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Abstract

In this paper we construct a class of transonic shock in a divergent nozzle which is a
part of an angular sector (for two-dimensional case) or a cone (for three-dimensional
case) which does not contain the vertex. The state of the compressible flow depends
only on the distance from the vertex of the angular sector or the cone. It is supersonic
at the entrance, while for appropriately given large pressure at the exit, a transonic
shock front appears in the nozzle and the flow becomes subsonic after passing it.
The position and strength of the shock is automatically adjusted according to the
pressure given at the exit. We demonstrate these phenomena by using the two
dimensional and three dimensional full steady compressible Euler systems. The idea
involved is to solve discontinuous solutions of a class of two-point boundary value
problems for systems of ordinary differential equations. Results established in this
paper may be used to analyze transonic shocks in general nozzles.
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1 Introduction

One of the prominent directions in gas dynamics concerning nozzle flows is to
thoroughly understand the flow fields in convergent-divergent nozzles (the so-
called de Laval nozzles), due to the existence of numerous mathematically chal-
lenging problems, and its importance in designing appropriate nozzles which
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meet the needs in building wind tunnels, jet propulsions etc. As illustrated in
[10,13,18], if the pressure at the exit of the nozzle lies in a certain interval,
subsonic gas flow at the entrance will accelerate to sonic at the throat of the
de Laval nozzle, becomes supersonic at the divergent part, and then a normal
shock front appears and the flow becomes subsonic behind it, with the pressure
increases to the given value at the exit. Such phenomena have been observed
in experiments, numerical simulations for numerous times. However, rigorous
theoretical analysis are fairly inadequate. Most of them relies upon several
simplified models. For the so-called “quasi-one-dimensional model” (see, for
example, [18,19]), which totally neglects the motion of the gas perpendicular to
the axis of the nozzle, we know the significant works of T.-P. Liu and J. Glimm
etc. [11,12,15,16]. For von Kármán equation and Chaplygin equation (which
is equivalent to potential flow equation), several interesting results based on
perturbation arguments have been established concerning the transition from
subsonic to supersonic at the throat, see the monograph [13] by A. G. Kuz’min
and references therein. See also [1] for some earlier developments on transonic
flows.

In recent years there has been an increasing interest in transonic shocks ap-
pearing in nozzle flows with the developments in theory of elliptic boundary
value problems on non-smooth domains and the introducing of some new ideas
to treat the free boundary, i.e., the shock front (see [2–6,8,20–22] etc.). We
note that for supersonic-supersonic shocks, many powerful tools have already
been proposed and fruitful results have been established, see, for instance,
[7,9,14].

In the study of transonic shocks, one assumes that the flow is supersonic at
the entrance of a nozzle, and some additional condition should be given at
the exit to induce subsonic flow. (Prescribe receivers’ pressure is a physically
well-accepted condition [10], although some artificial conditions were also in-
troduced to ensure well-posedness.) Initiated by the work of G.-Q. Chen and
M. Feldman [3], where they concerned transonic shock in a finite duct with
rectangle section for potential flow equation, later in a series of papers ([4,5]
etc.) they established the existence and stability of transonic shock in an infi-
nite cylinder with appropriately given data at infinity. Z. Xin and H. Yin also
used potential equation in [20] to study the transonic shock in two-dimensional
nozzles which are small perturbations of straight ducts. S. Chen [6] firstly stud-
ied the transonic shock problem in two-dimensional straight duct by using full
Euler system. H. Yuan generalized these results to flows with cylindrical sym-
metry in [21] and two-dimensional variable-area ducts in [22] for full Euler
system. In [8], S. Chen and H. Yuan also studied transonic shocks in three-
dimensional duct by elaborate decomposition of Euler system. Lots of fruitful
ideas and tools were used and developed in doing these works, which help us
understanding the structure of transonic shock problems in nozzles in depth.
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However, it may be surprising that all the results cited above indicate that
the transonic shock problem is ill-posed for given pressure at the exit. For
example, [22] showed that the pressure at the exit cannot be given arbitrarily:
to assure the stability, the pressure at the exit can only be given with freedom
one, that is, it contains an unknown constant to be solved. This contradicts
to what we know before as illustrated by the experiments and other simplified
models. So why this happens?

The main reason is that, all the above mentioned results are based on the fol-
lowing “background solution”. Let U = (u0, p, ρ) represent the one-dimensional
motion of gas, with u0 the velocity, p the scalar pressure, and ρ the density.

For polytropic gas we can determine the sound speed a =
√

γp/ρ. Then for the

constant vector U−
b satisfying (u0)

−
b > a−

b , suppose the shock front is flat, then
by Rankine-Hugoniot conditions, we can uniquely determine a constant state
U+

b which is subsonic ((u0)
+
b < a+

b ) and physical entropy condition p−
b < p+

b

also holds (this is exactly Proposition 3 below). We call (U−
b , U+

b ) together
with the flat shock front as “background solution” (see Figure 1).

O
- x0

Supersonic
U−

b := ((u0)
−
b , p−b , ρ−b )

→

Subsonic
U+

b := ((u0)
+
b , p+

b , ρ+
b )

→

Σb : Flat Shock Front
�

�
��


Figure 1. Background Solution

We note here that the position of the flat shock front can be moved along the
x0-axis arbitrarily without changing U±

b , and U+
b (especially, pressure p+

b ) is
uniquely determined by U−

b . This leads to the ill-posedness for given arbitrary
pressure at the exit. So we are in a dilemma: on one hand, from the background
solution and the small perturbation arguments based on it, one can only know
that for given pressure at the exit, the transonic shock may not exist [20,22];
on another hand, this result is not so physical.

The purpose of this paper is to construct another class of special solutions to
the transonic shock problem in two–dimensional or three–dimensional diver-
gent nozzles for the full steady compressible Euler system, which may partly
dissolve the above dilemma. We assume that the nozzles are either parts of an-
gular sectors or cones (not containing the origin) and the flow is with spherical
symmetry. This leads to solve a class of two-point boundary value problems
with discontinuous solutions for systems of ordinary differential equations. Our
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result can be stated in a rough way as (see Theorem 6 and Corollary 8 below
for the precise statements):

Theorem. For any given supersonic state at the entrance of the above diver-
gent nozzle, there exists an interval I ∈ R

+. If the receiver’s pressure p1 ∈ I,
then there exists a unique transonic shock front in the nozzle, such that the
pressure of the subsonic flow behind the shock front increases exactly to p1 at
the exit.

Thus this class of exact solutions of Euler system are more “physical” and
should be considered as the first order approximation of transonic flows in di-
vergent nozzles. (For convenience, we call this class of solutions as “the second
class background solution” and then the background solution in Figure 1 as
“the first class”.) The relation between the first and second class background
solution is an interesting topic needs to be investigated further, and the way
we construct the second class of background solutions may be instructive to
study transonic shocks in more general nozzles.

We remark that for potential flow equations, analysis of spherical flow has
already been carried out in [10]. In that case, one just needs to solve two alge-
braic equations, namely, (8) below and the Bernoulli’s law. Thus the process
there is simpler than here.

The rest of the paper, §2, is devoted to the construction of these solutions.
We first formulate the transonic shock problem for two dimensional Euler
system, and then study some integral curves of the reduced differential equa-
tions. Since for spherical flow there is little difference in two dimensional and
three dimensional Euler system, as explained in the last subsection, the result
obtained before is also valid for three dimensional case.

2 Determination of Transonic Shocks for Steady Euler Systems

2.1 Formulation of the Spherical Transonic Shock Problem for 2-D Euler
System

The Euler system describes steady compressible inviscid flow in two dimen-
sional spaces takes the following conservation form:















∇ ·m = 0,

∇ ·
(

m ⊗ m

ρ

)

+ ∇p = 0,
(1)
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together with the Bernoulli’s law

1

2
u2 + i = c0, (2)

where c0 is a constant along the streamline (c0 may have different values along
different streamlines). Here ρ, p, i are the density, scalar pressure, and enthalpy
of the fluid, while u = (u1, u2) and m = ρu are velocity and momentum density
vector respectively. The first equation in (1) is conservation of mass, the second
one is conservation of momentum, and the Bernoulli’s law corresponds to the
conservation of energy. In the case of polytropic gas we take the equation of
state as p = A(S)ργ , γ ∈ (1,∞), with S the entropy. Then (2) takes the form

1

2
(u2

1 + u2
2) +

a2

γ − 1
= c0, (3)

where a =
√

∂p/∂ρ =
√

γA(S)ργ−1 =
√

γp/ρ is the local speed of sound.

In polar coordinates, under the transformation

r =
√

x2
1 + x2

2, θ = arctan
x2

x1

and define

ur = u1 cos θ + u2 sin θ, uθ = −u1 sin θ + u2 cos θ,

then (1)(3) are of the following conservation form:



























∂r(rρur) + ∂θ(ρuθ) = 0,

∂r(rρu2
r + rp) + ∂θ(ρuθur) − (ρu2

θ + p) = 0,

∂r(rρuruθ) + ∂θ(ρu2
θ + p) + ρuruθ = 0,

1
2
(u2

r + u2
θ) + a2

γ−1
= c0.

(4)

For spherical flow, i.e., the flow depends only on the variable r and uθ = 0,
(4) is reduced to the following system of ordinary differential equations (for
simplicity, we write ur as u):















d(rρu)
dr

= 0,
d(ρu2+p)

dr
+ ρu2

r
= 0,

1
2
u2 + a2

γ−1
= c0.

(5)

Denote the nozzle as

N := {(r, θ) : 0 ≤ θ ≤ α, r0 ≤ r ≤ r1} (6)
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with α, r0 > 0, and U := (u, p, ρ). Then for spherical flow, the transonic shock
problem may be formulated as

(TSP) :















(5) r ∈ [r0, r1],

U = U0 r = r0,

p = p1 r = r1,

(7)

where U0 := (u0, p0, ρ0) is the given supersonic state (i.e., u0 > a0) at the
entrance of the nozzle, and p1 is a given appropriately large receiver pressure
at the exit. (We remark that the condition at r = r1 can also be replaced by
either u = u1 or ρ = ρ1 etc.) We always suppose u0 > 0 in this paper, that
is, r = r0 is really the entrance of N. We are looking for solutions of (TSP)
with the following structure: there exists a rs ∈ [r0, r1] such that the flow is
supersonic in [r0, rs) and subsonic in (rs, r1], while r = rs is a shock front.

2.2 Analysis of Supersonic Curves, Subsonic Curves and R-H Curves

It is not easy to solve (TSP) directly for given p = p1 at r = r1. We would
rather like to change our strategy as to find out the relation between the
exhaust pressure p1 and the position of shock front r = rs. To this end, we
need analyze in detail the variation of the state for supersonic, subsonic flow,
and the transonic shock front separates them along the nozzle.

The first equation in (5) indicates that

rρu = b0 := r0ρ0u0, (8)

while by the initial value c0 = 1
2
u2

0 +
a2
0

γ−1
. Using the fact that for C1 solutions

the entropy S is invariant along streamline (this can be induced from (1)(2),
see, for example, §7 of [10]), from (5) we solve

dp

dr
=

−ρu2a2

r(u2 − a2)
, (9)

du

dr
=

ua2

r(u2 − a2)
, (10)

dρ

dr
=

−ρu2

r(u2 − a2)
. (11)

For Mach number M = u/a, using Bernoulli’s law and (10) we have

dM

dr
=

M

r
· 1 + γ−1

2
M2

M2 − 1
. (12)
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These four differential equations describe the variation of states of subsonic
and supersonic flows in the nozzle, so we call their integral curves as either
“subsonic” or “supersonic” curves.

Proposition 1 [Global Existence and Asymptotic Behavior] For given non-
sonic initial data (u0, p0, ρ0), supposing u0 > 0, we have:

(1) If M0 > 1, then ρ, p monotonically decrease to 0 as r increases, while M, u

monotonically increase. More precisely, ρ ∼ O( 1
r
),p ∼ O( 1

rγ ), M ∼ O(r
γ−1
2 ),

u →
√

2c0 as r → ∞;
(2) If M0 < 1, then ρ, p monotonically increase, while M, u monotonically de-

crease to 0 as r increases. More precisely, ρ → ( (γ−1)c0
γA(S0)

)
1

γ−1 , p → (γ−1
γ

c0)
γ

γ−1 A(S0)
−1

γ−1 ,

M ∼ O(1
r
), u ∼ O(1

r
) as r → ∞.

PROOF. (1) For M0 > 1, it is easy to see that M increases, and furthermore
the solution of (12) exists on [r0,∞) since the right hand side increases linearly
on M for large M . Note that ρ = 0 is a solution of (11), so by the uniqueness of
solutions of Cauchy problem for ordinary differential equations, ρ, well defined
on [r0,∞), decreases to 0 as r → ∞. Since entropy S is invariant, the same
also holds for p. Because the right hand side of (12) is bounded away from
zero, M has no upper bound on [r0,∞). Thus the asymptotic behavior of M
(also ρ) is clear. The others are obtained by the equation of state p = A(S)ργ

and Bernoulli’s law.

(2) can be proved in a similar fashion.

Remark 2 Using (8) we can further determine that (note that A(S0) =
p0/ρ

γ
0)

(1) For M0 > 1, ρ ∼ b0√
2c0

1
r
, p ∼ A(S0)(

b0√
2c0

)γ 1
rγ , M ∼ (2c0)

γ+1
4√

γA(S0)b
γ−1

2
0

· r γ−1
2 , as

r → ∞;

(2) For M0 < 1, u ∼ b0(
γA(S0)
(γ−1)c0

)
1

γ−1 · 1
r
, M ∼ b0

(γA(S0))
1

γ−1

((γ−1)c0)
γ+1

2(γ−1)

· 1
r
, as r → ∞.

Now suppose rs ∈ [r0, r1] is a discontinuous point of the flow, and denote the
left and right limit of the state at rs as U− := (u−, p−, ρ−), U+ := (u+, p+, ρ+)
respectively, then the following Rankine-Hugoniot conditions should hold:

ρ+u+ = ρ−u− =
b0

rs

, (13)

ρ+u2
+ + p+ = ρ−u2

− + p−, (14)

1

2
u2

+ +
γ

γ − 1

p+

ρ+
=

1

2
u2
− +

γ

γ − 1

p−
ρ−

= c0. (15)
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Proposition 3 [Solvability of Rankine-Hugoniot Conditions] If M0 > 1, then
for any rs ∈ [r0, r1], there exists a unique U+(rs) such that the above Rankine-
Hugoniot conditions hold for (U−(rs), U+(rs)). (U−(rs) is obtained by solving
(9)–(12) with initial data U = U0 at r = r0.) Furthermore, U+(rs) is subsonic
and the physical entropy condition holds: p−(rs) < p+(rs).

PROOF. 1. For simplicity we denote below U±(rs) as U±. From (13)(15) we
obtain

1

2
ρ+u3

+ +
γ

γ − 1
p+u+ =

1

2
ρ−u3

− +
γ

γ − 1
p−u−,

while (14) leads to

γ

γ − 1
ρ+u3

+ +
γ

γ − 1
p+u+ =

γ

γ − 1
ρ−u2

−u+ +
γ

γ − 1
p−u+.

Subtracting the above equations and using (13) we get

γ + 1

2(γ − 1)
ρ−u−u2

+ − γ

γ − 1
(ρ−u2

− + p−)u+ + (
1

2
ρ−u3

− +
γ

γ − 1
p−u−) = 0.

This is a quadratic equation of u+ and note that u− is a solution. Thus another
solution is

u+ =
(1

2
ρ−u3

− + γ
γ−1

p−u−)
γ+1

2(γ−1)
ρ−u−

1

u−
(16)

=
c∗
u−

by using Bernoulli’s law. Here we have set the constant

c∗ :=
2(γ − 1)c0

γ + 1
. (17)

2. Now from (13)(14) we get

ρ+ =
b0

c∗

u−

rs

, (18)

p+ =
b0u−

rs

+ p− − b0c∗
rsu−

. (19)

3. We show U+ is subsonic. By Bernoulli’s law we have

u2 − a2 =
γ + 1

2
(u2 − c∗). (20)
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Thus

u2
+ − a2

+ =
γ + 1

2
(u2

+ − c∗) =
γ + 1

2
(u2

+ − u+u−)

=
γ + 1

2

u+

u−
(c∗ − u2

−) =
u+

u−
(a2

− − u2
−)

< 0

since U− is supersonic by Proposition 1.

4. Finally we demonstrate the entropy condition. From (19)(20) one gets

p+ − p− =
b0

rs

(u− − c∗
u−

)

=
b0

rsu−
(u2

− − c∗) > 0.

This finishes the proof of Proposition 3.

Remark 4 Under the assumption of Proposition 3, by Proposition 1 and (16)
we see the strength of the shock (measured by |u− − u+|) increases as rs in-
creases.

Remark 5 By Proposition 3, we can also see that transonic shock of subsonic-
supersonic type (i.e., the states ahead and behind the shock front are subsonic
and supersonic respectively) is not stable since this violets entropy condition.

For fixed supersonic initial data U0, by supersonic curves we get U−(rs) for any
rs ∈ [r0, r1]. Due to (16)(18)(19) we obtain U+(rs). We call these R-H curves.
(For example, we call u(r) as the R-H curve of u or u−R-H curve.) Now fix a
rs ∈ [r0, r1], we may obtain the subsonic curves U(r) := (u(r), p(r), ρ(r)) for
r ∈ [rs, r1] with initial data U = U+(rs) at r = rs. We are interested in the
relation between U(r1) and rs. We denote the dependence of U(r1) on rs as
Urs

(r1).

2.3 Main Result

The main result of this paper is:

Theorem 6 [Monotonicity of U(r1) on rs] For fixed supersonic initial data
U0 with u0 > 0 at r = r0, we have

(1). u(r1), M(r1) are strictly increasing continuous functions of rs ∈ [r0, r1];
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(2). ρ(r1), p(r1) are strictly decreasing continuous functions of rs ∈ [r0, r1].

PROOF. 1. We first prove (1) for u(r1). Note that (2) cannot be induced
from (1) by using Bernoulli’s law directly, since now entropy is not invariant:
it changes with rs.

2. u(r1) is a continuous function of rs. By continuously dependence of initial
values of solutions of ordinary differential equations, u(r1) is a continuous
function of u+(rs). The latter, by (16), is continuous on u−(rs), which is C1

on rs. Thus our claim is true.

3. Next we show u(r1) is a strictly monotonic function of rs. We prove this
by contradiction.

Suppose there is a u(r1) such that there exist rs1, rs2 ∈ [r0, r1] with rs1 < rs2 ,
and the subsonic curves of u passing the two points (rs1, u+(rs1)), (rs2, u+(rs2))
on the R-H curve of u coincide at r = r1.

4. We may rewrite (10) as

du

dr
=

u

r

c∗ − γ−1
γ+1

u2

u2 − c∗
(21)

by (20) and Bernoulli’s law. Thus (rs1 , u+(rs1)), (rs2 , u+(rs2)) must be on the
same subsonic curve passing (r1, u(r1)) by uniqueness of solutions of Cauchy
problems of ordinary differential equations. In the following we denote this
u−subsonic curve as Υ.

5. Next we show each subsonic curve of u passing a point χ on the R-H curve
of u must lie below the R-H curve of u if it is in the right hand side of χ.

Fix any rs ∈ [r0, r1], we obtain from (16)(10) the following differential equation
for u− R-H curve (note U− = U−(rs) is the supersonic curve passing U0):

du+

drs

= − c∗
rsu−

a2
−

u2
− − a2

−
. (22)

While, the u-subsonic curve passing (rs, u+(rs)) satisfying

du

dr

∣

∣

∣

∣

∣

r=rs

=
u+a2

+

rs(u2
+ − a2

+)
. (23)

Thus at r = rs we get
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du+

drs

− du

dr

∣

∣

∣

∣

∣

r=rs

=−u+

rs

(

a2
−

u2
− − a2

−
+

a2
+

u2
+ − a2

+

)

(24)

=−2(γ − 1)

γ + 1

u+

rs

(

c0 − 1
2
u2
−

u2
− − c∗

− c0u
2
− − 1

2
c2
∗

c∗(u2
− − c∗)

)

=−2(γ − 1)

γ + 1
(− γ

γ + 1
)
u+

rs

> 0

by using (16) and Bernoulli’s law. This proves the claim.

6. By (24), without loss of generality, we may assume there is no any other
common point of the u−R-H curve and Υ between rs1, rs2 . Now we consider
the domain Ψ bounded by u−R-H curve and Υ. Due to our construction,
all the u-subsonic curves issuing from the u−R-H curve between rs1 , rs2 must
flow in Ψ as r increases. This contradicts the uniqueness of solutions of Cauchy
problems for ordinary differential equations since any solution can be extended
out a compact set on plane. Thus we proved the claim in 3.

7. We prove u(r1) is an increasing function of rs. To this end, we only need
to show that ur0(r1) < ur1(r1). From 5 we see that the u−subsonic curve
issuing from (rs, u+(rs)) lies always below the u−R-H curve for r > rs. Thus
ur0(r1) < u+(r1) = ur1(r1). This finishes the proof of (1) for u(r1).

8. By Bernoulli’s law we have

M2 =
1

(γ − 1)( c0
u2 − 1

2
)
.

Thus it is clear that M(r1) is a continuous increasing function of rs.

9. In a similar fashion we can prove (2) for ρ(r1). We first show that any
ρ−subsonic curve issuing from ρ−R-H curve lies above the latter. Indeed,
from (18) we get

dρ+

drs

=
b0u−

c∗r2
s

2a2
− − u2

−
u2
− − a2

−
. (25)

Thus by direct calculations

dρ+

drs

− dρ

dr

∣

∣

∣

∣

∣

r=rs

=
b0

c∗u−r2
s

(−2γu2
−

γ + 1
) (26)

< 0,

here dρ
dr

∣

∣

∣

r=rs

is the tangent of the ρ−subsonic curve passing (rs, ρ+(rs)) at

r = rs. Thus for r > rs the ρ−subsonic curve lies above the ρ−R-H curve.
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Now by a similar argument as for u, one knows that ρrs
(r1) is a continuous,

decreasing function of rs.

10. Finally we prove Theorem 6 for p. Now we can use Bernoulli’s law to
obtain that

prs
(r1) =

γ − 1

γ
ρrs

(r1)(c0 −
1

2
urs

(r1)
2). (27)

Since urs
(r1) is increasing on rs, and ρrs

(r1) is decreasing on rs, we see that
prs

(r1) is a decreasing function of rs.

This finishes the proof of Theorem 6.

Remark 7 We see actually that all the supersonic curves, subsonic curves
and R-H curves are analytical curves of r ∈ [r0,∞). Thus Urs

(r1) is also an
analytical function of rs.

Corollary 8 [Solutions of (TSP)] For given supersonic state U0 at r = r0

with u0 > 0, there exists 0 < pmin < pmax such that for p1 ∈ [pmin, pmax],
there exists a unique transonic shock solution (U−, U+; rs) of (TSP). Here
r = rs ∈ [r0, r1] is the transonic shock front separating the supersonic flow U−
in [r0, rs] and the subsonic flow U+ in [rs, r1] with physical entropy condition
holds.

Similar results also hold for one of u, ρ, M was given at the exit r = r1.

PROOF. Set pmin = p+(r1) and pmax = pr0(r1), then by the continuity and
monotonicity of prs

(r1) we get the unique rs with prs
(r1) = p1 ∈ [pmin, pmax].

U− is solved by the supersonic curves passing U0 on [r0, rs], while U+ obtained
by the subsonic curves passing U+(rs), which is obtained by the R-H curves.
By Proposition 3, the physical entropy condition holds.

The following result based on extension of solutions of ODE is obvious:

Proposition 9 For given supersonic state U0 at r = r0 with u0 > 0, there
exists a positive h0 such that for any rs ∈ (h0, r1], the subsonic curves passing
the point on the R-H curves (which corresponds to U0) with r = rs can be
extended to left in [rs − h0, rs].

2.4 (TSP) for 3-D Euler System with Spherical Symmetry

The above analysis and results are also valid for steady spherical flows gov-
erned by three dimensional Euler system. Indeed, the Euler system is reduced
to the following conservation form
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d

dr
(r2ρu) = 0, (28)

d

dr
(r2(ρu2 + p)) − 2rp = 0, (29)

1

2
u2 +

a2

γ − 1
= c0 (30)

in this case (see §17 of [10], note that (30) is equivalent to dS
dr

= 0 for smooth
flow). Thus the Rankine-Hugoniot conditions are the same as (13)–(15). (28)–
(29) can also be written as

du

dr
=

2ua2

r(u2 − a2)
, (31)

dρ

dr
=

−2ρu2

r(u2 − a2)
(32)

for C1 flow. Compare these with (10)(11) we see the only difference is the rate
of decay on asymptotic behavior, which is not used in proving Theorem 6 and
Corollary 8. Thus we conclude that Theorem 6 and Corollary 8 also hold for
three dimensional spherical flows, with the nozzle replaced by a part of a cone
(not containing the vertex) N := {(r, θ) : 0 < r0 < r < r1, θ ∈ Σ ⊂ S2}, where
S2 is the unit sphere in R

3, and Σ may be arbitrary.

Acknowledgement. The author thanks L. Liu for her contribution in doing
this work.

Notes added in proof. See [17] for further progresses on the stability of the
second class of transonic shocks constructed in this paper.
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