)
s

ρu

=

[(
1− γ − 1

γ

sv

p

)
λ3

ρu
+

s

ρu

](
1− u2

c2

)
λ1

ρu
−
(
1− u2

c2

)(
λ1

ρu
− λ3

ρu

)
s

ρu

=

[(
1− γ − 1

γ

sv

p

)
λ1

ρu
+

s

ρu

](
1− u2

c2

)
λ3

ρu
, (4.19)

hence,

1− 1

|A|

(
1− u2

c2

)(
λ1

ρu
− λ3

ρu

)
uv =

s
ρu

|A|
uv

−
(
1− u2

c2

)(
λ1

ρu
− λ3

ρu

)
s
ρu

s
ρu

|A|
uv

=

[(
1− γ−1

γ
sv
p

)
λ1

ρu
+ s

ρu

] (
1− u2

c2

)
λ3

ρu[(
1− γ−1

γ
sv
p

)
λ3

ρu
+ s

ρu

] (
1− u2

c2

)
λ1

ρu

=

[(
1− γ−1

γ
sv
p

)
λ1 + s

]
λ3[(

1− γ−1
γ

sv
p

)
λ3 + s

]
λ1

. (4.20)

In Lemma 2.1 we showed that

2

u

[(
1− u2

c2

)
λ

ρu
+ w

]
= (1 + γ)

u2

c2
λ

ρu

λ2

ρc2
· κ(U),

therefore

κ3

κ1

=

(
1− u2

c2

)
λ3

ρu
+ w(

1− u2

c2

)
λ1

ρu
+ w

· λ
3
1

λ3
3

= −λ3
1

λ3
3

, (4.21)
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and

C13 = −(s− λ3)

(s− λ1)
·

[(
1− γ−1

γ
sv
p

)
λ1 + s

]
[(

1− γ−1
γ

sv
p

)
λ3 + s

] · λ2
1

λ2
3

, (4.22)

C23 =
1

s

1

|A|

(
1− u2

c2

)(
λ1

ρu
− λ3

ρu

)
v2κ3(U)(s− λ3), (4.23)

C33 = − 1

|A|

(
1− u2

c2

)(
λ1

ρu
− λ3

ρu

)
(u2 + v2)κ3(U)(s− λ3). (4.24)

4.4 On product of reflection coefficients K2C13

Recall the reflection coefficient K2 appeared in Lemma 4.2, we have that

|C13K2| =

∣∣∣∣∣∣(s− λ3)

(s− λ1)
·

[(
1− γ−1

γ
sv
p

)
λ1 + s

]
[(

1− γ−1
γ

sv
p

)
λ3 + s

]
∣∣∣∣∣∣ . (4.25)

To construct a Glimm functional, it is crucial to have |C13K2| < 1, which means waves are
weakened after consequential reflections.

Note here that, by the Rankine-Hugoniot conditions,

a , 1− γ − 1

γ

sv

p
=

1

γ
+

γ − 1

γ

p0
p

∈ (
1

γ
, 1).

By Lax entropy condition, we also have 0 < s < λ3. So∣∣∣∣s− λ3

s− λ1

· aλ1 + s

aλ3 + s

∣∣∣∣ < 1 ⇔
{

(s− λ3)(aλ1 + s) < (s− λ1)(aλ3 + s), 1⃝
−(s− λ1)(aλ3 + s) < (s− λ3)(aλ1 + s), 2⃝

In fact, 1⃝ always holds for s > 0, while

2⃝ ⇔ s2 + (a− 1) · λ1+λ3

2
s− aλ1λ3 > 0.

Let
s′ = (

u2

c2
− 1)

s

ρu
= (

u2

c2
− 1)

p− p0
ρu2w

and λ′
i = (u

2

c2
−1) λi

ρu
. Note that λ′

1+λ′
3

2
= w, λ′

1λ
′
3 = w2+1−M2, so (recall M = (u2+v2)/c2 >

1)
2⃝ ⇔ s′2 + (a− 1)ws′ − a(w2 + 1−M2) > 0.
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Therefore we see that |C13K2| < 1 holds if and only if u > c and(
u2

c2
− 1

)(
p− p0
ρu2

)2

− (γ − 1)
v2

c2

(
p− p0
ρu2

)2

+

(
1

γ
+

γ − 1

γ

p0
p

)
w2(1 + w2) > 0,

and the last inequality could further be simplified as(
p− p0

p

)2(
c2

u2

)[
1− c2

u2
− (γ − 1)w2

]
+ γ

(
1 + (γ − 1)

p0
p

)
w2(1 + w2) > 0. (4.26)

We recall here that p0 = p
a

and p = p
b
, u = ub, c = cb, w = wb > 0. By Rankine-

Hugoniot conditions, for given Ua, we could write the left-hand side of (4.26) as a function
of pressure, namely f(p). Furthermore, entropy condition implies that p > p0. So f(p) > 0

holds obviously if p > p0 and p − p0 is small (which implies w > 0 small from the p-w
shock polar). Therefore by continuity of f , there is a p∗ > p0 so that f(p) > 0 for all
p ∈ (p0, p∗). Here p∗ is determined by Ua. Then for the background solution (Ua, U b), it
holds |C13K2| < 1. This estimate also holds for the approximate solution U δ constructed
by the front tracking method, since it should be a small perturbation from the background
solution.

4.5 Refraction of weak wave by strong shock

We now consider the case that weak waves meet the strong shock from above (cf. Figure
10).

Lemma 4.4. Suppose that U+, U
l
+ ∈ Oε(Ua) and U−, U

r
− ∈ Oε(Ub), for sufficiently small ε,

with
U+ = Φ1(α1,Φ2(α2,Φ3(α3,Υ(sk, U−)))) = Υ(sk+1,Φ2(β2,Φ1(β1, U−))).

Then (with α = (α1, α2, α3))

sk+1 − sk =
3∑

j=1

C̄3jαj + C̄ ′
3(|α|2 + |α||sk − s|), (4.27)

β2 =
3∑

j=1

C̄2jαj + C̄ ′
2(|α|2 + |α||sk − s|), (4.28)

β1 =
3∑

j=1

C̄1jαj + C̄ ′
1(|α|2 + |α||sk − s|), (4.29)

for some constants C̄ij depending only on Ua and Ub. Also, C̄ ′
i (i = 1, 2, 3) are bounded

quantities with bounds determined by the background solution.

Proof. This proof is similar to that of Lemma 4.3, but simpler since we do not need the
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O
ξ

η

U+
Ur

−

U−
Ul

+

sk

sk+1

β2

β1αi

Figure 10: A weak wave αi (blue solid line) of the i-th family meets the strong shock (red solid
line) from above, and then penetrates it to produce a 1–wave β1 and a 2–wave β2 (blue dot line),
and a deflected strong shock sk+1 .

specific expressions of the coefficients C̄. By (4.7) and (4.8), the goal is to solve

C̄ =
∂(sk+1 − s, β2, β1)

∂(α3, α2, α1)

∣∣∣
(s,0,0;Ub,Ua)

,

which is the Jacobian of (sk+1 − s, β2, β1) = f(sk − s, α3, α2, α1) with respect to (α3, α2, α1).
According to the chain rule, we get

∂U+

∂(α3, α2, α1)
=

∂U+

∂(sk+1, β2, β1)
· ∂(sk+1 − s, β2, β1)

∂(α3, α2, α1)

= (
∂U+

∂sk+1

,
∂U+

∂U r
−
·
∂U r

−

∂β2

,
∂U+

∂U r
−
·
∂U r

−

∂β1

) · ∂(sk+1 − s, β2, β1)

∂(α3, α2, α1)
. (4.30)

Multiplying both sides of (4.30) by Q(U+) from the left, then it becomes (using (3.10) and
(3.11))

Q(U+)
∂U+

∂(α3, α2, α1)
= (F (U r

−)− F (U+), Q(U r
−) ·

∂Ur
−

∂β2
, Q(U r

−) ·
∂Ur

−
∂β1

) · ∂(sk+1−s,β2,β1)

∂(α3,α2,α1)
.

Evaluating this equation at the background state, we get (comparing to (4.12))

Q(U0)(r3(U0), r2(U0), r1(U0)) = (F (U)− F (U0), Q(U)r2(U), Q(U)r1(U)) · C̄. (4.31)
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As in the derivation of (4.15), direct computation yields that

M21(p0 − p)M21(p0)M21(−p0)Q(U0)(r3(U0), r2(U0), r1(U0))

= M11(
1
ρu
) · A ·M22(s) ·M33(κ1(U)(s− λ1)) · C̄.

(4.32)

Here A is given by (3.29). Since detA ̸= 0, we could solve uniquely the coefficients C̄.

5 The Glimm functional

In this section, we will construct a Glimm functional denoted by G(ξ) which controls the
distance from the approximate solutions to the background solution in the sense of total
variation and show G(ξ) is decreasing with respect to the ‘time’ ξ. There are mainly two
classes of terms to handle: one is the total variation, and the other is the interaction potential.

5.1 Definition of Glimm functional

For the total variation, we define the following functionals without weights:

T a
0 (ξ)

∆
=
∑
above

(|α1|+ |α2|+ |α3|),

T s
0 (ξ)

∆
= |sk − s|,

T b
0 (ξ)

∆
=
∑
below

(|β1|+ |β2|+ |β3|).

Here, ‘above’ (respectively, ‘below’) means the summation is over all the weak waves at the
time ξ above (respectively, below) the strong shock, and αk means the wave is of the k-th
family. Then we define

T0(ξ)
∆
= T a

0 (ξ) + T s
0 (ξ) + T b

0 (ξ),

which controls the total variation of the flow field at time ξ and the perturbation of the
slope of the strong shock-front. It should be small to guarantee the solvability of Riemann
problems in section 3.

To handle the wave reflections/refractions, we introduce the following weighted function-
als:

T a(ξ)
∆
=

∑
above

A(|α1|+ |α2|+ |α3|),

T s(ξ)
∆
= Cs|sk − s|,

T b(ξ)
∆
=

∑
below

(B1|β1|+B2|β2|+B3|β3|),
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and

T (ξ)
∆
= T a(ξ) + T s(ξ) + T b(ξ).

Here A,Cs, B1, B2, B3 are positive constants to be chosen. They should depend only on the
background solution.

To handle the wave interactions, we firstly define the sets:

A(ξ) ∆
= {(α, β)|α and β are waves above the strong shock approaching to each other},

B(ξ) ∆
= {(α, β)|α and β are waves below the strong shock approaching to each other},

As(ξ)
∆
= {α|α is a weak above the strong shock},

Bs(ξ)
∆
= {β|β is a 3-wave lying below the strong shock}.

Here the meaning of two weak waves approaching is the same as that introduced by Glimm
(see [11, p.311] or [13, p.215]). We also see that As (respectively, Bs) is actually the set of
weak waves that approaching the strong shock from above (respectively, below).

We then define

Qa(ξ)
∆
=

∑
(α,β)∈A

|α| · |β|, Qb(ξ)
∆
=

∑
(α,β)∈B

|α| · |β|

to be the (weak) wave interaction potential above and below the strong shock respectively,
and define

Qas(ξ)
∆
=
∑
α∈As

|α| · |sk − s|, Qbs(ξ)
∆
=
∑
β∈Bs

|β| · |sk − s|

to be the weak wave–strong shock interaction potential from above and below, respectively.
We then define the weighted total interaction potential

Q(ξ)
∆
= CaQ

a(ξ) + CbQ
b(ξ) + CasQ

as(ξ) + CbsQ
bs(ξ).

Finally, the Glimm functional is given by

G(ξ) , T (ξ) +Q(ξ).

5.2 Changes of Glimm functional

Now our aim is to find appropriate coefficients A,B1, B2, B3, Cs, Ca, Cb, Cas, Cbs that de-
pending only on the background solution, so that by choosing T0(ξ) small (this can be
done by requiring that ε0, the perturbation of the initial data, to be small), then G(ξ) is
non-increasing; that is, G(ξ+)−G(ξ−) ≤ 0 for any finite time ξ.
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In the following, we need to analyze five different cases.

5.2.1 Case 1: A weak wave α1 hits the boundary.

We assume that at time ξ, a 1-wave α1 meets the boundary {η = 0} and reflects to a 3-wave
β3, see Figure 11. For this case, T a(ξ), T s(ξ), Qa(ξ), Qas(ξ) experience no change. We then
check one by one the rest of the three terms as follows, where have we used the corresponding
wave interaction estimates established in the previous section.

sk

β3

ξ

α1

Figure 11: Case 1.

T b(ξ+)− T b(ξ−) = B3|β3| −B1|α1| ≤ B3(|K2|α1 +O(1)|α1|2)−B1|α1|
= (B3K2 −B1)|α1|+B3O(1)|α1|2,

Qbs(ξ+)−Qbs(ξ−) = |β3| · |sk − s|
≤ |K2||α1| · |sk − s|+O(1)|α1|2| · |sk − s|,

Qb(ξ+)−Qb(ξ−) =
∑

(α,β3)∈B

|α| · |β3| −
∑

(α,α1)∈B

|α| · |α1|

≤
∑

(α,β3)∈B

|α| · |β3| ≤ T b
0 (ξ) · |β3|

= T b
0 (ξ)|K2||α1|+ T b

0 (ξ)O(1)|α1|2.

Here and below we use O(1) to represent a bounded quantity with the bounds depending
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only on the background solution. Combine the above estimates, we have

G(ξ+)−G(ξ−) ≤ (B3K2 −B1 + CbT
b
0 (ξ−)K2)|α1|+ (B3O(1) + CbT

b
0 (ξ−)O(1))|α1|2

+CbsK2|α1| · |sb − s|+ CbsO(1)|α1|2 · |sb − s|
≤ [B3K2 + CbT

b
0 (ξ−)K2 −B1 + T b

0 (ξ−)B3O(1)

+CbT
b
0 (ξ−)O(1) + CbsK2T

s
0 (ξ−) + CbsO(1)T b

0 (ξ−)T
s
0 (ξ−)]|α1|

=
{
[B3K2 −B1] + T0(ξ−)

[
B3O(1) + CbK2

+CbT
b
0 (ξ−)O(1) + CbsK2 + CbsO(1)T0(ξ−)

]}
|α1|.

(5.1)

5.2.2 Case 2: A weak wave α3 hits strong shock from below

sk

sk+1

β2

β1

α3 ξ

Figure 12: Case 2.

See figure 12, suppose that a weak wave a3 hits the strong shock sk and produces β1, β2,
and sk+1. In this case, T a and Qa have no any change, while

T b(ξ+)− T b(ξ−) = B1|β1|+B2|β2| −B3|α3|
≤ B1

(
|C13||α3|+ C ′

1(|α3|2 + |α3||sk − s|
)

+B2

(
|C23||α3|+ C ′

2(|α3|2 + |α3||sk − s|
)
−B3|α3|

≤
(
B1|C13|+B2|C23| −B3

)
|α3|+

(
B1C

′
1 +B2C

′
2

)
|α3|2

+
(
B1C

′
1 +B2C

′
2

)
|α3| · |sk − s|,

T s(ξ+)− T s(ξ−) = Cs|(|sk+1 − s| − |sk − s|)
≤ Cs|sk+1 − sk| ≤ Cs

[
|C33||α3|+ C ′

3(|α3|2 + |α3| · |sk − s|)
]

≤ Cs|C33||α3|+ CsC
′
3|α3|2 + CsC

′
3|α3| · |sk − s|
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and

Qb(ξ+)−Qb(ξ−) =
∑

(β,β1)∈B
|β1| · |β|+

∑
(β,β2)∈B

|β2| · |β| −
∑

(β,α3)∈B
|α3| · |β|

≤
∑

(β,β1)∈B
|β1| · |β|+

∑
(β,β2)∈B

|β2| · |β|

≤ T b
0 (ξ−)

[
|C13||α3|+ C ′

1(|α3|2 + |α3| · |sk − s|)
+|C23||α3|+ C ′

2(|α3|2 + |α3| · |sk − s|)
]

= T b
0 (ξ−)(|C13|+ |C23|)|α3|+ T 0

b (ξ−)(C
′
1 + C ′

2)|α3|2
+T b

0 (ξ−)(C
′
1 + C ′

2)|α3| · |sk − s|,
Qbs(ξ+)−Qbs(ξ−) ≤ [

∑
α∈As

|α||sk+1 − s| −
∑

α∈As

|α||sk − s| − |β3| · |sk − s|]

≤ T b
0 (ξ−)|sk+1 − sk| − |α||sk − s|

≤ T b
0 (ξ−)

[
|C33||α3|+ C ′

3(|α3|2 + |α3||sk − s|)
]
− |α3||sk − s|

= T b
0 (ξ−)|C33||α3|+ T b

0 (ξ−)C
′
3|α3|2 +

(
T b
0 (ξ−)C

′
3 − 1

)
|α3||sk − s|

≤ T b
0 (ξ−)|C33||α3|+ T b

0 (ξ−)C
′
3|α3|2 + (T0(ξ−)C

′
3 − 1)|α3||sk − s|,

Qas(ξ+)−Qas(ξ−) =
∑

α∈As

|α|(|sk+1 − s| − |sk − s|)

≤
∑

α∈As

|α|(|sk+1 − sk|)

≤ T0(ξ−)
(
|C33||α3|+ C ′

3(|α3|2 + |α3| · |sk − s|
)

= T0(ξ−)|C33||α3|+ T0(ξ−)C
′
3|α3|2 + T0(ξ−)C

′
3|α3| · |sk − s|.
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Therefore we have

G(ξ+)−G(ξ−) =
(
B1|C13|+B2|C23| −B3 + Cs|C33|

)
|α3|

+
(
B1C

′
1 +B2C

′
2 + CsC

′
3

)
|α3|2

+
(
B1C

′
1 +B2C

′
2 + CsC

′
3

)
|α3| · |sk − s|

+CbT
b
0 (ξ−)

(
|C13|+ |C23|

)
|α3|+ T0(ξ−)O(1)Cas|α3|

+CbT0(ξ−)O(1)|α3|2 + CbT0(ξ−)O(1)|α3||sk − s|
+CbsT0(ξ−)O(1)|α3|+ CbsT0(ξ−)O(1)|α3|2 + CasT0(ξ−)O(1)|α3|2
+Cbs

(
T0(ξ−)O(1)− 1

)
|α3||sk − s|+ CasT0(ξ−)O(1)|α3||sk − s|

=
{[

B1|C13|+B2|C23| − B3 + Cs|C33|
]
+
(
B1C

′
1 +B2C

′
2 + CsC

′
3

)
T0(ξ−)

+CbT0(ξ−)O(1) + CasT0(ξ−)O(1) + CbT0(ξ−)
2O(1) + CbsT0(ξ−)O(1)

+CbsT0(ξ−)
2O(1) + CasT0(ξ−)

2O(1)
}
|α3|

+
[
B1C

′
1 +B2C

′
2 + CsC

′
3 + CbT0(ξ−)O(1)

+CasT0(ξ−)O(1) + Cbs(T0(ξ−)O(1)− 1)
]
|α3||sk − s|

=
{[

B1C13 +B2C23 −B3 + CsC33

]
+T0(ξ−)

[
B1C

′
1 +B2C

′
2 + CsC

′
3 + CbO(1)

+CasO(1) + CbT0(ξ−)O(1) + CbsO(1)

+CbsT0(ξ−)O(1) + CasT0(ξ−)O(1)
]}

|α3|

+
{
B1C

′
1 +B2C

′
2 + CsC

′
3 + CbT0(ξ−)O(1)

+CasT0(ξ−)O(1) + Cbs

[
T0(ξ−)O(1)− 1

]}
|α3||sk − s|.

(5.2)

5.2.3 Case 3: Two weak waves collide below the strong shock

We assume that two waves αi, αj collide below the strong shock and produces β1, β2, β3. So
for this case, T a, Qa, Qas and T s have no change, but

T b(ξ+)− T b(ξ−) ≤ O(1)(B1 +B2 +B3)|αiαj|. (5.3)

Actually there are five cases for (i, j) in (αi, αj), namely (1, 1), (2, 1), (3, 1), (3, 2), (3, 3). We
take (i, j) = (1, 3) as an example:

T b(ξ+)− T b(ξ−) = B3|β3|+B2|β2|+B1|β1| − B1|α1| −B3|α3|
= B3[O(1)|α1α3|] +B1[O(1)|α1α3|] +B2[O(1)|α1α3|]
= O(1)(B1 +B2 +B3)|α1α3|.
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Figure 13: Case 3.

For the rest of the two terms, there hold that

Qb(ξ+)−Qb(ξ−) ≤ |αi| · |αj|[O(1)T b
0 (ξ−)− 1],

Qbs(ξ+)− (ξ−) ≤ O(1)|αi| · |αj||sk − s|.

To prove this we also need to consider five cases as above. We take the case (3, 3) (namely,
two 3-waves (α3, γ3) meet and one of which is a shock) as an example:

Qbs(ξ+)−Qbs(ξ−) = [|β3||sk − s| − |α3||sk − s| − |γ3||sk − s|]
= O(1)|α3||γ3||sk − s|.

Hence in this case we proved that

G(ξ+)−G(ξ−) =
[
(B1 +B2 +B3)O(1) + Cb(T0(ξ−)O(1)− 1) +O(1)CbsT0(ξ−)

]
|αiαj|.

(5.4)

5.2.4 Case 4: A weak wave hits strong shock from above

We assume that at ξ, a weak wave αi hits the strong shock from above and produces β1, β2

and sk+1, see Figure 14. In this case, all the seven terms in the Glimm functional experience
changes. We have
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T a(ξ+)− T a(ξ−) = −A|αi|,
T b(ξ+)− T b(ξ−) = B1|β1|+B2|β2|

≤ B1

[
|C̄1i||αi|+ C ′

1(|αi|2 + |αi||sk − s|)
]

+B2

[
|C̄2i||αi|+ C ′

2(|αi|2 + |αi||sk − s|)
]

≤
(
B1|C̄1i|+B2|C̄2i|

)
|αi|+

(
B1C

′
1 +B2C

′
2

)
|αi|2

+(B1C
′
1 +B2C

′
2)|αi||sk − s|,

T s(ξ+)− T s(ξ−) = Cs|(|sk+1 − s| − |sk − s|) ≤ Cs|sk+1 − sk|
= Cs|C̄3i||αi|+ CsC

′
3|αi|2 + CsC

′
3|αi| · |sk − s|.

Here, coefficients like C̄3i come from Lemma 4.4. It is also easy to see that

Qa(ξ+)−Qa(ξ−) = −
∑

(α,αi)∈A
|α| · |αi| ≤ 0,

Qas(ξ+)−Qas(ξ−) = −|sk − s| · |αi|,

and

Qb(ξ+)−Qb(ξ−) =
∑

(β,β1)∈B
|β| · |β1|+

∑
(β,β2)∈B

|β| · |β2| ≤ T b
0 (ξ−)(|β1|+ |β2|)

≤ T b
0 (ξ−)

[(
|C̄1i|+ |C̄2i|

)
|αi|+ (|C ′

1|+ |C ′
2|)(|αi|2 + |αi||sk − s|)

]
≤ T b

0 (ξ−)(|C̄1i|+ |C̄2i|)|αi|+ T b
0 (ξ−)(|C ′

1|+ |C ′
2|)|αi|2

+T b
0 (ξ−)(|C ′

1|+ |C ′
2|)|αi||sk − s|,

Qbs(ξ+)−Qbs(ξ−) = (|sk+1 − s| − |sk − s|) ·
∑

β3∈Bs

|β3| ≤ |sk+1 − sk|T b
0 (ξ−)

≤ T b
0 (ξ−)

[
|C̄3i||αi|+ C ′

3(|αi|2 + |αi| · |sk − s|)
]

= T b
0 (ξ−)|C̄3i||αi|+ T b

0 (ξ−)C
′
3|αi|2 + T b

0 (ξ−)C
′
3|αi||sk − s|.
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It follows that

G(ξ+)−G(ξ−) =
[
− A+ Cs|C̄3i|+B1|C̄1i|+B2|C̄2i|+ CbT0(ξ−)O(1) + CbsT0(ξ−)O(1)

]
|αi|

+
[
CsC

′
3 +B1C

′
1 +B2C

′
2 + CbT0(ξ−)(C

′
1 + C ′

2) + CbsT0(ξ−)O(1)
]
|αi|2

+
[
CsC

′
3 +B1C

′
1 +B2C

′
2 + CbT0(ξ−)(C

′
1 + C ′

2) + CbsT0(ξ−)O(1)
]
|αi||sk − s|

=
{[

− A+ Cs|C̄3i|+B1|C̄1i|+B2|C̄2i|
]

+
[
CbO(1) + CbsO(1) + CsC

′
3 +B1C

′
1 +B2C

′
2

]
T0(ξ−)

+T0(ξ−)
[
CbO(1) + CbsO(1)

]}
|αi|+

{[
CsC

′
3 − Cas +B1C

′
1 +B2C

′
2

]
+T0(ξ−)

[
CbO(1) + CbsO(1)

]}
· |αi||sk − s|.

(5.5)

5.2.5 Case 5: Two weak waves above the strong shock collide

Assume that at time ξ, two weak waves αi, αj above the strong shock collide and to produce
β = (β1, β2, β3). In this case, T s, T b, Qb, Qbs have no change, see Figure 15.

sk

ξ

αj

αi

β3

β2

β1

Figure 15: Case 5.

For the rest of the three terms, it is not hard to show that

T a(ξ+)− T a(ξ−) = A(|β1|+ |β2|+ |β3| − |αi| − |αj|)
≤ A(|αi|+ |αj|+O(1)|αi| · |αj| − |αi| − |αj|)
= AO(1)|αi| · |αj|,

Qa(ξ+)−Qa(ξ−) ≤ (T a(ξ−))O(1)|αi| · |αj| − |αi| · |αj|)
= (T a(ξ−)O(1)− 1)|αi| · |αj|,

Qas(ξ+)−Qas(ξ−) = |sk − s|(
3∑

i=1

|βi| − |αi| − |αj|)

≤ T s
0 (ξ−) ·O(1) · |αi| · |αj|.
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It follows that

G(ξ+)−G(ξ−) = |αi| · |αj|
{
AO(1) + Ca[T0(ξ−)O(1)− 1] + CasO(1)T0(ξ−)

}
. (5.6)

5.3 Determination of weights

Now we solve the coefficients A,B1, B2, B3, Cs, Ca, Cb, Cas, Cbs and determine T0(ξ−) from
(5.1), (5.2), (5.4), (5.5) and (5.6) to guarantee that G(ξ+)−G(ξ−) ≤ 0.

We start from (5.2). Set B1 = 1. Since C13 < 1 and C13K2 < 1, it holds C13 <
1
K2

. Then
we choose

B3 ∈ (C13,
1

K2

).

Hence we have B3 > C13B1. Therefore B2 and Cs can be chosen small enough (depending
only on B3 and constants like C23, C33 determined from the background solution), such that

B1C13 +B2C23 + CsC33 −B3 < −δ,

where δ > 0.
Up to now B1, B2, B3 and Cs are chosen and henceforth fixed. Then (5.2) can be simplified

as

G(ξ+)−G(ξ−) ≤
{
− δ + T0(ξ−)[O(1) + CbO(1) + CasO(1) + CbsO(1)]

+T0(ξ−)
2[CbO(1) + CasO(1) + CbsO(1)]

}
|α3|

+
{
O(1) + T0(ξ−)[CbO(1) + CasO(1)] + Cbs[T

0(ξ−)O(1)− 1]
}
|α3||sk − s|

≤ {−δ + T0(ξ−)M [1 + Cb + Cas + Cbs] + T0(ξ−)
2M [Cb + Cas + Cbs]}|α3|

+{M + T0(ξ−)M(Cb + Cas)− 1
2
Cbs}|α3||sk − s|

≤ {−δ + T0(ξ−)M [1 + Cb + Cas + Cbs] + T0(ξ−)
2M [Cb + Cas + Cbs]}|α3|,

(5.7)
provided that

Cbs > 2M + 2T0(ξ−)M(Cb + Cas). (5.8)

Here and in the following, we have written M = O(1), and assumed that

T0(ξ−)O(1) ≤ 1

2
. (5.9)

Now consider (5.1). Notice that B3K2 −B1 < 0 because B1 = 1, B3 <
1
K2

. Then assume
that B3K2 −B1 ≤ −δ < 0, from (5.1) we have

G(ξ+)−G(ξ−) ≤
[
− δ + T0(ξ−)M(1 + Cb + Cbs) + T0(ξ−)

2(Cb + Cbs)M
]
|α1|. (5.10)
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For (5.4), suppose that T0(ξ−) is small enough such that (5.9) holds, and

Cb > 2M(1 + CbsT0(ξ−)), (5.11)

then (5.4) yields that

G(ξ+)−G(ξ−) ≤
[
M +MCbsT0(ξ−)− 1

2
Cb

]
|αiαj| ≤ 0 (5.12)

as desired.
We then infer from (5.5) that

G(ξ+)−G(ξ−) ≤ [−A+M +M(Cb + Cbs + 1)T0(ξ−) + (Cb + Cbs)MT0(ξ−)
2]|αi|

+[M − Cas + T0(ξ−)M(Cb + Cbs)]|αi||sk − s|
≤ [−A+M +M(Cb + Cbs + 1)T0(ξ−) + (Cb + Cbs)MT0(ξ−)

2]|αi|
≤ 0,

(5.13)
provided that

Cas > M + T0(ξ−)M(Cb + Cbs), (5.14)

A > M +M(Cb + Cbs + 1)T0(ξ−) + (Cb + Cbs)MT0(ξ−)
2. (5.15)

Suppose T0(ξ−)O(1) ≤ 1
2
, from (5.6) we have

G(ξ+)−G(ξ−) ≤
[
AM − 1

2
Ca +MCasT0(ξ−)

]
|αiαj| ≤ 0, (5.16)

if
Ca ≥ 2AM + 2MT0(ξ−)Cas. (5.17)

We now determine Ca, Cb, Cas, Cbs and A from (5.17), (5.11), (5.14), (5.8) and (5.15).
Without loss of generality, we may assume that M > 1 and T0(ξ−)M ≤ 1

12
. Then if we

choose
A = Cb = Cas = Cbs = 3M, Ca = 7M2,

all the inequalities (5.17), (5.11), (5.14), (5.8) and (5.15) are true.
Finally, for all the weights chosen above, we choose ϵ̄0 ∈ (0, 1) small (determined only by

M and δ, hence depends only on the background solution) so that ϵ̄0M ≤ 1/12 and

ϵ̄0M(1 + Cb + Cas + Cbs) + ϵ̄20M(Cb + Cas + Cbs) ≤ δ.

Then if

T (ξ−) ≤ ϵ̄0, (5.18)

from (5.7) and (5.10), it follows that G(ξ+) ≤ G(ξ−). Thus we proved that the Glimm
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functional is always non-increasing.

5.4 Uniform bounds of T0(ξ)

We easily see by the choice of weights that there is a constant C > 1 depending only on the
background solution so that

T0(ξ) ≤ CG(ξ), G(ξ) ≤ C(T0(ξ) + T0(ξ)
2). (5.19)

Suppose now that the initial data to problem (L) satisfies ∥U0∥TV((0,∞)) ≤ ε0, with ε0
claimed in Theorem 2.2 to be specified below. For any positive number δ, we approximate
U0 by piecewise constant function U δ

0 with∥∥U δ
0 − U0

∥∥
L1((0,∞))

≤ δ,

and solve locally typical Riemann problems to obtain an approximate solution U δ for ξ ∈
(0, ξ1). (At ξ = ξ1, one of the five cases considered above occurs. We omit the details on
splitting rarefaction waves and eliminating weak waves of higher generation order in solving
Riemann problems, which does not affect the uniform estimates. See [5, 13] for details.
Without loss of generality, we may also assume that at each time ξ when collision occurs,
only two waves interact by changing slightly the speed of one of the wave, see [3].) By
property of Riemann solutions, there holds

T0(0+) ≤ C(TV(0,∞)U
δ
0 ) ≤ Cε0. (5.20)

We note that it also holds from the property of Riemann problem that

|s′δ(ξ)− s|+ TV(0,sδ(ξ))(U
δ(ξ, ·)− U b) + TV(sδ(ξ),∞)(U

δ(ξ, ·)− Ua) ≤ CT0(ξ).

Here sδ(ξ) is the equation of the strong shock in the approximate solution U δ which can be
determined step by step in the front tracking algorithm. We need to choose ϵ̄0 small enough
so that from this inequality each typical Riemann problem studied in section 3 could be
solved.

By front tracking method, suppose then one of the five cases considered above occurs
at ξ1. By the analysis above, if Cε0 ≤ ϵ̄0, then T0(ξ

1
+) ≤ CG(ξ1+) ≤ CG(ξ1−) = CG(0+) ≤

C2(T0(0+) + T0(0+)
2) ≤ 2C3ε0. Hence we choose

ε0 = ϵ̄0/(4C
3),

and it follows that T0(ξ
1
+) ≤ ϵ̄0. Therefore we can go on to solve typical Riemann problems

and construct approximate solutions for ξ > ξ1, until at some ξ = ξ2 one of the five cases
above appears. Then we have T0(ξ

2
+) ≤ CG(ξ2+) ≤ CG(ξ2−) = CG(ξ1+) ≤ 2C3ε0 ≤ ϵ̄0.

Taking such arguments for next times of collision/reflction/refraction, we infer that we
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can construct approximate solutions U δ by solving typical Riemann problems and still get a
uniform estimate

|s′δ(ξ)− s|+ TV(0,sδ(ξ))(U
δ(ξ, ·)− U b) + TV(sδ(ξ),∞)(U

δ(ξ, ·)− Ua) ≤ Cϵ̄0.

The estimate claimed in Theorem 2.2 follows from this estimate and the finite speed of
propagation for hyperbolic equations.

We also note that for the above construction to work, we need to show that for any
given T > 0, there are only finite many times of collision/reflection/refraction happen in
(ξ, η) ∈ (0, T ) × (0,∞). This is easy if we eliminate waves of high generation order as for
the Cauchy problem [13, Chapter 6, p.216], and notice that a wave can only be reflected
by the boundary and the strong shock for finitely many times, since the wave speed has an
upper bound and the distance between the boundary and the strong shock increases (both
determined by the background solution).

What is left is to show that the approximate solutions {U δ}δ>0 are compact in the space
C((0,∞), L1(0,∞)) (after modulo a constant state for η → +∞), and the limit U of a
subsequence {U δk}k is actually a weak entropy solution to problem (L). This process is
standard and we omit the details (cf. [5] or [8]). This completes the proof of the existence
part of Theorem 2.2 (hence this part of Theorem 1.1 by Wagnar’s theorem).

6 Uniqueness and stability of solutions

The main goal of this section is to establish the uniqueness of solutions to the free boundary
problem (E) in the Eulerian coordinates, and the L1 stability in the Lagrangian coordi-
nates. Towards this aim, first we will prove the L1-stability of solutions to the corresponding
problem (L) in the Lagrangian coordinates.

6.1 The L1–distance functional between two solutions

Given initial data U0, let U δ be an approximate solution constructed by a front tracking
algorithm, where δ is a small parameter measuring the accuracy of the solution, which
controls the following errors generated by the algorithm:

• Errors in the approximation of initial data;

• Errors in the speeds of shock, characteristic discontinuities, and rarefaction fronts;

• Errors from approximating the rarefaction waves by piecewise constant rarefaction
fronts;

• Errors from removing all the fronts with generation higher than N (N is a positive
integer depending on δ).
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The construction of a Glimm functional as in Section 5 provides the necessary uniform
estimates that guarantee the existence of a subsequence of U δ which converges to a bounded
entropy solution of problem (L) in C([0, T ];L1(R+)) for any T > 0.

To show that the front tracking approximations, constructed for the existence analy-
sis in Section 5, converge to a unique limit, we estimate the distance between any two
δ-approximate solution U and V of problem (L). To this end, we introduce a Lyapunov
functional Φ(U, V ), equivalent to the L1–distance:

C−1 ∥U(ξ, ·)− V (ξ, ·)∥L1 ≤ Φ(U, V ) ≤ C ∥U(ξ, ·)− V (ξ, ·)∥L1 ,

and prove that the functional Φ(U, V ) is almost decreasing along pairs of solutions:

Φ (U(ξ2, ·), V (ξ2, ·))− Φ (U(ξ1, ·), V (ξ1, ·)) ≤ C(ξ2 − ξ1), for all ξ2 > ξ1 > 0,

for some constant C > 0.
Following earlier works [2, 14], with “time” ξ fixed, at each η, we connect the state U(η)

with V (η) in the state space by going along the Hugoniot curves S1, C2, and S3. Depending
on the location of the strong shock in U(η) and V (η), the distance between U(η) and V (η)

is estimated along discontinuity/waves in possibly different “directions”, determining the
strength of the j-th Hugoniot wave hj(η) in the following way:

• Suppose that U(η) and V (η) are both in Oε(U b) and Oε(Ua). Then one begins at the
state U(η) and moves along the Hugoniot curves to reach the state V (η).

• Suppose that U(η) is in Oε(U b) and V (η) is in Oε(Ua). Then one begins at the state
U(η) and moves along the Hugoniot curves to reach the state V (η).

• Suppose that V (η) is in Oε(U b) and U(η) is in Oε(Ua). Then one begins at the state
V (η) and moves along the Hugoniot curves to reach the state U(η).

Define the L1–weighted strengths of the waves in the solution of the Riemann problem
(U(η), V (η)) or (V (η), U(η)) as follows:

qj(η) =


wb

j · hj(η) whenever U(η) and V (η) are both in Oε(U b),
wm

j · hj(y) whenever U(η) and V (η) are both in different domains,
wa

j · hj(y) whenever U(η) and V (η) are both in Oε(Ua),
(6.1)

with the constants wb
j , wm

j , and wa
j above to be specified later on, based on the estimates of

wave interactions and reflections in Section 4.
We define the following Lyapunov functional,

Φ(U, V ) =
3∑

j=1

∞∫
0

|qj(η)|Wj(η) dη, (6.2)
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where the weights are given by

Wj(η) = 1 + κ1Aj(η) + κ2 (Q(U) +Q(V )) . (6.3)

The constants κ1 and κ2 are to be determined later. Here Q denotes the total wave interaction
potential, and Aj(η) denotes the total strength of waves in U and V , which approach the
j-wave qj(η), defined in the following manner (for η where there is no jump in U or V ):

Aj(η) = Fj(η)+Gj(η)+

{
Dj(η) if j-wave qj(η) is small and the j-field is genuinely nonlinear,
Ej if j = 3 and qj(η) = B is large.

(6.4)
Next, we define the following global weights Gj:
Gj(η) = U, V are both in Oε(U b) U, V are in distinct regions U, V are both in Oε(Ua)

G1(η) B B B
G2(η) 0 B B
G3(η) B 0 B

Under the assumption that TV(U δ
0 (·)) + TV(V δ

0 (·)) is small enough with U(ξ, ·), V (ξ, ·)
∈ BV ∩ L1, one concludes

M−1 ∥U(ξ, ·)− V (ξ, ·)∥L1 ≤
3∑

j=1

∞∫
0

|qj(η)| dη ≤ M∥U(ξ, ·)− V (ξ, ·)∥L1 ,

1 ≤ Wj(η) ≤ M, j = 1, . . . , 3,

where the constant M is independent of δ and “time” ξ. Here we define the strength of any
large wave of the 3-characteristic family to equal to some fixed number B (bigger than all
strengths of small waves), and the concepts “small” and “large” mean the waves that connect
the states in the same or in the distinct domains Oε(U b) and Oε(Ua), respectively.

The summands in (6.4) are defined as follows:

Fj(η) =

( ∑
α∈J\S

ηα<η,j<kα≤3

+
∑

α∈J\S
ηα>y,1≤kα<j

)
|α|,

Dj(η) =

{
(
∑

α∈J (U)\S(U),ηα<η,kα=j +
∑

α∈J (V )\S(V ),ηα>η,kα=j)|α| if qj(η) < 0,
(
∑

α∈J (V )\S(V ),ηα<η,kα=j +
∑

α∈J (U)\S(U),ηα>η,kα=j)|α| if qj(η) > 0,

Ej(η) =

( ∑
α∈J\S

ηα<η,kα=3
both states joined by α are located in Oε(Ub)

+
∑

α∈J\S
ηα>η,kα=3

both states joined by α are located in Oε(Ua)

)
|α|,
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where, at each ξ, α stands for the (non-weighted) strength of the wave α ∈ J , located at
the point ηα and belonging to the characteristic family kα; J = J (U) ∪ J (V ) is the set of
all waves (in U and V ) and S = S(U)∪ S(V ) is the set of all large (strong) shock waves (in
U and V ).

Consequently, there holds

C−1 ∥U(ξ, ·)− V (ξ, ·)∥L1 ≤ Φ(U, V ) ≤ C∥U(ξ, ·)− V (ξ, ·)∥L1 , (6.5)

for any ξ ≥ 0 with the constant C > 0 depending only on the quantities independent of ξ:
the strength of the strong shock wave and TV(U δ

0 (·)) + TV(V δ
0 (·)).

We now analyze the evolution of the Lyapunov functional Φ in the flow direction ξ > 0.
For j = 1, 2, 3, we call λj(η) the speed of the j-wave qj(η) (along the Hugoniot curve in the
phase space). Then, at a “time" ξ > 0 which is not the interaction time of the waves either
in U(ξ) = U(ξ, ·) or V (ξ) = V (ξ, ·), an explicit computation gives

d

dξ
Φ (U(ξ), V (ξ))

=
∑
α∈J

3∑
j=1

(∣∣qj(η−α )∣∣Wj(η
−
α )−

∣∣qj(η+α )∣∣Wj(η
+
α )
)
η̇α +

3∑
j=1

|qj(b)|Wj(b)η̇b

=
∑
α∈J

3∑
j=1

(∣∣qj(η−α )∣∣Wj(η
−
α )
(
η̇α − λj(η

−
α )
)
−
∣∣qj(η+α )∣∣Wj(η

+
α )
(
η̇α − λj(η

+
α )
))

+
3∑

j=1

|qj(b)|Wj(b) (η̇b + λj(b)) , (6.6)

where η̇α denotes the speed of the Hugoniot wave α ∈ J , b = 0+ stands for the points close
to the characteristic boundary η = 0, and η̇b is the slope of the boundary, which is zero.

We present the notation

Eα,j =
∣∣q+j ∣∣W+

j

(
λ+
j − η̇α

)
−
∣∣q−j ∣∣W−

j

(
λ−
j − η̇α

)
, (6.7)

Eb,j = |qj(b)|Wj(b) (η̇b + λj(b)) , (6.8)

where q±j = qj(η
±
α ), W

±
j = Wj(η

±
α ), and λ±

j = λj(η
±
α ).

Then (6.6) can be written as

d

dξ
Φ (U(ξ), V (ξ)) =

∑
α∈J

3∑
j=1

Eα,j +
3∑

j=1

Eb,j. (6.9)
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Our central aim is to prove the bounds:

3∑
j=1

Eα,j ≤ O(1)δ |α| when α is a weak wave in J , (6.10)

3∑
j=1

Eα,j ≤ 0 when α is a strong shock wave in J , (6.11)

3∑
j=1

Eb,j ≤ 0 near the boundary, (6.12)

where the quantities denoted by the Landau symbol O(1) are independent of the constants
κ1 and κ2.

From (6.10)–(6.12) together with the uniform bound on the total strengths of waves, we
obtain

d

dξ
Φ (U(ξ), V (ξ)) ≤ O(1)δ. (6.13)

Integration of (6.13) over the interval [0, ξ] yields

Φ (U(ξ), V (ξ)) ≤ Φ (U(0), V (0)) +O(1)δξ, (6.14)

which implies the uniqueness and L1 stability as desired.
We remark that, at each interaction “time” ξ when two fronts of U or two fronts of V

interact, by the Glimm interaction estimates, all the weight functions Wj(η) decrease, if the
constant κ2 in the Lyapunov functional is taken to be sufficiently large. Furthermore, due
to the self-similar property of the Riemann solutions, Φ decreases at this “time”.

Next, we establish the bounds (6.10)–(6.12), particularly (6.11) and (6.12), when α is a
strong shock wave in J and near the characteristic boundary, respectively.

6.2 L1–stability estimates and the uniqueness theorem

By following the arguments in Bressan-Liu-Yang [2], the case that the weak wave α ∈ J :=

J (U) ∪ J (V ), that is, when U and V are both in Oε(U b) or Oε(Ua), the estimate (6.10)
holds, provided that |B/s| is sufficiently small and κ1 is sufficiently large. In what follows,
we only focus on the other two cases, namely (6.11) and (6.12).

Case 1: The first strong shock wave α in U or V is crossed. By Lemma 4.1 and Lemma
4.3, we have the estimate:

h+
1 = h−

1 + C13h
−
3 . (6.15)

Moreover, the essential estimate |C13| < 1 given in Lemma 4.3 ensures the existence of the
desired weights wb

1 and wb
3 in the following way.
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Lemma 6.1. There exist wb
1, wb

4, and γb satisfying

wb
3

wb
1

< 1, (6.16)

wb
1

wb
3

C13

∣∣∣∣λ−
1 − s

λ−
3 − s

∣∣∣∣ < γb < 1. (6.17)

With Lemma 6.1, we estimate Ej for j = 1, 2, 3, starting with E1. By (6.15) and (6.17),

E1 = |q−1 |(λ−
1 − η̇α)(W

+
1 −W−

1 ) +W+
1

(
|q+1 |(λ+

1 − η̇α)− |q−1 |(λ−
1 − η̇α)

)
≤ κ1B

(
wb

1|h+
1 ||λ−

1 − η̇α|+ wb
1C13|h−

3 ||λ−
1 − η̇α| − wm

1 |h+
1 ||(λ+

1 − η̇α)|
)

≤ κ1B
(
wb

1|h+
1 ||λ−

1 − η̇α|+ γbw
b
3|h−

3 ||λ−
3 − η̇α| − wm

1 |h+
1 ||(λ+

1 − η̇α)|
)
.

For j = 2,

E2 = |q+2 |(λ+
2 − η̇α)(W

+
2 −W−

2 ) +W−
2

(
|q+2 |(λ+

2 − η̇α)− |q−2 |(λ−
2 − η̇α)

)
≤ −κ1B|q+2 ||λ+

2 − η̇α|+O(1)|q−2 |
≤ −κ1B|q+2 ||λ+

2 − η̇α|+O(1)
(
|q+2 |+ |q−3 |

)
.

For j = 3,

E3 = BW+
3 (λ+

3 − η̇α)− |q−3 ||W−
3 |(λ−

3 − η̇α)

≤ O(1)B|q−3 | − κ1B|q−3 |(λ−
3 − η̇α)

= O(1)B|q−3 | − κ1Bwb
3|h−

3 |(λ−
3 − η̇α).

All together, choose wm
1 large enough relatively to wb

1, then

3∑
j=1

Ej = −(1− γb)κ1Bwb
3|h−

3 ||λ−
3 − η̇α|+O(1)|q−3 |

+κ1B
(
(wb

1|h+
1 |λ−

1 − η̇α| − wm
1 |h+

1 ||λ+
1 − η̇α|

)
−κ1B|q+2 ||λ+

2 − η̇α|+O(1)|q+2 | ≤ 0.

Case 2: The weak wave α between the two strong vortex sheets/entropy waves in U and
V is crossed. For j = 1, 2, we have

Ej = |q±j |(W+
j −W−

j )(λ±
1 − η̇α) +W∓

j

(
|q+j |(λ+

j − η̇α)− |q−j |(λ−
j − η̇α)

)
≤ κ1|q±j ||α||λ±

j − η̇α|+ 2Bκ1

(
(|q+j | − |q−j |)(λ+

j − η̇α) + |q−j |(λ+
j − λ−

j )
)

≤ κ1|q±j ||α||λ±
j − η̇α|+Bκ1

(
(|q+j | − |q−j |)(λ+

j − η̇α) +O(1)|q−η ||α|
)
.
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For the case when j = 3, we have

Ej = B
((
W+

j −W−
j

)(
λ±
j − η̇α

)
+W∓

j

(
λ±
j − λ∓

j

))
≤ B

(
−κ1|α||λ−

3 − η̇α|+O(1)|α|
)
.

In all, we get

3∑
j=1

Ej ≤ κ1O(1)
(
− |α|+ |α|

∑
k ̸=3

|q+k |+ |q−k |+
∑
k ̸=3

|q+k | − |q−k |
)
+O(1)|α|.

Since
∣∣|q+k | − |q−k |

∣∣ ≤ |q+k − q−k | ≤ O(1)|α| when k ̸= 3, we obtain
∑3

j=1Ej ≤ 0 if κ1 is
sufficiently large and all the weights wm

j are small enough.
Notice that the choice of the upper or lower superscripts depends on the family number

kα.
Case 3: The second strong shock wave α in U or V is crossed. For the case when j = 1, 2,

we have that

2∑
j=1

Ej =
2∑

j=1

(
|q−j (W+

j −W−
j )
)
+W+

j

(
|q+j |(λ+

j − η̇α)− |q−j |(λ−
j − η̇α)

)
≤ −2

3

2∑
j=1

κ1B|q+j ||λ+
j − η̇α| −

2∑
j=1

κ1B|q−j ||λ−
j − η̇α|.

For j = 3,

E3 = |q+3 |W+
3 (λ+

3 − η̇α)−BW−
3 (λ−

3 − ẏα)

≤ −O(1)B
3∑

j=1

|q+j |+ (κ1B +O(1))|q+3 ||λ+
3 − η̇α|).

By Lemma 4.4, we note that

h−
i ≈ O(1)

3∑
j=1

|p+j |, i = 1, 2.

For the weighted L1 strength qi(η) in (6.1), when wa
j (1 ≤ j ≤ 3) are large enough relatively

to wm
j (j = 1, 2), we can get (6.11).

Next, we note that the estimate (6.12) is done in [6]. We further note that our choice of
weighted L1 strength w1

b > w3
b above is consistent with the choice of weights made for 1-wave

and 3-wave near the characteristic boundary η = 0 to acheive the L1–stability estimate in
[6].

Based on the estimates in Sections 3–6, for our problem (L), we can show the existence
of the semigroup generated by the wave front tracking method. Actually we also obtain
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uniqueness of entropy solutions in a broader class, the class of viscosity solutions as defined
in [1]. The only difference is that there is a strong shock in our case; nonetheless, we can
still proceed with the proof as long as the convergence of the front tracking method has
been done (see section 5). We refer the reader to [6] for details. This completes the proof of
Theorem 2.2.

Next, we apply Wagner’s theorem [16] to conclude the uniqueness of entropy solution to
the free boundary problem (E) in the Eulerian coordinates. We still refer the reader to [6]
for details. Thus the uniqueness claimed in Theorem 1.1 is also proved.
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