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LECTURE NOTES 1:
FRIEDRICHS-SYMMETRIC WEAKLY DISSIPATIVE IBVPS

HAIRONG YUAN

In this note, we first review semigroup theory, and then applying it to study Initial-
Boundary Value Problems (IBVPs) for Friedrichs-symmetric systems. We will focus on
the case with constant coefficients, half-space domain, and weakly dissipative boundary

conditions. [This lecture is based upon Chapter 3, Section 1 of [1].]

1. REVIEW: SEMIGROUPS

Our start point is the following Hill-Yosida Theorem (Theorem 4 in §7.4.2 [2, p.418]):

Theorem 1.1. Let A be a closed, densely-defined linear operator on a Banach space X .
Then A is the generator of a contraction semigroup {S(t) }i>o0 if and only if (0, 00) C p(A)
and ||(AM — A)7Y| < 1/X for A > 0.

For the related definitions and notations, we refer to §7.4 in [2]. Notice that a main
issue is to overcome the difficulty that A might NOT be a bounded (continuous) operator
on X.

In many applications, it is more convenient to consider maximal monotone operators

for verification of the requirements in Hill-Yosida Theorem.

Definition 1.1. Let X be a Hilbert space, D(A) a linear subspace, and A : D(A) — X
a linear operator. A is called monotone if (Au,u)x > 0 for all u € D(A), and maximal

monotone if, moreover, I + A is onto, that is,

Vfe X, Jue D(A) such that u+ Au = f.

Theorem 1.2. Let A be a linear operator defined on a subspace D(A) of Hilbert space

X. If A is maximal monotone, then —A is a generator of a contraction semigroup.

Proof. 1. We first show the reflexive of X and maximal monotone of A implies A is

densely defined: D(A) = X.

Suppose D(A) is a proper subspace of X. Then there is a nonzero u € X such that
(u,w) =0 for any w € D(A). Since I + A is onto, there is a nonzero v € D(A) such that
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2 HAIRONG YUAN

v+ Av = u. Now taking w = v, we have 0 = (v+ Av,w) = (v+ Av,v) = ||[v|* + (Av,v) >
[v]|* > 0. A contradiction!

2. Next we show A is closed. By monotonicity, for A > 0, (A 4+ A)u,u) > \||ul)”.
Hence ||(A] + A)ul| > M ||ul| and AT+ A is one-to-one. Particularly, for A = 1, by maximal
monotonicity of A, I+A : D(A) — X is onto. These facts show that (I+A)~! : X — D(A)
is a bounded linear operator, hence closed. Therefore its inverse I + A is closed. Hence
A itself is closed.

3. From step 2, we see that, supposing A > 0 lies in p(—A), then [[(A] + A)7Y| < 1/,

4. Finally we show (0,00) C p(—A). To this end, we only need to show

M + A is onto for every A > 0.

Method of continuity. Set A = {A > 0 : A\l + A is onto.} From step 2, we have got
1 € A. Suppose py € p(—A). Then

pl+A = [T+ (n—po)(pol +A) ] (ol + A).

For p — po small, T + (1 — o) (0l + A)~' is a invertible bounded linear operator on X.
Hence p € p(—A). This shows that A is open.
We then show A is closed with respect to (0,00). Suppose Ay € A and Ay — A > 0 as
k — oo, we need prove for any f € X, there is a u € D(A) such that A\u + Au = f.
Since A\ € A, so there exist uy € D(A) with Aguy + Au, = f and Ay |Jug| < || f]| -
Note there holds

Me(Ug — W) + A(ug, — um) = (A — M) U,

which implies

|/\m_)‘k| |)‘m_>‘k|

o lumll < —=——=1I11

that is, {uy} is a Cauchy sequence in X. So there is one u € X such that uy — u as

k — oo. Note that f — A\yur, — f — Au in X. By closeness of A, A\u + Au = f holds. [

[ur = um|| <

Remark 1.1. Written in the form of an abstract Cauchy problem, the above Theorem
claims the following: For every ug € D(A), there exists uniquely one u € €'(]0, 00); D(A))N
% (]0,00); X), such that

&t Au=0 on [0,00),
u(0) = uo.

Moreover, one has

lu@llx < lluollx, — vE=0.



FRIEDRICHS-SYMMETRIC DISSIPATIVE IBVPS 3
2. DISSIPATIVE BOUNDARY CONDITIONS OF FRIEDRICHS-SYMMETRIC SYSTEM

2.1. The equation.

Definition 2.1. A system of partial differential equations

d
Lu=0u+ Y A%Ouu= f, (1)
a=1
with w € R", A* € M,,(n X n matrices), a = 1,--- ,d, is called Friedrichs-symmetric if

all A* are symmetric matrices.

Example 2.1. The compressible FEuler system is a quasi-linear Friedrichs-symmetric
system for p > 0, with the form A°Ou + Zizl A%Du = C. Here u = (vi,vs,vs,p,5)7,
d= 37 C= (pFlva27pF37070)T7 and

p 00 0 0 pv1 O 0 1 0

0 p O 0 0 0 pvy O 0 0
A=loo0p 0 of, A'=| 0 0 0 0 |,

000 ptc?2 0 1 0 0 ptlte2vy 0

000 0 1 0O 0 O 0 1

pvy 0 0 0 0 pvs 0 0 0 0

0 pva O 1 0 0 pvs O 0 0
A? = 0 0 pug 0 0o |, A= 0 0 pus 1 0

0 1 0 plc? 0 0 0 1 plc?y 0

0 0 0 0 Vg 0O 0 O 0 U3

Notice that for p > 0 (no vacuum), A° is positive-definite, and A, A%, A3 are symmetric.

2.2. The domain. Let Q € R? be a smooth domain, with outward unit normal v. In

the present note, we consider mainly the case
Q={reR:2y>0}

We frequently write x = (y, 74) afterwards, with y € R?"!. The frequency vectors are also
split into & = (1, &) with n € R4L,

2.3. Boundary conditions.

Definition 2.2. A boundary condition

Bu=g on x€dQ, t>0, (2)
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with B a p x n matrix, is called dissipative for the symmetric operator L in (1), if A(v) =

Zizl A%, is non-negative on ker(B):

veR" Bv=0= (Av)v,v)g. > 0. (3)

Boundary condition (2) is called mazimal dissipative, if it is dissipative, and moreover,

ker B is not a proper subspace of some linear space on which A(v) is non-negative.

Remark 2.1. Tt is natural to assume further that rank B = p. In the homogeneous case
g = 0, we may drop many redundant boundary conditions; In the inhomogeneous case,

this guarantees that (2) is at least solvable at a boundary point on the algebraic level.

Remark 2.2. Note for the case Q@ = {4 > 0}, since v = —ey, (3) reads

vER", Buv=0= (A%,v) <0.

Remark 2.3. If u € C*' N L*(Q) is a solution to (1) with homogeneous boundary condition
Bu = 0 on (0,00) x 992, by multiplying u" from left to the equation (i.e., taking inner

product) and integrating in {2, an integration-by-parts shows that

d >
e [u() | 22(q) + /asz (A(w)u, u)dS = 2/ (f, u)da.

Q

The dissipative of B then implies

d
T lu(®)lI72 < 21 F Ol 20 1)l 20 -

or, provided u(t) # 0,

Dl < 1FOlle

So we get an energy estimate:

lu®) 2 < [u(0) 2 + / 1F()]0 ds.

2.4. Main result. In this note we will consider the following IBVPs

Lu=f, xe€Q, t>0,
Bu=g, x4=0,1>0, (4)
u=uy, x€€, t=0,
under the assumptions that (a) L is Friedrichs-symmetric; (b) B is maximal dissipative;
(c) A* (a« =1,---,d) and B are all constant matrices; (d) g = 0 (the case of homogeneous
boundary conditions); (e) € is the half space {x € R%: x4 > 0}.
The method to prove existence and uniqueness is semigroup theory reviewed before.

The main result is the following theorem.
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Theorem 2.1. Let L = 0, + Zf A®0, be a symmetric hyperbolic operator, and the

boundary matriz B € M, be mazimal dissipative. Set

D(A) ={u€ L*(Q)": Y A"9qu € L* ()" and Bu =0 on 0Q}. ()

Then the homogeneous IBVPs in 2 x R} :
Lu(r,1) =0, Bu(y,0,1) =0, u(x,0) = up(x) (5)

is L* well-posed in the following sense. For every ug € D(A), there exists a unique
u € € ([0,00); D(A))NE([0,00); L?) that solves Lu = 0 as an ODE in X = L*(Q)", such
that w(0) = ug. Furthermore,

t= Jlu@)]l L (6)
1S MON-1NCreasing.
Remark 2.4. Tt is a basic property of semigroup S(¢) that, if u € D(A), (A is the generator
of S(t)), then u(t) = S(t)u € D(A). Hence by definition of D(A), there always holds
Bu(t) = 0 on 992. In this sense the boundary condition is satisfied. However, a main

difficulty is how to understand the boundary condition Bu|gg = 0 in (&), which does not

make sense for general functions u in L?(£2). This is to be solved in the following section.

3. ANALYSIS AND DEFINITION OF BOUNDARY CONDITION

3.1. Algebraic level. We first study linear algebraic property of the boundary matrix
B.

Proposition 3.1. If B is maximal dissipative for L, then ker A(v) C ker B. So there is
M € M, x,, such that B = MA(v).

Proof. 1. For u € ker A(v), let w = u + v, with v € ker B. Then
(A(v)w,w) = (A(v)v,u) + (A(v)v,v) = (v, A(v)u) + (A(v)v,v) = (A(v)v,v) > 0.

Maximal dissipative implies that w € ker B. Hence u € ker B = ker A(v) C ker B.
2. By linear algebra, suppose rank A(v) = r, rank B = p, then dimker A(v) =
n—r, dimkerB=n—p. So p<r.

o
B
3. Without loss of generality, suppose A(r) = a, |, B= : , where «;, 3,
By
(07%

are row vectors in R”, and ay,--- ,,; B1, -+, B, are respectively linearly independent.
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Suppose that h € ker A(v), then obviously «; L h. Then

span{aq,---,a,} = (ker A(v))*=, span{fi,--- . Bpt = (ker B)*.

ker A(v) C ker B implies (ker B)* C (ker A(v))*, hence 3; € span{ay,--- ,a,}. Then we
may take M = (P,x,, Opx(n—-r)), Where P, is obtained by representing g; via ay, - - - , a.

O

Proposition 3.2. If B is maximal dissipative for L, then ker B = E. @L Ey. Here
E., E_, Ey are subspaces in R™ spanned by eigenvectors of A(v) corresponding to positive,

zero, and negative eigenvalues.

Proof. 1. We first note since A(v) is symmetric, hence diagonalizable over R, we have
R"=F_ @L E, @L Ey, and all of them are invariant subspaces of A(v). Obviously on
E. @" Ey, the bilinear form (A(v)u, u) is nonnegative. So by maximality, E, @* E, C
ker B.
2. Now if u € ker B but u ¢ E, @" Ey, then by decomposition u = uy + o/ with u; €
E,@" Ey,u € E_, we find ' € E_Nker B. However, (A(v)u/,u') < 0, contradiction to

dissipativeness. The proposition is proved. ([l

3.2. Function level. Now we consider u as a vector field in 2. We need give a rigorous
definition about what Bu = 0 on 92 means in the definition of D(A), when u is merely

in L2,
3.2.1. Normal trace of vector field. We start with a general result.

Theorem 3.1. Let Q be a smooth domain in R, v its outward unit normal along 052,
and H the Hilbert space of vector field ¢ € L*(Q; RY) with div g € L?(Q), endowed with
a norm
2 . 2 1
lall 7 = (HqHL2(Q)d + HleQHL2(Q)>2'
Then

(s 108) = / (¢ Vot (divgg)dr, Voe H'(Q) (7)

defines a bounded linear operator v, : H — H=2(9Q). Here o : HY(Q) — Hz(Q) is the
standard trace operator on Sobolev functions, and (-,-) is the pairing between H’%@Q)
and Hz(09).

Furthermore, if ¢ € C1(Q), then

YWaq = q - V|aq.
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Remark 3.1. We note that if 92 is bounded, it has no boundary (9(9Q) = ), so Hz(9) =
1

HZ (09). If 9Q = R" L as used below, it is a basic result on Sobolev spaces that Hz (9) =

HE(09).

The mapping -, is called normal trace of vector field ¢ on 9f).

Proof. 1. By Extension Theorem of Sobolev functions, 7o : H'(€) — H2(d9) is onto

and there holds |[¢| 1) < C |79 So one easily gets from (7) that

H3(09)"

(0@ 0 < Cllally ol = lwal,-3 <Cllally-

The linearity of ~, is obvious.
2. For ¢ € C*(Q), by Divergence Theorem, there holds [,(¢q- V¢ + (divg)¢)dz =

fag(q : V)¢d5 = (CI : V|69, ¢|aﬂ> for any ¢ € Cl(Q)- S0 Y,q =q - V|aQ- UJ

3.2.2. Boundary conditions as normal traces. Now since u € L*(€2;R"), for any constant
matrix A € M,,x,,, one has Au € L?(2)". Consider the nxd matrix Q = (Alu,--- , A%u) =
O!
2
. Every row of Q, Q" (i = 1,--- ,n) belongs to L?(Q)¢. In addition, for u € D(A),
Qn
there holds 379 8,(A%) € L2, which means div Q' € L% So v,Q' € H 2(99Q). We write
1Q = (1,Q, - ,7Q")T. For u € CY(Q), note v = —ey, we have

%Q = (Q" V|og, Q" v]oa)" = —A%sq.

Therefore, for u € D(A), we may interpret the boundary condition Bu = M A% = 0 as

©

However, the left-hand side is a functional, which is not easy to handle locally as we do

for functions. The new idea is to use Fourier transform, which will uncover a hidden fact

that Bu|gg = 0 is meaningful after Fourier transform!

3.3. Frequency level. Next we show, by using Fourier transform, it is rather easier to
verify (8).
Recall that for a function f(y,z,4) with fine properties with respect to y, we set

Fyfnza) = | [y, zq)e " dy
Rd-1

as its Fourier transform respect to y € R4-1, Except its tremendous power of reduce

PDE to ODE, ODE to algebra, an advantage of Fourier Transform is, sometimes, the
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Fourier transform of a function is more smooth than itself, therefore easier to handle.
For example, to the present case, the trace 7,@) is only a distribution, while its Fourier
transform introduced below is a function.

Set Qo = A%u € L*(Q)". Applying Parseval’s Equality, (1, zq) — %,(Qa) is in L*().
S 0aQq € L? implies (1, 24) = S0} i10:-%(Qa) + 02F,(Qq) is also in L2(Q). Tt fol-
lows that for any compact set K C R,

/K [/W (Iﬁy(Qd)(n, s)> + \adfy(Qd)(U,S)!2> ds} dn < oo, (9)

that is, Z,(Qq) € L2 (R4 HY(RY)). By Sobolev Embedding Theorem, we get .%,(Q4) €

loc
L (R¥L4(RT)). So for a.e. n and every x4, %,(Qa)(n, x4) makes sense.

Lemma 3.1. There holds for a.e. n € R that

Fy(1Q) = —F,(Qa)(n,0).

Proof. 1. Since 7,Q € H~z, by definition of H~z, we know .%,(7,Q) € L2. and

loc

St [Zy(nQ)(m)*(1+|n]*)~ dn < oo. Hence the left-hand side is also a locally integrable
function of 1. Therefore, to show the identity of functions, we need to prove that the two

functions coincide as distributions.
2. For ¢(n,x4) € C®(R?Y), and i € {1,--- ,n}, suppose that Q° € C*, we have

(@) (). 60, 0)) = (@) (), Fy(-.0))
- / Q. 2a) - VI (6) (5, 2) + (div Q) (3, 70) F(0) (y,2)] dy g (10)

= [ Q05000 000 + (.02 (6) )

+Qu(Y, 7a)0aF4(9)(y, a) + (0aQa) F(9) (y, v4)} dy dza.
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For the first term,
d—1 ‘ |
S [ QU000 20) + 0uQi)F (0.
o |
= Y [ @) A im0 + (a0 () )
N i / [Z,(QL) (0, 24) (—1000) (1, 7a) + F(0aQL) (11, )] diy

d—1
= 2 /R [~ Z(0aQ) (1, 20)$(1, 20) + F1(a Q)0 )]

= 0,

One may also use directly Divergence Theorem to show this as we assumed that Q?, € C*
and ¢ is compactly supported. We note that the only assumption of Q* € L?, Y 9,Q" €
L? is not enough to ensure 9,Q° € L? for each «, which is necessary for the above
computation to be valid.

For the second term, using Fubini’s Theorem, it is
[ ] Q050007 (0) 0. 0) + 020)7,(0) )} iy
R4-1 JR
= / 0{Qu(y, xa) F(0)(y, za) } dg dy
Ré-1 JR+

- - [, @020}y = - [ {(F(Q)0.000.0} dr

Rd-1

(= F(@)1.0), 6(n, 0).
3. Now for Q' € L? with Y 0,Q', € L?, and any ¢ € C>°(R?), we prove that
(Z Q) (), 0, 0)) = (— (@) (0, 0), 6(n, ).
Suppose that Q) € C* and Q®) — Q' in H, then by (10), we have
(Fy Q) (), 6L, )
= 109 20) - T F4(0) 020) + (i QO) . 20) () 2] dy

= / Qs 20) - V.7 () (s 70) + (div Q) (g, 20) P (0) (1, 70)] dy g

:<yy('7VQZ)()v ¢(> 0)>
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As indicated by (9), one also verifies that

lim | (Z,(Q4 — Q) (1,0), 6(n, 0))| = 0.

This completes the proof. O

Remark 3.2. The result of the lemma is no wonder since we know for u smooth we
have 7,Q = —A%lsq. The point is, the Fourier transform of a bad “function” (even a
distribution that is not a function) might be better. Thus by the Lemma, the abstract
boundary condition (8), which is an identity of functionals, could be reformulated as the

more classical point-wise conditions of a function M.Z,(A%)(n,0) = 0. That is

BZ,u(n,0) =0 ae. neR" (11)

Therefore we proved for u € L*(Q)™ so that Y, A*d,u € L*(Q2)", if the boundary matrix
B is maximal dissipative, then (11) is meaningful and and the boundary condition Bul|gg =
0 shall be rigorously defined as (11).

4. THE PROOF OF THEOREM 2.1

4.1. Monotonicity. In the following we write A = Zizl A®0, as an operator defined

on

D(A) ={u€ L*(Q)": Y A"9qu € L*(Q)" and Bu=00n 0Q}.  (&)|

To prove our Main Theorem, we only need show A is maximal monotone, with X = L?(Q)
and D(A) defined before. As suggested by (11), the strategy is to study the problem after
Fourier transform with respect to y variables.

Let v(n,zq) = Z#,(u)(n,zq4). The operator A is now Apv = Ad%v +iA(n)v, with A(n) =
Zi;ll(Aana). It is defined on

D(Ap) ={ve L*(Q:C"): Apv € L* and Bv = 0 a.e. on 09Q}.

Note the boundary condition is understood in the sense of (11) and well-defined. Also,
in this definition, functions are complex-valued.

By Plancherel’s Theorem, since w is real,
(Au, U)LQ(Q;RTL) = (Au, U/)L2(Q;Cn) = (fy(Au), 9\yu)L2(Q;Cn)
= Re(ﬂy(Au), ﬁyu)Lz(Q;Cn) = RG(AFU, /U)LQ(Q;Cn).

So the monotonicity is

Re(AFv, U)L2(Q;Cn) Z 0, Yu € D(AF)
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To verify it, the case that A? is nonsingular (i.e. 9 is a non-characteristic boundary) is
easier. To overcome the difficulty that det A? = 0, we use the following technique.

Introducing a matrix S € M, which is the inverse of A? on R(A%). (It’s convenience
is explained later. Particularly, S = (A?)~! if det A4 # 0.)

1
Since A¢ is symmetric, we see |R™ = R(A%) @ ker A?.| For w € ker A%, we set Sw = 0.

For w € R(A?), note A? : R(A?) = R"/ker A — R(A?) is a homeomorphism, there is
uniquely one w’ € R(A?) such that A%’ = w. Hence we define Sw = w’. S shares many

properties:

(a) S is symmetric.

(b) SA9is the orthogonal projector onto R(A?).
(¢) | (A%, v)gn = (SA%, A%)gn for u,v € C™

For the proof of (a), let u = u, + ug,v = v, + vg, with u,,v, € R(A%), u,vp €
ker AY. Then (Su,v)gn = (Sty, v, + vp)ge = (S, v,)ge = (UL, v, )rn, and (u, Sv)gn =
(ur + ug, Svp)re = (Ur, SV )Rr = (Up, V) )Rn = (Adu/rvU;)R" = (u/raAdUDR" = (uy, vy )rn =
(Su,v)gn as desired.

For (b), it is clear that SA%u = SA%, = S(A%,) = u,. Here we used uniqueness of w’.

(c) follows from (a)(b). Indeed, for u,v € R™, there holds (A%u,v)ge = (A%(u, +
ug), Uy + Vp)re = (A%, v, + v)re = (A%, v, )re = (A%, SA%, )ge = (A%, SA%W)gn =
(S A%, A%)gn. For the case u, v being complex vectors, one may easily verify by separating

u, v in real and imaginary parts.

Remark 4.1. From the definition of S, we see it is the inverse of A% on R(A%). From
this point of view, (c) is clear: for v € ker A?, (A%u,v) = 0, while for v € R(A%),
(Adu,v) = (A%, SA%) = (SA%, A).

We observe the dissipative boundary condition means, for v € ker B complex-valued,

there holds (A%, v)g» < 0. (This can be checked by writing v in real and imaginary parts.)
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Now let w € L?(R") be such that A%dw/dz? € L?*(R"). Then z = A%w € H'(R"). For
fixed n € R, we compute

e dw . B & dw

/0 Re(Add_xd +1A(n)w, w)ge dxg :/0 Re(Add_xd’w)Rn dzy
= / Re(SAdd— AYD)gn da :/ooRe(d , SZ)gn da
Aoy’ Re (2 = | qp. 07 e A2

= / Re— Z SZ)Rn dxy = _éRe( (0)7 Sﬁ)R"

dZEd

=~ (=(0), S2O))rr= — 5 (A%w(0), w0))zn > 0.
Here we used three facts. i) S is a real matrix. ii) Only upon introduction of S, we can
infer the nice property that z € H! and using Newton-Leibniz Formula. Otherwise, we
should explain the identity 5 (Adw w) = 2Re(Ad§de,1D), while it looks (A%w,w) is
only in L?. (The derivative here is merely weak derivative. We can not use difference
quotients.) iii) we assumed that w(0) € ker B to apply the dissipativeness.

Recall that for v € D(Ap), we have v(n,-) € L?*(R*) and Aldv/dxy; € L*(RY) for
almost every 7. Furthermore, by definition of D(Af), we required that v(n,0) € ker B.
Hence by taking w(z4) = v(n, x4) in the above, we deduce for non-negative test functions
¢ € IR,

/ o(n)Re(Apv, 0)gn dzgdn > 0.
0

Finally, let ¢ tend monotonically to 1, the left-hand side then tends to Re(Apv, v)r2(acny

and this shows A is a monotone operator.

4.2. Maximality. For any f € L?, we need solve a u € D(A) from the equation u+ Au =
f. Thanks to Fourier Transform with respect to y as used before, this may be transferred

to an ODE subjected to boundary conditions, with n € R¢~! being a parameter:

v+1iA(n)v + A% = g(n, ), Bu(n,0) = 0. (12)

Here g = %, f € L*(Q2), and v also to be solved in L?(12).

4.2.1. Non-characteristic case. We assume A is non-singular. This means the boundary

0f) is non-characteristic. In this case, we introduce

A7, n) == —(AN Y1, +1A(n)).

Lemma 4.1. Suppose the operator Oy + 22:1 A*Q, is hyperbolic. That is, Zi:1 A“E,, is
diagonalizable (with real eigenvalues) uniformly for every &€ = (&1, -+ ,&;) € RL. Then for

n € R4 and Rer > 0, the matriz A(r,n) does not have any pure imaginary eigenvalue.
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The number of stable eigenvalues (eigenvalues with negative real parts), counted with

multiplicities, equals p, the number of positive eigenvalues of A<.
Proof. 1. Let w be pure imaginary root of the characteristic polynomial of A(7,n):
P(X;7,n) = det(X 1, — A(7,1)).

Thus w satisfies
det(71, +iA(n) +wA?) = 0.

Then hyperbolicity implies 7 € iR, contradicts to the assumption that Rer > 0.

2. Since P depends continuously on 7, and has a constant degree, we infer the number
of roots with positive real part (countered with multiplicity) may not vary locally.

In fact, the n roots of a polynomial of degree n depend continuously on the coefficients of
the polynomial: there are n continuous functions ry,--- ,r, depending on the coefficients
that parameterize the roots with correct multiplicity (see [4, p.26]). By the continuity, a
root with positive real part cannot change to a root with negative real part, as long as
Rer > 0 (cf. Step 1 above). So the number of root with positive real part is locally a
constant.

Then because {Rer > 0} x R"™! is connected, we see the number of root with positive
real part is a constant in Rer > 0.

Computing at the point 7 = 1,7 = 0, we see it is just the number of eigenvalues with
positive real part of —(A%)~!, which equals the number of eigenvalues with negative real
part of A?. Notice that since A% is symmetric and nonsingular, all the eigenvalues are

real and there is no zero eigenvalue. 0

Let E_(7,n) and E(7,7n) be the stable and unstable subspaces of A(T, 1) respectively.
This lemma implies that we have a decomposition C" = E_(7,n) @ E.(7,n). However,
we cannot infer the dimension of these subspaces (the algebraic multiplicity of an eigen-
value might not equal its geometric multiplicity, unless the matriz could be diagonalized).

We need the following lemma, which is useful in the proof of Lemma 4.2 later.

Proposition 4.1. The stable and unstable subspaces EL(T,n) of A(7,n) depend holomor-
phically on 7, analytically on n. In particular, their dimensions do not depend on 7,7m as

long as n € R"1 and Rer > 0.

Proof. 1. For given (7,n) with Rer > 0, by Dunford-Taylor Formula, we may choose

a large enough loop 7 in the half-plane Rer > 0, enclosing the unstable eigenvalues of
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A(1,n), then the projector onto E, (7,n), along E_(7,n), is given by

mr) = 5 Ples = Alron))

A similar formula holds for 7_(7,n) = I, — 7. (7, n).

Since we may vary slightly 7,7 without changing contour (because of continuity of
roots of a polynomial), we may infer the projection mappings depend holomorphically on
T, analytically on 7, as long as Rer > 0.

We remark this might not be true if Rer = 0. (By homogeneity on 7,7, it is not
necessary to consider Rer < 0. Just let » — —n in that case.) Indeed, if Rer = 0, then
A(7,n) might have pure imaginary eigenvalues. So it may happen we cannot find a fixed
loop in Rer > 0 to contain all the eigenvalues with positive real part, as some of these
eigenvalues may tend to pure imaginary numbers as Rer — 0. While, if we choose a loop
contains all eigenvalues with nonnegative real parts, then by perturbation, this loop may
also contain eigenvalues with negative real parts. So the defined projection is no longer
on the stable subspace.

2. Then dim R(7w;(7,7n)) is a constant follows from Lemma 4.10 in [3, p.34]. See also
[3, p.68]. The proof is copied in the Appendix of this note. O

Remark 4.2. Note the Dunford-Taylor Formula gives the projection map to the general-
ized eigenspaces correspond to the eigenvalues contained in the contour +. The vector

in its image might not be eigenvectors, but must be generalized eigenvectors.

Set A(n) = A(1,n). Equation (12), which we need to solve, reads

v = A + (A) 7'y,

By the Lemma above, we may decompose C" = FE_(n)@ E(n). Here E. are the
stable and unstable subspaces corresponding to A(7n). Indeed, E_ (resp. E,) is the space
spanned by those eigenvectors of A(n) corresponding to eigenvalues with negative (resp.
positive) real parts. Note Ey are invariant subspaces of A(7).

Therefore we decompose
V=vs+ Uy, (Ad)_lg = s +guv Vs, (s € E—7 Uy, Gu € E+~
The equation is reduced to

Ué = A(T})Ug + gs, U:L - A(n)vu + Gu-
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Let {S(z)}.er be the group generated by A(n), that is, S(z) = exp(z.A(n)). We look

for a solution v of the form:

vs(n,xq) = S(xg)ve + /Owd S(xq— 2)gs(n, z)dz, (13)

v = - [ " S(aa— 2)guln, 2 dz (0K (14)

Zd

where vg € E_ is to be chosen. Note that

o(,0) = vy — / U S(-)gu(n ) de (@)

Obviously vg, v, solves the equations. We need to check that, for almost every 7, they
belong to L*(R™).

For fixed n and vy € E_(n), S(t)vy € L?, since it decays exponentially as x4 — oco.

Since g € L*(Q2), by Fubini theorem, for almost every n, g(n,-) € L?(R*). Hence g4(7, -)
and g,(n, ) are both in L?*(R"). (Indeed, consider, for example, the projection mapping
P, : C* — E_(n), along E(n). It is continuous with respect to 1, and is independent
of z4. So it’s norm is M(n). Hence |us| < M(n)|u|.) While, the convolution kernel
S(xq — -) are also L' integrable. Actually, denoting S, and S, as the restriction of S(t)
on the invariant subspace E_(n) and E,(n). We know that Sg(z) and S,(—z) decays

exponentially as z — 400. Then

z4
|- 0.2 ds = Soxgitea). a0
0
where h — h is the extension from R* to R by taking A(s) = 0 for s < 0. Similar formula
holds for convolution in (14). So by Young’s Inequality,’ the convolution products belong
to L2(RT).
Now we show we can choose vy € E_(n) such that Bv = 0 holds. That is, see (#),

Buy = B/OOO S(—2)gu(n, z) dz, vo € E_(n). (15)

Lemma 4.2. For L Friedrichs-symmetric, B maximal dissipative, it holds that

E_(n) P ker B =C". (16)

Consequently equation (15) admits uniquely one solution vy.

Remark 4.3. We remind that (16) is a special case of the Kreiss-Lopatinskii condition

which is necessary for a hyperbolic IBVP to be stable.

Mgl <UANo lgllzes £ 4+1 =4 + 1. Here we take r = 2,p = 1,¢ = 2.



16 HAIRONG YUAN

Proof. 1. We first show E_(n) Nker B = {0}. For Uy € E_(n), we set U(xzy) = S(xq)Uy,

which decays exponentially as z; — oo, and satisfies the differential equation

dU
Add—% + (I, +1A(n))U = 0. (17)

Multiplying U* on both sides of the equation, taking the real part, we get

d
Q‘U‘z—i_d_l‘d

(U*AU) = 0.

Integrating from 0 to oo, there follows

21011325, = U (AW (0) = (A(0), T0) e < 0.

We supposed Uy = U(0) € ker B for the last inequality. So U = 0 and especially Uy = 0.
2. Next, to prove (16), we only need show dimker B =dim E,(n). By virtue of
Lemma 4.1, the latter is the number of eigenvalues of A% with negative real parts. By
Proposition 3.2 and the assumption that A? nonsingular, this is exactly dimker B, as B
is maximal dissipative.
3. We have shown (16). Which implies that B : E_(n) — R(B) is a homeomorphism.
So (15) is uniquely solvable. O

We have now solved (12). We see the solution v(n, z4), defined for a.e. n € R™! is
H' with respect to x4, and also measurable in (7, z4). For given 7, applying the energy

estimate, which reads
2/ v(n, 2q)|? dzg = (Adv(n70),v(n,0))+2Re/ (g, 0)rn (1, 74) dzg
0 0
< 2Re [ (g.0)n (n,a) oy
0

by using Bv(n,0) = 0 and dissipativeness. Applying Cauchy-Schwarz Inequality, there

comes
/ o, 24) > deg < / 9(n, 20)? dea.
0 0

Integrating with respect to n, we get [[v[| 2 < |9l 2(q)- By Plancherel’s Formula,
we conclude u € L*(€). Also by Fourier Inversion, u + Au = f holds in the sense of
distribution. Note we get Au = f —u € L? At last, Bu = 0 as we have made sure
Bv = 0, so the boundary condition holds. So u € D(A), and the maximality of A is

proved.
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4.2.2. Characteristic case. Now we solve (12) in the case A? is singular. Recall that since
A?is symmetric, there is a decomposition R” = ker A4 @ R(A%). This implies a decompo-
sition C" = ker A? @l R(A%), for the latter being consider as, for example, with vector
like ker A4 + iker A%, a linear space over C.
We denote by  the projection onto ker A%, along R(A9). Set mv = k, (I — m)v = 7,
gk =79, g = (I —m)g, then (12) is decomposed as
AN+ (I =) (I +1Am))(r + k) = gy, (18)
ml(L +1AM))(r + k)] = ge. (19)
Recall ker A? C ker B, so the boundary condition is simply
Br(n,0) = 0. (20)
We first study the algebraic equation (19), that is,

k+n[iA(n)k] = gr — w[iA(n)r].

Considering the mapping |7 A(n)r : ker A* — ker A?,| which is symmetric (note that

is an orthogonal projection, so 7* = m). So all of its eigenvalues are real. This means

T+imA(n)m : ker AY — ker A? is invertible. Set M(n) be the inverse. Hence we may solve

k= M(n)(gr — w[iA(n)r]). (21)

Substituting &k to (18), we have

Al + B(n)r = G,, Br(n,0) =0, (22)

where
B(n) = (I —m[I +iAm){I — 7M(n)x[iA(n)]} (I — 1) : R(A?) = R(AY),
Gy = gr — (I = m)[I +iAm)]M(n)gr € R(A?).
To be more explicit, we choose the base of C" consists of eigenvectors of A%, so A? =

Om
( Al Here we assume 0 is an eigenvalue of A? with multiplicity m, and A =

diag {b1,--- ,bq, a1, -+ ,a,} with ’p + ¢ =n—m| all a; are positive, b; are negative. Then
E%(AY) = ker A = C™ x 0,,_,,E~(A?) = 0,, x C? x 0,, EF(4%) = 0,, x 0, x CP,

I
R(AY) =0, x C*™™ and 7 = ( 0 > . Recall ker A? = E°(A9) C ker B, so we may
set
B = (Opxm, Br), (23)

with By a p X (n —m) matrix.
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A CT Ly +14,)7"
WesetA(n):< c A >ThenM(n):<( +1 ) 0>’and

s — [ 0
D=0 I +1A ] + ClIn + 14,207 )

So, by considering r(n, z4) € C*™™, (22) is

A+ (L +1An_ ] + Ol +14,]7'CT)r =G, Byir(n,0) = 0. (24)

Lemma 4.3. Set A'(n) = —A"([Ln_m +iAn_m(0)] + C)[Ln + 1A, ()] 1CT(n)). Then
A'(n) has no pure imaginary eigenvalues. In addition, the dimension of stable (resp.

unstable) subspace of A'(n) is p (resp. q).

Proof. 1. Suppose for 7 € R, it is an eigenvalue of A’'(n), that means
det(Lp—m +iAp_m(n) +iTA + C(n) L + 1A, ()] 7'C" (n)) = 0.

On the other hand, we have

Lo —i(
I, +1iA(n) + ir A? "
( 1A(n) +ir )< 0 I

B I, +iA,, ic’ Lo —i(ln+iA,)"tCT
B iC Iy o A, . +irA 0 Iy

_ | Im +iAn 0
iIC L+ 14 n(n) +iTA 4+ C ()L + 1A, ()] 71C T (n)

so det(I, + iA(n) + itAY) = det(l,, + iAy)det(l,_p + 1A, m(n) +iTA + C))[L +
iA,,(n)]71CT(n)). Note both the left-hand side and the first factor in the right-hand side

is nonzero (by hyperbolicity and symmetry of A,,). So we get a contradiction.

L +iA,) 107 >

2. For the second claim we may use similar arguments as before and hence omit the
details. 0

As shown by Lemma 4.2, the following Lopatinskii condition guarantees that (24) has a
solution r € L*(0, 00) for fixed 7, hence by (21), k € L*(0,00), thus v = r + k € L?*(0, 00)
as desired.

Lemma 4.4 (Lopatinskii condition). Let E~(n) be the stable subspace of A’'(n). Then for
all n € R, it holds

ker By @E*(n) =C" .
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Proof. 1. As before (see proof of Lemma 4.2), since dimker By = n —m — p, (cf. (23)),
dim £~ (n) = p, so we only need show ker B; N E~(n) = {0}.
2. As before, we use energy estimate ( comparing (17) with (24) ) and only need prove,

for any r € C"™™, it holds, for the new extra term that
Re(C(I, 4 1Am) " 1CT 7, ) nem > 0.
This is simple. Let v = C"r. Then

Re(C(Iy 4 iAm)'C 7 r)enm = Re((Iy, 4 14m) " v, v)em
=Re(w, (I, +iA,)w)cn = |w]* > 0.

Here, w = (I, +i4,,) 0. O

5. NONHOMOGENEOUS EQUATIONS

For f # 0, we may use the semigroup {S;} established in Main Theorem, together with

the Duhamel’s Formula

u(t) = Syug + /t Si_sf(s)ds
0

to give a mild solution to the IBVPs in Q x R;:
Lu(z,t) = f, Bu(y,0,t) =0, u(x,0)=ug(x),

provided f is integrable from (0,T) to X = L?(Q2)™. This mild solution is a distributional
one. If f € L*((0,T) x ), we also have the following fundamental estimate, for arbitrary

positive v :

T

T
1
e T Jlu(T)]72 +7/ e " Jlu(t)|lz2 dt < [luolz. + ;/ e | F(B)]7e dt.
0 0

To prove this, we consider v = e "*u. Then v satisfies

d
d—:+Av+’yU:e’7tf.

Taking L?(2)" inner product with v, using monotonicity of A, we have

d _ 1, _ 2
T o172 + 2y o) 72 < 20 (1), v(E)) 2 < 7 [J0ll72 + 5 e 172 -

Integrating this with respect to ¢ from 0 to 7" and the estimate follows.



20 HAIRONG YUAN
6. APPENDIX: PERTURBATION RESULTS ON POLYNOMIALS AND EIGENVECTORS

6.1. The n roots of a polynomial of degree n depend continuously on the coefficients of
the polynomial. This means that there are n continuous functions ry,--- ,r, depending
on the coefficients that parametrize the roots with correct multiplicity.

This result implies that the eigenvalues of a matrix depend continuously on the matrix.
A proof can be found in [4, Theorem 3.9.1, p. 26].

6.2. Let X be a Banach space. A bounded operator P is a projection, if P? = P.

Lemma 6.1. Let P(t) be a projection in X depending continuously on a parameter t
varying in a connected region of real or complex numbers. Then the range R(P(t)) for

different t are isomorphic to one another. In particularly, dim R(P(t)) is a constant.

Proof. 1. Let P,Q be two projections in X. We prove, if the spectrum radius (or norm)
of

R=(P-QP=P+Q-PQ-QP

is less than 1, then P and () are similar to each other.
2. R commutes with P and @:

PR =P+ PQ — P>QQ — PQP = P — PQP = RP.

Similarly, (I — P — Q)? commute with P,Q since I — P is a projection. We also have the

identities
(P-QP+(I-P-QP=I (PQ-QP’=(P-Q)'—(P-Q)-R—-R
3. Set
U'=QP+(1-Q)(1-P), V'=PQ+(1-P)(1-0Q) (25)

U’ maps R(P) = PX to QX, (I — P)X to (I — Q)X; V' maps QX to PX, (I — Q)X to
(I — P)X. There also holds

V'U' =UV' =1-R.
A pair of mutually inverse operators U,V with the mapping properties stated above

can be constructed easily, since R commutes with P, Q) and therefore with U’, V' too. It

suffices to set

N[
N[

U=U(1-R):=(1-R):U, V=V({I-R):=(I-R)3V,
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provided the inverse square root (I — R)’% exists. A natural definition of this operator is

given by the binomial series

o0

(I-R==30| * (R

This series is absolutely convergent if ||R|| < 1, or, more generally, if its spectral radius
r(R) < 1. The sum T of the series satisfies 7% = I — R just as in the numerical binomial
series. Thus

VU=UV=I V=U"' U=V"

4. Since U'P = QP = QU' and PV’ = PQ = V'Q as can be seen from (25), we have
UP = QU, PV =V by the commutativity of R with all the operators here considered.
Thus we have

Q=UPU!, P=U"'QU.
So P and @ are similar to each other.

5. This implies that R(P) and R(Q) are isomorphic to each other by U and U™!, as

we can see from UPX = QUX and U™'QX = PU'X. So dimR(P) = dimR(Q). O
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LECTURE NOTES 2:
INITIAL-BOUNDARY VALUE PROBLEM IN HALF-SPACE WITH
CONSTANT COEFFICIENTS: KREISS-LOPATINSKII CONDITION

HATIRONG YUAN

We derive necessary conditions for very weak well-posedness of Initial-Boundary Value
Problems (IBVPs) for Hyperbolic Operators. The essential of the necessary conditions is
the Kreiss-Lopatinskii condition (KL). We focus on the case of constant-coefficients and

half-space domain. This note is based on Chapter 4, Section 1 and 2 of [1].

1. THE PROBLEM

1.1. Hyperbolicity. We first review the definition of hyperbolic operators.

Definition 1.1. A first-order operator L' = 9, + Zi:l A%0, + D is called hyperbolic if
the corresponding symbol & = (&;,--- ,&;) € R4 — A(€) = Zi:l A€, satisfies

sup [lexp(iA(S))|| < oo.
£cRd

Here A%, D are real n X n constant matrices.

Theorem 1.1 (Kreiss’ Matrix Theorem). Let & — A(£) be a linear map from R? to
M.,,(C). ! Then the following properties are equivalent to each other:

(a) Every A(&) is diagonalizable with pure imaginary eigenvalues, uniformly with re-
spect to &. That s,

A(€) = P(&) 'diag(ipr, - - L ipn)P(E),  pr(€), -, pn(€) €ER
with
PO IP©I<C, VeeRr:

(b) There is a constant C' > 0, so that
|e4@] <C,  VEER?, VE>0.
(c) There is a constant C' > 0, so that
C
L —A) Y < — R :
|GL—AQ) | < 57 VEERY, VRez>0

Date: March 27, 2021.

M, (C) is the set of n x n matrices with complex entries.

22
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1.2. Set-up of IBVP. Let L = 0; + Zizl A*0, be a hyperbolic operator with A* €
M, (R), and B € M, (R), and

Q={r=(y,24): y€R™ z,>0}.

The general problem we have in mind is

(Lu)(z,t) = f(z,t), za, t>0, y R, (1)
Bu(y,0,t) = g(y.t), t>0, yeR"™, (2)
u(r,0) = up(z), 14>0, yec R (3)

1.3. Strategy on studying IBVP.

e The concept “well-posedness” depends on specific spaces or requirements (esti-
mates) in mind. We first consider well-posedness in a very weak sense. In the
next lecture, for the applications to variable-coefficients problems or nonlinear
problems, we will consider strong well-posedness in L? (i.e., there are estimates
without loss of derivatives in certain time-weighted L? spaces).

e For the given definition of “well-posedness”, by considering special cases or par-
ticular solutions, deriving some necessary conditions for such well-posedness.

e [t is optimal that, under these necessary conditions, we construct a so called
symbolic dissipative symmetrizer. By multiplying the symmetrizer to the system
(in frequency spaces), it becomes symmetric, and the boundary condition becomes
dissipative, and then energy estimate can be obtained. By such estimate and func-
tional analysis methods (for example, duality), we prove existence of a solution,

and hence show the IBVP is well-posed in the given sense.

2. NECESSARY CONDITION FOR EXISTENCE AND UNIQUENESS

2.1. Number of Scalar Boundary Conditions. For the boundary condition Bu = g
to be solvable, for any g € RY, at least in the linear-algebraic lever, it is necessary that
R(B) =RY, 2 or

g

Since we may multiply any regular matrix D € M,(R) to the boundary condition, so
the matrix B itself is not essential. What counts is ker B. By (4), there holds

dimkerB:n—q.‘ (5)

In the following, we always consider homogeneous boundary condition (g =0).

2R(B) is range of the matrix, or operator B, namely R(B) = {Bz : = € R"}.
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2.2. Necessary condition for existence. The strategy of deriving necessary condition
here is studying simpler special IBVPs.

Suppose f = f(xq4,t), up = up(xq). Then by translation along y and the uniqueness as
assumed, the solution u also depends only on 24 and t. So problem (1)-(3) is simplified

to
Ou(wg, t) + A%qu(x4,t) = f(4,t), Bu(0,t) = 0, u(zgq,0) = up(zq).

By hyperbolicity, A? is diagonalizable. Using a change of dependent variables, without

loss of generality, the above problem is further simplified as
Oruj(x4,t) + a;0qui(za, t) = fi(xq4, 1), Bu(0,t) =0, (6)
Uj(l’d, 0) = Uoj(xd), xqg > 0,1 > 0.

Here a; are eigenvalues of A% and arranged in the decreasing order

ap > Ay 2 -+ 2 Q.

Definition 2.1. The number p of positive eigenvalues of A% a, > 0 > a,,1, is called the

number of incoming characteristics, for the domain €.

System (6) consists of decoupled scalar transport equations. For j = p+1,--- ,n, we

can solve u; just by using the initial data:

u;j(zq,t) = (ug);(xqg — ajt) —1—/0 fi(za+aj(s —t),s)ds. (V)

Supposing B = (by, -+ , by, - ,b,), we get B(R? x{0},,_,) =span{by,--- ,b,}. Let [ €
R? be a row vector perpendicular to the subspace B(R? x{0},_,), and L = (Ly,--- , L,) =

IB € R", which is also a row vector. Then L; = --- = L, = 0. The boundary condition
Bu = 0 implies Lu = [Bu = 0, hence Z?:pﬂ Lju; =0, or, specifically, from (v'), that
n t
> (stun)i(ea—ast) + [ Lifioat ay(s = t).9)ds]) =0
j=p+1 0 zq=0

This is a nontrivial compatibility condition for the nonhomogeneous term f and initial
data, if L # 0. While for general well-posedness (existence), there should be no such
compatibility condition. So to guarantee existence, it is necessary that L = (B = 0. By

(4), this implies { = 0. Hence we get
B(R” x {0}n—p) = R, (7)
and particularly

q<p. (8)
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2.3. Necessary condition for uniqueness. Next we consider the implication of unique-
ness. Considering the homogeneous IBVP (6) (f = 0,uq = 0). From the formula obtained
above for u;, we see u; =0 for j=p+1,--- ,n.

Now let R be a vector in RP such that R; = (R,0)" € ker B. We also choose a smooth

function v of one-variable that vanishes on [0, 00), and set

uj(xd,t):v(@—t)Rj, j=1,---,p.

a;

We easily check that such obtained u = (uy, -+ ,u,,0,---,0)" is a nontrivial solution to

(6). So to guarantee uniqueness, we require
ker BN (R? x {0},_,) = {0}. (9)
Since dimker B = n — ¢, this implies 3
p<n—(n—q) =q (10)

2.4. Conclusion. So to ensure well-posedness, by (8) and (10), it is necessary that p = g,

or

The number of scalar boundary conditions equals the number of incoming

characteristics.

From this, (9) can also be written as

ker BED(R? x {0}) = R".

On the contrary, we note that this implies p = ¢ and (7).

Going back to a general matrix A%, we prove that

Proposition 2.1. For the IBVP (1)—(3) to be well-posed (uniqueness and existence), it

is necessary that *

R" = ker B P E"(A"). (11)

3Suppose that V3 and V5 are linear subspaces of a linear space V', and dim V; 4+ dim V5 > dim V', then
Vi N V3 is a nontrivial linear subspace of V. For a proof, let a1, ,a), be a basis of Vi, and B1, -+, 3,
be a basis of V3, then the vectors aq, -+, 0,81, -+, B4 are linearly dependent in V, hence there are
numbers a;, b; so that Zle a;o; = Z?:l b;3;. Note that not all a; shall be zero, and not all b; shall be
zero. Hence 0 # >0 _ a0, € Vi N V.

4E“(Ad) is the unstable subspace of A%, which is spanned by the eigenvectors associated with positive

eigenvalues of A9, Recall that by hyperbolicity, all eigenvalues of A¢ are real.
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Proof. 1. For the system Oyu + A%0,u = f, if P~*A?P = diag(ay, - ,a,), then by the
transform u = Pv, in the v-coordinates, it takes the form (6) (with w; replaced by v;). B

is replaced by BP. So we actually get, in the v-coordinates,

ker(BP) DR? x {0}) = R".

2. Now return to the u-coordinates, ker BP should be ker B, and (R? x {0}) is replaced
by P(R?x{0}) = span (Pey, - - - , Pe,), withe; = (0,---,0,1,0,--- ,0)" the standard unit
vector in R". However, P~*AYP = diag(ay, - ,a,) implies that Pe, is the eigenvector of
A? corresponding to eigenvalue ay. So we see P(RPx {0} ) is the subspace spanned by those

eigenvectors of A4, associated to positive eigenvalues. By definition, it is E*(A?). 0

Definition 2.2. We say the IBVP (1)-(3) is normal, if
(a) B € My, and rank B = p (p = dim E*(A%));
(b) ker A? C ker B;
(c) property (11) holds true: |R" = ker B EB E"(AY).

Remark 2.1. (a) and (c) imply p is the number of positive eigenvalues of A?.
(b) is required for the definition of trace of Bu, so the boundary condition makes sense.

(Recall we defined A%u|sq by using the normal trace of vector field, while (b) implies
B = MAY).

3. NECESSARY CONDITION FOR STABILITY: KREISS-LOPATINSKII CONDITION

In the following we deduce a condition that turns out to be necessary even for very
weak well-posedness of (1)—(3) when g = 0. The strategy is to consider special solutions

of the form (normal mode analysis)

u(z,t) = ™MV (2,), (12)

with n € R*! and 7 € C. Qur aim is to find necessary conditions so that those solutions
of the form (12) that could contradict well-posedness — that is, those grow rapidly as
time increases, while being temperate in space — cannot exist. To this end, we need
restrict ourselves to complex numbers 7 of positive real part: Rer > 0.
A field u defined by (12) solves Lu = 0 if and only if
dU

Add_xd + (11, +iA(n))U = 0, (13)

where A(n) = Zi;ll A“n,. ° There are two cases, depending on wether A¢ is singular.

d

a=1

"Note there also appears A(§) =3

¢ is in R?, or R4-1,

A%¢,, before. To tell what A(¢) means, just take care whether
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3.1. Kreiss-Lopatinskii condition: non-characteristic case. We first assume A? is

nonsingular — In other words, the boundary 0f? is non-characteristic. We introduce
A(r,n) = —(AY) (7L, +1A(n)).

So (13) may be recast as an ODE in C", with parameters 7, :

dU

P = A(r,n)U. (14)

3.1.1. Construction of an exponentially-grow-in-time, temperate-in-space solution. The

following Lemma has been proved.

Lemma 3.1. Suppose the operator 0y + Zizl A0, is hyperbolic. Then forn € R and
Rer > 0, the matriz A(1,n) does not have any pure imaginary eigenvalue. The number
of stable eigenvalues (eigenvalues with negative real parts), counted with multiplicities,

equals p, the number of positive eigenvalues of A?.

By this Lemma, we have a decomposition C" = E_(7,n) @ E,(1,n), with EL(r,n)
being the unstable/stable subspace of A(T,7n). Set w4 be the projection of C" to EL(T,n),
and Uy (z4) = m+U(x4). Note that Ey are invariant subspaces of A(7,7), so (14) is also

dU+

decomposed into ‘7= = A(7,7)Us and the solutions are

Ui (z4) = exp(2aA(7, 7)) (Up) +-

The matrix exp(z4A(T,n))|g_ decays exponentially as x; — oo, while the inverse of
exp(zaA(T,n))| g, decays exponentially as x4 — co. Therefore, in order that U(z,) to be

a tempered distribution on R it is necessary that (Up)y = 0, or in other words,
U0) e E_(1,n).

If this holds, U actually decays exponentially and hence square-integrable.

For this reason, we admit only those solutions of (14) for which U(0) € E_(7,7n). They
take their values in F_(7,7n). For such a solution U and corresponding u, which is a
solution of Lu = 0, if there also holds BU(0) = 0, then Bu(y,0,t) = 0. At ¢t = 0, the

initial data

u(y, 4,0) = €U ()

belongs to any Hélder space €%%(Q), while the norm ||u(-, ) ¢ha(q) STOWS exponentially
fast (like e™R°7) as ¢ increases, provided U(0) # 0. However, this is not enough to show

ill-posedness. We need the following ideas of scaling to demonstrate instability.
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3.1.2. Hadamard instability by scaling. Now, scaling both space and time variables yields

the parameterized solution of the homogeneous IBVP:
u(z,t) = u(Ax, \t), A > 0.

As X\ — oo, the initial data u*(z,0) = €YU (Az4) grows at most polynomially in Holder
space with resect to A\, while u*(x,t) grows (with respect to \) always exponentially fast

for any given positive time. This shows the mapping
u(-,0) — u(-, 1), t>0,

if ever defined, may not be continuous between Holder spaces, even at the price of loss
of derivatives (which means we only control € norm of u(-,t) for [ < k, 8 < a, by

using €% norm of u(-,0)).

3.1.3. Conclusion. This shows for well-posedness (stability) in Holder spaces, a necessary

condition is

E_(1,n) Nker B = {0} for every n € R Rer > 0. (15)

Definition 3.1. We say the hyperbolic IBVP (1)—(3) satisfies the Kreiss-Lopatinskii condition
(KL), if (15) holds true.

Remark 3.1. We have shown that the Lopatinskii condition is necessary for the well-
posedness of IBVPs in Holder spaces. When it fails, no estimate can hold in such norms,
even at the price of loss of derivatives. Later we will use Lopatinskii determinant to show

the same result for Sobolev spaces.

Lemma 3.2. For a non-characteristic IBVP (L, B), if rank B equals the number of

positive eigenvalues of A%, then the Kreiss-Lopatinskii condition is equivalent to
Cr=FE_(1,n)@kerB  VneR¥! VRer > 0. (16)

Remark 3.2. As E_(1,0) = E*(A?), we see (11) for normal IBVP is a special case of (16).
Also note that (16) implies that® p = ¢. As {0} = ker A? C ker B holds trivially (for
the non-characteristic case), we see, (16) itself represents all the necessary conditions of

well-posedness we obtained, for the non-characteristic case.

Proof. 1. We first note the following fact:

If V is a linear subspace of R™ with dim'V = p, then being considered as a

linear subspace of C™ on C, it’s dimension is still p.

6Recall that ¢ is the number of boundary conditions, and p is the number of incoming characteristics.
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To show this, let oy, -+ ,a, € R" be a basis of V. Then clearly they are also linearly
independent on C: If Z?Zl(aj +1ibj)a; = 0 and aj, b; € R, then a; = b; = 0. Also, V,
as a linear space in C, every element is of the form Z;’:l c;jo; and ¢; € C. So the claim
holds.
2. We have dimker B = n — p, where p is the number of positive eigenvalues of A¢. So
by (15), to show (16), we only need prove dim E_(7,7) = p. This follows from Proposition
3.1 below, which has been proved before. O

Proposition 3.1. The stable and unstable subspaces EL(T,n) depend holomorphically on
T, analytically on n. In particular, their dimensions do not depend on T,n as long as
n € R" ! and Rer > 0.

3.2. Kreiss-Lopatinskii condition: characteristic case. We now consider (13) when

A% is singular.

3.2.1. Decomposition. Since A? is diagonalizable, we have a decomposition
C" = R(A%) @ ker(A?). (17)
In fact, choosing a basis consists of eigenvectors of A%, then there is a decomposition
R" = E"(AY) @D E*(A") @D E°(AY).
We note E¢(A?) = ker A4, and E*(A?) @ E*(A?) = R(A%). So there holds
R" = R(A%) @D ker(A)“.
Now by considering R™, R(A?) and ker(A9) all as spaces on C, we have (17).

Denoting by 7 the projection onto ker A4, along R(A%), we decompose U = r + k, with
k=nU, r= (I, —m)U. So (13) is equivalent to

Ad;—; + (I, — ) (1L, +iA(n))(r + k) = 0, (18)

w(rl, +iA(n)(r+k) = 0. (19)
3.2.2. Hyperbolicity of projected subsystem. We claim the endomorphism
7w A(n)m : ker A — ker A

has only real spectrum. Hence one could solve k as a function of r from (19), and then
(18) becomes a closed system for the unknown r. This follows from the theorem below,
by taking & = (0,---,0,1) and Ay = 0.
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Theorem 3.1. Let L = 0; + 22:1 A®9, be a hyperbolic n x n operator and & € S
Given an eigenvalue Ao of A(&) = Zi:l A%, denote by w the projection onto the
eigenspace F(Ng) = ker(A(&) — Aoly).
Then the operator
d
L' =70, + Z TATO,,

a=1

acting on functions valued in F(\g) (thus it is an m xm operator, m being the multiplicity

of \o) is hyperbolic.

Proof. 1. By hyperbolicity of L, using a linear transform of the unknown, which amounts

to conjugating the matrices A%, we may assume A(§) is diagonal:

Aol
A<so>:< O] ;’)

where Do — Aoly—m, of size n — m, is invertible. So F'(\g) = R™ x {0},,—,, and
7T(U1,"‘ >un)T = (ula"' 7um707"' 70)T'

We decompose vectors and matrices accordingly:

X = x CoAe = c* F .
Y E« D*

Here z € R™, y € R*™ and C* € M,,,, D* € M,,_,,,. Then 7A%71 : F(\g) = F(Xo) is
given by the matrix C'*: R™ — R™, and

d
L'=0,+>» C*a.
a=1

We shall prove this m x m operator is hyperbolic.

2. For £ = &, we see A(§) has invariant subspaces R™ x {0,,_,,} and {0,,} x R*™™.
These two invariant subspaces correspond to disjoint parts of spectrum, and their direct
sum is R".

By standard results on perturbations of linear operators, the invariant subspace depends
analytically on the parameter £ near ;. More precisely, there exists a neighborhood V' of
& and an analytical map & — K (&) from V to M(,—n)xm(R) such that 7

A proof of this claim is given here. Let A(€) (i.e., N(€) in the claim) be the eigenspace associated
with the eigenvalue A\(§) of A(€), and \(&) = Ao. Hence A(&) = R™ x {0},,—,,. By the assumption,
at &y, the eigenvalues of Dy are distinct from Ao, so in a small neighborhood of &y, A(&), and the
eigenspace A(€), are analytic. By Kato’s method [2, p.100] (we will give details of this method in
the following lecture of Lopatinskii determinant), we may construct a basis {e;(£)}2; of A(§), and
ej(&) = ej, with e; the standard basis of R™ (the j-th argument is 1; the others are zero). Also, e;(&)
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o K(&) =0
T
e The subspace N (&) =
K(¢

3. Hence, N(§) is invariant under the flow of ODE X = A(§)X, namely, for o € R™,

we always have

) ) S Rm} is invariant under A(€).
T

K(¢)
On the other hand, the flow is defined by & = Q(§)z, y = K(&)x, where Q(§) =
C(&) + F(O)K(€), with C(&) = ¢, C?¢,, and F(¢) = ¢ _, F*¢, defined similarly.
Therefore, for t > 0, we should have

%o B exp(tQ(§))xo
WMW<K®%>—<K@mem%)'

Note that for t € C, both sides are also well-defined and holomorphic with respect to t.

wmmgn< x:j>eN@»

So the above equality also holds if we replace ¢ by it for ¢ > 0 :
it v\ expliQ(E)w >'
Hm(m<K©%> (K@me@m

(o)

< ||lz]| + [|K(&)z]| . Let us define

3. We note

()

which is finite by our assumption of hyperbolicity. So we have

lexp(itQ(E))[| < M (1 + K (&I])-

Let n € R? be given. One applies the above estimate to the vector & = & + sn, for s

= ||lz||* + ||K(&)z|” for 2 € R™, so there holds ||z| <

M = sup |]exp(it14(§))|| )

£€Rd

small enough so that £ € V and t = 1/s. (Recall V is open as assumed.) Since C(§) and
F(&) are linear on &, and C(&) = Aoln, F(&) =0, one gets

Q&) = Aolm + sC(n) + sF(n) K(&).

are analytic. Let E(&) = (e1(€), - -em(§)), which is a n x m matrix. We also write it block-wise as
E(§) =
< (EQ(é.))(nfm)xm

invertible. Note A(¢) = {E(&)y : y € R™}. So for any x € R™, we may solve y = E;(¢)" 12, and

). Then as det(E7(£)) equals 1 at &, in a neighborhood of &, F1(€) is

then A(§) maybe expressed as { K(Z) ) tx € Rm}, with K (&) = E»(€)E1(€)~t. (This is similar to
x

represent a linear subspace by the graph of the mapping K (€).)
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Therefore, as t = 1/s,
exp(itQ(€)) = ™ exp(i(C(n) + F(n) K (€))).
By taking s — 0, note that K (&) — K(&) = 0, we have the desired estimate
lexp(iC(n))]| < M

with M independent of 7. 0

Now we come back to (19). We see, as Rer > 0, m(71,, + iA(7))|ker a¢ is nonsingular.
So we may solve k from (19) as k = M(r,n)r = —(7(71, + iA(T}))TF)_lﬂ'(TIn +1A(n))r,
with M(7,n) € Z(R(A?); ker A?). Then (18) becomes an ODE:

dr
d_xd = B(r,n)r. (20)

Given an initial data rg, it admits a unique solution r = r(x,4), and hence k is solved by
k= k(za) = M(7,n)r(za).

Lemma 3.3. For Rer > 0 and n € R4, the matriz B(T,n) does not have pure imaginary
eigenvalues. Consequently, the number of eigenvalues of positive (resp. negative) real part

does not depend on (1,n). It equals the number of negative (resp. positive) eigenvalues of
A,

Proof. 1. For X an eigenvalue of B(7,7), it is necessary that there exists 7 € R(A?) that

is nonzero, and a k € ker A%, such that

MY 4+ (11, +1A(n))(r + k) = 0.

This can be seen by using (18)—(20) (replacing ﬁ by A). This is also sufficient, as can
be seen by using decomposition and noting that A? is nonsingular on R(A%).

2. The equation above is equivalent to
(MY 4+ 71, +1A(n))(r + k) = 0.

If X is purely imaginary, then by hyperbolicity, there should hold Rer = 0, a contradiction!

3. The rest proof is similar to that of Lemma 3.1. Since B(7,n) is holomorphic to
7, analytical to 7, their eigenvalues also share these properties and hence the number
of eigenvalues with positive (resp. negative) real part should be the same as B(1,0).
However, in this case, M (7,n) = 0 and (18) becomes (Addd—;+r)|R(Ad) =0, hence B(1,0) =
—(A¥gay) " O
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We concluded from this Lemma that bounded solution of (20) decays exponentially as
xq — 00, and form the stable subspace of B(7,7), with dimension p. Hence the solutions
of (13) decay to zero as x4 — oo take value in a p-dimensional vector space E_(7,7),
again called the stable subspace of (13). The F_(1,7) is made of sums r + M(7,n)r,
with r in the stable subspace E*(B(7,n)).

3.2.3. Conclusion. Mimicking the argument for the non-characteristic case (using scal-
ing), we see that a necessary condition for well-posedness in Holder spaces is again the

Kreiss-Lopatinskii condition E_(7,7) Nker B = {0}, or, by assuming p = ¢ (cf. (16)),

C"=FE_(1,m) @ker B, Vn € R¥! Rer > 0.

On the contrary, this decomposition implies p = ¢, and, as E_(1,0) = E%(A%) still
holds, implies also (11). However, we cannot deduce from it the requirement ker A? C ker B
for a normal IBVP.

3.2.4. Failure of Kreiss-Lopatinskii condition cannot come from the characteristic nature

of the boundary.

Proposition 3.2. For any n € R%! and Rer > 0, it holds that
E_(1,m) Nker A% = {0}.

Proof. Let uw = r + k belong to E_(7,n). Then k = M(r,n)r. If u € ker A%, then
r =u—k € ker A%, hence r € ker A2 N R(A%), thus r = 0, and therefore k& = 0. Hence
u = 0 too. 0

4. FURTHER REMARKS ON KREISS-LOPATINSKII CONDITION

4.1. Conclusion. For IBVP (1)-(3) to be well-posed in a very weak sense, it is necessary

to hold the following Kreiss-Lopatinskii condition:

C*"=FE_(1,n) @ker B, Vn e R Rer > 0.

It contains all the necessary conditions we have derived for existence, uniqueness and
stability.

For characteristic case, in order that the boundary condition Bu = g make sense when
the solution u is not continuous (for example, in L?), we also need ker A? C ker B to
formulate an IBVP.

Violation of KL at a frequency point (7,7) # 0 with Rer > 0,7 € R%"! will lead to an
Hadamard instability.
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4.2. Unlike hyperbolicity, Kreiss-Lopatinskii condition, and the normal boundary condi-
tion (11), are not invariant under time reversing. Breaking symmetry in space (introducing

boundary conditions) also breaks symmetry in time.

4.3. Note that in Kreiss-Lopatinskii condition, the direct sum is not an orthogonal sum,
so for different (7,7), E_(7,1) may actually be different subspace of C". As E_(7,7) has
the same dimension, it may be regarded as a point on the Grassmannian manifold G(n, p),
i.e., the Riemannian manifold consists of p-dimensional subspaces in C".

We also note that since E_(ur, un) = E_(7,n) for all x > 0, KL is positive homogeneous

of degree zero. Then E_(7,71) may be considered as a map from the hemisphere
Rer >0, |+ |n*=1
to G(n,p). We have shown it is well-defined and smooth.

4.4. By the Kreiss-Lopatinskii condition, we have B : E_(n,7) — R(B) = R is an

isomorphism. So there are constants C'(7,7) > 0 so that
Vi< C(nn)BV],  VVeE(mn). (21)

We remark that the constant may depend on Rer > 0 and n € R~1. On the contrary, if
(21) and R(B) = R? hold, with p the number of incoming characteristics, then obviously
the Kreiss-Lopatinskii condition holds.

If the constant C' does not depend on (7,7), then we obtain the Uniform Kreiss-
Lopatinskii condition (UKL), which turns out to be necessary for L? strong well-posedness
that will be studied in the next lecture. It turns out that UKL is closely connected
to the continuous extension of the map (7,7) — FE_(7,n) to the closed hemisphere
Rer >0, |7+ n*=1
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LECTURE NOTES 3:
INITIAL-BOUNDARY VALUE PROBLEM IN HALF-SPACE WITH
CONSTANT COEFFICIENTS: UNIFORM KREISS-LOPATINSKII
CONDITION, LOPATINSKII DETERMINANT AND EXAMPLES

HAIRONG YUAN

To study variable-coefficient problems or nonlinear problems, one requires the linear
initial-boundary value problem (IBVP) with constant-coefficient should be well-posed in a
strong sense, therefore robust for small perturbation. Motivated by the estimate obtained
for symmetric hyperbolic systems with strongly dissipative boundary conditions, ' we give
the definition of L? strong-well-posedness. Then we derive a necessary condition for such
well-posedness, namely, uniformly Kreiss-Lopatinskii condition (UKL). It turns out, for
constantly hyperbolic operators, and non-characteristic boundary, this is also sufficient
for the IBVP to be L? strong-well-posed.

We also introduce a somewhat practical tool called Lopatinskii determinant to check
wether (uniform or non-uniform) Kreiss-Lopatinskii condition holds.

Computation of Lopatinskii determinant and checking KL (UKL) is usually a bothering
job. We give some examples at the end of the note.

This note is based on parts of Sections 3 and 6 in Chapter 4 of [1]. It is only used for

teaching.

1. UNIFORM LOPATINSKII CONDITION: THE NON-CHARACTERISTIC CASE

1.1. The estimate and L? well-posedness.

Definition 1.1. Consider a non-characteristic hyperbolic IBVP

Lu = Oyu + Zi:l AOu=f, = (y,2q): y R 24>0, t>0, (1)
Bu =g, r=(y,zq): yER™ 2,=0, t >0, (2)
u = ug, r=(y,2q): yER" 23>0, t = (3)

Date: April 23, 2021.

We skipped this topic in this series of lectures. However, It will be exhibited later.
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in the domain {zqy > 0, ¢t > 0}. We say this IBVP is strongly well-posed in L?* if the

inequality

T T
@)+ [ [ nPdzdes [ e [ oo dds
0 Q 0 o0
2 r 1 2 2
< ¢ (||U0||L2 s [ (; |La()). + ||voBu<t>||L2) dt) - (4)
0

holds for every smooth, rapidly decaying (in x) function u(z,t), and every value of v, T >

0, with a fixed constant C' that is independent of v, 7 and u. 2

Recall that (you)(y,t) is the trace of u(y,x4,t) on the boundary {z; = 0}. Thus
(7ou)(y,t) = u(y,0,t) for u continuous up to the boundary.

1.2. A necessary condition for L? well-posedness. Set v(n,xq,t) = F,(u(y, z4,1)).

Then by Parseval’s Formula, (4) is equivalent to

ez'yT/ / v(n, 24, T)|? dwgdn
ri-1 Jo
4 g —27t OO 2 g —29t 2
v [ e lv(n, z4,t)|* daxgdndt + e lv(n,0,t)]* dndt
0 ré-1 Jo 0 Ri-1
< C/ / 0o (1, 24)|* dazqdn
ri-1 Jo

T 1 oo
vo [Lem (D] [ iiteanpandns [ Bomo0ran) a6
0 7 JRri-1 Jo Rd—1

Here L = 8, + iA(n) + A%,. Now for any nonzero ¢(n) € 2(R41), we set

w(777 Ld, t) = et7¢(77) exp(di(T, n))V(Tv 77)7

with Rer > 0, and V = V(7,1) € E_(7,n) depending smoothly on (7,7). * We also
may suppose |V (7,17)| = 1. Then one easily checks that w solves Lw = 0. Note w decays

exponentially as 4 — 00. So we may apply (5) to w, dropping the first two positive terms

2This is very important!
3For example, we may take V(7,7) = n_(7,n)Vy, with V; an arbitrary vector in C" and 7_(r,7) the
eigenprojection onto E_(7,7), along E(7,7).
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in the left-hand side, * then obtain

T
[, ok [ et
Rd—
/Rd 1/ ‘ |eXP QZdA(T n))v‘z dagdn

vo [Leera [ jpwsve P
0 Ré-1

Note for 7 fixed, n in a compact set, there is a negative upper bound of real part of
eigenvalues A(7,n) of A(7,n) with negative real part. So by V- € E_(7,n) and |V (7,n)| =
1, we have, for the first term in the right-hand side,

Lo [ 16 espeadtrVE dasdn < "ol

Note the constant C” depends only on 7 and supp ¢.

We now choose 7 so that v < Rer, and set E(T) = OT e?(Re7=7) ¢ Then we get

2
2 174 2d CC/”¢HL2 C 2 BV 2d )
L, e earan < celgie e [ ey mPa

Let T'— oo, and note F(T) — oo, there comes

[, 6@P(VrnR =~ ClBV () dn <0, Vo) € 2R,

This implies (by homogeneity, we drop the assumption that |V (7, n)| = 1)

IVI2< C|BV%, VYRer >0, neR*™ Ve E_(rn). (6)

Note C here, is the same one as in (4), does not depend on 7, 7.

Definition 1.2. Let L be hyperbolic, A? be invertible. Given B € M,,»,(R), we say the
IBVP (1)-(3) satisfies the wniform Kreiss-Lopatinskii condition (UKL) in the domain
xqg >0, t>0,if

e p equals the number of positive eigenvalues of A¢;
e there is a positive number C' > 0 independent of Rer > 0 and € R%"! so that
(6) holds.

4The first two terms already appear in the study of Cauchy problems. To study boundary conditions,

one naturally focuses on the third term.
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2. UNIFORM KREISS-LOPATINSKII CONDITION: CHARACTERISTIC CASE

2.1. Estimate and L? strong-well-posedness. For the characteristic case det A? = 0,
recall we always assume ker A? C ker B (see the definition of normal IBVP). This implies
it is no longer reasonable to have a control of the boundary value of u in (4). ® Instead,

we can only control the normal trace A% :

Definition 2.1. Consider a (possibly characteristic) hyperbolic IBVP (1)—(3) in the do-
main {xgy > 0, t > 0}. We say that this IBVP is strongly L* well-posed if ker A% C ker B

and if, more over, the quantity

T
) [ et ([ eatieoPay ey [ luopd)
0 o0 Q

is bounded from above by

r 1
¢ (Il + [ e (ZIEOOIE: + oBu®lpar ) ).

for every smooth, rapidly decaying (in x) function u(x,t), and every positive v, T, for a

fixed constant C' > 0 independent of v, T and wu.

Remark 2.1. Let’s look at a simple example: The system

(1)) (0)

0 0
in x > 0,t > 0, with boundary condition v =0 on 2 = 0. So B = (0,1), A¢ = ( 01 >,

and as det A? = 0, the boundary {x = 0} is characteristic. Note that ker A? = ker B =
{(u,0)" : u € R}.

The boundary value of the solution u|,—¢ depends only on the initial value wug at the
boundary. So since [[uol|f2( ) bears no any information on its trace on the boundary,
we cannot count |Jug||,. to control it. Also, as ker A? = ker B, it is hopeless to bound
(u,0)" € ker A? by any norm of B(u,0)" = 0. This explains why it is only reasonable to
control Yov = Y9A%(u,v) ", rather than vo(u,v)" in the L? well-posedness.

We note, by the above example, one may control u in ker A% by employ higher order
norms of the data wy, since, for example, ||ugl| ;1 sure takes information on you. However,

such estimate involves loss of derivatives. ©

SFor 0 # u € ker A%, we always have Bu = 0, so one cannot use Bu to control such w.

5Tt is interesting to derive such estimates!
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2.2. Necessary condition of L? strong-well-posedness. Following the procedure be-

fore for non-characteristic case, we may derive a necessary condition for L? well-posedness
(UKL) in the form

3C > 0,Vn € R VRer > 0,VV € E_(7,n), there holds |A?V| < C|BV/|. (7)

Remark 2.2. Note (7) implies ker B N E_(7,nm) C ker A%. We have proved before that
E_(1,n)Nker A% = {0}, so we get the Kreiss-Lopatinskii condition (KL) ker BNE_(1,7) =
{0} as well. Comparing to (KL), (7) is uniform modulo ker A%. We note also (7) reduced
to (6) if det A? # 0.

3. AN EQUIVALENT FORMULATION OF (UKL) FOR CASE OF CONSTANTLY
HYPERBOLIC OPERATORS AND NON-CHARACTERISTIC BOUNDARY

3.1. Continuous extension of stable subspaces to the frequency boundary. The
disadvantage of (UKL) of the form (7) is that it is hard to calculate C(7,n), namely
the upper bound of [A4V|/|BV| for Rer > 0,n € R¢ ! and V € E_(r,n). It turns
out that there is a much more explicit way to check (UKL) condition, in the case of
IBVPs for constantly hyperbolic operators and non-characteristic boundaries. The idea
is to reformulate the analytical expression (7) to a geometrical condition, namely (8)
in page 42, which is then transferred to an algebraic problem, i.e., non-vanishing of
the Lopatinskii determinant on a connected compact set {(r,7) € C x R¥™1 : Rer >
0, 71>+ [nf* = 1}.

Definition 3.1. An operator L = 0; + Zi:1 A%0, is said to be constantly hyperbolic if
the matrices A(§) = Zizl A€, are diagonalizable with real eigenvalues and, moreover,
as & ranges along S~ (the unit sphere in R?), the multiplicities of eigenvalues remain
constant. In the special case where all eigenvalues are real and simple for every ¢ € S,

we say the operator is strictly hyperbolic.

We also recall the Grassmannian manifold G(n,p), the set of p-dimensional subspaces
of C", is a compact and connected differentiable manifold. (See [2] or [3] which are avail-
able on internet for elementary introductions.) The topology of Grassmannian G(n,p)
is defined as follows. Let M,,x,(C)° be the set of n x p matrices with rank p, which is
identified as an open subset of C". (We may consider the p column vectors of a matrix in
M,,x,(C)° as a basis of a p-dimensional subspace of C".) Two matrices A, B € M,,«,(C)°
are called equivalent, if there is an invertible p x p matrix P € GL,(C) so that A = BP,
and is denoted as A ~ B. Then G(n,p) is the quotient space M,,x,(C)°/ ~, with the

"Failure of KL cannot come from the characteristic nature of the boundary, see the previous lecture.
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quotient topology. We note that in the following, continuity should be understood with

respect to such a canonical topology of G(n, p).

Lemma 3.1. Assume that the operator is constantly hyperbolic, and the boundary is
non-characteristic. Then the map (1,nm) — E_(7,n), already defined for Rer > 0 and
n € R walued in G(n,p), admits a unique limit at every boundary point (ip,n) (with
p € R,n € R¥L) with the exception of the origin (p=0,7=0).

Proof of this lemma is quite technical, see [1, p.139], and we omit it here.

We use E_(ip,n) to denote the limit. We infer that E_(ip,n) contains the stable
subspace of AU’ +i(pl,,+A(n))U = 0, but might not be the same. In fact, by completeness
of the manifold G(n,p), E_(ip,n) € G(n,p), so dim E_(ip,n) = p, while since many
eigenvalues with positive/negative real parts of A(7,n) may become purely imaginary as
Rer — 0, the number of eigenvalues of —i(A?)~!(pI, + A(n)) with negative real parts

should be less or equal p.

3.2. An equivalent form of UKL. We have the direct sum C* = E_(7,7) @ (E_(r,n))*
and C" = ker B@ E_(1,7n), and the latter is the Kreiss-Lopatinskii condition. Let P(7,7)
be the orthogonal projection C" — E_(7,n), and 7 (7, n) the projection of C" onto E_(7,n)
along ker B. ® We have the technical result.

Lemma 3.2. P(7,7) is analytical (continuous) with respect to n € R~ holomorphic
(continuous) with respect to T € C, if and only if w(7,n) is. Also, P(1,n) and w(1,n) are

homogeneous of degree zero.

Proof. 1. Note that E_(kt,kn) = E_(1,n),Vk > 0, hence P(kt,kn) = P(7,n) and
w(kt, kn) = 7(7,n).

In the following, we set ¢ = n — p. Recall that p is the number of positive eigenvalues
of A% and dimker B = ¢, dim E_(7,n) = p.

2. Let ai, -+ ,a, be a basis of ker B, and g1, -+ ,q, a basis of (ker B)*. Here

(ker B)* is the orthogonal complement of ker B in C", which is uniquely determined by
ker B.

8Let V be a p-dimensional subspace of C", we calculate here the matrix representing the orthogonal
projection P : C" —» V.

Let A C M,,%x,(C)° (thus rank A = p) whose column vectors consist a basis of V. Then V = R(A).
For any b € C", the least-square solution = of the over-determined system Ax = b gives the orthogonal
projection of b onto R(A), namely AZ. Recall that from linear algebra, we have & = (AT A)~tATb.
Therefore Pb = A% = A(ATA)"'ATb. Thus we see |P = A(ATA)"'AT| Tt is easy to check that

P?=P.
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3. By definition, we have { P(7,7)a;}}_; C E_(7,71), and
rank (P(Tu 77)@17 T P(Ta n)an>n><n =P

For fixed (7,7), suppose P(1,n)a;, (k = 1,---,p) are linearly independent and thus
consist a basis of £_(7,7n). Then in a neighborhood of (7, 7), this property also holds true
by continuity, and as ker B@ E_(7,n) = C*, P(1,n)a,,- -, P(T,n)aj,, 00, -, (g spans
C". For any m € {¢+ 1,--- ,n}, we have

q

p
Ay = Z aroy + ka(Ta 77)0%7
k=1 k=1

or, with A = (ay, -+ ,aq), B = (P(1,n)0y,,--- , P(1,n)e;,), we have
(AvB>(a17' o 7aCI7b17” : 7bp)T = Q.

Note that (A, B) is an n xn invertible matrix and «a,,, € C" is a fixed vector, by Crammer’s
Rule, the solution (ay, -+ , a4, by, ,b,)" also depends well on (7, 7).

Now observe that
(1, n)ax = B(by, - - ,bp)T, k=q+1,---,n, and n(r,n)a; =0 forj=1,--- g,

we infer that, written as a matrix, 7(7,7) also depends well on (7, 7).

4. Conversely, suppose that 7(7,7) is analytical with respect to n € R¢~!, holomorphic
with respect to 7 € C, we prove the same property for P(1,7n). Because 7 (1,n)ar = 0
for k =1,---,q, we see m(T,n)gt1, -+, 7(T,m), consist a basis of E_(7,n). By Gram-
Schmidt Orthogonalization, we may obtain an orthonormal basis S,+1(7,7), -, Bu(7, 1)
of E_(7,n), and these vectors are also analytical with respect to n € R?"!, holomorphic
with respect to 7 € C.

Then, we may further applying Gram-Schmidt Orthogonalization to aq,- - , o, to ob-
tain an orthonormal base B1(7,7n), -, B,(1,n) of (E_(7,n))*, and these vectors are also
analytical with respect to n € R4~!, holomorphic with respect to 7 € C.

Then for any oy (k=1,---,n), we solve ly(7,n7) € C" from (B1(7,7n),- -, Bu(T,n)) ik, =
ay and by Crammer’s Rule, l;(7,7) is analytical with respect to € R¢"! holomorphic

with respect to 7 € C. Hence P(7,n)a, = > 7_ ., 12(1,m)B;(7,m) This finishes the proof.
U

Now assume the IBVP defined by the pair (L, B) satisfies (UKL). Then (6) can be

rewritten as

|P(r,n)V| < C|BP(r,n)V|,  VRer >0,Yn € R™L, VV e C™.
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Bearing in mind that £_(7,n7) — E_(ip,n) implies that P(7,n) — P(ip,n) in the operator

norm, so by continuity (6) still holds for Rer = 0, which means that

E_(r,p)Nker B = {0}, V Rer >0, necR" (8)

Conversely, assume that E_(, p) Nker B = {0} for every Rer > 0, n € R*!  then there
holds E_(7,n7) @ ker B = C" for such (7,n7). By Isomorphism Theorem of Algebra,
both B : (ker B)* — R(B) = CP and B : E_(1,n7) — CP are invertible. Observ-
ing that H(B|(kerB)¢)_1H is finite and independent of (7,7). For the mapping T'(7,n) =
(Blg_(rp) ' = R(B) = E_(,7), there holds

T(r,n) = m(7,0)(Blgermy-)

This is true because, as ker 7 = ker B, 7 : (ker B)* — E_(7,n) is an isomorphism.

R(B) —— E_(r,1)

(Bl(kch)J-)_ll /

(ker B)*

Then for each (7,71) with Rer > 0,7 € R and |7|> + |n|*> # 0, the number

c(t,m) isup{% . VeE (r,n),V # O}

—oup{ITH e v w 20} = )

is not only finite, but the function (7,7) — c¢(7,n) is also continuous and homogeneous
of degree zero, that is, c¢(A1, \n) = ¢(7,n) for all A > 0. Since the hemisphere defined by
Rer > 0,7 € R ! and |7]? + |n|? = 1 is compact, we infer that there is an upper bound.
Hence, the IBVP satisfies (UKL). We then have

Corollary 3.1. Let L be constantly hyperbolic and the boundary be non-characteristic.
Then IBVP (1)—(3) satisfies (UKL) if and only if E_(1,n)Nker B = {0} for every nonzero
pair (1,m) with Rer > 0 and n € R4L.

Remark 3.1. This Corollary provides a practical way to check (UKL). The main difficulty
during calculation would be the computation of E_(7,71) when Rer = 0, since it is there

the uniformity may fail.
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4. LOPATINSKII DETERMINANT

4.1. The Lopatinskii determinant is a (somewhat) practical method to verify the Kreiss-

Lopatinskii condition. It is a function (7,7) — A(7,n) with the following properties:

a) It is well-defined for Rer > 0, n € R¢L;
b) It is jointly analytical to (7,7), hence holomorphic to 7;

c¢) It vanishes exactly at the point where Kreiss-Lopatinskii condition fails.

4.2. To fulfill these properties, we construct a basis

B(ﬂ T]) = {Xl(Tﬂ 7])7 T >XP<7—777>}

of E_(7,7n), which satisfies a) and b). Then we define the Lopatinskii determinant as

A7, n) = det(BXy(7,n), - -, BX,p(7,7)). (9)

Then it satisfies a) and b).

Also, if A(1p,m0) = 0, then there is a nontrivial linear combination

0 # X(70,10) = Y CiXi(70,70)

k=1
so that BX(79,7m0) = 0. This shows that X (79,79) € ker BN E_(79,1) and hence (KL)
fails at (79, 70)-

On the other hand, if (KL) fails at a point (79,79), then there is a nonzero X (79,19) €
E_(7,n)Nker B, so X maybe expressed as a linear combination as before and BX (19, n9) =
0, hence A(1g, 1) = 0.

So the key point of writing down Lopatinskii determinant is to construct the basis
B(7,m). In the following, we present three ways: i) a general theory provided by Kato;
ii) a special result valid for the Friedrichs symmetric system; iii) Examples for which the

construction is totally explicit and straightforward.

4.3. Kato’s method: single variable case [4, p.100]. Let z — P(z) be a holomorphic
operator-valued function with P(z) being projections, i.e., P?(z) = P(z), defined on a
simply connected domain D in the complex plane. We already know that dim R(P(z)) is
a constant.

Taking derivatives with respect to z, we get from P(z)? = P(z) that
PP '+ PP=P.
Multiplying P to this identity (from left or right), we get

PP'P=0.
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Now define
Q=[P ,Pl=PP-PP,
which is also analytical to z, we easily check that
P =[Q,P].
Considering the Cauchy problem of linear ODE
M =QM, M(z0) = In,

we claim:
a) which has a unique solution M (z) holomorphic for z € D;
b) the solution M (z), as matrix or operator, is invertible;
¢) it holds the formula
M(2)"'P(2)M(z) = P(z).

Note here the independent variable is z € C (rather than ¢t € R), so we cannot apply di-
rectly the well-known results on ODE. The above claim can be proved by using successive
approximation: My(z) = M(zo), M,(z) = M(zo) + fzzo Q(z)M,—1(z) dz. By Cauchy For-
mula of holomorphic functions, M, (z) does not depend on curve of integration and hence
is well-defined, also holomorphic in D (here we need D to be simply connected). Then
we may prove this approximate sequence converges uniformly in each compact subset of
D, and the claim a) then follows.

To show b), we consider another Cauchy problem
N' = —-NQ, N(zp) = I.

As shown above, this problem also has uniquely one solution N(z) holomorphic in D.
Then
(N(z)M(2)))=N'M+ NM' = —-NQM + NQM = 0,
and N(z9)M (z) = I,. So we get N(2)M (z) = I, for z € D. Since M, N here are matrices,
this is enough to conclude that N = M~!. b) is proved.
To show c), using the identity M 1M = I,, we get

(Mfl)/ — _]\4'71]\4'7\4'717

and hence
(M(2)'P(2)M(2)) = =M*M'M~'PM + M~'P'M + M~ PM’

=M YP —[Q,P))M = 0.

This shows M (2) ' P(2)M(2) = M (zy) ' P(20) M., = P(2).
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Now given a basis ) of the range of P(z), then
Bz) = M(2)6o

would be a basis of R(P(z)), and obviously it is holomorphic in D.

Indeed, since M(z) is invertible, so rank (8) = p = rank (P(z)). Since dimR(P(z)) =
dim R(P(z9)) = p, we only need show each vector of § belong to R(P(z)). This follows
from fact c). Indeed, it follows that P(z)3 = P(2)M(2)Bo = M(2)P(20)50 = M(2)5y = B,
so B € R(P(z)).

4.4. For P depends on several variables, the above Kato’s procedure cannot be done
simultaneously in general. If Q; = [0P/0z;, P], simultaneity requires the compatibility
condition

0Q;  0Qk

0u 0y r O

Example 4.1. As an example on the compatibility condition, suppose P depends ana-
lytically on 21, 29, and we find M(z1, z3), which is solved by

oM oM

821 Ql ) 822 QQ ) (21 9 22)
Then it is necessary that 0Q1 /02 M+Q10M [0z = 0Q2 /021 M+Q20M [0z, or (0Q1/0z0—
0Q2/021)M = (Q2Q1 —Q1Q2) M. Since M should be invertible, we need the compatibility

condition 0Q1/0zs — 0Q2/0z1 = —[Q1, Q2]

However direct computation shows we have %Cjz — %ij = 2[P;, P;], and (for simplicity,
we write P; = g—; etc. here and below), using PP + PP, = Py,
—[Q;,Qs] = PP;P,P— PP.P,P+ P,PP, — P,PP;
= [P}, B,
so there holds in practice oddly
% - %;ijk = —2(Q;, Q.

Therefore, to construct (7, n), or, equivalently, M (7,7n), we may only apply Kato’s pro-
cedure successively to each of the arguments, provided at each step, the Cauchy problem
is posed in a simply connected domain. For example, we first solve

OM (21, 29)
821

~ ~

= Ql(zlu Zg)M(Zl, 23)7 M( (1)7 2[2)) - In

Then, we solve

OM (21, z2)

82 :QI(ZI;ZQ)M<ZI;22>7 M(ZhZQ :Zg) :M(zlvzg)
2
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Because for ODE with analytical coefficients, if the initial data is analytical to pa-
rameters, the resulting solution will jointly analytical in the variable for differentiation
and the parameters (Cauchy—Kowalevski Theorem), so the resulting matrix M is jointly
analytical in its arguments. The inelegant fact is that the result depends on the order in

which we solve the ODEs, because the lack of compatibility.

4.5. Applying these ideas to the eigen-projectors m_(7,7), which are jointly analytical for
Rer > 0 and n € R, we have

Lemma 4.1. Forn € R¥! and Rer > 0, the space E_(7,n) admits a basis B(7,n), which

is jointly analytic in (1,m) and thus holomorphic in 7.

4.6. The symmetric case. We restrict ourselves to the case of Friedrichs symmetric
operators and non-characteristic boundary. When L is symmetric, that is, A(§) = A(€)T
for every ¢ € RY, and det(A?) # 0, an alternative construction can be done, with the help

of the following. °

Lemma 4.2. In the symmetric case with a non-characteristic boundary, one has for every
n € R and Rer > 0,

E"(A") N Ey(1,n) = {0}, (10)

where E*(A%) stands for the unstable invariant subspace of A%

Consequently, there holds
EY(AY @D B (r.) = C",

Remark 4.1. Question: Whether (10) holds under the weaker assumption of hyperbolicity,

instead of symmetry?

Proof. 1. Let ug € E,(1,1). Then the unique solution
A% 4+ (11, +iA(n))u = 0, u(0) = ug

decays exponentially fast as z; — —oo. Multiplying the equation by u* and integrating
on (—o0,0), we obtain

0
(A%, ug)cn = —2Re7'/ lu|? doy < 0.

—0o0

2. If, moreover, uy € E%(A?), the unique solution of
v = A, v(0) = uo

9Note this method is different from Kato’s. The symmetry of A(€) is used to obtain energy estimates
of ODE in the proof.
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decays exponentially fast at —oo. Multiplying the equation by v*A? an integrating, we

obtain
0

(A, ug)cn = / | ATp[? dag > 0.

Therefore we conclude (A%ug, up) = 0. This implies u = 0, so ug = u(0) = 0.
3. The last conclusion holds for dim E*(A9) equals the number of positive eigenvalues
of A?, while dim £, (7,n) equals the number of negative eigenvalues of A%, and since A¢

non-singular, their sum is n. 0

Thanks to the Lemma, together with E_(7,n) @ E(r,n) = C", as kern_(7,n) =
E,(1,n), '° the map 7_(r,n) : E“(AY) — E_(,n) is bijective. Now, giving a basis by
of E*(A?), we obtain a basis b(r,n) = 7_(7,n)by of E_(7,7), which is obviously jointly

analytic.

5. EXAMPLES

In the following specific problems, we could construct the Lopatinskii determinant by
straightforward computation of eigenvectors, without appealing to the general theory. A
trick here is, rather than calculating the roots of Lopatinskii determinant directly, one
usually firstly derive some polynomials from the Lopatinskii determinant, and check if
the roots of the polynomials are roots of the Lopatinskii determinant, since the latter is

generally irrational and involving multi-valued complex functions.

1 0 0 1
5.1. Example 1. Consider the system 0yu+ ( 0 1 ) Oyu+ ( Lo ) Oyu = 0. Hence

G &
L —&

symmetric, as well as constantly (strictly) hyperbolic system. We note each component

d=n=2 and A(§) = . The spectrum of A(§) consists in +|£|. This is a

uy, uy of u satisfies the wave equation 92w — A w = 0 if it is C2.

Since det A2 = —1, the boundary x5 = 0 is non-characteristic. Also, the spectrum of A2
is £1, so p = 1 and the boundary condition is scalar: Bu = byu; + boug, B = (b1, by) # 0.
0 -7 +1n

We also compute A(7,n) = ( '
-7 —1in 0

) . Its eigenvalue u satisfies

/1'2272_'_772-

A typical eigenvector associated with u is R(7,n) = (in — 7,u)". The only exception is
the point given by 7 = in (some frequency boundary points), where y = 0. Near such a

point, a convenient choice would be R/(7, ) = (—u, 7 +in)'.

0Clearly 7_(7,7) here is projection onto E_(7,n), along E, (7,7).
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The Lopatinskii determinant is A(7,n) = by(in — 7) + bou, valid for Rer > 0. Always
bearing in mind that we should choose the eigenvalue i corresponding to

negative real part here.
Proposition 5.1. KL holds if and only if by + by # 0.

Proof. Eliminating i between A = 0 and 72 + n? = u?, we have
bi(in — 7)* = by(7* + ).
Hence, with z = ir, we define
Lop (z,7) = bi(n+ 2)* + 03(n* — 2%) = (n + 2)(bi(n + 2) + b3(n — 2)).

The fact that Lop vanishes at the point z = —n, regardless of the value of B, reflects
the fact that R does not span an eigenspace at the point (actually it is zero there). A
computation using instead with R’ leads to (n—z)(b3(n+2z)+0b3(n— z)), this factor is thus
irrelevant, and the vanishing of Lopatinskii determinant must imply that of the simpler
polynomial

Lop(2,7) = bi(n+2) + b3(n — 2).

From this we can see the IBVP satisfies the Lopatinskii condition if b; # +by. In fact,
Rer > 0 implies Imz > 0, so ImLop (2, 7) = Im(b?+b2)n+Im(b3—03) 2 = (b?—b2)Imz # 0.
Recall here n and B are real.

For by = +by, we get Lop (z,1) = (b + b3)n, and it vanishes at (z,0), while we cannot
draw conclusion that IBVP does not satisfies Lopatinskii condition.

We return to A(7,n) with n = 0. Since Rer > 0, the eigenvalue with negative real part
should be yp = —7. So we have A(7,0) = —(by + b2)7. So if by = by, Lopatinskii condition
still holds (keep in mind Rer > 0), while for by = —bs, it fails at (7,0) (Rer > 0). O

For UKL, we only need consider the case by # —by and 7 = ip, with p € R and n € R.
Now since z = —p, we get Lop(—p,n) = (b + b3)n — (b — b3)p. For by = by, there
holds Lop o(—p,n) = 202n = 0 only for n = 0. For n = 0, we solve yu = —ip, so
A(ip,0) = —ibyp — by (ip) = —2ibyp. So for by = by, A does not vanish at the points (ip,0)
(p #0). Hence (UKL) holds.

For b? — b3 # 0, Lop o(—p,n) vanishes at {p = Z?:Zg
Lopatinskii determinant itself to check. There are the following cases, where we take

n € R\ {0}.
e b; = 0. For this case p = —n, hence = 0, and

}, we need, again, return to the

A(ip,n) =ibi(n — p) + by = 0.
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So (UKL) fails.
e by = 0. For this case p =0, hence p = 0 and (using R'):

A(in,n) = —bip +1ibs(p +n) = 0.

So (UKL) fails.
Remark: At the points (£in, n), the two families of eigenvalues p meet. Such
points are called glancing points. Glancing points are usually obstacles for con-
tinuous extension of E_(1,7).

e biby # 0. In this case |p| =

p=1iy/p? —n? for p < 0.1

¢ p > 0, which implies sgn(n)sgn(b? — b2) = 1. So p =

b2+b2

| > Inl. So p = —i\/p? —n? for p > 0 and

_ 2i|b1bo|
|62 — b2

In|, and

2ib, b2 (sgn(bl)sgn(bz)sgn(”) 1>.

Alip,n) = —
e T et
So for b1by < 0, A vanishes at the points (ip,n), with p = b§+2277 > 0.
¢ p < 0, which implies sgn(n)sgn(b? — b2) = —1. So u = |2£\25123| In|, and
_ 2ib1b3 [ sgn(by)sen(by)sgn(n)
A = —-1].
o = o (G
So for b1bs < 0, A vanishes at the points (ip,n), with p = 2?2217 < 0.
In conclusion, we see for biby < 0, (UKL) fails at the points (1b§+b§77 n). The

eigenvalues p are purely imaginary at such points. So they are hyperbolic bound-

ary frequency points. For bjby > 0, (UKL) holds.
We thus proved the following.

Proposition 5.2. (UKL) holds if and only if bybs > 0.
5.2. Example 2. We consider the wave equation
O*u = *Au, (xq > 0)
with a boundary condition of the form
Ayu + adgu + b - Vyu = 0. (11)
 URorr =y +1ip, 7 > 0, since u2 = 42 — p? + 72 + 2ypi, s0 for p > 0, p? is in the second quadrant.

Hence the branch p with negative real part should approach —iy/p? — n? as v — 0+. For p < 0, p? is in
the third quadrant, so the branch p with negative real part approach i\/p? —n? as v — 0+.
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5.2.1. For u = ™% (z4) (Rer > 0) to be a solution of the wave equation, U shall

satisfy

7_2

U = (1o + U

Let o = ,/\77|2—|—Z—§ with Rea > 0, and V = U’, we get

() -(2a) (%)

The stable subspace is generated by (1,—a)", and note the boundary condition is

- U
(tb-n+T1,a) ( v ) = 0, then the Lopatinskii determinant is

Alr,n) = (b-n+7a)(1,—a)" = —aa+ib-n+ 1.
Set a = e + di, with (1 = v +1ip)
==+ = p*)/P,  de=np/c. (12)
Then
A= (y—ae)+(p+b-n—adi (13)

Lemma 5.1. The following statements hold:

e (KL) holds if and only if a <0 or a > c.
o The (UKL) is satisfied if and only if

a<0, b < c. (14)

e Boundary frequency point of elliptic part ** is made of pairs (t = ip,n) such that

ol < clnl.
o The boundary frequency glancing points ** are the pairs (Zic|n|, n).

e The Lopatinskii determinant vanishes in the elliptic zone and nowhere else, if and

only if
a=0, |b<ec (15)
e A wvanishes only at one glacing point if, and only if
a<0, Jbl=c (16)

2By definition, at such a point (t =1ip,n), p € R, none of the eigenvalue is pure imaginary.

I3By definition, at least two eigenvalues meet at such a point (7 =1ip,7n),p € R.
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Proof. 1. (KL) means A(7,n) # 0 for Rer > 0,1 € R*! |7]| + || # 0. We can see from
(12) that v > 0 implies e > 0, so for a < 0, we always have v — ae # 0 and so A # 0, and
(KL) holds.

Also, for a = ¢, one easily checks that A(1,0) = 0, and (KL) does not hold.

For a > 0 but a # ¢, we may solve, if A = 0, that (recall v > 0)

2 2 2 )2
S N g o LS i

If a > ¢, then for the second equation to hold, we should have |n| = v = 0, contradictory

p:
c2 — g2

a2 — 2 2 _ g2
to our assumption vy > 0, this means A # 0 for a > ¢. However, if 0 < a < ¢, no matter

what b is, there always exists nonzero n (for example, those b- n = 0) so that

__a e (0-n)?
= 02—a2 |77| Cg_ag > 0.

Hence (KL) does not hold at these (v +ip,n).

2. (UKL) means A(7,7n) # 0 on Rer > 0,1 € RTL |7| 4+ |n| # 0. Therefore, we restrict
ourselves to the case a < 0 or a > ¢. We also need only consider the case v = 0.

If a = 0, then A(—ib-75,7) =0, so (UKL) does not hold.

If a > cora < —c, then we may solve e = 0 and d = (p+b-1)/a, d* = p*/2— || > 0.
Note that for p > 0, we should choose the root d > 0, and for p < 0, choose the root
d < 0. We have an equation of p :

Flp) = (1=a’/*)p” +2p(b-n) + (b-n)* + a®[n|* = 0.

This quadratic equation always has real roots, but remember we need |p| > ¢|n|. This
requires f(%¢|n|) = (£¢ln| +b-n)% > 0. and it always holds for |a| > c.
We may solve that

2

C - a =
o (e VG e - ).

Hence

ol 2 csgn(a)

de = ")+ SE )2 + ol — ),

a? — 2 a
As £ps > 0, for A = 0, we also need +dy > 0. For a > ¢, the requires — + b- n < cnl;

for a < —c, it is £b-n > c|n].

As no matter what I;is, it is always possible to find n so that — + b n < ¢|n|. This
means for a > ¢, A actually vanishes at some boundary frequency points and (UKL) does
not hold.

YAs e +di = /In? + (7% — p?)/c® + 29p/c2, if > + (v* — p?)/c? < 0, then for p >0 (p < 0), the
root with d > 0 (d < 0) has positive real part for v small.
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If |b] > ¢, then it is also possible to find 7 so that +b -7 < c||. This means (UKL)
does not hold for a < —c and |b] > c.

However, if a < —c and |b] < ¢, it is impossible for a nontrivial 5 so that +b -5 > ¢|n|.
Hence (UKL) holds.

Similarly, for a = —c and b- n # 0, we may obtain p = _%E n—

13

b thus d =
—L{(b-n) =A@ n). b5 < 0, thus p > 0, we need d > 0, that is b- 5 < —c||.
Ifb-n>0,thus p < 0, we need d < 0, that is b-n > ¢|n|. So if |b| > ¢, (UKL) may not
hold; if 0 # |b] < ¢, (UKL) holds.

For a = —c and b = 0 (or b-n = 0), for A(ip,n) = 0, we need n = 0, and then

V)

d = —p/c. So d and p are of opposite sign and A # 0. So we conclude (UKL) holds also
for a = —0,5:0.

If —c <a <0, then A =0 implies as above, e = 0 and f(p) = 0. If f has no real root,
A # 0; if f has a real root, then it is necessary that at least one of f(4c|n|) < 0 holds.
The latter requires (at least one of £) — b -1 = ¢|n|. So if |b] < ¢, (UKL) will always
hold (for n # 0, using Cauchy-Schwarz Inequality; for n = 0, using the argument of the
above paragraph).

Finally we consider the case —¢ < a < 0 and |b| > ¢. We show there are some points
(ip,n) where A vanishes.

We first note there are 7 so that [b- 7| > (¢2 — a2)'/2|y|, this means f(p) has real roots
p+. Now there are the following two cases.

(a) b-1 = c|n|. So one of the root of f is p = —c|n|. Hence d = 0, and we actually have

A(_iC’nL 77) = 0.
(b) —=b-n = ¢|n|. So one of the root of f is p = ¢|n|. Hence d = 0, and we actually have
Aiclnl, ) = 0.

In conclusion, we have a table in the following (some will be confirmed in the steps
following).
3. For boundary frequency point (ip,n) of elliptic type, then a should not be purely

imaginary. As now a = +/|n|? — p?/c?, this means |p| < c|n|.
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a b {A(r,n) =0}

a>c some boundary points
0<a<c some interior points

a= b| < ¢ | < on elliptic boundary points

a= b > ¢ some boundary points
—c<a<0|b]<c 0
—c<a<0 ]5| >c some boundary points

a=—c b=0 0

a=—c ||b]<ec 0

a=—c ||b>c some boundary points

a<—c ||b]<ec 0

a<—c ||b]>c some boundary points

4. For boundary glancing point, two branches of eigenvalues meet at a purely imag-
inary one. If p > ¢|n|, then one branch of eigenvalue, with positive real part, will
approach \/Mi and the other branch, with negative real part, will approach
—\/p2/c — n|%i. Similar phenomena occur for p < —cln|. So (ip,n) with |p| > ¢|n| are
not glancing points.

While, (+£ic|n|,n) are glancing points, as both branches will approach the eigenvalue
a=0as (1,n) = (Fic|no|, no) with Rer > 0.

5. A =0 at (ip,n) with [p| < ¢|n| means ae = 0,p4+b-n—ad =0.1If a # 0, then
e =0and & = p?/c* — |n|* < 0, contradiction. So we need a = 0. Then d = 0 and
e = /> = p?/c, and p = —b- 7. This requires that |b-n|> < ¢2|n|2. As we need find the
range of a,b so that A only vanishes on elliptic points, this amounts |b| < c. (If [b] > ¢,
we may find 7 so that |b- 5|2 > [n]% so A(=ib-1n,n) = 0 while (—ib - 7,7) is not an
elliptic point). Hence it is necessary that a = 0 and |l;| < ¢, for A = 0 only on the elliptic
point (—ib - 7, 7).

On the other hand, if a = 0, as shown in Step 1, A can only vanish on Rer = 0. Hence
A =0 implies p = —b- 7. As ]l;\ < ¢, so A vanishes actually only on elliptic points.

6. If A(ip,n) = 0 at a glancing point, for p = +¢|n|, then one solves p = —b-n and
thus require |b| > ¢. However, if |b| > ¢, we may find lots of 5 (not in a one-dimensional
subspace) with unit length so that b- n = c|n|. Hence, to ensure the set where A vanishes
contains only one glancing point (generated by 7 in a one-dimensional subspace of R41),
it is necessary that [b| = c.

As we require A must vanish on only one glancing point, (it also cannot vanish on other
non-glancing points), then by the above necessary condition ]l;\ = ¢, we need check the

following cases one by one.
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7) a< —c, \b[ =c.

As we always require (KL) holds, Cases 2) and 3) do not need be discussed.
Case 1). By Step 2, one requires — £ b -7 < ¢|n| for A = 0. Even if |b| = ¢, one may
find 7 so this holds and then A vanishes at least at a non-glancing point.
Case 4). We know from Step 2 that A(—ib-7,7) = 0. As |b| = ¢, we can find only one 7
so that b-n = c|n|, hence A vanishes only on one glancing point.
Case 5). As in Step 2, we sce that, because |b| = ¢, there is only one 7 (namely £b/|b|)
so that A(— £ ic|n|,n) = 0. Other points where A = 0 are not glancing points.
Case 6). By Step 2, for A vanishes at a glancing point, it is necessary that b- n # 0,
hence p = 1b n—3° |77| , and for p = £¢|n|, we get b-n = — + ¢|y|. By |b| = ¢, such
points 7 is unique, namely, j:b/ |b|
Case 7). By Step 2, where we require c|n| < +b - n. Using Cauchy-Schwarz Inequality,
as |b| = ¢, we can only take n = b/c (§ = —b/c) and then may check that p_ = —c|n|
(py = c|n|). This shows A actually vanishes at only one glancing point.

In conclusion, we find A vanishes at one glancing point if and only if a < 0, |E| =c U
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LECTURE NOTES 4:
BOUNDARY CONDITIONS FOR EULER EQUATIONS

HAIRONG YUAN

This note is totaly based on Chapter 14 of [1]. Another good reference on the discussion

of boundary conditions of Euler system is the paper [2].

1. Basic FacTts oN EULER EQUATIONS

The motion of a compressible, inviscid and non-heat-conducting fluid is governed by
the Euler equations, consisting of the mass, momentum and energy conservation laws:
atﬂ"‘ V- (pu) = 07
Oi(pu) + V- (pu@u) + Vp =0, (1.1)
Ai(p(5lul?* +e)) + V- ((p(zlul* + €) + p)u) = 0.
This system of (d + 2) equations contains (d + 3) unknowns: the density p € R, the
velocity u € RY, the internal energy e € RT and the pressure p € R*. This system has
to be closed by adding a suitable equation of state, or pressure law, (p,e) — p(p,e). For
polytropic gas, this is
p=(y—1pe, y>1
1.1. Constantly hyperbolicity. A classical and elementary manipulation (cf. Chapter

2 of [3]) shows that, for smooth solutions, (1.1) is equivalent to
op+u-Vp+pV-u=0,
ou+ (u-Vyu+p'Vp =0, (1.2)
de+u-Ve+p'pV-u=0.

Therefore, the hyperbolicity of (1.1) is equivalent to the uniform real diagonalizability of

the matrix
u-n pn’ 0
AWU;n)=| p~'pin (u-n)ly p~'pin
0 pipnT  u-n

for all U = (p,u,e) and n € R%\ {0} (a column vector). Recall that I, is the d x d identity

matrix.

Date: June 3, 2021.
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Proposition 1.1. The system (1.1), for polytropic gas, is constantly hyperbolic, and

strictly hyperbolic in dimension d = 1. Its eigenvalues in the direction n are
M(U;n)=u-n—c¢n|, MU;n)=u-n, AN{U;n)=u-n+cn|, (1.3)

where ¢ = \/vp/p denotes as usual the sound speed. The associated eigenvectors are

respectively
p —ap,
r(U;n) = —cﬁ , ra(U;n) = u with a-n =0,
p/p ap,
P
r3(U;n) = car |- (1.4)
p/p

Here ¢ is an arbitrary real number, and 1 € R%. So ry actually spans a d-dimensional
subspace in the state space R2, and Ny is of multiplicity d.

In addition, the characteristic field (Ag,r9) is linearly degenerate, that is, dAg - 19 =0
(where d stands for differentiation with respect to U ), and the fields (A1,71) and (A3, r3)

(also called acoustic fields) are genuinely nonlinear.

1.2. Symmetric hyperbolicity. There are many different ways to write the Euler equa-
tions as a symmetric hyperbolic system. We use here the simplest one: Hadamard sym-
metrization in non-conservation variables. Using (p,u,s) as independent variables, we

may rewrite the quasilinear system (1.2) as !

Op+u-Vp+ pc*V-u =0,
ou+(u-Vyu+p'Vp=0, (1.5)
0;s+u-Vs=0.

The characteristic matrix of this system reads

u-n  pc’n’ 0
Alp,u,s;n)=| p'n (u-n)l; 0
0 0 u-n

The symmetrizer is
S(p7 u, S) = diag{(pCQ)_la PP 1}7

INotice that the strategy is to use appropriate coordinates in the state space. For details of the

computation, see [3, Chapter].
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and
S(p,u,s)A(p,u,s;n) =1 n plu-n)ly 0 : (1.6)
0 0 u-n

2. CLASSIFICATION OF FLUID INITIAL-BOUNDARY-VALUE PROBLEMS

We provide below a classification of Initial-Boundary-Value Problems (IBVPs) accord-
ing to various physical situations, and discuss possible boundary conditions ensuring well-
posedness.

As far as smooth domains are concerned, a crucial issue is the well-posedness of IBVPs
in half-spaces (obtained using coordinate charts). To fix ideas, we consider IBVPs in the
half-space {z4 > 0} (without loss of generality, the Euler equations being invariant by
rotations).

We recall that the characteristic speeds of the Euler equations in the direction n =
0,---,0,1)" are

M=u—c, X=u N=u+ec,

where u = u - n is the last component of u and ¢ is the sound speed. When the boundary
is a wall, u is clearly zero. Otherwise, if u # 0, we can distinguish between incoming
flows, for which u > 0, and outgoing flows, for which © < 0. Another distinction to be

made concerns the (normal) Mach number 2
M = u|/c.

The flow is said to be subsonic if M < 1, and supersonic if M > 1. This yields the

following classification, when ¢ is non-zero (non-vacuum).

2.1. Non-characteristic problems. For the following cases, we check that det A? # 0.

Out-Supersonic (u < 0 and M > 1, hence Ay, Ao, A3 < 0.)
There is no incoming characteristics. No boundary condition should be pre-
scribed.
Out-Subsonic (u < 0 and M < 1, hence A, Ay < 0, A3 > 0.)
There is one incoming characteristics. One and only one boundary condition

should be prescribed.

2The Mach number of the flow is |u|/c. Here only the flow along the normal direction z is of interests.

Notice that a supersonic flow could be subsonic in the normal direction.
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In-Subsonic (u > 0 and M < 1, hence A\; < 0, A2, A3 > 0.)

There are (d + 1) incoming characteristics, counting with multiplicity. (Recall
that Ay is counted d times repeatedly.) This means that (d + 1) independent
boundary conditions are needed.

In-Supersonic (v > 0 and M > 1, hence Ay, Ay, A3 > 0.)
All characteristics are incoming characteristics. This means that all components

of the unknown W = (p, u, s) should be prescribed on the boundary.

2.2. Characteristic problems. For the following cases, we check that det A% = 0.
Slip walls (u = 0, hence A\; < 0, Ay =0, and A3 > 0.) The boundary {zs = 0} is character-

istic (caused by \g) with constant rank 2 (rank A% = 2 now).
One and only one boundary condition b(W) should be prescribed. For the IBVP
to be normal, the 2-eigenfield should be tangent to the level set of b.2
Out-Sonic (u = —c¢, hence Ay, Ao < 0 and A3 = 0.) The boundary {z; = 0} is characteristic
(caused by \3) with constant rank d + 1 (rank A% = d + 1).
No boundary condition should be prescribed.
In-Sonic (u = ¢, hence \; = 0, Ay, A3 > 0.) The boundary {x, = 0} is characteristic (caused
by A1) with constant rank d + 1 (rank A% = d + 1).
A set of (d + 1) boundary conditions by (W), -+ bgi1(W) (corresponding to
eigenfields of A2, A3) should be prescribed. For the IBVP to be normal, the 1-
eigenfield should be tangent to the level set of by, -+ ,bgs1 (ie., r1-Vb; =0,5 =
L., d+1).

3. DISSIPATIVE INITIAL BOUNDARY VALUE PROBLEM

In this section, we look for dissipative boundary conditions. This notion depends on the
symmetrization used. For concreteness, we use the simplest symmetrization, in (p,u, s)
variables. We recall indeed that, away from vacuum, the Euler equations can be written

as

S(p,u,s)(0+ A(p,u,s;V)) | u | =0,

3For the IBVP to be normal, one needs that ker A C ker B, where B is the linearized boundary
matrix, namely B = db. (To avoid confusion, we write db to be the gradient of b with respect to the
unknowns W.) Now ker A? consists of those eigenvectors of Ay = 0, i.e., 72. So we shall have B - ry = 0,

which means exactly that ry is tangent to the level set of b.
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where S(p, u, s) is symmetric positive-definite and

u-n T

_2 n
pc

S(p,u, s)A(p,u, s;n) = n pu-n)ly 0
0 0 u-n

Definition 3.1. Assume that L = 9, + Z?Zl AJ(z,1)0; is a Friedrichs-symmetrizable op-
erator, with Friedrichs symmetrizer S. The boundary matrix B is called strictly dissipative
if there exist & > 0 and § > 0 so that for all (x,t) € 92 x R and all v € R™

v S(z,t)A(z, t;n(z))v > a|v|* — B|B(y, t)v|?, (3.1)

where n = (ny,--- ,ng)" denotes the unit outward normal to 92, and A(z,t;n(z)) =

S Al (z, t)n;.

Note: Strongly dissipativeness means S(z,t)A(x,t;n) is positive-definite on ker B; while
dissipativeness means SA(n) is nonnegative on ker B. In the case 2 = {zy > 0}, the strict

dissipativity of B means
v"S(y, 0,8)A%(y,0,t)v < —alv* + B B(y, t)of? (3:2)

for all (y,t) € R x R and all v € C". Here and in what follows, we take n =
(0,---,0,1)7.

According to Definition 3.1, dissipativeness of a set of boundary conditions encoded
by a nonlinear mapping b : (p,u,s) — b(p,u, s) requires that —SA? be non-negative on
the tangent bundle of the manifold = {b(p,u,s) = b}, while strictly dissipativeness
requires that —S A9 be coercive on the same bundle.

A straightforward computation shows that for U = (p, , 1, $)", and v = 1/p,
(SAYU,U) = us® + pu(ul® + @) + 2pi 4 up? /(pc?). (3.3)

Here 1 is the (perturbed) tangential velocity, and u is the (perturbed) normal velocity.

By organizing the terms, if u # 0, we have

2

. 1 .
(—=SAU,U) = —pu <@(uu +vp)? — Z—(1 — M*)p* + [a)]* + vé2) : (3.4)

2

We can now review the different cases.

Supersonic outflow (u < 0 and M > 1).

We see that —S A9 is coercive on the whole space. So this case is harmless.
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Subsonic outflow

Subsonic inflow

Supersonic inflow

Slip walls

HAIRONG YUAN

(u<Oand M < 1).

The restriction of —SA? to the hyperplane {p = 0} is obviously coercive. Thus
a strictly dissipative condition is obtained by prescribing the pressure p at the
boundary.

Another, possible, simple, choice is to prescribe the normal velocity u, since
—S A4 is also coercive when restricted on the hyperplane {i = 0}. *
(u>0and M < 1).

This is the most complicated case. Prescribing the pressure among the boundary
conditions would obviously be a bad idea, for the same reason as it is a good one
for subsonic outflows.

On the other hand, the easiest way to cancel some bad terms is to prescribe the
tangential velocity u and the entropy s, which leaves only one boundary condition
to be determined in such a way that udu + vdp = 0 on the tangent bundle of %.
Recalling that, de = —pdwv + T'ds, the specific enthalpy A = e + pv is such that

dh = Tds + vdp,

so we see that the above requirement is achieved by giving %u2+h since d(h—l—%uz) =
Tds = 0 as we have prescribed the entropy s. Hence a strictly dissipative set of

boundary conditions is °

1 2
a h7u’ }
{2u+ u, s

Other boundary conditions may be exhibited that are relevant from a physical
point of view — for instance, using concepts of total pressure and total tempera-
ture.

(u>0and M >1).

We see that SA? (instead of —SA?) is coercive. But since all components of the
unknown should be prescribed on the boundary, the tangent spaces are reduced
to {0}. ® So this case is also harmless.

(u=0).

4Comparing to the case of steady compressible Euler flows.

A _ vp

For polytropic gas, h = =

=17 y=1p°

SWith more restrictions, the manifold becomes more smaller.
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0 pc*n’ 0
The kernel of A2 = | p'n 0; 0 | (here n = (0,---,0,1)7) is the d-
0 0 0

dimensional subspace {(0, 1,0, $)}, which is part of the tangent subspace {u = 0}
associated with the natural boundary condition on u (i.e., u = 0) — as required
by the normality criteria (ker A C ker B). The matrix SA? is null on {@ = 0}
(see (3.3), where u = 0 now), which means the boundary condition is dissipative
but of course not strictly dissipative.

(u=—c).

Notice that now M = 1. The matrix —SA? is non-negative but has isotropic
vectors (defined by wi + vp = 0 and i=03=0, totally 1 +d —1+1 =
d + 1 constraints). This is a one-dimensional isotropic space. Since no boundary
condition here, the tangent space is the whole R%*2, and the boundary is dissipative
but not strictly dissipative.

(u=c).

The only possible choice of dissipative boundary conditions is the one described
for subsonic inflow, which cancels all terms in (SA%U, U) (since M = 1 and —(1 —
M?)p? is zero). ®

The normality criteria is met by those boundary conditions because °

ker A? = ker SA? = {(p, 0,4, 8) : wi+vp=0, =0, §=0} =ker B.

We now turn to a more systematic testing of boundary conditions, which is known (and

will be shown) to be less restrictive.

4. NORMAL MODES ANALYSIS

Our purpose is to discuss boundary conditions from the Kreiss-Lopatinskii point of

view, for general fluids equipped with a complete equation of state. To get simpler

"We note although for the linear IBVP there is no boundary condition here, but for the nonlinear

problem, we have one condition, that is u = —c here.

8We note although for the linear IBVP there are d+ 1 boundary conditions here, but for the nonlinear

problem, we have one more condition, that is u = ¢ here. So totally we shall have d + 2 conditions and

hence W is given.

Lo nT 0
“Now looking at (1.6) and recall that u-n = u = ¢, therefore A= | n pul; 0 | and its kernel
0 0 wu

could be calculated easily.
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computations, we choose the specific volume v = 1/p and the specific entropy s as the

thermodynamical variables, and rewrite the Euler equations as

ov+u-Vv—ovV-u=0,
Ju—+ (u-V)u+vp, Vo +vp,Vs =0, (4.1)
0s+u-Vs=0,

with the short notations of partial derivatives of p = p(v, s) '°

,  Op

o= P ,_ Op
v ovl,’

ps_gv

Later, we shall make the connection with the non-dimensional coefficients v and I', in

that
b / T

P, = —7;7 bs = F;;
and 7' is the temperature. Alternatively, we recall that p) = —f}—z, where ¢ is the sound
speed. Our minimal assumption is that c is real (positive). Furthermore, we have seen
in §2 that boundary conditions for supersonic flows are either trivial or absent. A normal
modes analysis is irrelevant in those cases. Since sonic IBVP are so degenerate that a
normal modes analysis is also useless, from now on we concentrate on the subsonic case,

assuming that

0< |ul <ec (4.2)

4.1. The stable subspace of interior equations. Linearize (4.1) about a reference

state (v,u = (,u), s), ignoring zeroth-order terms, we get

(O, +1-V +ud,)o—vV-u=0,
(8 + -V 4 ud,)u 4+ vp, Vi + vp,Vs = 0, (4.3)
(8, 41V +ud,)s =0,

where z stands for the co-ordinate x4, normal to the boundary, and V is the gradient
operator along the boundary. The tangential co-ordinates will be denoted by y € R4,
By definition, for Re7 > 0 and n € R?!, the sought stable subspace E_(7,n) is the

space spanned by vectors (v, 1, §) such that there exists a mode w of positive real part for

OFor polytropic gas, p = exp(s/cy)v~Y with ¢, > 0 and v > 1. So p,, = —ypp and p,, = p/c, as shown
below. Recall for polytropic gas, e = ¢, T, I' = v — 1.
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which |exp(7t) exp(in - y) exp(—wz) (9, 1, §) | solves (4.3). ' We are thus led to the system

\]
+
3
g
I
I
&
<
I
=
=
=13
+
<
&
S.
Il
=

vplitm + vplisn = 0,

)
) (4.4)
)
)

\]
+
3
cic
|

I
&
=2
+

\]
+
5
o
|
N
&

U — vp, wi — vplws = 0,

(Observe that Re T = Re7.) We need to solve the eigenvalue w and associated eigenvector
(0,1, ).
The only nontrivial modes are thus obtained.

e for (eigenvalue) w = 7/u and the eigenvector '?
u(in-1) —7u=0 and po+p.s=0, (4.5)

e for w solution of the dispersion relation '3

(7 — uww)* +v?p, (w* — l*) =0,

HWe recall the abstract theory. For dyu + 2?21 AJ9;u = 0, suppose that u = eV (z,4), then
we find U’ = A(r,n)U, with A(r,n) = —(A%)~Y (71, +iA(n)) for the non-characteristic case. Since
for ReT > 0, A although might not always be diagonalized, the number of eigenvalues with positive
(resp. negative) real part is fixed, and there is no any purely imaginary eigenvalue — so U(x4) will either
exponentially decay or grow as x4 — 0o0. Suppose —w is an eigenvalue with Rew > 0, then by suitable
change of independent variables, U(xq) = Uy exp(—wz4), and Uy is a (generalized) eigenvector associated
with —w. Collecting all such Uy, we get E_(7,n). The following does not follow this strategy strictly,
by replacing U(z4) = e~“*4Uy. This works well if A(7,n) is diagonalizable. However, this is the genuine
case for the Euler system. Once we get E_(7,n) this way, then by analytical continuation to the only
exception, that is, glancing point where A(7,n) has a Jordan block (see below), we get E_(7,n) for all

Re7 > 0 and hence, by constant hyperbolicity of Euler system, to Ret > 0.
12The first comes from the first equation in (4.4), replacing w by 7/u. The second comes from the

second, or the third equation in (4.4). Since here are two constraints, the corresponding space is of
dimension d + 2 — 2 = d.
13This is obtained by substituting (4.6) into the first equation in (4.4).
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and the eigenvector given by 4
(7 — uw)tt + vpl,itm = 0,
(T — uw)u — vp,wd =0, (4.6)
$=0.

We see that the dispersion equation for the unknown w also reads

(7 — uw)* = c*(w* — n]*), (4.7)

which has no purely imaginary root when Rer > 0. '° By looking at the easier case
7 = 0 and using our usual continuity argument, we find that because of the subsonic
condition (4.2), (4.7) has exactly one root of positive real part (7/(u + ¢) when n = 0),
which we denote by w,, and one root of negative real part (7/(u—c) whenn = 0), w_. By
definition, the stable subspace E_(7,1n) involved in the K-L condition is made of normal
modes with Rew > 0 for Re7 > 0. (Recall that — with our notation — decaying modes
at z = 400 are obtained for Rew > 0.) So the root w_ does not contribute to E_(1,7),

and we only need to consider w,, and furthermore, if u > 0, wy = 7/u (recall that for the

case considered in (4.5), where if v > 0, then Re7 > 0 <& Rew > 0 as required). To

simplify again the writing, we simply denote w, by w when no confusion is possible.

4.1.1. Outflow subsonic case. If u < 0 (outflow case), E_(7,7n) is a line, spanned by the
solution e(7,n) = (0, 1,4, $)" of (4.6), defined by

(T — uw)
e(r,n) = o . (4.8)

—C'Ww

0

4.1.2. Inflow subsonic case. If u > 0 (inflow case), E_(7,n) is a hyperplane (dim E_(7,79) =

d + 1). For convenience, we introduce the additional notation
a = uf 4+ w(c® —u?). (4.9)
An elementary manipulation of (4.7) then shows that ¢
a(F —uw) = (Fw — ulnl?).

M These comes from the last three equations in (4.4). Since here are d + 1 constraints, the dimension
of solution space is then 1.
151f not, then the right-hand side is negative, so 7 — uw should be purely imaginary. Since w is purely

imaginary as assumed, 7 must be purely imaginary, contradicts to the assumption Re7 > 0.
Note that a = u(7 — wu) + we?.
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Using this relation and combining (4.5) and (4.6) together, we get the very simple de-

scription 7

E_(r,m) = ((T,n)",
((r,n) = (a, —ivun’, v7, apl/p).

Observe that ¢ is homogeneous degree 1 in (7,7) like a; while for a, 7 and w are homoge-
neous degree 1 for the variables (7,1), and w is determined by 7,7n. This description has
the advantage of unifying the treatment of regular points and Jordan points 7 = u|n| of

the matrix A(7,n) '® — where w coincides with wy, see (4.7).

Remark 4.1. In the particular “one-dimensional” case, i.e. with 7 = 0 (no tangential
variables), one easily checks that
T
u+c’

4.2. Derivation of the Lopatinskii determinant. Once we have description of E_(7,7),

w = a=r7c, L1,0)=7(c, v, cp./D)).

we easily arrive at the Lopatinskii condition. We consider the two cases separately.

4.2.1. Outflow subsonic case. If u < 0, one boundary condition b(v, u, s) is required. The

existence of nontrivial modes in the line E_(7,7) is thus equivalent to
A(r,m) =db-e(r,n) = 0.

Recall that db here is the gradient of b with respect to the variables (v,u,s). We see in
particular that this condition does not depend on 9b/0s. By definition of e(7,n),

0b ob
A(1,m) = v(F — uw)% +ictdgb-n — CQW%.
We thus recover (as pointed out in §3) that prescribing the pressure ensures the uniform
Lopatinskii condition, since for b(v, u, s) = p(v, s), we have '
A(r,m) = v(f —ww)p, #0 for Rer >0,(r,n) # (0,0).

17First consider (4.5). Since we have only two equations, so E_ corresponding to wy is of dimension
d+ 2 — 2 =d. We easily check that it is perpendicular to ¢, thanks to (4.8). Then consider (4.6). Here
we have d — 142 = d+1 equations, hence E_ corresponds to wy is of dimension d+2—-d—1 = 1. Using
(4.6), or (4.8) we see that it is perpendicular to ¢, that is, a0 — ivun - U+ vit + ap’,/pl,$ = 0.

18We did not take the other possibility 7 = —uln| when w; = wy, because it is required that Re 7 > 0.

_ c2+u2
22

At the point 7 = uln|, the solutions are w_ = [n| and w = wy = |n|. However, this is not what
happens by extending to Re7 = 0. The dimension of E_ is still d + 1 in this case; It follows from Hersh
Theorem, by analyticity of eigenvalues of wy on (7,7) for Re7 > 0. This can not be checked directly by
(4.5), as e(T|z=ujn/,m) = (0,ic*n, —c*[n|,0) ", which does satisfy (4.5).

YNote, if 7 — uw = 0, then (4.7) implies w = =|n|. Since u < 0, for Re T > 0, we should take w = —|n|.

However, for a nontrivial mode, we require w > 0.
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This is less obvious with the alternative boundary condition b(v,u, s) = u, because in

this case
A(1,m) = —Pw,

and it demands a little effort to check that w does not vanish. For clarity, we state this

point in the following.

Proposition 4.1. For 0 > u > —c, the root w, of (4.7) that is of positive real part for

Re7T > 0 has a continuous extension to Re7 = 0 that does not vanish for (1,m) # (0,0).

Proof. 1. We can solve from (4.7) that the root w to be

—uF ey /72 + (2 — u?)|n)?
2,2 :

w =

cCT—Uu

The point is to determine which one is w,. We see by (4.7), the only points where it
could happen that w, vanishes are such that 72 = —c?|n|?. In particular, w, = 0 implies
7 € iR, and also —72 > (¢* — u?)|n|?.

2. Set 7 = p+ip. We have 72 + (¢ —u?)[n|* = p? + (—p? + (¢ — u?)In|*) + 2iup. Since
as =0, (—p*+ (¢ —u?)n|*) <0, so for u > 0 small, we see Re (7> + (¢* — u?)[n|?) < 0,

and Im(72 + (c® — u?)|n|?) has the same sign as p = Im7. So we should take *°

—uF +ic sign(Im 7) /=72 — (2 — u?)|n|?

Wy = v (4.10)
3. So for 72 = —c?|n|?, this gives (using the fact that u is negative)
—2ut
(.U,IO, w+202_u27
the latter being non-zero unless (7,9) = (0, 0). O

More generally, we can find alternative boundary conditions that satisfy the uniform

Lopatinskii condition without being dissipative. For instance, take o € (0,1) and

b(v,u,s) = Su® + h(p(v,s), s),

20Taking w4 as a complex-valued function of 7 € C. By the Cauchy-Riemann equations, we have

Omw;  OJRewy >0
Olm7  ORe? ~

The second is nonnegative, since as Re7 > 0, we should have Rew > 0 (it is zero at Re7 = 0). This

may help us get directly the expression.
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where h = e + pv is the specific enthalpy. We find that,
A(r,m) = —A(F— (1 —a)uw) #0 for Ret >0, (r,n) # (0,0).

This means the uniform Lopatinskii condition is satisfied. Nevertheless, the quadratic
form defined in (3.4) may be non-definite on the tangent hyperplane {aut+vp+Ts = 0}.
More specifically, this happens for o € (ﬁ, 1).

4.2.2. Inflow case. If u > 0, (d + 1) boundary conditions b;(v,u,s), -+ ,bgy1(v,u,s) are
needed. The existence of nontrivial normal modes in the hyperplane E_(7,7n) is thus
equivalent to 22
db,
A(r,n) = det dboss 0.
(7, m)

We may consider, for example, as the first d conditions

v

by =1y, -+, bg—1 = Ug_1, bg = s.

Then, up to a minus sign, 23

_ Oba | Oban
A(r,m) = —vT 5 +a D

21Recall that u < 0 and 0 < a < 1, this is clear for Re7 > 0 (hence Rew > 0). For Ret = 0, we
have 7 = ip, then by (4.10), A(T,n) = —%[p(c2 —au?) —u(l — a)esign(p)/p? — (2 — u2)[n|?], which
has nontrivial real parts if p?> < (¢ — u?)|p|?. For p > v/c2 — u2|n|, the term in the brackets [-] is also
positive. For p < —v/c2 —u2|n|, the term in the brackets [] is negative.
dby

dbs
22The boundary matrix is B = i . Existence of nontrivial modes means that there is a

dba+1
nonzero vector e in ker BN E_(7,1). So Be =0 and ¢-e = 0. Hence A = 0. On the contrary, A =0

implies a nonzero e with the above property by linear algebra.

0 1 0 --- 0 0 0
0 o 1 --- 0 0 0
2311 this case, A(r,m) = 0 0o 0 --- 1 0 0 |. Then applying the Laplace expansion
0 0o 0 --- 0 0 1
ov ou
a * % ... % OT %

formula for determinant to the first d rows.
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In particular, for

(0}
bd+1(U> u, 5) = §u2 + h(p(U, 5)7 5)7

we have 2*
A(r,m) = (2 + au®)7 + auw(c® —u?) #0 for Rer >0,(r,n) # (0,0),

provided that a > 0. For «a large enough, this gives again an example of boundary
conditions satisfying the uniform Lopatinskii condition without being dissipative.

We note that if by 1 = p, then as p = A(s)v™" for polytropic gas, we find

A(T,m) = ypT.

So this boundary condition, giving pressure at the subsonic inlet, violates uniform Lopatin-
skii condition at 7 = 0, that is, at 7 = —inu (since 7 = 7+in-u). However, the Lopatinskii
condition still holds.
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As b= c2/(y — 1) = yAv' =7 /(y — 1), one has dh/dv = —p. Since ¢ —u? > 0, ReT = Re7 > 0,
Rew > 0 (as proved in Proposition 4.1), so the sum cannot be zero for Re7 > 0. For the case that

7 = wu, A(1,n) = (1 + a)c®7 # 0. For the case w given by (4.10), with 7 = ip, we have A(r,n) =

i[pc? + aucsign(p)\/p® — (¢ — u2)[n]], which is nonzero for (p,n) # (0,0).



LECTURE NOTES 5:
PSEUDO-DIFFERENTIAL CALCULUS AND ESTIMATES OF LINEAR
HYPERBOLIC OPERATORS WITH SMOOTH COEFFICIENTS

HATIRONG YUAN

To obtain L? estimates for hyperbolic systems, the key point is that such system should
be “symmetric” — therefore using integration by parts, a derivative can be thrown to the
coefficients. It is not always possible to find a matrix-valued function that symmetrizes
a generally given hyperbolic system. As a generalization, taking the system as an opera-
tor, we find if there are operators (called functional symmetrizers ) that symmetrize the
hyperbolic operator, we can still obtain L? estimates. Such symmetrizers can be realized
as pseudo-differential operators corresponding to certain symbolic symmetrizers. Sym-
bolic symmetrizers are matrices depending on all time, space, and frequency variables.
We show for constantly hyperbolic operators, such symbolic symmetrizers always exist.

Once we obtained L? estimates, it is rather easier to get H® estimates, by using the
pseudo-differential operator A* with symbol A\*(¢) = (1 + |¢[?)*/2. Here we usually need
some estimates of commutators, which is often pseudo-differential operators of lower order.

The disadvantage of pseudo-differential operators is that their symbols must be smooth
functions, and the related operator norms may depend on lots of orders of the derivatives of
the symbols. * So it can be hardly used to deal with systems with less-regular coefficients.
? However, by linearization of nonlinear problems, the obtained system is often with non-
smooth coefficients. Therefore, as a generalization, people introduced para-differential
calculus, which will be introduced later. However, the basic idea of how to obtain estimate
is the same.

In this note we first review basic notions and results on pseudo-differential calculus,
and then applying this theory to derive H® estimates for the Cauchy problem of linear
hyperbolic systems under the assumption that the coefficients are smooth. The note is

totally based on Appendix C.3 and Section 2.1 of [1]. Another excellent reference is [2].

Date: May 10, 2021.
LA careful check of the proof of boundedness of pseudo-differential operators on Sobolev spaces shows

that, if a(x,&) € S7471, 10p(a)ll (1) depends only on decay of 8§a(x,§) for |B] < d (d is the space
dimension), and for a € S71, as Op(a)* € OPS™?~! for large k, we get 10p(a)]| (r2)- But as the symbol
of Op(a)*, given by asymptotic expansion through a, actually depends on infinite number of derivatives
838? a(z,£). So smoothness and decay in the definition of symbols are quite essential to this theory.

2Such partial differential operators can not be regarded as pseudo-differential operators.
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1. REVIEW: PSEUDO-DIFFERENTIAL CALCULUS

1.1. Symbols and approximate symbols.

Definition 1.1. For any real number m, we define the set S™ of functions a € € (R¢ x
R?; CN*N) such that for all d-uples a and 3, there exists C, 5 > 0 so that

|

Functions ? belonging to S™ are called symbols of order m. The set of symbols of all

S = ﬂ S™.

00fa(w,€)|| < Cap(l+ g™, (1.1)

orders is

Basic examples

Example 1.1 (Differential symbols). Functions of the form
a(z,€) = Y aa(@)(i&)*,
laj<m
where all the coefficients a, are > and bounded, as well as all their derivatives, belong
to S™.

Example 1.2 (“Homogeneous” functions). A function a € €>*(R? x (R?\ {0})) that is
bounded as well as all its derivatives in x and homogeneous degree m in & is “almost”
a symbol of order m. This means it becomes a symbol provided that we remove the
singularity at £ = 0. As a matter of fact, considering a ¢ function y vanishing in a
neighborhood of 0 and such that x(§) =1 for |{] > 1, we have the result that

a(x,€) = x(§a(r,§) € S™.

Any other symbol constructed in this way differs from a by a symbol in S™°. For conve-

nience we shall denote S™ the set of such functions a.

Example 1.3 (Sobolev symbols). Some special symbols are extensively used in the theory,
which we refer to as Sobolev symbols since they are naturally involved in Sobolev norms.

Denoting
N = (L+ €))7,
it is easily seen that A\* is a symbol of order s. The important point is that the Sobolev

space H® can be equipped with the norm
[ull e = [ X°@| 2 -

3Be careful these functions may be considered as matrix-valued.
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The following lemma is used to prove Garding inequality later.

Lemma 1.1. For all a € S° (respectively a € S°), such that a(x,€) is Hermitian and
uniformly positive-definite for (x,€) € R x RY (resp. (x,€) € R x (RE\ {0})), there
exists b € 8O (resp. b€ S°), such that b= b* and b(x,£)*b(x, €) = a(z, €).

Proof. The proof proceeds in the same way for both cases (a € S or a € SO).

1. By assumption of (1.1), a(x,§) lies in a bounded subset of the cone of Hermitian
positive-definite matrices and thus the set of eigenvalues of a(x, £) is included in some real
interval [a, ] C (0,00). In particular, there exists a positively orientated contour I" lying
in C\ (—o0,0] that is symmetric with respect to the real axis and contains [a, 8] in its
interior. Therefore, considering the holomorphic complex square root /- in C \ (—oc, 0],
the Dunford-Taylor Integral

/ Vi(Iy — a(z,6) "

2171'

answers the equation.
2. We first show, by the symmetry of I, b(z, &) is Hermitian. As a matter of fact, as
vz = v/Z in our case, we have

b €) — / V(e Ly — a(z, €))7

217r

- /\/_zf a(z,€))7d (¢ =2)

217T
- = / VI Iy — a(x, €))7 d2 = b(x, €).

3. For another contour I enjoying the same properties as I" and containing it in its

interior, we have
b*b——///\/_\/_ 2Iy —a) (2 Iy —a) ' dzd?.
By the well-known resolvent equation
(zIy —a) ™ — (ZIy —a) ' = (2 — 2)(zly —a) (¢ Iy —a)™?

(checked easily by writing (2 — 2') Iy = (2Iy —a) — (¢ Iy — a)), we thus have

b= e //\f\/_ Chv—a)” —(FIv=a) " 40

2l —z
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On the other hand, for 2z’ € T”, the function z — /z/(2’ — z) is holomorphic in the interior

of I', thus
/ vz dz =0.
r

2 —z

Hence we obtain

1 In —a)™!
b*b = —/ /\/E\/Z/(ZN/—CL)dZdZ/
F/ F Z _Z

(2im)?

— 1 —a -1 1 \/; Z/ P

(2im) 2im) Jp 2 — 2

_ (2;) /F eIy —a) " dz

= Q.

For the third and last equality, we used Cauchy Integration Formula for holomorphic
function.

4. In view of smoothness of the mapping (z,a) — (z — a)™}, it is clear by Chain Rule
and Lebesgue’s Convergence Theorem, b is as smooth as a. By an induction on derivatives
of composite functions 9f F'(u(€)), we may also prove b satisfies the estimate (1.1) with
m =0, if a € S°.

5. If a € SY, it is obvious that b is also homogeneous of degree 0 in &. 0

1.2. Definition of pseudo-differential operators. The introduction of pseudo-differential
operators is based on the following observation. If a € S™ is polynomial in &, like in Ex-
ample 1.1, it is naturally associated with the differential operator *
Op(a) = ) ao(w)d"
o] <m
in the sense that
(Op(a)u)(z) = F~ (a(z, )a())
for all u € S = S(R") (the class of fast decreasing Schwarz functions on R") and x € R?.
But this formula can be used to define operators associated with more general symbols.

This is the purpose of the following.

Proposition 1.1. Let a be a symbol of order m. Then there exists a continuous linear
operator on S, denoted by Op(a), such that
1 iz N
Op(@)u)(w) = 5 [ e*ale, i) ag (1.2
(27m)? Jpa

for allu € S. Furthermore, the mapping a — Op(a) is one-to-one.

. lal
4Note for a = (Oéla A 7ad), we write 9% = Baf)ﬁ
1 'Y
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The proof can be found in [4, p.22, Proposition 3.1].
Observe that for “constant-coefficient operators”, that is, symbols independent of =z,

(2.2) reduces to the same formula as for the differential operators (Fourier multiplier)
Op(a)u = .F *(at).
In short, for symbols a depending only on &, we have by definition
Op(a) = .F 'aZ.

Definition 1.2. The set of pseudo-differential operators of order m is °

OPS™ ={Op(a): a€ S"} C AB(S).

For a € S™, the operator Op(a) is called a pseudo-differential operator of order m and

symbol a.

It is more subtle to show that pseudo-differential operators extend to operators on &’
(the space of tempered distribution). By a standard duality argument, this amounts to

showing the following.

Theorem 1.1. The adjoint of a pseudo-differential operator of order m is a pseudo-
differential operator of order m. Furthermore, the symbol of the adjoint operator Op(a)*
differs from a* (where a*(x,&) = a(x,&)* merely in the sense of matrices) by a symbol of

order m — 1, which means that

(Op(a))* — Op(a*) € OPS™! (1.3)

for all a € S™.
For a proof, see Proposition 6.4, Corollary 6.5 in [4, pp.33-35].

1.3. Basic properties of pseudo-differential operators. The first important prop-
erty of pseudo-differential operators is the following, considering boundedness acting on

chains of Sobolev spaces.

Theorem 1.2. Let P be a pseudo-differential operator of order m, extended to 8" by the

formula
(Pu, ¢) = (u, P*¢)
forallu e S and ¢ € S. Then, for all s € R, P belongs to B(H®*; H*™™).

For a proof, see Proposition 9.12 in [4, p.43].

52%(S) is the set of bounded linear operators on S.
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Example 1.4. For all s € R, let A® denote pseudo-differential operator of symbol A*(&) =

(1 + |€[?)*/2. Then for all real numbers s we have

Jull o = A% u] 2 -
Therefore, we have for all m € R

[[A™u]

freem = |[ATAT] L, = [A%ul| 2 = [Jul

Hs -

Theorem 1.3. If P and QQ are pseudo-differential operators of order m andn respectively,
then

i) the composed operator PQ is a pseudo-differential operator of order m + n, and
its symbol differs from the product of symbols by a lower-order term, which means
that

Op(a)Op(b) — Op(ab) € OPS™ ™! (1.4)

for alla € S™ and b € S™.

ii) if one of the operators is scalar-valued, the commutator

[P,Q] = PQ—-QP

is of order m +mn — 1 (and its symbol differs from the Poisson bracket of symbols

da 0b da Ob
(a,py = 22 AR
; 86} 81‘]‘ 8ZL’]‘ 65]

by a lower-order term,).

For a proof of i), see Proposition 5.4 in [4, p.31]. Claim ii) follows from i), and the
asymptotic expansion given in this cited proposition. It will be used to derive a priori

estimates in Sobolev spaces H®, with ) = A®.

1.4. Garding Inequality. Finally, other important results are the Garding Inequality,
which relates the positivity of an operator (up to a lower-order error) to the positivity of its
symbol, and the sharp form of Garding Inequality, which applies to non-negative symbols.
We begin with the standard form of Garding inequality (for matrix-valued symbols) and

its elementary proof.

Theorem 1.4 (Garding Inequality). If A is a pseudo-differential operator of symbol
a € 8™, or A is associated with S™ by a low-frequency cut-off, such that for some positive

number a,

a(z, &) +a(z,€)* > aN™(O)Iy, AN"(€) = (1+[¢H)™?
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(in the sense of Hermitian matrices) for all x € R% and || large, then there exists C so
that

«
Re (Au,u) 2 7 [l e = C [l (1.5)

HZ !
for all w € H™?.

Proof. We may always define a so that @ = a for || large and a(z, §)+a(x, &)* > a\™(&)Iy
holds true for all £&. Since a — a has compact support in &, it belongs to S™°. Such a
difference will not take difference to the result, as can be seen from the proof below. So

we can assume a(z,§) + a(x,&)* > aXN™ (&) Iy holds for all £ in the following proof.
1. Case m = 0. We have Re (Au, u) = Re (3(A+ A*)u,u), and by (2.3), we know that
A+ A* — Op(a+a*) = Op(¢) € OPS™.
Therefore, there exists ¢ > 0 so that, for v € L2,
((A+ A%, u) Op(a + a*)u,u) + (Op(e)u,u)

(Op(
(Op(a+ a”)u,u) — [|Op(e)ul 12 [lull .-
(Op(

> ")
> (Op(a+a*)u,u) —cHuIIH vl e
4 2
> (Opla+a)u,w) = = Jull}e = = flulf-:

Then the result will be proved if we show that
. Yo
(Op(a +a%)u,u) = ¢ lullze = C llullfy-s -

In some sense this reduces the problem to Hermitian symbols.

2. By assumption, the Hermitian symbol a = a+ a* — /Iy, with o = 3a/4, is
positive-definite. By Lemma 1.1, there exists b € S° such that b*b = a. Denoting
B = Op(b) and A = Op(a + a* — o/Iy), we know from Theorem 1.1 and Theorem 2.2 i)
that °

B*B— Ac OPS™ L.

Consequently, there exists ¢ > 0 so that

1 ~ 2 o 2 é 2
(Au,u) = (B*Bu,u) = llull - [ull 2 = || Bullps =7 llullze = — llull-s
N—— (07

>0
o 2 & 2
> =l = 5l

%BB* — A = Op(b)Op(b)* — Op(a) = Op(b)(Op(b*) + OPS™") — Op(a) = Op(b)Op(b*) — Op(a) +
OPS™ ' = Op(bb*) — Op(a) + OPS™' = OPS™!. Notice that bb* = a.



76 HAIRONG YUAN

This implies

* 30/ 2 c 2
(Ol +a')u, ) > 2 Juls — & s

3. We then have the inequality (1.5), for m = 0, with C = 4(3¢* 4+ ¢*)/(3a).
4. General case. We consider B = A~™/2AA"™/2_ which is of order 0, and its symbol
s(B) satisfies

s(B) = A\2g\T2 = e e ST
So
s(B) 4+ s(B) = AX"™2(a+a" )\ +e+e" > aly + (e +e).

Since e, e* € S7L, it decays as || — oo, so we still has s(B) + s(B)* > aly for large [£],

and we may use the proved result, for v € H™/?:

Re (Au,u) Re (A™2BA™ %y, u)
— (BAm/2u7Am/2u)

Q am 2 m 2
= APl = e Al

a 2 2
= 7 lullgme = Cllullyy-
[l

We complete this section by stating the Sharp Garding Inequality, which amounts to
allowing o = 0 in the standard one. In other words, it shows that non-negative symbols
imply a gain of derivatives: an operator of order m with non-negative symbol satisfies a

lower bound as though it were of order m — 1.

Theorem 1.5 (Sharp Garding Inequality). If A is a pseudo-differential operator of symbol
a € S™, or A is associated with a € S™ by a low-frequency cut-off, such that

a(r,&) +a(r,§)" >0

(in the sense of Hermitian matrices) for all ¥ € R? and || large, then there exists C' so
that

Re (Au,u) 2 =Clull gom-v/2 (1.6)

for all u € H™?.
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2. SYMMETRIZERS AND ENERGY ESTIMATES

The purpose is to deal with linear variable-coefficients systems of the form

ou d o ou
E_{_;A (x,t)a—xa = B(ﬁfat)u“‘f(xvt)? (2'1)

where the n x n matrices A* and B depend “smoothly” on (z,t). In the following, unless
otherwise stated, it will be implicitly assumed that B and A® are > (real) functions
that are bounded as well as all their derivatives.

To simplify notations, we may alternatively write (1.1) as
Ou = P(t)u+ f,

where P(t) is the spatial differential operator
d
P(t):urs P(tyu=—>_ A°(-,t)0au + B(-, t)u. (2.2)
a=1

Or, in short, (2.1) equivalently reads
Lu =,
where L denotes the evolution operator
L:u— Lu= 0w — P(t)u. (2.3)

2.1. L? estimate for Friedrichs symmetrizable systems. There is a special class
of systems for which energy estimates are almost as natural as for scalar equations, or
wave equations. This is the class of Friedrichs-symmetrizable systems, which fulfill the

following definition.

Definition 2.1. The system (2.1) is Friedrichs-symmetrizable if there exists a 4> map-
ping Sp : R4 x Rt — M, (R), bounded as well as its derivatives, such that Sy(x,t) is
symmetric and uniformly positive-definite, and the matrices Sy(z,t)A%(x,t) are symmet-

ric for all (z,t).

Like scalar equations, Friedrichs-symmetrizable systems enjoy a priori esti-
mates that keep track of coefficients. We give the L? estimates below, which is
proved elementarily and will be extensively used in the nonlinear analysis on quasi-linear

Cauchy problems.

Proposition 2.1. Assume that (2.1) is Friedrichs-symmetrizable, with a symmetrizer Sy
satisfying
Bl, < Sy < B, >0
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in the sense of quadratic forms. We also assume that Sy, A%, and their first derivatives

are bounded, as well as B.
Then, for allT >0 and u € €([0,T]; H')N€*([0,T]; L?), we have

t
B lu(@)llz2 < " [lu(0)][3 +/ O | Lu(r) |7z A, VEE[0,T], (2.4)
0

where L is defined as in (2.3) and ~y is chosen to be large enough, so that

d
050+ 9a(S0A”) + SoB + BT S,

a=1

Bly—1) > (2.5)

Lo (R4x[0,T7])

We note, here we only need Sy, A% B and their first derivatives be bounded. This

track of regularity of coefficients is important for applications to nonlinear problems.

Proof. 1. Using integration by parts, and symmetry of Sy, SpA®, we have

0= O0a(SoA% - 1) dz = (0a(SoA%)u, u) + 2(SgA%Ogu, u).
Rd

So we get the crucial identity

1
(SoA“Opu, u) = —5(8Q(SOAO‘)U, u), (2.6)
hence
d
&(Sou, u) = (0:Sou,u) + 2(Sp0u, u)
= 2(SoLu+ SyBu — Z SoA%Oqu, u) + (0pSou, u)
= 2(Sou, Lu) — 2 (SgA*Oqu, ) + (850 + SoB + B Sp)u, u)
= 2(Sou, Lu) + (Ru,u),
where

R = 0,8+ SoB+B"Sy+ Y 0a(S0A”).

"We see here symmetry helps us to throw a derivative to the coefficients and then such terms can be

controlled by L? norm of the solution. Otherwise an L? estimate is impossible.
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2. Integrating in time and using the Cauchy-Schwarz Inequality (for the inner product

(So-,-)) and 2ab < a? + b%, we arrive at
(SoC ). 0) < (So0)u(0),(0) +2 [ (Sl rulr) L)
IRl [ (el
< (So(+,0)u(0),u(0)) —|-/Ot(SO(',T)LU,(T),LU(T))dT

T / (L4 BBl ) (Sl 7u(r), u(r)) dr.

3. Then using Gronwall’s Inequality, we get
t
(Sou(t), u(t)) < e (Sou(0),u(0)) +/ "= (SyLu(r), Lu(r)) dr,
0
with 7> 1+ 87'||R|| «. This yields the final estimate after multiplication of . O

2.2. H® estimates for systems admit functional symmetrizers. More generally,
a priori estimates hold true for systems admitting a functional symmetrizer, defined as

follows.

Definition 2.2. Given a family of first-order (pseudo-)differential operators {P(t)}>0

acting on functions defined on R?, a functional symmetrizer is a €' mapping ®
¥ RT — B(LA(R%CM))
such that, for 0 <t < T,
Y(t) =X"(t) > al, (2.7)
for some positive a depending only on 7', and ?
Re (SP(1)) = ;(ZP(t) + P(1)S) € B(IA(RY) (2.8)
with a uniform bound of the operator norms on [0, 7.

Example 2.1. For a Friedrichs-symmetrizable system with symmetrizer Sy, the simple

multiplication operator 3(t) : u — X(f)u = So(-,t)u is a functional symmetrizer (so

8This means both || 2(t)||»_, ;» and | £2() HL2_>L2 are uniformly bounded for ¢ € [0, 7], with a bound

depending only on T.
9Note formally Re (SP(t)) is of first order, however, we require it to be zero order here. So symmetry

help us for cancelation of one order, cf. (2.6). Recall here that A* is the adjoint operator of A.
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X(t) = So(+,t)). As a matter of fact, (2.7) follows from the analogous property of the ma-
trices So(z,t). And, because the matrices Sp(x,t)A%(x,t) are symmetric, 2Re (X(¢) P (1))

reduces to the multiplication operator associated with °

(D~ 0a(SoA%) + SoB + B*Sp) (-, 1).

Theorem 2.1. If a family of operators { P(t)} admits a functional symmetrizer, then, for
all s € R and T > 0, there exists C > 0 so that for u € €*([0,T]; H*) N € ([0, T]; H*™),

we have

lu(®)|[7. < C (HU(O)!ZS +/0 [ Lu(T)]

where L is defined by (2.3).

2 dT) : (2.9)

Proof. Case s = 0. From (2.7) we know that
(S(yu(t), u(t)) = allu(t)ll: - (2.10)

To bound the left-hand side we write (recall that u, = Lu + P(t)u)

d d¥
&(Zu,u) = 2Re (X Lu, u) 4+ 2Re (X Pu, u) + (Eu,u)

Each term here above can be estimated by using the Cauchy-Schwarz Inequality. For the
first and last ones, we use uniform bounds in ¢ of ||X(f)|| 2y and [|d%(¢t)/d¢|[ 42y For

the middle term we use (2.8) and a uniform bound in ¢ of Re (X P). This yields

d
3wy < Cr([lullze + | Lullz2)-

Hence, by integration and applying (2.10), we have

t
allu()lz2 < Co llu(0)7: + Cl/o (lu(r)1Z2 + [ILu(r)l72) dr,

where Co = [|2(0) || (12 - We conclude by Gronwall’s Inequality that (2.9) holds for s = 0
with C'= C"exp(C'T), with C" = max{C}, Cy}/a.

General case. Let s be an arbitrary real number. For u € €*([0, T); H*)N% ([0, T]; H*)
the inequality previously derived for s = 0 applies to A*u and yields

t
IA*u(t)|7. < C (IIASU(O)HZLz +/O IZA®u (7)1 72 dT) :

Writing
LA°u = N°Lu + [A®, Plu,

19Note that now P(t)*Su = 3", 0o ((A%)*Sou) + B*Sou, and SP(t)u = — Y, SoA*du + SoBu.
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and observing that both A® and P(t) are pseudo-differential operators, then the commu-
tator [A®, P] is of order s +1 — 1 = s, and hence |[[A°, Plul|;. < C"||u| .. The above

inequality is rewritten as

(Ol < € (IO + [ (12 }.)dr ).

An application of Gronwall’e inequality gives (2.9). O

e+ C' lu(r)]

Remark 2.1. By reversing time, that is, changing t to T'— ¢ and P(t) to —P(T —t) in

Theorem 2.1, we also obtain the estimate

lu(®)l[7. < C (IIU(T)I e +/t [ Lu(T)]

for u € €1([0,T); H*)NE ([0, T]; H*™'). This estimate of the adjoint problem, namely the

equation L*v = g with terminal value v(T') = 0, is used to show existence of a L? weak

. d7> . Vtelo,T], (2.11)

solution of the original Cauchy problem Lu = f with initial value «(0) = 0, via a duality

argument.

2.3. Construction of functional symmetrizer by symbolic symmetrizer. The
problem is now to construct functional symmetrizers. Except for Friedrichs-symmetrizable

systems, this is not an easy task. We shall conveniently use symbolic calculus. We denote
d
Az, t,6) =) &A%(x,t), (2,t) eR*XRF, £eR,
a=1

which can be viewed up to a —i factor as the symbol of the principle part of the operator
P(t) defined in (2.2).

Definition 2.3. A symbolic symmetrizer associated with A(z,t,£) is a €°° mapping

S: R*xRT x (R*\ {0}) — M,(C),

homogeneous degree zero in its last variables &, bounded as well as all its derivatives with
respect to (z,t,€) on || = 1, such that, for all (z,t,¢),

S(x,t,&) = S(x,t,8)" > pI, (2.12)

for some positive number 3, uniformly on sets of the form R? x [0, 7] x (R?\ {0}) (where
T > 0), and

S(z,t,&)A(x,t, &) = Az, t,£)*S(x,t, ). (2.13)
Of course, a Friedrichs-symmetrizable system admits an obvious “symbolic” symmetrizer

independent of &:
S(ZE, t) 5) - SO(xa t)
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Note that, in general, a symbolic symmetrizer is not exactly a symbol of a pseudo-
differential operator, due to the singularity allowed at ¢ = 0. However, truncating about
0 does yield a pseudo-differential symbol in S°, which is unique modulo S=°. This enables
us to associate S with a family of pseudo-differential operators i(t) of order zero modulo
infinitely smoothing operators. This in turn will enable us to construct a functional

symmetrizer ().

Remark 2.2. In the constant-coefficient case, neither A(z,t, &) nor S(x,t,¢) depend on x, ¢,
and it is elementary to construct a functional symmetrizer based on S. This symmetrizer

is of course independent of ¢ and is just given by
>=F'S7

(where .# denotes the usual Fourier Transform). Then (2.7) holds with a = 3, because,

by Plancherel’s Theorem,
(Su,v) = (F1(S0),v) = (S, ).

This shows ¥ is also Hermitian and positive-definite. And (2.8) follows from (2.13) because

of the relations
(SPu,v) + (u,2Pv) = (SPu,?)+ (4, SPv)
= (S(-iA+ B)u,v) + (u,S(—1iA+ B)0) = ((SB + B*S)u,v),
and the fact that S, B are uniformly bounded.

Theorem 2.2. Assuming that A(z,t,&) admits a symbolic symmetrizer S(x,t,&) (ac-
cording to Definition 2.3), then the family {P(t)} defined in (2.2) admits a functional
symmetrizer S(t) (as in Definition 2.2).

Proof. The proof consists of a pseudo-differential extension of Remark 2.2.

1. As mentioned above, S(-,t,-) can be associated with a pseudo-differential operator
of order 0, X(t). We recall that the operator Y(t) is not necessarily self-adjoint, even
though its symbol, the matrix S(z, ¢, &), is Hermitian. But 2(¢)* differs from %(¢) by an
operator of order —1 (since they are both of order 0).

2. Let us define

2(t) = 5(2(t) + 2(1)").

By Gérding’s Inequality (recall S(z,t,&) is positive-definite), there exists Cr > 0 so that

N | —

(EM)u,u) > 5 [lullze = Or [lull3-

N
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for all t € [0, 7] and v € L?(R?). Now, noting that
ull s = (A2, ),
we can change () into X(¢) + CrA™2 in order to have
g
(S(eu) > 2 ulls.

This modification does not alter the self-adjointness of ¥(t) and gives (2.7) with o = /2.
3. Furthermore, X(t)P(t) + P(t)*X(t) coincides with the operator of symbol (using
(2.13))

S(—iA+ B) + (—iA + B)*S = SB + B*S
up to a remainder of order 0 + 1 — 1 = 0. (Here we used the product formula of pseudo-
differential operators. To simplify notations, we have omitted the dependence on the
parameter ¢ of the symbols.) Since (SB+ B*S)(-,t,-) belongs to S°, so X(t)P(t) + P(t)*%

is of order 0 and hence is a bounded operator on L2. O

As a consequence of Theorems 2.1 and 2.2, we have the following.

Corollary 2.1. If A(z,t,&) = Y {*A%(z,t) admits a symbolic symmetrizer, then for all
s€R and T > 0, there exists C' > 0 so that for v € €*([0,T]; H*) N € ([0, T); H*'), we

have
3{5 dT) ,

2.4. Construction of symbolic symmetrizer for constantly hyperbolic opera-

¢
lu®)]z < C (!|U(0)!|i2 +/O || Lu(T)]
where L =0, + Y. A%0, — B.

tors. Except Friedrichs-symmetrizable systems, another important class of hyperbolic
systems that do admit a symbolic symmetrizer is the one of constantly hyperbolic sys-

tems.

Theorem 2.3. We assume that the system (1.1) is constantly hyperbolic, that is, the
matrices A(z,t,§) are diagonalizable with distinct real eigenvalues Ay, - -+ , N, of constant
multiplicities on R4 x RT x (R4\ {0}). We also assume that these matrices are independent

of © for |x| > R. Then they admit a symbolic symmetrizer.

Together with Theorem 2.2, this shows that constantly hyperbolic systems are sym-

metrizable and thus enjoy H® estimate.

Proof. 1. The proof is based on spectral projections associated with A(x,¢, &), which are

well-defined due to spectral separation. As a matter of fact, the assumptions imply that
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the spectral gap |\;(z,t,&) — \e(x,t,€)] is bounded by below for 1 < j # k < p,(z,t) €
R? x [0,7] and || = 1. Let us define ™

P = %mln{p\](l’:taf) - Ak(xat>€)| o1 S ] 7& k §p7 (.’L‘,t) S Rd X [OvT]> |§| = 1}

and the projectors

1
Qj(xat7£) = _/ (AIn_A(xatag))il dA
AEC: [A=X;(2,t.8)|=pl¢]

21T

for 1 < 7 < p. Since A and its eigenvalues \; are homogeneous degree 1 in &, we easily
see by changing of variables that (); is homogeneous degree 0 on £. Furthermore, @); is
independent of z for |z| > R.

2. Then we introduce

By construction, the matrix S is Hermitian. Moreover, we have for any vector v € C",
p
v*Sv = Z 1Q,v]* > Blv]?,
j=1
where
p
3 = min {Z Qj(w, t, v : vl =1, [¢| <R, 0<t<T, [¢] = 1} >0
j=1

since ), Qj = I,. (See [3, p.7].) This proves (2.12).
3. Finally, since Q;A = AQ; = \;Q; for \; € R (cf. [3, p.8]), we have

p

(SAv,w) = (Q;Av,Quw) =Y N;(Qjv, Qjw)

]:1 7j=1

P
= ZAj(ij,ij) = (SAw,v) = (v, SAw).
j=1
for all v,w € C", and thus SA is Hermitian. O
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LECTURE NOTES 6:
PARA-PRODUCT, PARA-LINEARIZATION AND
PARA-DIFFERENTIAL CALCULUS

HATIRONG YUAN

In this note, following the presentations in appendices in [1], mostly word by word,
we introduce para-product and para-differential calculus based on the Littlewood-Paley

decomposition. The note is only used for purpose of teaching.

1. LITTLEWOOD-PALEY DECOMPOSITION AND SOBOLEV SPACES

1.1. Introduction. Let 1)(£) € 2(RY) = C°(R?) be a monotonically decreasing function

along rays that satisfies
ve) =1, it g3,
0seE© <1 it <<t
(€ =0, if ¢ =1
Then we define
BO) = V(E/2) —0() and 4y(€) = 0(27€) for peZ,
One readily checks that
supp C {5 < Il <2}, swppd, C {27 < Jel <2, (11)

supp ¢, Nsupp ¢, =0, if |p—q| > 2,

as well as the point-wise identity

These facts lead to !

For convenience, we also denote ¢_; = .

Date: June 3, 2021.
et Iy = Z;C’:even op(€), I = (&) + Z;O:odd $p(€). Then 1 = (Ip + 11)? < 2(I3 + 1}). But I =
D opeven 9p(€)%, 1T = V(&) + 32 0aa 0 (€)*

86
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Now for u € .#'(R?) (Schwartz tempered distribution), there holds
i =i+ (O,
p=0

where @ = .% (u) is the Fourier transform of u. We define the operators
A _qu= y_l(l/}(g)ﬂ)u Apu = ﬁ_1<¢p(§)a)a pe NU{0}.

Then we have the nonhomogeneous Littlewood-Paley (L-P) decomposition of a distribution
u:
o0
u = Z Apu.
p=—1
Note each term Aju is a smooth function. The infinite sum converges in the sense of

tempered distribution. For ¢ > 0, we define the partial sum as

qg—1
Sgu =Y Dyu=F (h(27€)a).

p=—1
One notes that supp .Z (S,u) C {|¢| < 27}. We also set A, =0 for p < —1 and S, = 0 for
g<-1
By definition, we have, for all u € .,

F(Dqu) = ¢qtt, and F(S;u) = dyd,

with the rescaled functions ¢, = (27%€) for ¢ > 0.
A first interesting property of the operators A, is that the L> norms of A,u, S,u and
their derivatives are all controlled by the L*> norm of u. The cost of one derivative is

found to be adding a factor 27 in the constant.

Proposition 1.1 (Bernstein). For allm € N, there exists C,, > 0 so that for allu € L™,
for all d-uple «, |o| < m, for all ¢ > —1,

10Dl oo < Con2?® full o and  0%(Sgu) | o < G2 [Jul] e (1.2)
Proof. We have
A= (F1¢,)xu, and Su=(F '9,)*u.

All functions (F~1¢,)(€) = 299(.F ~1¢)(2€) are integrable because of the regularity of ¢

(with compact support and smooth, then belongs to .%), with the additional invariance
property
17 bl = 1774
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for all ¢ > —1. We also easily compute that

l0*(F 7 00)l| o = 2 [|0%(F )]

The same is also true for 1,. Then Young’s Inequality on Convolution yields the conclusion

with C' = maX|a|§m{ |0*(F 1¢)||L1 o (F 1¢)||L1 } U

1.2. Basic estimates concerning Sobolev spaces. All results displayed in this section
but the very last one are concerned with the most classical Sobolev spaces H® on the whole

space RY.

1.2.1. An equivalent definition of Sobolev spaces H®. First, we note that if v € H?,
the equality v = Zq Agu holds true not only in ./ but also in H*. As a matter of
fact, we have .Z(S,u — u) — 0 point-wise as ¢ — oo, and |\*()F(S,u — u)()]* <
(14 [l o)A (E)0(€)]? for X*(€) = (1 + |€[*)*/?, so Lebesgue Dominant Convergence
Theorem yields

1Squ = ull3p = [IN°(€)(F (Squ = w)(E)]72 — 0

as ¢ — oo. Furthermore, the operators A, appear to give rise to equivalent norms on the

Sobolev spaces.

Proposition 1.2. For all s € R, there exist Cs > 1 such that for all u € H?,

el Z 2% || Aqull 7z < llullfe < Co Y 2% | Agulls - (1.3)

S g>—1 q>—1

Proof. 1. We begin with the case s = 0. We claim that the estimate in (1.3) works with
Co = 2. One may remark that the equality, that is, (1.3) with Cy = 1, could be true if

the Aju were pairwise orthogonal. But we only have
(Apu, Ayu) =0 provided that |p—g| > 2. (1.4)

The inequalities in (1.3) can be viewed as measuring the default of orthogonality. The
proof is almost straightforward. As a matter of fact, the inequalities % < ¢2+2q20 ¢§ <1
imply that

Y 12 OUEP <JaO)F <2 16g(&)a(€)l’ (1.5)

q>—1 q>—1

for all uw € L? and almost all ¢ € R?. Integrating in & we get, in view of the definitions of

JAWRTR
— 2
> | B
g>—1

‘ L2 L2

—_— 2
<l <2 || A
g=—1

and we just concluded by Plancherel’s Theorem.
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2. We then consider the general case. From (1.5) we have

Y IO U < IN©aOF <2 IN(E)g(©a(E)l* (1.6)

>—1 q=—1

Assume, for instance, s is positive. Then for ¢ > 0 and for

£ esupp o, C {2971 < |¢| < 2011,

we have
97250205 < \23(g) = (1 + |€[?)* < 239%, (1.7)
while for
£ €suppd1 C {[§| <1}
we have

2282—28 -1 S )\28(5) S 25 — 2352—23‘
Therefore, we get by (1.6)

272 3 2206, (a(6)* < IN(©a() < 27 Y 226, (8)ale)

g=—1 g=—1
and by integrating on £ € R, we get (1.3) with C, = 23T,
3. For s < 0, the estimates on A\* are reversed and (1.3) holds true with Cy = 27351,
cf. (1.7). O

In particular, this proposition shows that for all w € H* and all ¢ > —1,

[Aqull 2 < V27 [|ull s - (1.8)

Of course (s becomes 1 if we replace the usual H® norm by the equivalent norm

e = (Z 2% IIAqUIliz> : (1.9)

g>—1

[l

Proposition 1.3. For all m € N, there exists C,, > 0 so that for all u € L*, for all
d-uple a, |a| < m, for all ¢ > —1,

10*(Aqu)ll > < Co29 Jull 2 and |8 (Squ)|| o < Cr29 ]l 2 (1.10)

This implies, for all positive integers s, there exists C' > 0 so that for all ¢ > —1 and
u € L2,

||Aqu|

e S C2% [lull 2 and  [|Squl

e < C2% ||ul| 2 - (1.11)

Note the constant Cs depends on s and is increasing with s.
The proof of Proposition 1.3 is exactly the same as that of Proposition 1.1, replacing

the L' — L convolution estimate by L' — L? estimate.
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1.2.2. Some embedding theorems. Another noteworthy remark is that the L* norms of
Agu and S,u can be controlled even for unbounded u, provided that u belongs to some
H? (which is not embedded in L* for s < d/2), as shown in the following.

Proposition 1.4. For all s € R, there exists C > 0 so that for all u € H*(R?) and all
q 2 _17
18gull e < C27 Y2 Jlul| . and  [|Squll oo < C271 YD fu| . (1.12)
Proof. Since both KZL and @ are supported by the ball {|¢| < 291} on which 9,12 = 1,
we have, for instance,
Aqu = ¢q+2AqU,
and similarly for S/’QZ. Therefore,

Agu= (F hyi0) * Nu.

Now, to get the correct estimate we just have to pay attention to the fact that L? norm

is not invariant by the scaling. We have indeed

gl 2 = 2992 [0 .2
and thus Plancherel’s Theorem and a basic convolution inequality yield
128gull oo < 20292 9| 2 | Aqull o -

This together with (1.8) gives (1.12) with C' = 2?|[¢|| ;> v/Cs. The same computation
shows the inequality for S,u. O

A straightforward consequence of this proposition is, of course, the well-known Sobolev
Embedding H*(R?) < L* for s > d/2. For, the inequality in (1.12) shows the series
> Agu is normally convergent in L™ if u belongs to H*(RY) for s > d/2, and its sum

must be u (by uniqueness of limits in the space of distribution).

Remark 1.1. By a similar calculation as in the above proof, we have L? estimates of A u
for w € L'. Namely, there exists C' > 0 so that

18 gull 2 < C292 |fu]|

for all uw € L*(R?) and ¢ > —1.
Indeed, by definition of Aju, Plancherel’s Theorem shows that

[Aqull 2 = ll¢qtill 2 < logll L [l oo

for ¢ > 0 (for ¢ = —1, just replace ¢, by 1) and

16qll 2 = 222 ||l 2,



PARA-DIFFERENTIAL CALCULUS 91

while, of course, [} < [[uf s . So the constant € = max { [|9] 2 .22 [[4]],2 }.

As a consequence of these estimates and Proposition 1.2, we find the embedding
LYRY) < H™*(R) for s>d/2.
To see this, just note that 2

lulf- < Cs Y0 27 [ Bgullfe < Crg Y 297 |Jul7y < C ullZ -
g2—1 g2—1
1.2.3. More on control of ||Aqul|;«. To complete this section, we prove an additional
result in the same sprit as Proposition 1.4, which gives an estimate of ||Ajul|, . in terms

of || Aqulyyme (instead of ||[Agull,. in the proof of Proposition 1.4).

Proposition 1.5. For all m € N, there exists C,, > 0 so that for all w € L™ and all
q=0,

1A8gull oo < Cr27™™ Y (10%(Agur) | e - (1.13)
|a|=m
Proof. There is nothing to prove for m = 0. Let us assume m > 1. We consider some

function y € 2(R%) vanishing near 0 and being equal to 1 on the support of ¢ (for instance
take x(&) = ¥ (&/4) —¥(28)), so that ¢ = y¢. With obvious notations we also have

(bq = Xq(bq

for all ¢ > 0. Since x vanishes near 0 we can define for all d-uples « of length m a function
X* € Z(R?) by
(i§)
X&) = =77z X (&)
2_1p1=m (16)%
By construction we have
(€)= D ()X
|a|=m

and

Xa(€) =277 ) (i) (6).

|ae|l=m

with still the obvious notation xg'(§) = x*(279). Then we have

Dgu=xg(€)Dgu =273 (i1€)°x3(6) B gu.

laf=m

2We also note, this result is not quite surprising. Since L' is dense in H~°, so if s : L' — H™° is
compact, its adjoint operator i* =i : H® — L°° is also compact by standard property of adjoint operator

from functional analysis.
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This easily implies that

Agu=2""" 3" (FI\8) % 0% (Agu).

|lal=m

The result follows again from a convolution inequality and the identities

-1 -1
177 = 177 O

We find then [|Aqull o < 27 (maxjajzm |7 X 11) 2jajem 107 (Dq) | o - -

The proof here above obviously fails for ¢ = —1, because A_ju does involve small

frequencies. However, by Proposition 1.1,

1A ]| oo < Co flull oo < Co2¥ [Jul] o

for all £ € N. Therefore, using the commutation property 0“A, = A,0%, a consequence

of Proposition 1.5 is the following.

Corollary 1.1. For all k € N, there exists Cy, > 0 so that for all u € W**, with
Whee = {u: [|0%l ;e < 00, Va €N |al <k}, there holds

Vg > =1, [[Aqull e < CR27 lullyie (1.14)

Proof. We need only consider the case ¢ > 0. Then [|Agul| .. < G277 2ol 10% Bt oo =
Cr2 3 i 100 (07U | oo < CR27% 37 100 o < CR27% JJul| e -

2. THE PARA-PRODUCTS

2.1. Para-products. It is well-known that for two distributions u, v € .#”(R%), generally
their production uv can not be well-defined. However, one can utilize L-P decomposition

to define, in a certain sense, the product of two distributions.
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Let u=>" Au, v=>°>2 A bethe L-P decomposition of u,v respectively.
P q y

p=—1 g=-1
Then formally we may write
uw = Z DpulNgv
pg=—1
oo p—3 oo q—3
= Z Z Dpulgv + Z Z JANSTYAWIE S Z DpulNgv
p=2g¢=-1 q=2 p=-1 lp—ql<2
= Z ApuS,_ov + Z AgvSy_ou + Z ApulNgv.
p=2 7=2 lp—q|<2

We introduce the para-product of v by u as

T, = Z AgvSy_ou = Z AgvS,_ou. (2.1)

q:—l q:2

Then we formally have the symmetric decomposition

wv = Tyu + T,v + R(u,v) (2.2)
with the remainder term
R(u,v) = Z JANRTVANK (2.3)
lp—q|<2

Remark 2.1. From the definition it is easy to see that 0;(T,v) = T,,(9;v) + Tp,,v.

Example. Let us consider the special case when w is a constant ¢ to understand better
the para-product T,,v. Indeed we have now u = ¢, with ¢ the Dirac measure supported at
{0}, hence .7 (A,u) = 0 whenever p > 0, and .# (S,u) = Z (Sou) = ¢6 for all ¢ > 0, thus
Syc = c. Therefore T,v = ¢ 2, Agv. We may further compute uv—T,v = u 22271 A,
that has compact spectrum (i.e., its Fourier transform has compact support set), hence

is smooth.

2.2. Reasonability of the definition of para-product. Since (2.1) involves infinite
sums, we'd better explain whether the sum is meaningful. To this end, we look the spec-
trum of each term, and find, since supp .Z (A v) C {2971 < [¢] < 2971} supp F (S,_2u) C
{€] <2972}, there holds, by supp f * g C supp f + supp ¢,

1
supp F (AguS,—ou) C {4—12‘1 < ¢l < ZQQ}. (2.4)

3Although the first two terms in the right-hand side make sense even if u,v € .%”, but there are two
reasons that uv in general makes no sense. The first one is the last term is only sum of terms with
bounded support (not in annulus); the second one is this identity involves change order of limits, which

can not be true in general.
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Therefore (2.1) is meaningful at least for u,v € .#/(R?), in the sense of tempered distri-

butions.
2.3. Basic estimates on para-product.

Proposition 2.1. Forall s € R, there exists C' > 0 so that for allu € L* and allv € H?,
there holds

||Tuv|

ae S Cllull g [|0]

e (2.5)

Proof. Using the equivalent norm of H® characterized by the L-P decomposition, we need

to prove
2| A(Tw)72 < Callullie > 27 Al (2.6)
p>—1 p>—1
1. We first estimate the term A,(T,v). Taking Fourier transform, we have
F(Lp(T)) = 6p(&) Y F (D guSy-au).
q=>2

While for each term, by (1.1) and (2.4), one easily checks
Op(E)F (DgvSyau) =0 if [p—g| >4
Hence
18T < C Y 18wSe2ulla < C Y 184017 1Sg-2ullfx -

lg—p|<3 lg—p|<3

We note, by .Z1(f(e€)) = (Z1(f))e,

1Squll e = |7 (0(279€)) xul| oo < [|Z W27 Nutll e < Cllullpee,  (2.7)
therefore
1A(Tw) 72 < Cllulfe D 11472
lg—p|<3

2. Then we get
s 2 2 s 2 2 s 2
27| Ap(To)ll7e < Cllul7w 2% Y 18g0)7: < Collullz D 2% 12001

lg—p|<3 lg—pI<3

Hence

oo

Do 28Tz < Cullullze D Y- 2% 1Al

p=—1 p==1]g—p|<3

)

2 2

< Cillullze Y 27 | Ap017
p=—1

as desired. O
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Using similar ideas, we can prove

Proposition 2.2. For allr € Z and s >0 there exists C' > 0 so that for all w € L™
and v € H?,

Z Sq—ruAqv

q>—1

< Clull o o]

e (2.8)

HS
Proof. We need prove

2

2 2
< Cllullze Y 2% 180117 -

12 p=>—1

Z 22ps

p>—1

Ap( D Syulgv)

q>—1

1. We still first estimate the distribution of spectrum of the terms A, (S,_,uAv). We

have, by a property of convolution,
supp 7 (Sg-ruldqu) C {Jg] <2777} 4 {2771 < ¢ <277}

Then for r > 2, supp .Z(S,—,ul\gv) is contained in the spherical shell {327 < |¢] <
29%2} . So, by (1.1), there is a k € N such that A,(S,_,ul\,v) = 0 whenever [p—q| > k+1.

For r < 1, the spectrum of supp .#(S,—,ul\,v) might not be bounded away from 0:
supp Z (Sy—rul ) C {|€] < 277377} Thus we can only find k& € N depending on r such
that

Np(Sy—rulgw) =0 if p—qg>k+1 (2.9)
2. Now by (2.9), we have

AP(Z Sq—ruNgv) = Z Dy (Sy—ruldgv).

g>—1 q>p—k

Applying Cauchy—Schwartz inequality of [? and s > 0, and taking L? norms, there comes

2

< Z 27" Z 2% ||Ap<Sq—TUAqU)Hi2

L2 q>p—k qzp—k

C Y 27 ||Sud ol

q>p—k

Ap( Z Sq—rulSgv)

q>-1

9—(p—k)s

1. ith s = <
((1.8) with s =0) < T =9

(27) < Cau2™ Y 2% lullz= 184017 -

q>p—k
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So, using Zgiﬁl 2(r=a)s < 0927952(a+k)s — 02F5 when s > 0, we find

2
D2 ALY Spmub )| < Carllullie D0 D0 20 A

p>—1 >—1 L2 p>2—1q>p—k
g+k
2 s 2 —q)s
< Copllullie Y @ 1A0]7) (Z 2= )
g>-1 p=—1
s 2 s 2
< O llullze Y (2% 1 Ag0l172)-
q=—1
This finishes the proof. O

2.4. Estimate on errors.

Proposition 2.3. For all s > 0, there exists C' > 0 so that for all u,v € L>® N H?,

we < Cllul g [[0]

e - (2.10)

|luv — Tyul

Proof. The assumption s > 0 ensures both v = ) A,u and v = ) Ayv converge in the

L? norm. This justifies the formula

Uy = Z Dpulgv.

p,q>—1

Then by definition of T,u = 3" -, SpovApu=73" 5> o, 3 Dpulgv, we get

w—Tu = Z Z JAWYANS TR Z Z JANRIVANS 7}

gz—1p=>—1 p=2 q<p—3
= Z Aqv(z: Ayu) — Z Aqu( Z Apu)
g>—1 p>—1 g>—1 p>q+3
q+2
= Z Agv Z Apu = Z AguSgi3u.
g>-1 p=—1 g>-1
So by (2.8), with r = —3, we proved (2.10). O

2.5. Estimates on products. We easily obtain the following estimate of product thanks
to (2.5) and (2.10).

Theorem 2.1. For all s > 0 there exists C' > 0 so that for all u,v € L>* N H?®,

[uv] w0l oo [ 0)- (2.11)

u, < Ol o o]

Theorem 2.2 (Gagliardo-Nirenberg inequality). For any s € N, there exists C' > 0 so
that for all w € L™ N H® and multi-index |a] < s,

1—|al/s

[0%Ul| oot < C'fJull poc ‘ﬁ's/s.

lul
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This inequality can be proved by utilizing scaling-related properties. We omit the
details. We remark that the estimates listed in this and following subsections are essential
and widely used to study various nonlinear problems in the framework of Sobolev spaces.

The following estimate strengthens (2.11).

Theorem 2.3. For any s € N, there exists C' > 0 such that for all u,v € L N H® and
all d-uples o, B with |a| + |5 = s, we have

[(0°u) (@) > < Clllull oo 10l 7o + [0l e [leell 72)-

Proof. By Hélder inequality and G-N inequality above, since 1 = lol 4 = we have

2 s s

[(0°w)(0%0)|| . < 110%ull poesion [|070]| ouis

lal LI

i) ([l [l )
181

=) (0]l o [l

1_lal
Clllull e vl
C(llull oo v

N

o]
S

IN

s

IN

C'(lull poo 10/l + N0l oo N2l 0)-
In the last equality we also used Young’s inequality a”b? < pa + bq if p+ q = 1. O
2.6. Estimates on commutators.

Theorem 2.4. If s > 1 and « is a d-uple with |a| < s, then there exists C' > 0 such that
for all u,a € H® with Vu,Va € L*,

110, aVlull 2 < CUIVull < llall s +[[Val oo ([l ) (2.12)

Proof. We recall
(0%, aV]u = 0%(aVu) — aV(0%u).

For j =1,---,d, we only need to establish (2.12) with V replaced by 0;.
Step 1. By Leibniz rule there are coefficients C? with C% = 1 such that

0%(adju) = > CHO%ad* ;.
1B1<|e|
Hence
(0%, aV]u = Z CP0P a0 Poju.
1<|8I< ]
and therefore

1[0, aV]ull,. <C > [0%ad0*Poul,, .

1<]8I<]af
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Step 2. For each term 0%ad*Po;u = (0%0ka)(0°P0;u), where |Bx| = |8] — 1 and k
can be found by virtue of || > 1. Observing |a — 8 + k| = |a| — 1, we use Theorem 2.3
with s = |a| — 1 to obtain
[(0%0ka) (0 05u)|| . < Cl10kall o 105ull o + 1050l oo 1Onall 1)
CIVall oo llull grar + Vtull oo llall grar)-

A

Then (2.12) easily follows. O

2.7. Estimate on remaining term. To illustrate the power of para-products, let us
just show the following result on the remainder R, where we see that the regularity of

R(u,v) is “almost” the one of u plus the one of v.

Theorem 2.5. For all s,t with s+t > 0, there exists C' > 0 such that for allu € H*,v €
H', R(u,v) is well-defined by (2.3), and meets the estimate

172w, v)]

esrcan < C lull g 1ol (2.13)

Hs

Proof. 1. At first, we check that the assumption s + ¢ > 0 ensures that R(u,v) is well-
defined and

q+2
R(u,v) = Z R,(u,v), with R,(u,v)= Z JANTYANIN
g=—1 r=q—2
As a matter of fact, we have

q+2 q+2
IRy (w,0) < Y I 8wull e [Agoll e < C Y7 277 |full o 27 [[0]] e

r=q—2 r=q—2

< 5 x 22610 ) o 0] e 2795,

which shows the series R,(u,v) is normally convergent in L'.

2. To prove the estimate in (2.13), we must evaluate the L? norm of A, R(u, v). Similarly
as in the proof of Proposition 2.2, we note as .#(R,(u,v)) has compact support (not
necessarily in a shell), so A, R(u, v) only involves some finite number of terms A, R, (u, v).
This is due to the fact that there is an integral k£ such that

Ny(Dulpw)=0 for p—g>k+1 and [r—g| <2 (2.14)

Therefore, we have

ApR(u,v) = Z AR, (u,v).

q>p—k
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3. For all p > —1 we have

q+2

D Ry(u,v) = Y (Fly) + (Dulgw)

r=q—2
and thus a standard convolution inequality and Plancherel’s Theorem shows that

q+2

[8pRe(u, v)| 12 < |pll 12 Z [FAS 7AYo

r=q—2
Since for p > 0 we have
165l 2 = 27|l 2,

the latter inequality implies that for all p > —1,

q+2
18Ry (u,0)| 2 < 222 % Al 2 [| 2901112

r=q—2

with ¢ = max { [|¢]| 2, 22 [|9[| . }.
4. We now apply Cauchy-Schwarz Inequality of £? to obtain

2
A R(u,v)|* = ( Z 9 (t+9)/2 2‘1(t+s)/2Aqu(u,v)>

q>p—k
< QL2 0 AR (o)
q=>p—k q>p—k
S Ct+s,k2_p(t+5) Z 2Q(t+8)|APRQ(u>’U)|27
q>p—k

with Cipsp = > po_, 271+ There then comes

1AL R(u, )72 < Cra 27> ™ 295 | AR (u,0)]7

qzp—k
Consequently, we get
a+2
2 —p(s+t— s 2 2
1Ay R(u,v)[72 < C27PEH=D N = 200D | Aol[7, S || A7,
q>p—k r=q—2
with ¢’ =5 X ¢*Cyyyk, and thus
q+2

2P || A R(u,v) |7, <5 x 220107 Y T 2@t | A |7, N 22 [ A7

q>p—k r=q—2

99
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Finally, we obtain

> 2PET AL R(u, ) |7

p=>—1
q+2

< 5 x 22l Z 92qt HAqUHiQ Z 9(p—a)(t+s) Z 92rs ||ATU||12
g>—1 —1<p<qg+k r=q—2

< 5 IME Y P 20 S 2
>—1 1<k r>—1

" 2 2
S C ”u“Hs HU”Ht7
with C” = 5 x 22sl¢” Cs44,:CsCy. This gives (2.13) with C' = /C"Cyyi—ayo. O

2.8. Further estimates on products. This result on the remainder R(u,v) gives a
slightly bigger index than in the classical result recalled below for the full product uw.

This is reasonable since R(u,v) should be much smoother.

Theorem 2.6. For all s and t with s+t > 0, if u € H® and v € H*, then the product
wv € H" for r < min{s, t} such that r < s+t — d/2. Furthermore, there exists C
(depending only on r,s,t and d) such that

[[uv]

ar < Clul

Hs UHHt-

In the case r = s = t (hence they are larger than d/2 and H*(RY) — L*(R?) holds),
this theorem is a consequence of Theorem 2.1. The proof of the general case follows easily

from Theorem 2.5 and the following additional result on para-product.

Proposition 2.4. For all s and t, if u € H® and v € H', then the para-product T,v is
well-defined and belongs to H" for all r < s+t — d/2. Furthermore, there exists C' > 0

independent of u and v so that

[Tuvll g < Cllullgs [0l ge - (2.15)

Proof. We almost repeat the proof of Proposition 2.1.

1. We first estimate the term A,(7T,v). Taking Fourier transform, we have

F(Dp(Twv)) = ¢p(€) ch@(ﬁquq,Qu).

q>2

While for each term, by (1.1) and (2.4), one easily checks
Op(6)F (DquSg—2u) =0 if [p—q| = 4.
Hence

18p(T0)7 < C ) 18wSe2ulla < C Y 1840172 1Sg-2ullfx -

lg—p|<3 lg—p|<3
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Using (1.12),

I1Squll oo < C271Y2 |y

therefore
1Ap(Tw)l[72 < C272E a7 D 180017
lg—p|<3
2. Now we get

2| Ap(Tw)llze < 227 C27 D ullz Y Al

lg—pl|<3

COH ) |l 37 2 | Ao

lg—pI<3

IN

Hence

Z 92pr HAp(TuU)H?ﬂ < Oyl ?{S Z 92p(r—s—t+d/2) Z 92qt ||Aqvl|i2

p=-1 p=-1 lg—pl|<3
[e.9]
< O fully ol 37 270 <l ol
p=—1
as the series converges because of r — s —t 4+ d/2 < 0. U

An easy consequence of Theorem 2.6 is the following commutator estimate.

Corollary 2.1. If m is an integral greater than d/2 + 1 and « is a d-uple of length
la| € [1,m], then there exists C > 0 such that for all a € H™ and all u € H'*=1

110 alull 2 < Cllall gm llull gra-1 -

Proof. Since we have

(0%, alu = Z 0% a0 Pu,

1<|BI<]al

so we only need estimate L? norm for each term Haﬁaaa—ﬁu||L2 . Let v = 0% € H™ 1A
and w = 9Py € Hl=1=el+ 8l g0 s =m — || > 0 and t = |B] — 1 > 0. Let r = 0, then

the requirements in Theorem 2.6 is fulfilled and we have

lvwll. < Clv]

we [0l e < Cllall g [l grei—

as desired. O
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2.9. Smoothing effect of para-product. A useful result that was not pointed out yet

is the smoothing effect of the operator a — T, when a is at least Lipschitz.

Theorem 2.7. For all k € N, there exists C > 0 such that for all a € W** and all
u€ L?,

lauw — Toul| g < C'llallyymeo [[ull g2 -

The case k = 0 (with no smoothing effect) is a trivial consequence of Proposition 2.1
and the Triangle Inequality. For the difficult case k > 1, a detailed proof can be found in
2, p.83, Theorem 5.2.8].

A straightforward consequence of Theorem 2.7 is the following, which enables us to
replace a term Ad;u in a quasi-linear hyperbolic system by a para-product, which is a

special para-differential operator.

Corollary 2.2. There ewxists C > 0 such that for all a € WY and u € L?, for j =
1, ce ,d7

ladju = Tadjull 12 < Cllallyioe [l 2 -

Proof. First suppose u € H', and we observe that
adju — T,0;u = 0;(au — Tyu) — ((9;a)u — Ty,qu).

The L? norm of the first term is bounded by C'||a|l,y1. [|ull;2 (by the case k = 1 in
Theorem 2.7). The L? norm of the second term is bounded by C'||9;al|, ||ul| > (by the
case k = 0 in Theorem 2.7). So the inequality holds for v € H*.

The case for u € L? is then proved by approximation, 0

3. PARA-LINEARIZATION

Proposition 2.1 and Theorem 2.5 show in particular that for all s > 0, if u € H* N L*>,
then

u? = 2Tu + R(u,u) = To,u + R(u,u),
with the uniform estimates
| Touull e < Clull oo Jull 5. | R(u, )| gae-are < C |lull. .

A very strong result from para-differential calculus is the following, says that this
decomposition of F(u) = u® can be generalized to any € function F vanishing at

0, under the only assumption that s > d/2.
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Theorem 3.1 (Bony-Meyer). If F € €>*(R),F(0) = 0, and s > d/2, then for all
u € H*(RY), we have

with R(u) € H?~4/2,

Note the assumption s > d/2 automatically implies that u € L> N H*(R?).

Equation (3.1) is often referred to as the para-linearization formula of Bony. In par-
ticular, it shows that F(u) € H® (since F'(u) € L*). We will not give the proof of

Theorem 3.1. One can show that F'(u) enjoys the same estimate as its para-linearization

counterpart T (,u, i.e., the following theorem.

Theorem 3.2. If FF € €*(R),F(0) = 0, and s > d/2, then there ezists a continuous
function C : [0,00) — [0,00) such that for all u € H*(R?),

1£(w)]

e < Clllull ) llul

Hs -

Proof. The assumption s > d/2 implies that each u € H*(R?) necessarily belongs to
LN L2

1. We begin by showing the estimate for F'(Sou) instead of F'(u). To do so, it is sufficient
to bound ||0*F(Spu)|| ;. for all d-uples a of length |a] < m withm —1 < s < m.

For |a| = 0, this is almost trivial. By Propositions 1.1 and 1.3,
[Soullpee < Cllullpee,  I1Soullp2 < Cllull

and thus the Mean Value Theorem applied to F' in the ball of radius R = C'||u|| ;- (that
is, F'(Sou) = F](0Spu)Sou with some 0 < 6 < 1) implies that

IE(Sow)]l 2 < ‘Ig‘lggglF;(v)l 1Soull 2 < Cr [|ull 2

for some Cr = C'[|F}[| 45,y depending continuously on R.

For |a| > 1, the Chain Rule shows that there exist coefficients ¢, with b = {8*,--- , 3™}
being a family of d-uples of positive length and of sum B! + --- + ™ = a, so that
9°(F(Sou)) = > & FO(Squ)d” (Sou) - - - 07" (Sou).

1§n§|a|, 181+...+5n:a’ ‘IBZ|21

By Proposition 1.1 and Proposition 1.3, we have
|07 (sow| < Clullms |07 (S0 , < Cllule

Therefore, using L> bounds for the successive derivatives F(™, n < m, on the ball of

radius R we obtain a uniform estimate

10°(F(Sou))|l 2 < CH” [lull 2



104 HAIRONG YUAN

for all & with |a| < m. In particular, up to modifying C’I(%m), we have

IF(Sow)ll 7o < CR Jull 2

for all s < m.
2. The other main part of the proof consists in bounding the “error” F(u) — F(Syu).

Since Syu is known to tend to u in H?®, we formally have

o0

F(u) = F(Sou) = S (F(Speru) — F(S,u)).

p=0
To justify this decomposition we must show that the series involved is convergent in H*.
At first, we note that

F(Sp1u) — F(Spu) = G(Spu, Apu)Ayu

where .
G(v,w):/ F'(v+tw)dt
0

is a € function of both its arguments. By Proposition 1.1 and a piece of calculations we
can bound G(S,u, Ayu) in L™ in exactly the same way we bounded F(Syu) in L. Thus

we find another constant depending continuously on R, still denoted by Cl(%m), so that
10°G(Spu, Apu)|| o < C}(%m)2p|a\

for all @ with |a| < m. Then a fine result, postponed to Lemma 3.1 below, enables us to
conclude. As a matter of fact, Lemma 3.1 applies to M, = G(S,u, A,u) and shows that

[ee]

Z Spy1u) — F(Spu))

p=0

< e ull .

Hs

> G(Spu, Dyu) Dy

p>0

Hs
This justifies the convergence of the series.
3. We have

F(u) = F(Sou) +Z Spiau) — F(Syu)).

Collecting and summing the estimates of F(Spu) and the series Y (F(Spi1u) — F(Spu))
we find that

IE (W)l < CUlull o) Null e
with C(J|ul| ) = (14 c)CY". O

Lemma 3.1 (Meyer). Let {M,},>0 be a sequence of € functions enjoying the uniform

estimates

10% My || o < €271 (3.2)
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for all a with |a| < m. Then for all 0 < s < m, there exists ¢ so that for all uw € H* the

series Y M,/\,u is convergent in H® and

Z M,A,u

p=0

< e Jull . (3.3)

s
Proof. The proof resembles the one of Proposition 2.2, in that the sequence {M,} satisfies
by assumption the same estimates as S,u (derived in Proposition 1.1). However, there
is an additional difficulty due to the fact that, unlike S,u, ]\/4\(1 is not supposed to be
compactly supported. This is why we first perform a frequency decomposition of M,,.

1. For this we use the dilated functions ¢,(2777? - ) and define

Mp,q = ngil(‘lﬁq@ipig ) )Mp>
for all ¢ > —1. Observe that, for ¢ > 0, we merely have
Mpvq = AQ+}7+3MP>
of which the spectrum is included in
{€:2mrr2 < g < orray,
and that the first term of the expansion,
M, = Z 7 (277 )M,) (3.4)

has a spectrum included in
{€:1gl <272
Because of the partition of unity ¢ + )7 ., ¢q = 1 (evaluated at 2777%¢), we have
M, = Z M,
g=—1
in the sense of .. In fact, this series is normally convergent in L, since by Proposition
1.5,

||Mp7q||Loo - ||Ap+q+3Mp||Loo
< Cp Z 10% D gia My || oo 9= (pra+dm _ o Z 10° M, 4|, o 9—(p+a+3)m

|al=m |a|=m
for ¢ > 0, and by Proposition 1.1 applied to 0* M, as 0“M,, = ZqZ—l 0*M, ,,
0% Mpqll oo < Crn [0 Mp|| v

(we have used here the fact that [0%, AA,] = 0 for all ¢) and so the assumption (3.2) implies
that

1My ll oo < Crn270™.
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2. Let us now look at the two-parameter family {M, ,A,u},>0 4>—1. By (1.8) and the

previous inequality, we have

DD MMy Dyl <30 1Myl 18pull e < G Y- Y 27277 |yl

p=>0 g=>—1 p=0 g=>—1 p=>0 g=>—1

s < 00,

which justifies the interchanging formula

Z Z M, ,Apyu = Z ZMpﬂApu.

p=0 ¢=—1 q=2—1p20
This equivalently reads
S - Y5,
p=>0 >—1
with
Se =Y My A (3.5)
p=0

3. We can now estimate %, in H°.

We begin with the special case ¢ = —1. We have

supp E(Mp,flApu) c{l¢l < 2p+4}

and thus
N (My 1 Apu) =0 for r>p+5.
Therefore,
NS =Y DMy 1 Dyu)
p=r—4
for all r > —1.

Now we use the procedure as in the proof of Proposition 2.2. We have

+o00 +o0o
1A 217 < (Z 2‘”) (Z ZPSIIAT(Mp,—lﬁpU)IIiz>

p:'r—4 p:r—4

+oo +o0
< (Z 2_(Z+T_4)8> ( Z 2rs 2 ||(Mp7_1Apu)||iQ> (I = p—r+4 and Proposition 1.3)
>0 p=r—4
+o0
< ciop ( S 2 (Ml r|Apu>\|i2) (€= Y 20" < o)

p=r—4 >0

< C*C*C,CPCH2 Y 2 || Al

pzr—4

For the last inequality, we used the uniform estimate

My ||, < C | M|, < CCy
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obtained from (3.4) and (3.2). So we get

Do 2PNASA < CC Y 2070 Y 2 || Ayl

r>—1 r>—1 p>r—4
< 06y ( > 2”’"’”) 27 |2yl
p>—1 \r—p<4

< CUC Y 2| Al

p>—1

since for any given p, the sum »_ 2(=p)s < ( for a constant C' independent of p.

r<p+4
Using the equivalent norm of H®, we have

1Bl e < Cs llull s -

4. The general case ¢ > 0 is no more difficult. We have

supp ﬁ(Mp,quzo C {2p+q+1 < |§| < 2p+Q+5}

and thus
D (M DNpu) =0 for r>p+q+6 or r<p+q—1.
Consequently,
r—q
A Z Ay (My g Dpu)
p2r—q—=>5
and, by (3.5),

||AT(Mp,quu)HL2 <C H(Mp,quu)Hﬂ <C HMp,qHLoo ||APUHL2 < ém2iqm ||APUHL2 .

By the Cauchy-Schwarz Inequality, we obtain

Z 227“5 ||Ar2q”i2 _ Z 22rs

2

r—q
Z Ay (MygApu)

r>—1 r>—1 p=r—q—>5 2
r—q
< 6 Z 221 Z HAT‘(Mp,quu)Hi2
r>—1 p=r—q—>
r—q
< 62031 Z Z 22r572qm72p322ps HApUHiz
r>—1p=r—q—>5
<

3 p+a+5
s 3 2 gl (3 st e

p>—1 r=p+q
= 62C2C, ||ulf3,. 22—,
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with C = Z?:o 2215 So we proved
||Zq||Hs < Csém [l g gule=m),

5. Then, as s < m, we conclude

S M|l <Y I8 < Collull e + CoCr > 277 )y < CL ] e
p>0 s a>-1 q>0
as desired. 0

The following is an easy consequence of Theorem 3.2 and Theorem 2.1.

Corollary 3.1. If I € €*(R) and s > d/2, then there exists a continuous function
C : (0,00) = (0,00) such that for all uw and v in H?,

£ (u) = F()ll g < Clmax([lull gs , [0l o)) [l = 0l s -

Proof. Without loss of generality, we may assume F’(0) = 0, otherwise use
Fu) = F(v) = (F(u) = F'(0)u) — (F(v) = F'(0)v) + F'(0)(u — v).

By Taylor’s Formula and Theorem 2.1, we have

[£(u) = F(v)]

o < / VF/ (0 + 6(u — 0))(u — v) . d6

IN

max F'(w)| lu — v s + max || F'(v +60(u—v slu—w oo).
1<|w|<max<||uLoo,vLoo>| (w)l e = vl + pnasc [ F(0 +6(w = 0)) [ lu =il

The first term in the parentheses is already in the wanted form, by the Sobolev Embedding

H?5 — L. In the second term, we have

IF" (v + 6w —v))l

U =0 oo < Co([lv+0(u = )| 1) [lv + 0(u —v)|

Hs e lw = vl e
by Theorem 3.2 and Sobolev Embedding H® < L*°, which yields the wanted inequality.

O

4. PARA-DIFFERENTIAL CALCULUS

The tools introduced in the previous sections provide a basis for what is called para-
differential calculus, involving operators whose “symbols” have a limited regularity in x.
In particular, the operators T, encountered in para-products are special cases of para-
differential operators.

The purpose of this section is not to develop the whole theory but only present some

major aspects. We shall use again the notation A\*(£) = (1 + |£[2)*/2 for all s € R.

4.1. Construction of para-differential operators.
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4.1.1. Definitions of symbols and associated para-differential operators.

Definition 4.1. For any real number m and any nonnegative integer k, we define the set

'™ of functions, also called symbols, a : R? x R4 — CN*N such that

e for almost all z € RY, the mapping £ € R? — a(x, ) is €,
e for all d-uples 3 and all £ € R?, the mapping z € R? — 8§a(x, ¢) belongs to Wk
and there exists Cs > 0 so that for all £ € RY,

|2at 0| .. < caxo). (4.1

Symbols belong to I'}* are said to be of order m and regularity k.

Of course, we have S™ C I'J" for all k. That is, any symbol of pseudo-differential
operator of order m is a symbol in I'}’, for any positive integer k. The novelty is that
functions with rather poor regularity in = are allowed. In particular, W* functions of x
only may be viewed as symbols in T'Y.

Unlike infinitely smooth symbols in S™, functions in I'}’ are not naturally associated
with bounded operators H*® — H*™™. But this will be the case for the subclass X" of
symbols in I'}" satisfying the additional, spectral property:

supp (F (a(+,€))) € B(0;eA'(€)) (4.2)

for some ¢ € (0,1) independent of &, see Theorem 4.1 below. Notice that here ¢ is
considered as a parameter, and the Fourier transform is performed for the first variables.
One may argue that since their Fourier transform is compactly supported such symbols
are necessarily € in x, while we want to handle non-smooth symbols. So where is the
trick? In fact, it relies on a special smoothing procedure, associating any symbol a € I'}!
with a symbol o € X}". We shall give more details below. Let us start with the study of

operators associated with symbols in 3", k > 0.

Theorem 4.1. For all a € I']' satisfying (4.7), consider
Op(a) : FH&') = 6~

u+— Op(a)u

with '
(Op(a)u)(z) = (zﬂ)d@ix'&(ﬂ?» ), 0(-)) (g ey,

where &' denotes the space of tempered distributions having compact support (i.e., the dual
space of € ),and the usual ordering (€, &) is just meant to account for matriz-valued a.

The definition of Op(a) coincides with the definition of corresponding pseudo-differential
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operators if a € S™. Furthermore, for all s € R, Op(a) extends in a unique way into a

bounded operator from H® to H*™™.

This is a fundamental result, which we admit here.

4.1.2. Smoothing procedure for symbols with limited regularity. Let us now describe the
smoothing procedure for symbols in I'}*, which amounts to a frequency cut-off depending

on the &-variables.

Definition 4.2. A € function x : (1,€) — x(n,€&) € RT is called an admissible frequency
cut-off if there exist 1,9 with 0 < €1 < €9 < 1 so that

x(m,§) =1, if |n| <ef¢] and [{]>1,

(4.3)
X(m,6) =0, if |n[ > e (§) or [¢] < e,
and if for all d-uples o and 3 there exists C, g > 0 so that
950, X(n, )] < CapA™*7FI(). (4.4)

Example 4.1. If 1) and ¢ are as in the Littlewood-Paley decomposition, the function x
defined by

X(10,6) =D (2 P0)s(277E) =Y tpa(n)dp(€)

p=>0 p=>0

is an admissible frequency cut-off.
Indeed, recall first that for given &, there are at most two indices p for which ¢,(€) is

non-zero. So the sum is locally finite. Furthermore, recalling that

supp s € {n: Inl <277}, supps, € {€: 27 < ¢ < 271},

it is easy to check that y vanishes as requested with e = 1/2. In fact, for |{] < 1/2,
®p(&) = 0 for all p > 0, which implies x(n, &) = 0 wherever 7 is.
Additionally, for all (n, &) we have

X(n,€) = > Yp2(n)Bp(€)-
p>0 and ||<2e-2,20-1<|g| <20t
So if |¢] < 2|n|, there will be no index p available in this sum and hence we find x(n,£) = 0
whenever [¢] < 2|n|. Since \1(€) = (1+ [¢[2)2 > |¢], so if 5] > IAL(€), then |n] > 1[¢] and
x(n,&) = 0. Thus we demonstrated the second line in (4.3).
We then show the first line in (4.3). Since ¢ = 1 on the sphere of radius 1/2, so
Up—a(n) = 1if | < 2P73. Suppose [£] > 16|n|, then for those indices p for which



PARA-DIFFERENTIAL CALCULUS 111

$p(§) # 0, we have 271 > [¢] > 16]y|, hence [n] < 2°7°, and ¥ —5(n) = 1. So for
In| < |€|/16, we have

X(m,6) = 6,(8).

p=>0
If, furthermore, || > 1, then ¢(§) = 0, and by partition of unity 1 =1 +3_ ., $,(§), we
get x(n,&) = 1 as required. So we may take e, = 1/16.

The inequality (4.4), which means y € S° as a function of 2d variables, are trivially
satisfied for |£] < 1/2 (as shown before, x(§,7) = 0 for |£|] < 1/2). Otherwise, for
€] > 1/2, let us write

X&)=Y Ua(m)6p(6),
p=0:  [¢|<2PF2
hence
Opogx(n,§) = Y, 2@ PllHlgay 22 Py 927,
p>0:  [¢]<2PF2

For 1 < 2|¢| < 2P%3 we have

et <Y
NERRNG)

so, recalling the sum is locally finite, we find that

) L g ki
|6n8£’6x(777§)| < G2l ()\1(@) ‘

a;;@z)afngLw .

This is (4.4) with Cy g = Co222lglal 18] ‘

nonzero terms in the sum, for fixed &).

8ﬁ¢8§¢H , and we may take Cy = 2 (only two
LOO

Proposition 4.1. Let x be an admissible frequency cut-off according to Definition 4.2

and consider the operator
RX: GGFZLHJG%OO; O(',S)ZKX(',S) *z a('vg))

where the kernel KX is defined by

Then RX maps into
Si = {a € T} s supp (F(a(-,€))) € B(0;e2A'(€))}-
Furthermore, if k > 1, for all a € T, a — RX(a) belongs to T}

In other words, the symbol 0 = RX(a) is related to a in Fourier space by

Z(0(-,€) = x(, 6 F(a(-,€))




112 HAIRONG YUAN

for all £ € R%. In particular, if a is independent of x, then .Z (a(-,€)) = a(£)d, hence
F(0(,£)) = x(0,8)a(§). So we see if x(0,&) were equal to 1 for all £, we would have
o = a. This is NOT exactly the case (by analysis before, only for [£| > 1), but ¢ and a
differ by a compactly supported function of £ (it is 1 — x(0,&) and supported in |£] < 1).
In terms of operators, this means that Op(c) differs from the Fourier multiplier associated
with a by an infinitely smoothing operator, which is harmless in terms of para-differential

calculus.

Proof. 1. Take a € T'{* and consider 0 = RX(a). Since supp x(+, &) C B(0;e2A*(€)) by our
construction, we get

supp (Z (0(+,€))) € B(0;e21'(€)).

2. The fact that o belongs to '™ requires L' estimates of kernel KX, namely

-8
oy < O (E) (4.5)

e

To show this, using the proof of (4.4), we have obtained
X&)=Y 2@ ry)ol6(27¢),

p>0:[¢|<2r+2

hence by local finiteness of the sum (for fixed &),
<C|F w0,

because [| 771 (2277 )) ()| 1 = [[¥]] ;1 and A€) < €2 as [¢] < 2+
3. Now we show o(-, ) satisfies (4.1). By Leibniz Rule and the fact

fes.of

000 27" < cunie),

Ll(Rd

07 (R¥(a)) = RX(0;a)

of convolution, there holds, for |a| < k,

0200w, ) = 1020 (x,€)| = 9 (K (&) % dga(-,€))|
< Y |CRRN ) 0200 a6
[6]<]8]
< 3 oslairec o), |osagat)|
[6]<]8]
< CpAT Pl IAD (g) = CpamIfl(e). (4.6)

Here we used a € I'}* and (4.1) for a, and (4.5).
4. We now turn to the last claim of the Proposition 4.1. One observes that for o € 37"

with the number ¢ in (4.7), i.e.,

supp (F (a(+,€))) € B(0;eA'(€))
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to be less than €,/2, RX(0) is “almost” equal to o. (Note that €1, 9 have been fixed.)
Indeed, observing for || > 1, A1(&) < 2/¢], so if € < £1/2, then |n| < eAl(€) < e1]¢].
However, x(n,&) = 1if [£] > 1 and |n| < e1]€|. So (4.7) with € < e;/2 implies

F (BX(0))(-,€) = F(a(-€))

if |¢] > 1. In terms of operators, it means that Op(RX(¢) — o) is infinitely smoothing.
5. For a € T, let us show now that a — RX(a) belongs to I'j""'. We already know that,
also thanks to (4.6),

Haf(a - RX(@)H < Haﬁﬁ“me + Hagz-zxm)H < CpAm Bl (g), (4.7)

W0 Wi

and we want to show that

020~ R¥(@))|| _ < Goamt-Wige),

LOO

For convenience, we shall denote b = 8? (a — RX(a)).

There is nothing to prove for || < 1 since A! is bounded on the unit ball — using (4.7),
we just take Cjg = Csymaxe<; |A(€)].

It is more delicate to obtain a bound of [|b(-,§)||;- for || > 1. Littlewood -Paley

decomposition would be of help again. Indeed, by definition of RX we have

F(0(-,€) = 9 [(1 = x(- ) F (al-, ),

which vanishes identically on B(0;¢4/¢|) for |{] > 1. Therefore, recalling that A, =
F Y pyF) with supp ¢, C B(0;27"1), we find A,(b(+,€)) =0 for ¢ and € such that

1)) > 2971 and €] > 1.

Consequently, when [£| > 1, the Littlewood-Paley decomposition of b(-, {) reads

&)= D D). (4.8)

g>—1: & f¢|<20t1

Furthermore, by Corollary 1.1,

[8(0( N 1o < C27410(, ) lpra.co

and for 1 < |¢| < 2975 (as g, = 27), we have
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This implies

16C, Ol e < > 2701 (CIbC )l )

qzmax{—lu[logz(al|£\)]—1}

c
< Ellb( llwiee < NG )Ilb( oo

(4.7) < CCA™PI=L(g),

6. Now for £ > 2 and a € I'}’, we consider @ = 0%a with || < k —1. Then a € I'[",
and @ — RX(a) = 0%(a — RX(a)) € TJ"" as shown in Step 5. Since such d-uples a are
arbitrary, we get a — RX(a) € '} 1. O

A straightforward consequence of Proposition 4.1 is the following.

Corollary 4.1. If x1 and x2 are two admissible cut-off functions, for alla € T'*, RX'(a)—
RX2(a) belongs to Ty .

4.1.3. Para-differential operators and para-products. Now we introduce the notion of para-

differential operator.

Definition 4.3. Let y be an admissible frequency cut-off according to Definition 4.2. To
any symbol a € I'}' we associate the so-called para-differential operator , said to be of
order m,

T,X = Op(RX(a)).

a

In particular, Corollary 4.1 shows that for a € I'(", T'X are unique modulo operators of
order m — 1.

An interesting point concerning para-product is the following remark.

Remark 4.1. If x is constructed through Littlewood-Paley decomposition as explained
above and k > 1, for any function of z only, a € W"* viewed as a symbol in I'{,

the operator TX coincide with para-product operator 7, up to an infinitely smoothing

operator.
Indeed, if
=D v@ =2 Ur2(m()
p=0 p>0
then

= wH() 7 (a)(+) Z Pp(§).
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Here we used .7 (S,_sa) = 1,_2a. Hence we get

RX(a) =Y F (2T (a ©) + > Spa(a)(@)p().

Ipl<1 p>2

In terms of operators, this means that for all u € .7 1(&”),
TxXu = Op(b)u + T,u,

where, the last term is the usual para-product — Recall, by definition, T,u = zp>2 Sp—2apu,

and we have here
Fa(D Spa(a)(@)p()(€)) = D Spa(a) (@) Apulx) = Tou(x),

while

= Z FH (hp—20)(x)Pp(€)

Ip|<1

satisties Ty (0(2,€)) = 321 1<1 Yp—2(n)a(n)¢p(§). We note supp ¢p—2(n) C B(0; 2P7%) C

B(0;1/2) since p = 0,1, while A (&) > 1, so we see supp F,,(b(x,£)) C B(0; 2A1(£)).
This is (4.7) with ¢ = 1/2. Also, we see .#,_,,(b(z,§)) is compactly supported in £. So
Op(d) is an infinitely smoothing operator.

Remark 4.2. For a € Wk a function depending only on z, viewed as a symbol in T'?,
there holds

T@u—Téa

To see this, we first show (i§;) x (RX(a)(x,€)) = RX(i§;a)(z, ). Indeed, by definition,
Rx(iéj )( g) n%x(lgj ( ) (n7§)> 15] n%x( (n)X(nvé)) = lijX(a’)
Then we get

(T305u)(x) = "¢ (R¥(a))(x, €)i&;u(€) d€

>]

_ / ™S (RX(iga)) (w, £)i(€) dE
) (z

|
m ><

4.2. Basic results on para-differential calculus. We omit below the superscript Yy,

as all results being valid for any admissible frequency cut-off.

Theorem 4.2. For all a € T'}", the adjoint operator (T,)* is of order m and (T,)* — Ty

is of order m — 1.



116 HAIRONG YUAN

Theorem 4.3. Foralla € T and b € I'}, the product ab belongs to T and T, 0T, — T,
is a para-differential operator of order m +n — 1, associated with a symbol in T "1,
In particular, if the symbols a and b commute — for example, if at least one of them is

scalar-valued — the commutator [T,,Ty] is of order m +mn — 1.

Proposition 4.2. If a € T2™, there exists C > 0 such that for allu € H™,
[Re(Tyu, u)| < C lullm -

Proof. We have (recall A is the operator associated with the symbol \(&))

[Re(Tyu, u)| = [Re(A™" Tyu, A™u)| < ||A™" o To(w)| . [A™ull 2 = [|A™™ o Tu(w)|| o el g -

Now note A=™ — T\-m = T} is an infinitely smoothing operator (see the remark following
Proposition 4.1), and by Theorem 4.3, T\-m, — T\-m 0o T;, = T4 is of order —m +2m — 1 =
m—1,sowe get A" o T, =T 0T, +T\-m, — T4, hence ||[A™™ o Tyull ;2 < ||T1 o Tyul ;2 +
[Tx-mavll 2 + 1 Toull 2 < Cllull g + 1l g + ull ns) < Cflul g - Here we also used

T\-mg is of order m. O

Theorem 4.4 (Gérding Inequality). If a € T%™ is such that for some positive a,
a(w,€) +a(z,£)" > aN™ (&) Iy

(in the sense of Hermitian matrices) for all (z,€&) € R x R?, then there exists C' > 0 so
that for all w € H™,

o
Re(Tou, u) = el — C ey - (4.9)

Hm™ 2

One may also state a sharpened version of Garding’s inequality in this context, but for

smoother symbols (at least €2 in z).

5. PARA-DIFFERENTIAL CALCULUS WITH A PARAMETER

5.1. Lower-regular symbols and Littlewood—Paley decomposition with a pa-
rameter. The final refinement in this review of modern analysis tools concerns fami-
lies of para-differential operators depending on one parameter, as extensions of pseudo-
differential operators with parameters.

We denote

AE) = N (&) = (P + €17,
and define parameter-dependent symbols of limited regularity as follows. Notice in par-

ticular that we require that v > 1 in the following, which induces some differences from

the standard para-differential calculus.



PARA-DIFFERENTIAL CALCULUS 117

Definition 5.1. For any real number m and any nonnegative integer k, the set I'}" consists
of functions a : R x R? x [1,00) — CM*¥ that are ¢ in ¢ and such that for all d-uple
B, there exists Cs > 0 so that for all (§,7) € R? x [1, 00),

|oac 6], . < coxmae) (5.1)
The subset X} is made of symbols a € I'}" satisfying the spectral requiement
supp (F (a(+, €,7))) € B(0:eA™7(€)) (5.2)

for some € € (0,1) independent of (&, 7).
The analogous of Theorem 4.1 is the following fundamental result.

Theorem 5.1. Any symbol a € 37" can be associated with a family of operators denoted

by {Op”(a)},>1, defined on temperate distributions with a compact spectrum by

Op’(a) : F &) = €~
1 iz: ~
ur— Op”(a)u; (Op”(a)u)(x) = W(e a(x, -, 7y), u(-)) @ o
This definition of Op”(a) coincides with that of pseudo-differential operators with a pa-
rameter, if a € S™, Furthermore, for all s € R and v > 1, Op”(a) extends in a unique
way into a bounded operator from H® to H*™™, and there exists Cs > 0 independent of ~y

and u so that

|0p™ (a)ul

A

Hs -

The norm of H? is given by |[|u] ?fi = |IN(€)a(€)]]7,. We omit the proof of this

theorem. It makes use of a parameter version of Littlewood—Paley decomposition, based
on cut-off functions in the (£,v)-space. Namely, taking ¢ € Z(R? x R) with (&, v) =
U((72 + [£]?)/2) and ¥ monotonically decaying such that

U(r)y=1 if r<1/2 U(r)y=0 if r>1,
and denoting
g (§) = (279, 27%),  @(&§,7) = ¥(£/2,7/2) — (&,7),
¢q(§) = ¢(279€,27),

we may define operators S7 and AY of symbols, respectively, ] and ¢]. Observing that
AY =0 for v > 27! and in particular A7, = 0 for v > 1, we easily check that

> oAy =id

p=>0
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in /. (The p = —1 term vanishes identically, and for fixed &+, it is a finite sum
in frequency space.) Furthermore, the analogue of Proposition 1.2 for the standard H*

norm is the following for the H3 norm.
Proposition 5.1. For all s € R, u € H:(R?) if and only if

S |83, < o0
p=>0
for all v > 1. In addition, there exists Cs > 1 so that
. 222”3 1A87ull;s < lullfe = IX©a©)l7: < €Y 2% [ Al

p>0 p>0

for all v > 1.

5.2. Smoothing procedure for lower-regular symbols with a parameter. Know-
ing Theorem 5.1, it is then possible to define a family of operators associated with all
symbols a in I'}". The procedure is the same as in standard (that is, without parameter)

para-differential calculus. The basic tool is a so-called admissible cut-off function.

Definition 5.2. A € function x : (n,£,7) € R? x R? x [1,00) = x(n,&,v) € RT is
termed as an admissible frequency cut-off function if there exist 10 with 0 <1 < &9 <1
so that

x(n.&7) =1, if |n] <eA'(&,7),
x(m,6,7) =0, if |n| > e (E,7),

and if for all d-uples o and 3 there exists C,, g > 0 so that
10507 x(1,€,7)| < CapA717171(g, ). (5.3)

Example 5.1. If ¢ and ¢ are as in the Littlewood-Paley decomposition with parameter
described above, the function x defined by
X(0,6,7) = (2277, 0)0(277¢,2777)
p>0
is an admissible frequency cut-off with €; = 1/16 and g5 = 1/2.

The verification is easy. For ¢(27P€,27Py) # 0, we need 2P~1 < AL7(€) < 2PFL) 50
In| > 2AY(&, ) implies, for the term to be nonzero, || > 2P~2, while supp ¢(2*77n,0) C
{In| < 2P~2}, this means all terms are zero and hence x(n,&,7) = 0.

For fixed (&, ), we have

X(n,€,7) = > $(2%7Pn, 0)$(277E,277).

p: 2P 1AL (€,y)<2pHd
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For such indices p, as g, = 274 if || < 274\L(E, ) < 274FPFL we get 227P|p| < 227P3+P =
1/2, so ¥ (227Pn,0) = 1, and then we get
X(n.6.7) = > B2776,27P7) =D (6 = L.
p: 2P 1AL (€ ,y) <2t p>0
Proposition 5.2. Let x be an admissible frequency cut-off according to Definition 5.2

and consider the operator
R¥:aeli! »oe?™  o(.&7)=K"(&7)xal-€7),
where the kernel K7 is defined by

K7(,&,79) = F 7 (x(&,7)

Then RX maps into

Sp={aeT}: supp(ZF(al(-,&,7))) C B(0;e2AM7(€))}-
Furthermore, if k > 1, for all a € T'}*, a — RX(a) belongs to F}ZL__ll.

Remark 5.1. Since x(0,£,v) = 1, RX(a) = a for all symbols a depending only on (£,). *

5.3. Para-differential operators with a parameter and para-product.

Definition 5.3. If x is an admissible frequency cut-off, to any symbol a € I'}]" we associate

the family of para-differential operators {7X7},>1 defined by
T = Op”(RX(a)).

Remark 5.2. If the symbol a is a function of = only, a € W+ it can be viewed as a
symbol in T'? and TX7u is a parameter version of the para-product of a and u. More
precisely, if the cut-off function y is based on the Littlewood-Paley decomposition with
parameter in the way explained above, we have 5
TX =Y S) alu, (5.4)
p=>0
where S) = .7~ (¢p.F) with ¢ (&) = ¥(277€,0) = ¥(27P|¢]) (as in the standard Littlewood-

Paley decomposition, except for the definitions of S_5, S_;, which were taken to be zero).

Werification:

j(Rx (a))(n7 fa ’7) = X(na 57 V)Q(Ea 7)67]:0 = X(07 57 7)0’(67 7)617:0 = a(fa ’7)67]:0 = y’t—ﬂ](l(z)a(gv 7))(777 53 ’7)
So RX(a) = a whenever a is a Fourier multiplier.
SWe have
(RXa)(x,€,7) = Z . (x(0.&,7)a(n) = Y _(SS_pa)(2)g)(8).

p>0

So T u = F, [ 3,50(Sp-20) ()03 () a(€)] = 32,50 (Sp—2a) () (AJu) ().
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For simplicity, we shall now omit the dependence on y and just denote 7).

Remark 5.3. For a symbol of the form

a(z,&,v) = p§)b(x,7),

the regularized symbol is given by RX(a)(z,&,v) = p(§)RX(b)(x,&, 7). Applying this in

particular to polynomials p, we see that for any d-uple a, °

T, 0% = Ti7a|§abu.

5.4. Basic results on para-differential calculus. It is important for the applications
to be able to estimate the error when replacing products by para-products. Such estimates
are given in Theorem 2.7 and its corollary for standard para-products. We have similar
results for 7)', when differential operator is replaced by para-differential operator, which

shows that a — T} is of order —1 as soon as a is Lipschitz.

Theorem 5.2. There exists C' > 0 so that, for all a € WY and u € L*(RY), for all
v=1

Ylaw = Toull. < Cllallye ull g2, (5.5)
fadu — 305l = [Jodyu ~ T3] < Cllallyne Julls (5.6)
law = T3ull gy < Cllallyre [l - (5.7)

Proof. 1. The first inequality is easy to show. The factor v comes from the fact that
Aju =0 for v > 29t1 Indeed, the fact that a is Lipschitz implies, by Corollary 1.1 for
the standard Littlewood—Paley decomposition, that

HASQHLoo S 27 HaHWLoc )

~

S (0%u) = T, (RX (bl 1)) (€)(€) ) = Feb, (RX(G€)b(w,7))i€) ) = Tieyay
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and therefore the series > Aga is normally convergent in L. Take u € .. Then the

series ) AJu is normally convergent in L*andu =) AJu. Therefore,

au—T)u = Z Z ASCLAZU — Z 5272CLA;/U

q>—1p>0 p>0
p—3
_ 0 Yo 0 v
= E E Aqaﬁpu E E Aqaﬁpu
q>—1p>0 p>0 g=—1
_ 0 Yo, 0 o
= E E Aqupu E E Aqupu
q>—1p>0 q>—1p>q+3
q+2
_ 0 o 0
= E Aag Aju = E AjaS], su
q>—1 g>—1
_ 0
- E : AgaSyyu-
2‘1+3>'y

For the last equality, we used the fact that 5] = 0 for v > 2. Hence

S 2 277 lallyiwe llull S ||a||W1°°HU||L2‘

24+3>~

lav — Tull 2

Here we have used the fact that
|S7ull,. S llullg

which comes from the definition of 57, a L' % L? convolution estimate and a uniform
bound for Hff 4(1&3)“ ;1 - The derivation of the latter bound comes from the observation

that

Zol )]

swp (|27 ) ey < | Zl @)

1<y <00 L1(RxR9) H LY(RxRY)

This is proved below.
1. We show the first inequality above holds. We note that (L3° means the norm is
taken with respect to the variable )

[ weamanians [ FwEmm . d
and the fact Fourier Transform is of type (1, 00) implies
IF &M e < 125 FE W& D00 D)
= (Fmsa& M, -
So

[Z WD gy =/|(9}in(¢q(£,v)))(?7 N dn < [[(F s (Wal&1)N 0 ))HL1 :
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and taking the supremum of the left hand side with respect to v, we then get

2 17 sy < [P

LY(RxRd)

2. We omit the proof of the second inequality.

3. The third inequality is an easy consequence of the first two. First, by definition, we
have (taking Fourier Transform, there holds (72 + |€]2)f2 = 42f% 4 |¢[2f? and then taking

L? norm and using Plancherel’s Theorem)

2 2 2
£ < 7* 1f N2 + IV £z
vy

for all f € Hi (a kind of interpolation inequality). Secondly, we note, by (5.4), 9;(T u) =
TMO;u) + ngau, as 0; commutes with S9_, and A].
So we get, by 0;(au — TJu) = adju — T3 (05u) + (0;a)u — T, ,u,

2
|j(au = T2} < 3lladu — T @3, + 31| @sa)ullz, + 3|73,

2 2 2 2
< 3C% [lallye ullze + 31+ CF) 1950l ullz:
where Cj comes from the basic estimate
T3 ull 2 < Co [[bll oo lJull 2 -
Therefore, using (5.5) to handle the first term,

Hau—TJUHf{% < WQHau—TJUHiz+Z\|3J’(au—TJU)Hiz
J
< ((1+3d)C? +3d(1 + C)) llalliree ull32 -

O

Other basic results, similar to those in pseudo-differential calculus with parameter, are

listed in the following.

Theorem 5.3. For all a € I'"", the family of adjoint operators {(T1))*},>1 is of order m
and the family {(T,)* — Ty }4>1 is of order (less than or equal to) m — 1.

Theorem 5.4. For alla € T and b € T}, the product ab belongs to 7" and the family
{T) oT) — T, },>1 is of order (less than or equal to) m +n — 1.

Theorem 5.5 (Géarding Inequality). If a € T?™ is such that for some positive a,

a(z,&9) +a(z,§9)" = aX*™(§)In
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(in the sense of Hermitian matrices) for all (x,&,v) € R? x R? x [1,00), then there exists
Yo > 1 so that for all v > vy and allu e H™,

Re(T;u,u) > T [lullf, (5.8)

We see the weight ~ helps to absorb a lower order term which appeared in the standard

Garding Inequality.
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LECTURE NOTES T7:
PERSISTENCE OF SHOCKS IN DUCTS

HAIRONG YUAN

In this note, we show how to prove local in time existence and stability of shock waves
in non-isentropic compressible Euler flows in two-dimensional straight duct, provided that
the shock satisfies the uniform stability condition, and the upcoming supersonic flow and
the pressure at the exit of the duct, as well as the initial data satisfy certain orders
of compatibility and symmetry conditions. The note is based upon my research paper:
[Yuan, Hairong: Persistence of shocks in ducts. Nonlinear Anal. 75 (2012), no. 9, 3874—
3894]. For the most recent developments on the subject, see [Fang, Beixiang; Xiang, Wei;
Xiao, Feng: Persistence of the steady normal shock structure for the unsteady potential
flow. SIAM J. Math. Anal. 52 (2020), no. 6, 6033-6104].

1. INTRODUCTION

In the past decade, following the work of Chen and Feldman [1], there has been an
intensive study on transonic shocks in nozzles or ducts in the framework of steady potential
flow equation or steady Euler system (see [2, 3, 4, 5, 6, 7] and references therein). Up
to now, particularly in the two-space-dimensional case, rather complete knowledge on
construction of exact solutions, stability under various boundary conditions on upstream
and downstream flows, and uniqueness in the class of piecewise C! flow fields are available.
With these achievements, it is natural to investigate such transonic shocks in nozzles for
unsteady flows. A basic problem is whether such shocks are stable for a short time.

If there is no other boundaries, this problem on persistence of multidimensional shock
waves for unsteady Euler system has been well studied for a longer time, since Majda [8],
see also [9, 10] and references therein. It turns out the shock needs to satisfy a uniform
stability condition to guarantee it is stable local in time in a strong sense. It is then of
interests to know what happens if there are other boundaries in the flow field. This lecture
is devoted to studying such a problem, where appear solid walls as well as entry and exit of
a duct. We prove that, for a two-dimensional straight duct, if the reference normal shock
satisfies the uniform stability condition, and the upcoming (unsteady) supersonic flow,
the pressure at the exit, and the initial flow field satisfy (m —1)-order of compatibility and

appropriate symmetry conditions, and the initial flow field is close to the reference normal

Date: June 3, 2021.
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shock in the L sense, then for a short time, there is one and uniquely one piecewise H™
flow field containing a shock-front of class H™*!. Here H™ is the usual Sobolev space
defined on appropriate domains, and m > 3 is a fixed integer.

One of the difficulty in the problem is the space domain — the duct — is non-smooth,
and part of the boundary — the solid wall with slip condition — is characteristic, which also
intersects with the shock-front. As mentioned in [11, Section E in p.60], this situation
“gathers almost all difficulties encountered in the study of mixed problems”. Up to now,
there is no general theory on initial-boundary value problems of hyperbolic systems in
non-smooth (space) domains, especially when there involve characteristic boundaries (see
[12] for some developments). This is why in [13] Gazzola and Secchi need a reflection
technique in the study of compressible isentropic flows (without shocks) in ducts — it
bypasses the difficulty caused by the characteristic boundaries. As a first step on the
analysis of persistence of shocks in general nozzles, we also employ a symmetry argument,
as in [1, 3, 13] to handle the characteristic boundaries. The price is that we need to
introduce Sobolev spaces of certain symmetric functions and take great care to make sure
the constructed approximate solution still shares these symmetry properties, see section
3.

In the following section 2, we formulate the problem of persistence of shocks in duct
as a nonclassical initial-boundary value problem in a rectangle, introduce some Sobolev
spaces of functions that can be periodically extended in one variable, and then state the
main result, Theorem 2.1. In section 3, we present compatibility conditions and construct
an approximate solution to the nonlinear problem. Special attention is paid to make sure
the approximate solution also enjoys symmetry properties of the initial-boundary data.
In section 4 we study the linearized problem. The crucial point is by suitable localization
and extension of operators to reduce the linearized problem to several classical problems
in half-space, for which existence and regularity results are now directly available from
[9] or [10]. The results on linear problem enable us to use Banach fixed-point theorem to

prove Theorem 2.1 in Section 5.

2. FORMULATION OF PROBLEM AND MAIN RESULT

In the following we first formulate a free boundary problem. By fixing the free-boundary
— the shock-front, we get a nonclassical initial-boundary value problem of the unsteady
Euler equations in a rectangle. Finally, after introducing some function spaces, we give a

precise statement of our main result.
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2.1. Shock wave in a duct. The two-dimensional duct €2 we considered in this lecture

is given by
Q={(z,y) eR?: ~1<a<1 0<y<l1}.

We use I'1, 'y to denote the upper and lower wall of the duct:
Iy ={(r,y) eR?*: ~1<az<1, y=k}, k=0, 1

The fluid is assumed to flow in 2 through the entry ¥_;, and flow out through the exit

Y1, where
Yo ={(z,y) €eR*: v =5, 0<y<1}, s=-1, 1.

We consider compressible, inviscid and non-heat-conducting fluid flows in the duct. It

is governed by the unsteady compressible complete Euler equations:

Oip + O (pu) + 0y (pv) =
A (pu) + 0. (pu” + p) + 9y(puv) =

O (pv) + O, (pvu) + 8, (pv? +p) =
9y (ph) + 9:((ph + p)u) + 0, ((ph + p)v) =

o o o o

where b = L (u?+v?)+e. Asusual, p,p, u, v, e are, respectively, the (mass) density, (scalar)
pressure, velocity component in z-direction and y-direction, and specific internal energy
of the fluid. The equation of state is given by p = p(p, €). Particularly, for polytropic gas,
we have p = (7 — 1)pe, with v > 1 the adiabatic exponent. We also use s to denote the

specific entropy of the fluid. If p is expressed as a function of p, s, then the sound speed
c is given by ¢ = 1/9p(p, s)/dp. For polytropic gas, we have the following relations:

p=(y—1)exp(s/c,)p?, c=+/vp/p, €=c0O.

Here ¢, > 0 is a constant, and © is the temperature.
Assuming the fluid is supersonic at the entry (v > ¢), and subsonic at the exit (u < ¢),
we formulate a (general) initial-boundary value problem of Euler equations (2.1)-(2.4) in

the time-space domain

O = {(t,x,y): t€[0,T)], (z,y) € Q} (T >0)
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as follows
(2.1) = (2.4), n o,
(u, v, p, p)le=o = (w0, vo, Po, po), on Q,
(w, v, p, p) = (Un, Vny Py pu),  on T, (2.5)
P = Dout on X,
v =0, on T}, k=0,1.

Here we have set
I'Y =0,T) x Tp(k =0,1), YT =0,T] x Xy(s = —1,1).

The second line in (2.5) is the initial data, with ug, vg, po, po given functions of (z,y) € €.
The third line is the boundary condition on the entry, with w,, vy, pn, pn being given
functions of (¢,y). Since the flow is assumed to be supersonic there, as analyzed in |9,
p.412], all the unknowns should be prescribed (see also Lecture 4). The forth line is
the boundary condition on the exit. As shown in [9, p.411], one and only one boundary
condition should be given. Although there are many choices, we prescribe pressure since
it is physically more interesting [14, p.373, p.385] and in the framework of steady flow
ill-posedness will occur. Here poy is a given function of (¢,y). Since I'g; are assumed to
be solid walls, there should pose slip condition, that is the last line in (2.5).

Let us consider a special, while physically relevant case of (2.5): the flow is steady and
piecewise constant, and there is a normal shock in the duct; the flow U_ ahead (in the
left) of the shock-front

S={{tz,y): t>0, 2=x=0, y<[0,1]}

is supersonic, while the flow U, behind of it (in the right) is subsonic. (We use temporarily
U = (u,v,p, p) to denote the unknowns.) Such a special solution (U; x) of (2.5) can be
easily constructed ([7, Proposition 2.1 in p.1347]), and is called a normal transonic shock
in duct. In the framework of steady flows, it has been shown to be globally unique modulo
translation of the shock-front in z-direction, and unstable with respect to perturbation
of back pressure poue ([4, 6]). It is then of great interest to know whether such shocks
are structurally stable in the sense of unsteady flow. That is, if the flow pattern persists
to be piecewise smooth, and contains a transonic shock, for a short time, under small
(unsteady) perturbations of the upcoming supersonic flow and back pressure, as well as
small perturbation of the initial data?

It is now well-known the following Majda’s uniform stability condition is necessary for

a planar shock to be stable in a strong sense.
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Definition 2.1. [9, p.437] A discontinuity that is a Lax shock in a solution of (2.1)—(2.4)

satisfies the uniform stability condition, provided that

(C+1) (%)2 P ;Opo <1 (2.6)

Here u, ¢, p, I are respectively the normal velocity (respect to the discontinuity), sound
speed, density, Griineisen coefficient of the flow behind the shock-front, and p, is the
density of the flow ahead of the shock-front. Suppose the state function of the fluid is
given by e = e(s, 7), with 7 = 1/p the specific volume, © the temperature, then Griineisen

coefficient I" is defined by I' := —é;s—zi.

We will show in this work that the reference normal shock in duct (U, x) is actually
stable in the sense of unsteady flows, if it satisfies the uniform stability condition, and
the given initial-boundary data also satisfy certain orders of compatibility and symmetry
conditions. We then conclude that the instability of such shocks in the framework of
steady flows is a result of long-time accumulation of effects of the back pressure, while
not a consequence of the discontinuity itself.

So we are interested in those solutions of (2.5) in the class of piecewise smooth functions
containing a shock-front. This shock-front ¥ would be a free boundary to be solved
simultaneously with the smooth flow fields U_ ahead and U, behind of it in the duct.
It is well-known that (see [9, Proposition 10.2 in p.312]) such discontinuous flow fields
(Uy;X) are weak solutions to (2.5) if and only if Uy satisfies the Euler equations in

classical sense away from the shock-front, that is, in O, with
Qr ={(z,y) € Q: x 2 x(t,9)}, QL =1[0,T] x Qu,

and the following Rankine-Hugoniot (R-H) conditions

P pu pu
U UY u? +p
o | rox| N —0 (2.7)
pU pUe+p pUv
ph (ph + p)v (ph + p)u

hold across the shock-front given by

E=A{(tzy):t€[0,T], (z,y) €Q z=x(t,y)}

Here, as usual, ] denotes the value of the quantity behind the shock-front minus its value
ahead of the shock front. A shock-front should also satisfy the entropy criterion (for Smith
fluid, which idea gas is a special case, see [9, p.402]): [s] = [p] > 0.
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With the above structure of solution in mind, we now specify (2.5) as an initial-
boundary value problem with a free boundary ¥ in Q7:
(Ui solve (2.1) — (2.4) respectively in  QZ,
R-H conditions (2.7), on X,
Xlt=0 = Xo(y), y €10,1],
Utli=o = (ux, vx, ps, ps)li=o
= Uy = (ug, vy, Do»> 95); on O (2.8)

U* = ('u’77 U*? p*? p*)

= Un = (uﬂv Un, Pn, pn)7 on Ezl,
P+ = Pout; on X1
v+ =0, on I'TNQL k=01,

where {x = xo(y)} is the initial position of the shock-front.

2.2. Reduction of free boundary problem. We now rewrite the above free boundary
problem to a nonclassical fixed boundary problem. Since the flow is smooth away from
shock-front, we first write the Euler system in symmetric form, and recall some of its
properties. Then we fix the shock-front as done in [9].

In the sequel, we denote #,, to be a ball in R® centered at the reference state (U_, U, )
with radius p, and ¥, a ball in R?® centered at (0,0, 0) also with radius . We will choose u
to be small (depending only on the reference state (U, x)) to ensure that once (U_,U, ) €
W, and (x,0:x,0yX) € 7, then they share some fine properties of the reference state.

2.2.1. Euler equations in symmetric form. From now on, we use U = (p,u,v,s)" as the
unknown, and for p > 0, the Euler equations (2.1)-(2.4) can be written as a symmetric

hyperbolic system [9, p.394]:
A" (U)o U + AYU)O,U + A*(U)o,U = 0, (2.9)

where A°(U) = diag((pc?)~?, p, p, 1) is positive-definite, and for u = (u,v) ", n = (ny,n) ",

9 ‘;;c’; n’ 0
AUn) =Y AUm;=| n pu-n)l 0
i=1 0 0 u-n

is symmetric. It is well-known ([9, p.393]) that for v > 0, the Euler system (2.9) is
hyperbolic with characteristic fields of constant multiplicity (“constantly hyperbolic” for
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short): its eigenvalues in the direction n are
M(U;n)=u-n—c¢n|, MU;n)=u-n, XU;n)=u-n+nf
A13 (resp. Az) has multiplicity one (resp. two) for all U with p, p > 0 and n with |n| = 1.

2.2.2. Fizing shock-front. Let ¢ € Z(R) be a nonnegative cut-off function equals to one

—%, 1), and vanishes outside (—2,32), and satisfies [|¢/|| ro® < 4. Then for those x

satisfying [|X| Lo (o171 01y) < 1/8, (this requirement will be fulfilled later by seeing the

on [

solved x satisfies (x, dyx, Oyx) € ¥, for p < 1/8, ) the mappings

Uy (t, 2, y) e (t, =22+ 90(2)x(y,1), v)

are diffeomorphisms from DT = [0,7] x D to QL, with

D={(z y): 2€(0,1), y € (0, )}.
Actually, the Jacobian of W is
|02/02] = [ £ 1+ ¢'(2)x(y, 1) = [1 £ ¢ (2)x(y, )] = 1 —4/8 > 1/2
for all z € (0,1).
2.2.3. Initial-boundary value problem in DT. We now transform the free boundary prob-
lem (2.8) to a initial-boundary value problem in D”.

The interior equations. Denoting point in DT by (¢,2',), then from ¥, we may

solve

_ 1 _ ¢8yX . POLX
aac - +1+ (b/XaZ’a ay - ay' +1+ ¢/X8z’a 815 - at/ +1 + ¢/Xaz/-

So (2.9), for U = Uy, becomes
A (UL)0pUs + AT (Us, X, dx)0.Us + A*(UL)0, Uy = 0, (2.10)
where dx = (9yx,9,x)", and

AF (UL, x,dx) = (ANU) — ¢ A°(Us) — ¢0,x A*(Uy))

+1+4+ ¢'x

is also symmetric.

Set U = ( g ) ,and A%(U) = diag(A°(U), A°(U,)),

AU, x, dx) = diag(A} (U-, x, dx), A7 (Us, x, dx)),
A*(U) = diag(A*(U-), A*(U4)).
Then, dropping apostrophes in (¢, 2’,4'), (2.10) can be written altogether as
L(U, x,dy)U = A°(U)9,U + AY(U, x,dx)0.U + A*(U)9,U =0 in DT.  (2.11)



PERSISTENCE OF SHOCKS IN DUCTS 131

This is a 8 x 8, symmetric and constantly hyperbolic system.
The boundary conditions. a). ¥ =[0,7] x {z =0, y € (0,1)}. By entropy criteria,

for reference state, we have

Allov® + 9] — [0, = ] # 0.

So this also holds for U € %, if ;1 is small (depending only on U). Then we can solve
from the first and the third R-H conditions dy, and by substituting it to the second and
forth R-H conditions, get the following equivalent form of (2.7):

Iyx | =-QMU) =1 rU) on X, (2.12)
02 S(U)
where
4(U) = lpullov” + p] = [puv]lpv] r(u) = Lellew] = [pullpy]

[p]lpv? + p] — [pv]? ) [pv? + p] — [pv]?’

( a(U)[pu] + r(U)[puv] — [pu? + p] >
q(U)[ph] + r(U)[(ph + p)v] — [(ph + p)u]

Let J = (I3,09x2)". Then (2.12) can be written simply as
Jdx + Q(U) = 0. (2.13)

b). ¥T:=[0,T] x{z=1, y € (0,1)}. Now {z = 1} represents the entry for U_, and

exit for U,. Here we have a linear boundary condition
MU =g, on %I, (2.14)

with
M = < 15 O5x3 > 8 = (pna Up, Un, Sn, pout>T-

By our assumption that u, > ¢, and 0 < gy < Cout, 21 1S non-characteristic.
c). IT=10,T) x {z € (0,1), y=Fk} (k=0,1). On the walls T'g 1, we still have the slip

condition

(2.15)

MU 0. M — 00100000.
’ 00000O0T10

The walls are characteristic boundaries with constant rank 2, related to the eigenvalue
Ag.
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2.2.4. Initial conditions. The initial data for x is the same as in (2.8):

Xli=0o = xo0(y), for y€(0,1). (2.16)
For U it is
U-
Ulmg = Ug = ( U0+ ) , on D. (2.17)
0

Note that since x( is given, we can totally determine U, here by using the transform .
with ¢t = 0 and U in (2.8).

So for p small, by the above reductions, we are led to solve regular functions (U(t, z,y) €
RS, x(t,y) € R), for (¢,2,y) € DT, that satisfy the interior equations (2.11), boundary
conditions (2.13) (2.14) (2.15), and initial conditions (2.16)(2.17). We call this as Problem
(N) in the following.

2.3. Sobolev space of symmetric functions. As mentioned before, we use a symmet-
ric reflection technique to ‘hide’ the solid walls. This symmetry method depends on special
structure of the Euler equations, as well as symmetry properties of given initial-boundary
data. To make the latter clear, we introduce some function spaces.

For s a nonnegative number, we as usual use H*(D) to denote the standard Sobolev
space W*2(D). We then define for s > 3/2,

H:(D) ={ue H*(D): a§j+1u|y:0,1 =0, j=0,---,m},

where

B k, %<s—2k<2, k > 0 an integer,

" k—1, O§5—2k§§, k > 1 an integer,

and H3(D) = H*(Q) for 0 < s < 2. These are sets of functions that can be extended
periodically to y € R with period 2 by even reflection and still belong to H;

3 . (see Lemma
3.3). Also, for s > %, we define

H(D) = {u € H'(D): 0¥uly—g; =0, j=0,---,m}

with
k, %<s—2k<2, k > 0 an integer,
" k—1, OSS—Q]CS%, k > 1 an integer,
and H:(D) = H*(D) for 0 < s < 5. These are sets of functions that can be extended
periodically to y € R by odd reflection and still belong to Hy .. Both H(D) and H:(D) are
closed subspaces of H*(D). They inherit the norm of H*(D). In the above definitions, we

note that traces are well-defined even for polygonal domains (see [15, p.42]). For I = [0, 1]
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(or IT =1[0,T] x I, DT), we can define H:(I) and H:(I) (or H:(IT), H:(IT), H:(DT),
HE(DT)) just by replacing D above with I (or I7, DT). Finally, we set

H*(D) = (H3(D)* x H3(D) x H3(D))?.
2.4. Main results. We can now state main result of this lecture.

Theorem 2.1 (Main result). For given reference state (U, x = 0) satisfying uniform
stability condition (2.6), m > 3 a fized integer, and T > 0, suppose

a) Uy € H™ 3 (D), vo € HI (), g € H™(IT)? x HMIT) x H™(I7)?;

b) Ug, xo and g satisfy compatibility conditions up to order m — 1;

c) for all z,y € [0,1], Uo(z,y) € #pu3, (xo(y): ¢(Uo(0,9)), x0(y)) € Y3, here p <

1/8 is determined by (U, x);

d) g satisfies uy, > ¢y at ¥, and Uy satisfies 0 < uf < cf at .
Then problem (N) has uniquely one solution (U, x) € H™(DT)x H" ' (IT), with T € (0, T
depending only on U, pu and initial-boundary data Uy, xo and g. In addition, U takes
value in W, (x,dx) take values in ¥,,; hence the flow is supersonic ahead of shock-front

and subsonic behind of it as p small.

The compatibility conditions required in this theorem is given in Section 3.1 below.

3. COMPATIBILITY CONDITIONS AND APPROXIMATE SOLUTIONS

In this section we give the compatibility conditions assumed in Theorem 2.1. These
conditions are necessary for resolution of Problem (N) in the class of regular functions.
Moreover, it provides an approximate solution to the initial-boundary value problem. Fine
properties of approximate solutions will greatly simplify the study of linearized problem.
So we devote the second part of this section to the construction of suitable approximate

solutions.

3.1. Compatibility conditions. The basic idea of compatibility conditions is as follows.
Since {t = 0} is non-characteristic (i.e. A°(U) is always invertible), for all integer j > 0,
we can solve from the equations and initial data (U, xo) all the partial derivatives with
respect to time (U; = 9/ Ul—o, x; = & xli0), valued at t = 0. We also act &/ on the
boundary conditions, taking value at ¢ = 0, and obtain a relation, say b(-) = 0, involving
(07Ul 10, x|i=0). Obviously, to ensure the solution to be in H™(DT), the U; obtained
above, when restricted to boundary, and y;, should satisfy b(-) = 0 where 9} U],—o and
agx\t:o are replaced by U, and y;, for all j =0,1,--- ,m—1. These are the compatibility

conditions up to order m — 1.
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To make the above description rigorous, we first calculate the sequence {(Uj, x;) o
This is the same as in [9, p.370]. Let

B, (U, x,dx) = A°(U)'AY(U, y,dx),

and Bo(U) = A°(U)"*A%*(U). Then using Fad di Bruno’s formula, (Uj, x;) can be ob-
tained inductively, starting from (Ug, xo), by

.

X1 = C](Uo)|z:0, U, = —Bl(Ume (Xh Xﬁ))azUo - Bz<U0)ayU0;
X+l = 21 Doty Croton (A7 q 0 (Uo)|o=0) - (Ug,, Uy, -+, Uy, ) o=,
Uj+1 = _Bl<U07 X0, (Xb XE)))aZUJ - BQ(UO)ayUJ
, J
=2t ¢ Zi:l Dottt ¢ty -4, 4"B1(Uo, X0, (X1, X0)) (3.1)
: ((Uha Xy (X€1+17 X%l)) ) (Uﬁka Xt (X@kJrla X%k))>azUjf€

J
Zizl Zfl—f—m—&—Zk:Z Cfl"'fkdkBQ(UO) ’ (Uh T 7U€k>aij_Z'

_ N\
(=1

\

Definition 3.1 (Compatibility conditions). We say Problem (N) satisfies compatibility

conditions up to order m, if Uy, x¢, g satisfy

Xo = (Uo)lz=0, 0=5(Ug)l.=0, MUgl.=1 = gli=o, M'Ug|r,, =0, (3-2)
and furthermore, for p=1,--- ,m,
XJ/D = dXP/dy = Zi:l Z£1+--~+£k=p Cey---ty, (dkr © (UO)’Z=0) ’ (Ufp T 7Ufk)‘2=0>
0= 2:1 Z€1+'~~+€k:p Cy---ty, (dks © (U0)|2:0) : (Ufu T vU4k>|Z:07 (33)

MUP’Z=1 = 8fg‘t=07 M/Up‘ro,l =0.

3.2. Properties of spaces HS and HJ. We need to derive many symmetry properties
of (Uj,, x;) once (3.2) holds. These symmetry properties are important for us to construct
approximate solutions. To this end, we list some properties of the spaces HS and H} here.

The following three facts on general Sobolev functions are well-known.

Proposition 3.1 ([9, p.469]). For alls > 0, there is a constant C > 0 so that for allu,v €
L>*NH?, the product uwv also belongs to H® and ||uv|| . < C(||ul| - [|v]

s V] oo [l gre)-

Proposition 3.2 ([9, p.472]). For all s and t with s+t > 0, if w € H* and v € H,
then the product uv belongs to H" for all r < min(s,t) such that r < s+t — 2. (d is the

dimension of the domain where u,v are defined.) Furthermore, there exists C' (depending

only on r,s,t and d) such that ||uvl| . < C'|ul

Hs U“Ht-
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Proposition 3.3 (]9, p.474)). If F € €, F(0) = 0, and s > 2, then there is a

27
continuous function C : [0,00) — [0,00) such that for all uw € H*(RY), there holds
1E @)l e < Cllull o) lul

Hs -

Lemma 3.1. Let d =3 for Q = DT, d =2 for Q = D, I", andd =1 for Q = I, and
s > g. Suppose F(u) is a C°° smooth function of w. Then the following hold:

i) If ue H(Q), then F(u) € H}(Q) and

1
|7 (u)] ms@) t [F(0)[1€2[2;

H Q) = C(HUHLOO(Q)) Ju|

ii) Foru € H(Q) that is bounded away from zero in S, its inverse 1/u also belongs
to HZ(Q); moreover, there holds

11/ul
with ¢y depending only on and continuously on lower and upper bounds of |u| in
Q;
iii) If u,v € H(NY), then uwv € HZ(Q) and

o) < o1+ llull gegoy),

[|uv] He (@) = C(HUHLOO(Q) [v] s T ||U||Loo(9) [|ul Hg(Q))§

iv) Ifu e H3 (), v € H(QY) then uwv € HE(Q) and similar inequality as in i) holds;
v) Foru € HE(Q) (resp. H:(Q)), d,u belongs to HE(Q) (resp. H:H(Q)), and d,u
belongs to HE1(QY) (resp. H:1(Q)).

Proof. 1. By applying Proposition 3.3 to F'(u) — F'(0) (after extending u to be defined
in R?), we only need to show 97+ F(u)],—o,1 = 0 for j = 0,--- ,m (we use here notation
in Section 2.3. m is determined by s). As a matter of fact,

2j+1
j ¢ ¢
O F(W)y=01 =D D oty F o (w)ly=o1 - (05 w)|y=0.1,- -, (DLru)]y=01)-
q=1 b+ +g=2j+1
Each term here makes sense by trace theorem. We note there should be at least one ¢,
N . A
which is an odd number in each term cy,...,, d%F o (u)|y—o,1 - ((8§1u)|y:0,1, o (0y' 1) |y=0.1),
which are products of many factors; while by definition, the factor afpu]y:m = 0. This
proves i).
2. Without loss of generality, suppose u > ug > 0 in €2, where ug is a number. Let

@ = u—ug. Then by step 1, F(a) = uo(u%Jrﬂ) = uio — 1 e H:(Q). Hence 1/u € H(Q), and

1

u

) ) < ol + )

1 N
<+ el
Hs(Q) Ug



136 HAIRONG YUAN

3. By Proposition 3.1, for iii), we only need show 02/ (uv)|,—o,1 = 0 for j =0,---,m.
This follows from

2j+1

. 27 +1 i

07 (uv)|y=01 = Y ( ) Ouly=010;7 "Ml y—o,1,
q=0 q

since either ¢ or 2j 4+ 1 — ¢ should be odd, each term in the sum is zero. Claim iv) can be

proved similarly. Finally, v) follows directly from definition of H; (D). O

We remark that results similar to iii)-iv) hold if we apply Proposition 3.2 instead of

Proposition 3.1 in the proof when u, v have different index s.

3.3. Symmetry of (U,, x;). We now give symmetry properties of (Uj;,x;) once (3.2)
holds. Note that such symmetry properties depend heavily on the special structure of

Euler equations.

Lemma 3.2. For m > 3 a fized integer, suppose Uy € H™ 2(D) and (3.2) holds. Then
(U;, x;) belongs to H™ 273(D) x H™=i(I) (j =0,1,--- ,m). Moreover, there holds

X0 — x0(0 HHm+1 1 T Z ( ‘UjHHm%—j(D) + ||XjHHm+1*j(I)>

< o|U-Ul (3.4)

H™2(D)

with ¢y a nondecreasing function depending only on ||U0||Hm+%(p) and |x0(0)].

Proof. 1. By i) in Lemma 3.1, if p,s € H:H%, then express p as a function of (p, s), we
see p € H?JF%

2. We now use the first condition in (3.2) to show, once Uy € H™ 2(D), then
Xo € H™(I). By trace theorem, Ug|,—¢ actually belongs to H™(I). We write r(U) =
r1(U)/r2(U), with r1(U) = [pl[puv] = [pu]lpv], r2(U) = [p][pv* + p] — [pv]*. Therefore
ro(U)xy = r1(U). For simplicity, here and below in step 2 and step 3, we write Uy|.—¢ as
U.

By Lemma 3.1 iii)-iv), we infer ro(U) € HI*(I), while r1(U) € H*(I). Note by
smallness of p assumed before, ro(U) # 0. So by ii), 1/r2(U) € H™(I) and hence by iv),
Xo € H™(I). This implies xo — x0(0) € H™(I). Furthermore, using r1(U) = 0, we have

||X0 — XO(O)||Hm+1(I) < ¢ ||U0 - HHHWJF%(D) :

3. The next is to show x; € H™(I). Set 70(U) = [pu][pv?+ p| — [puv][pv], which belongs
to H"(I). Then ro(U)x1 = 19(U). So as in step 2, we infer x; € H'(I). Furthermore,
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we have

X1l gy < (14 [[Uolz=oll g (1)) [70(Uo|2=0) = 1o(U)|| gon 1y

< (/U 0o — U] (3.5)

Hm+%(D)) Hm+? )

Here ¢(+) is a non-decreasing function.

4. We can prove by induction that U; € (H™t2=3(D))8 for j = 1,--- ,m, and X; €
H™=i(]) for j = 2,--- ,m, and obtain corresponding estimates in (3.4). The analysis
is similar to that in [9, pp.322-323] and hence omitted.

5. We now prove symmetry properties of U;, x; for j = 0,1, -- ,m—1 (there is nothing
to prove for j = m). We have shown the case of Uy and g, x1. For 0 < k < m—2, suppose
U, € HmH3=i (D), Xj+1 € H™(I) hold for j = 0,--- , k, we verify it for j = k+1. There
are four steps.

5.1. For 9 € R, set U(W) = S 2U, and

p=0 p!

k k
. P 9P
XO) =D —xp1, X)) =D X
p! =P

p=0

They are respectively € curves in H™ 2*(D) and H™*(I), H™*~*(I). We may check

that Uy is also given by (cf. (3.1))
Ui = - (%) (B (U@). x(0). (&), 9,x(9)) ) 0.U(0) )
=0

d k
(i)
5.2. We now claim that both B, <U(19), X(), (X(9), ayxw))) 0. U(9) and B, (U(0))3,U(¥)

are of class € (R; H™ 2 ~*(D)). If this is true, then clearly Uy, belongs to H™ 27%(D).
Since both By,By are € with respect to their arguments, and noting H™~ ”k(D)

(B2(U(9))0,U(¥)) . (3.6)

¥=0

is a Banach space, to prove the claim, we only need show that for fixed ¥ € R, both
B, (Uw), (), (X(9), 8yx(19))>8zU(19) and B,(U(¥))d,U(¥) belong to H™ 5 ~*(D). We
prove this only for By, since the treatment of B, is similar and simpler.

5.3. We easily see 0,U(1)) € H™ 2 *(D). Direct computation yields

By (U(), x(9), (X(9),9,x(9))) = ding(B7, BY).
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where
. 1
L+ ()
b (V) p(0)(cs(9))? —ps(9)(ce())?9yx(¥) 0
) s ba(9) 0 0
~ 520X (V) 0 b (V) 0o |
0 0 0 b (9)
and by (V) = uy (V) — ox (V) — @0y x(9)v (V). Recall here uy (V) € H;nJr%fk(D),
m+%—k

X(0) € HI'*(I) € HI'™M(D), 9,x(9) € HY™*(I) € HY'™"(D), vs(¥) € Ho' > (D).

Applying Proposition 3.2 and iii) of Lemma 3.1 to the last product, we have ¢9, x (¢)v. (V) €

H™ (D), hence by € H™ *(D). So we can check that each row of By belongs to H™*(D).

Applying again Proposition 3.2 (with r = ¢t = m — k — % and s = m — k, and note

m—Fk >2>1=d/2) and iii) of Lemma 3.1 to the product of matrix and vector, we
readily get B,0.U (1)) € H™*~2(D). This proves Ugyy € H™F~3(D).

5.4. Now for k < m — 3, we prove yupo € H™ *1(I). Set U(W) = Z’;ﬁ i—TUp\ZZO.
By trace theorem and induction hypotheses, this is a € curve in H™*~(I). We may

check that
Xk+2 = (@)

Note that, as analysis in step 3 and step 4, we infer ¢(U(¥)) is a € curve in the Banach
space H™*=1(I). So g2 still lies in H*1(I). O

g(U(9)). (3.7)
9=0

3.4. Extension of symmetric functions. We now consider how to extend U, (or x;)
to be H}

i . functions defined in the whole plane (line) with period 2 in y-variable and share

some symmetry property.

Definition 3.2 (Space for extended symmetric functions). We define H(Z x S) (resp.
H}(Z x S)) to be the Banach space of those even (resp. odd) symmetric functions u €
HS

? (Z x R) which are periodic in y-variable, with period 2, (here even or odd is with

respect to the line y = 0,) with norm | ul
R, [0,1] etc.

HS’O(IXS) — Hu‘ H‘S(IX[O,H) HeI‘e I mlght be

Lemma 3.3 (Extension in space). Any x € HZ(I) has an extension x € HZ(S) with
X
fd

wsy = WXllgsny, and any w € HZ (D) has an extension u € HZ (R X S) with

Hs(RXS) < Cllul

Hs(p) and C > 0 depending only on s.
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Proof. 1. For k € Z an integer and 7 € [0, 1], define

~ I x(r) ify=2k+T,
X(y) =
x(1) ify=2k—r.
Obviously x is of period 2, even symmetric with respect to y = 0 (hence also even
symmetric with respect to y = 1). It can also be easily checked by using definition and
trace theorem that y € H*(S).
2. We then consider extension of a function u € H?(D). For k € Z and 7 € [0, 1], we
set
u(z,7), if y=2k+r,

U(z,y) =
u(z,7), if y=2k—r,

which belongs to HZ([0,1] x S). Then for §(z) a €°(R") function with values in [0, 1],
, 3] and vanishes for z > 3, we set @°(z,y) = to(z,y)0(z). By this
we regard @° as defined on [0,00) x S. Then for ¢(t) € €°(R") so that [~ t*¢(t)dt =

(—=1)k  k=0,1,2,---, (see [16, p.138],) we set

and equals 1 for z € [0

JoSa(=zs,y)p(s)ds, if z <0,

w(z,y), if 0<z<1.

(2, y) =

By this way «f is an extension of @ and belongs to H?((—o0, 1] x S). Finally, define

B ) (14 s(1—2),y)e(s)ds, if 2> 1,
W (z,y) =
uw(z,y), if z <1,
which is an extension of u € H?(D) to H}(R x S) as desired.
3. We then consider extension of a function v € H:(D). For k € Z and 7 € [0, 1], we
set
v(z,7), if y=2k+T,

0(z,y) =
—v(z,7), if y=2k—r,

which belongs to HZ([0, 1] x S). Then totally the same as in step 2, we can extend v to a
ot € H:(R x S). O

The next lemma concerns trace-lift and is essential for existence of an approximate

solution. For simplicity, as before, we write the space
(H:(R x [0,1] x S)? x H}(R x [0,1] x S) x H(R x [0,1] x S))?

as H*(R x [0,1] x S).
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Lemma 3.4 (Extension in time). For {(Uj;,x;)}j, given by (3.1), there is a pair
~ m4+3
(U, 3%) € H™Y(R x [0,1] x S) x He' (R x S) with the following properties:
1) agﬁah:():Uj’ 81{>~<a|t:0:Xj’ fO’f’ jZO, , My
ii) there is a constant C' depending only on ||U0HH’"+%(D) ,|x0(0)] and m so that for
any T > 0,

Hﬁa_HH X = X0l ymit o 11y < €00 = Ull ey - (38)

H™+1([0,7])%[0,1]xS

Proof. The proof resembles that in [17, p.82], just replacing Fourier transform used there

by Fourier series in y-variable. So the detail is omitted. 0

Lemma 3.5 (Restriction). The restriction mapping
R HI(Rx[0,1]xS) x H (Rx[0,1] xS) x x HS (RxS) — (H(DT)x HS (DT) x HS" (I)

given by
R(U, v, X) = (U|DT7 U|DT7 X|IT)

is one-to-one and onto. In addition, both itself and its inverse are continuous.

Proof. The mapping is well-defined. For instance, by definition, for v € HZ(R x [0, 1] x S),
as it satisfies u(t, z,y) — u(t, z, —y) = 0, definitely ;7 u(t, 2,0) = 0 as long as this makes

sense. Since it is periodic with period 2 in y, we also have
u(t,z,1 —y) =ult,z,—1 —y) =ult,z,1 +vy),

hence 927t u(t, z,1) = 0. This shows u belongs to Hi(D”). By the proof of Lemma 3.3,

we know R is onto. The continuity of R and R~! are clear. O

3.5. Approximate solutions. Now we use {(Uj, x;)}j%, to construct approximate so-
lutions (U?, x®) to the nonlinear problem. The k-th order compatibility conditions ensure
the accuracy of (U?, x?) is O(t*) at t = 0.

Lemma 3.6 (Existence of approximate solution (U?, x*)). Suppose a)-c) in Theorem 2.1
hold. Then there exist Ty > 0 and U* € U+ H™ (R x D), x* € H?+3(R x 1) so that
i) U* — U and x* both vanish for |t| > 2Ty;
ii) Uli=o = Uq, X*|t=0 = Xo;
iii) there is a constant ¢ depending only on and non-decreasingly on ||Uy|
IX0(0)| so that

d

1 an
H™2(D)

102 = Ulymss ey + I gt gy < €100 = Tl oy ) + ro(0)]):
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iv) for allt € [-To,To), (2,y) € D, one has U%(t, z,y) € Waus, as well as

(X“(t, 2, y), dx(t, 2,y)) € Pauss;

v) for fo = —L(U% x*, dx*)U? hy = =Jdx* — Q(U?.~), g0 = MU" — g,
t or |t| < Ty,
where g(t) = g(t) for 1< To there hold, at t = 0, that
g for |t| > 2T,

affOE()? afhozoa afgozov forp:()a]-7"'7m_1;

vi) furthermore, fo € H™(R x D), go € H™(R x I)?> x H™(R x I) x H™(R x I)?,
ho € H"(R x I) x H™(R x I) x H™(R x I)? and all vanish for |t| > 2Ty;

vii) there are the following estimates:

1foll sy + Vholl gm iy < e [[Uo = Ul iy (3.9)

90l rry < 100 = Tl ) + 1T~ &l o). (3.10)

1 follmpry + Igoll g my + holl gonyry = O(T), as T — 0. (3.11)
Here ¢ is a constant depending increasingly on HUOHHm%(D) and U, |x0(0)];

viii) finally, there holds M'U®|p,, =0 for allt € R.

Remark 3.1. In v) we introduced g € H™(I7)? x H™(IT) x H™(IT)?, which is a cut-off of
g, to fulfill the technical assumption that go = 0 for ¢ > 2|T| in vi), which means g = g
— the value of reference state — for t > 2T,. To prove Theorem 2.1, later we will choose

the time period [0, 7] with T < Ty, so this cut-off can be easily removed.

Proof. 1. Using Lemma 3.4 and Lemma 3.5, we have already found U® € U4H™*! (Rx D)
and Y* € Hm+2(]R x I) such that 8’“(U“)]t 0= U, OF(X)|t=0 = xx for k =0,1,--- ,m
and

HU UHHTIL+1 RXD _|_ H)Z - XO(O)HHer%(R I < c ”UO - UHHvaQ D) °

2. Since
H™ (R x D) = H'(R; H™(D)) — €¢(R; H™(D)) — € (R; ¢(D)),
there is a T > 0 so that Hﬂa(t) — UOH% ) < &, for any [t| < 2T}. Since
H™3(R x I) < HX(R; H™ (1)) — €' (R; €1(1)),
we also have

1) = Xolle oy + 19:40) = Xalleoy + 1050 = Xollg oy < /3

for any |t| < 2Tp, by taking Ty smaller if necessary.
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3. Let ¢g € Z(R) be a cut-off function so that ¢o(t) =1 for |t| < Ty and ¢(t) = 0 for
[t| > 2Tp, and 0 < ¢(t) < 1 for t € R. We now define
U = 6o(t)U" + (1= do(t) U, X" = do(t)X"

Then claims i)-iii) follow easily.

4. For claims in iv), by step 2, we infer
U (t, 2,9) — U < ¢o(t)(JU“(¢, 2,y) — Uo(2,9)| + [Uo(z,9) — UJ) < 2u/3,

and, note ¢g(t) = 1 for |t| < Ty,

a a e ~a ~a e 2M
O =10 dXE < T = X0, dx® = Oas xo)l =+ [(xo: X xo)l < =
5. O folio = 0 (k = 0,1,--- ,m — 1) follow from the definitions of Uy, while
O goli—o = 0 and OFhgli—o (k = 0,1,--- ,;m — 1) follow from compatibility conditions
of order m — 1 and definitions of xxy1.
6. It is easy to check that fo, hg, go vanish for |¢| > 2T.
7. The regularity and symmetry
g € H"R x I)* x H*(R x I) x H™(R x I)?
follows from U?|,—; € H™"(R x I) and the assumption
g€ H"RxI)*x H*(R x I) x H™(R x I)?

assumed in Theorem 2.1. The estimate (3.10) is simple, since

190ll gmrry < (U = U)ozt gy + 1€ = MU gy
<(/[Uo — U] + MU - gl gm )

1
H™*2(D)

8. The regularity fo € H™(R x D)? is a consequence of Propositions 3.1 and 3.3:

Wollgmipry = LU X%, &) (U = O]l m o
< C’(HU“HHm pry T x| Hm+1(1T)) U — U] Hm+1(DT)
< allUo = Ul iy -

Here ¢, is a constant depending increasingly on |[Ug — U|| .. +3 (D) and |xo(0)|.
We easily see that fy is periodic with period 2 in y-variable. By using the special

structure of the operator L, one can directly show that (cf. Section 4.7)
fo(t, Zs _y) = L(Ua<t7 2 _y)a Xa(ta _y)a an(t, _y))Ua(t: <, _y>
- diag(l,l,—l,l,l,1,—1,1)f0(t,z,y).

Lemma 3.5 and this imply that fy € H™(R x D).
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9. Since x* € H™2(R x ), also recall that Q(U) = 0, we have

1Roll mrry < IX® = X0 (O g rry + QU |2=0) = QLU m )

< U0 = Ull sy ) + 1 U = Ul
< U0 = Ul s gy + €1 0" = Ul gy o
< Cl||U0—UHHm+g Dy

To show hg € H™(Rx I) x H™(R x I) x H™(R x I)?, we use again Lemma 3.5 and only
need to verify ho(t, —y) = diag(1, —1,1, 1)ho(t,y). This follows from simple calculations.

For example, we have

(ho)2(t, —y) = =(Fyx")(t, —y)) — r(U*(t, —y)) = Oyx"(t, y) + r(U*(t, y)) = —(ho)2(L, ).

10. The estimate (3.11) follows from absolute continuity of integrals. Claim viii) is a
direct consequence of the symmetry property of U, that is, v$ is odd symmetric with

respect to y =0, 1. [

4. LINEARIZED PROBLEM

In this section we linearize the nonlinear problem around a state (U, x) quite close (in
the sense of #,, and ¥),) to the reference state (U,0). By symmetry properties, the char-
acteristic boundaries become periodic boundaries and hence “disappear”. The linearized
problem is reduced to the case with purely non-characteristic boundaries. A careful par-
tition of unity is used to obtain well-posedness and regularity, as well as estimates of the

linearized problem.

4.1. The linearized problem. For our purpose, we may use simply L(U, y, dx)U =F
as the linearized interior equation, where U is the unknown, F is a given nonhomogeneous
term. Substitute U+€U for U and y+ey for x into R-H conditions, differentiating it with
respect to e and then taking e = 0, we find the linearized version to be Jdy 4+ VQ(U)U =
0. This more accurate linearization will give us second order accuracy on controlling
boundary terms. The other boundary conditions are linear, so the linearized version is
simple. They are MU =0 on ¥, and MU =0 on I'p1. The initial data for U and y are
given by

Ulo=0 on D; Xlt=o =0 on X,. (4.1)
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We then have the linearized problem in D7

;

L(U,x,d)U=F,  in D7,
U = U,, on {0} x D,
Jdx + VQ(U)U =G, on %¥,

(4.2)
X = Xo; on {0} x [0,1],
MU = g, on YT,
MU =0, on I'l,.

\

We remark that in the application to study nonlinear problem, one only needs take zero
initial data Uy = 0, yo = 0, while to solve the linear problem for a longer time, we need
general initial data as assumed above. A weak solution of this problem can be defined by
using adjoint problem and a related Green formula (cf. [9, p.357]). However, as we will
finally consider (classical) solutions in H™ with m > 3, we omit the definition of weak
solutions, although it is essential for a rigorous understanding of L? well-posedness.
With Lemma 3.5 in mind, we give the following definition, for the convenience of

statement of results on linear problems.

Definition 4.1. For s > 0, we say U, F € H*(D")® x € H*"Y(IT),g € H*(I")’, G €
H(IT)* and U, € H**2(D)8, yo € H**2(I) are properly symmetric, if they can be
extended periodically in y-variable with periodic 2, to functions U, F € H*([0,T]x [0,1] x
)8, ¢ € HH([0,T] xS), § € H*([0,T] xS)%, G € H*([0,T] x S)*, and Uy € H>*3([0, 1] x
S)8, Xo € H*"2(S), and there hold

U(t,z, —y) = diag(1,1,-1,1,1,1, -1, 1)U(t, z, ),

F(t,l’, _y) = dla’g(la ]-7 _]-7 171717_17 ]-)F(tax7y)7

)Z(t y) = 5((7; _y)7 g(tv _y) = dlag(la ]-7 _]-7 17 1)§(t7 y)a

G<t7 _y> = dlag(17 _17 17 1)G(t7 y>7 ;(0(@ _y> = )20(@ Z/):
Uo(t,fE, _y) = dlag(L ]-7 _]-7 17 1a ]-a _]-a ]-)UO(t:l'vy)

As before, this definition means for any integer k, all quantities except v, such as
u,p, p, S, e,x, are extended by using even reflection with respect to y = k, while v is
through odd reflection. In the following, we also drop tildes in the notations of the
extended functions for simplicity of writing.

We will prove the following two theorems concerning well-posedness of the linear prob-
lem (4.2) at the end of this section.
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Theorem 4.1 (L* well-posedness). For a reference state (U, x) satisfying the uniform
stability condition and T > 0, there is a number > 0. Suppose

a) U € Wh>(DT), taking values in #,, and x € W»>(IT), with (x,dy) taking
values in V,;

b) U,x, F,G,g, U, and xo are all properly symmetric for s = 0;

¢) F e L2DT), Ge LX(I7), g L2(IT), Uy € L*(D), and xo € H2(I).

Then Problem (4.2) has a unique solution (U,x) € L*(DT) x HY(IT) and U belongs
to €([0,T); LA(D)), as well as Ul|,—g, belong to L*(IT). The solution is also properly
symmetric. Moreover, for all real number K, there are constants ¢ and Ty > 0 such that,

if U, x, dx|ly1.ee < K, the solutions satisfy the estimate for any T < Ty:

2

2 1”

) 2
+ HU’z=0,1
L2(IT

@

T
) + X2 o)

%([0,T);L2(D)) * T L2(DT)

2 3 2 .2 2
< c(TrrF\rL2<DT)+HUo D)+HGHH(IT)JFHXOHH%(,)JFHQHLz(zT))- (43)

2
L2(

Theorem 4.2 (H™ regularity). For m an integer larger than 5/2, and a number T > 0,

suppose

a) the reference state (U, x) satisfies the uniform stability condition;

b) U, x, F,G, g are all properly symmetric for s =m;

¢) U can be extended to be a function in H™((—oo,T| x D), and x can be extended to
be a function in H™ ' ((—oo, T)xI), and there hold U—U € H™((—oo, T]x D;R?®),
(U—-U)|.,=0 € H™((—00,T] x I), and x,dx € H™((—o0,T] x I);

d) (U —=U)ier =0 and (x, dx)|i<r =0 for some 7 < T;

e) for some K >0, [[U _HHHm((—oo,T]XD) < K, [|(U - Q)|z:0||Hm((—oo,T]x1 < K, and
1 AX | ooy < B 5 moreover U € #,, (x, dx) € Y

f) Fe H"((—o00,T] x D), G € H™((—00,T] x I), and g € H™([0,T] x I);

g) Flico=0, Gli<o =0, and gl;<o = 0;

h) U|t<0 =0, and X|i<o = 0.

Then the solution (U,x) of problem (4.2) is also properly symmetric for s = m, and

satisfies

i) Ue H™((—o00, T]xD;R®), Ul,—g, € H™((—o00,T|xI), and x € H™*((—o0, T x
I);
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ii) the estimate for any T < Ty with the constants T} and ¢ depending only on K and
m:
12 . 2 -
T HUHHm(DT) + HU|Z_O’1HHm(1T) Xl )
2 2 2
< e (TNFPpmipry + 1913y + 1G e ) - (4.4)
4.2. Periodic extension and linear problem in a strip. By proper symmetry of U, x
and the data F, G, g, Uy, xo, we can readily extend them suitably to be defined for y € S

(we recall this means periodic in y with period 2, c¢f. Lemma 3.3). Dropping the walls

I'p,1 and the boundary conditions on them, we formulate the following problem:

(L(U, v, d)U = F, te0,7], 2 0,1], y €S,

U = U,, t=0, z€[0,1], y €5,
Jdx+VQUYU =G, tel0,T], 2=0, y€S, (4.5)
X = Xos t€0,7], y €S,

\MU:g, te0,T], z=1, y €S.

We have the following L? well-posedness and H™ regularity results. They will be proved
in Section 4.6. In this paper we always assume the reference state (U, K) satisfies the

uniform stability condition, so sometimes it will not be repeated.

Proposition 4.1. Under the assumptions a), c¢) of Theorem 4.1 (with D replaced by
0,1] x S, I replaced by S), Problem (4.5) has a unique solution (U,x) € L2([0,T] x
0,1] x S) x H'([0,T] x S) and U belongs to €([0,T); L*([0,1] x S)), as well as Ul|,—g,
belong to L*([0,T] x S). Moreover, for all real number K, there are constants ¢ and Ty

such that, if ||U, x, dx|ly1.. < K, then the solutions satisfy the estimate for any T < T;:

2

) 2 10112 .
HU(t)H +—HU‘ + HUlz:O,l‘
%([0,T;L2([0,1]xs)) T L2([0,T]x[0,1]xS) L2([0,T]xS)
2

.2 2 3 2
+ X5 o,7yxs) < € (T 1 F N 220, 19% 0,17 xs + HUO‘ L(01]x8) + Gz o.1xs)

.2 2
X0l 3 )+ 190220105 (4.6)

Proposition 4.2. Under the assumptions a), ¢)-h) in Theorem 4.2 (with D replaced by
0,1] x S, I replaced by S), the solution (U,x) of Problem (4.5) satisfies

i) Ue H™((—00,T] x [0,1] x S; R®), Ul.—1 € H™((—00,T] X S), and

X € H™((—00,T] x S);
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ii) the following estimate for any T < T) with constants ¢, Ty depending only on K

and m:

<112
+ X zrme1 o,1yxs)

1 .12 .
ol [
T H™([0,T]x[0,1]xS) H™([0,T]xS)

2 2 2
< c (T “FHH’"([O,T}X[O,I]XS) + ||g||Hm([0,T}><S) + ||G||Hm([o,T}xS)> : (4.7)
4.3. Localization. We further decompose Problem (4.5) to two problems in “half-space”,

for which standard results are available now. Now introduce four cut-off functions 1, 2, 1 2 €

2(R), all with values in [0, 1], and share the following properties:

0’ OSZS%;
1, 0<z<3,
* hi(z) = and  ¢a(2) = {1—¢hi(2), §<2<3,
0, 222
1, 2<2<
so Y+ =1 for z€[0,1];
17 OSZS%, 0, ZS%,
o p1(z) = and  ¢o(z) =
0, 22>, 1, 1<2<1

We note that supp; N [0,1] is a proper subset of {¢; = 1} N [0,1] (j = 1,2). This
is crucial for the later application of finite speed of propagation property of hyperbolic
equations.

We then write down two problems in half-space.

L1 (2)U+ (1= 1(2)U), x, d)V =F, te€[0,T], >0, y €S,

V = V|, t=0,2>0,y€eS,
Problem A): _

Jdx + VQ(U)V =G, te0,T], z=0, y €S,

\X:XW tG[O,T], yGSa

L(SO2(Z)U + (1 - @2(2))Q>X7d><)v = F27 te [OvT]7 z < 17 Yy € Su
Problem B): ¢V = V2, t=0, 2<1, y€S,

MV =g, te[0,T], z=1, y€S.

It is important to note that due to properties of Euler equations, this modification of
the operator L is still symmetric and constantly hyperbolic (just replace the point U by
P12(2)U + (1 — ¢12(2))U € #},)

To present estimates concerning these two problems, we need the weighted Sobolev
space " (see [9, Remark 9.9 in p.240], or [10, (4.3.2) in p.74]). Let O be a domain of

the space-time R x R”, m a nonnegative integer, and v > 1 a parameter. Then 2™ (O)
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is the set of those distributions u € Z'(R x R™) such that

]uH%m Z A m=lal) |e "ou(t, HL2 < 00.

|a|<m

It is a Hilbert space. The space (0O) is usually written as L2(O) (see [9, p.122]).

4.4. Problem A). The basic result concerning Problem A) is the following L? well-

posedness proved by Métivier.

Lemma 4.1. Suppose a) in Theorem 4.1 (but z € R,y € S), and Fy € L*([0,T] x
Rt xS), G € L¥[0,T] x S), V) € LAR* x S), and o € Hz(S). Then Problem A)
has a unique solution (V,x) € L*([0,T] x Rt x S) x H'([0,T] x S) and V belongs to
€([0,T]; LA(R* x S)). Moreover, for all real number K, there are constants C and vy
such that if ||U, x, dx|ly. < K, the solutions satisfy for all v > vy and allt € [0,T] that

—2vt

2
e ‘

. 2
[V
L2([0,4]xS)

. 2
ey Ml ) @)

Proof. Our operator L is symmetric and constantly hyperbolic, so “block structure con-
dition” ([10, Assumption 2.3.3 and Proposition 2.3.4 in pp.44-45]) holds. The reference
state (U, x = 0) satisfies uniform stability condition, then for (U, x) satisfies a), the uni-

V(o)

12
+ HXHjﬁ}([O,t]XS)

L2(R*xS) 2([0,¢] xR+ xS)

< € (S IR Ry + 63000 + [V,

form Kreiss-Lopatinskii condition holds [10, Assumption 2.1.1 in p.40], by taking p small.
So this lemma follows directly from [10, Theorem 3.1.1 in p.59].

We note the term ||)'(||2%1([07t]xg) is written as ||X||§{%([07t]xg) = ||eﬂt>'<||12ql([o,t]xs) in the
above cited theorem. It can be easily checked that these two norms are equivalent (inde-

pendent of v and x). O
The next lemma concerns further regularity of Problem A), but with zero initial data.

Lemma 4.2. Under the assumptions a), ¢)-h) in Theorem 4.2 (but z € RT,y € S and F
is replaced by Fy, U is replaced by V, and ignore g), the solution (V,x) of Problem A)

satisfies

i) Ve H™((—00,T] x Rt x S;R®), V]._g € H™((—00,T] x S), and

X € H™((—00,T] x S);
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ii) the following estimate for all v > 7o, with C,, > 0 and vy > 1 depending only on

and continuously on m and K:

.12
M

i
A ([0.T) xR+ xS) + H =0 Am((0,T]xS) 1D o119

1 2 2
< Cn (S 1B umenss + 16T )- (4.9)

Proof. This follows from Theorem 12.8 in [9, p.367]. As explained in the proof of Lemma
4.1, all the requirements of this theorem are fulfilled in our situation.

A difference is that the estimate (4.9) is not the same one as listed there. By checking
the proof of that theorem, estimate (4.9) actually holds (cf. Theorem 12.5 in [9, p.364]),
and the one in Theorem 12.8 in [9, p.367] follows by choosing 7 = % in (4.9). U

4.5. Problem B). The basic result concerning Problem B) is the following L? well-

posedness.

Lemma 4.3. Under assumptions a), c¢) in Theorem 4.1 (but z € (—o0,1] and y € S,
and F, Uy are replaced respectively by Fg,Vg, and ignore xo and G), Problem B) admits
a unique solution V € L3([0,T] x (—o0,1] x S), which is such that V|[07T}X{Z:1}X§ €
L2([0,T] x {z = 1} x S). Furthermore, V belongs to €([0,T]; L*((—o0,1] x S)) and

satisfies the estimate

2 2

HeﬂtV(w

< ¢ <HV§

for all v > ~v9 > 1 with the constants ¢,y depending only on and continuously on

—i—vHV
)

2 .
+ HV’Z:1
L2([0,T]x (—00,1]x5)

%([OvTLLz((*oo)l]XS L%([O,T}XS)

2 1 2 2
(o0 1]x8) + 5 HFQHLZY([O,T}X(foo,l}XS) + Hg”Lg([o,T}xs)) (4.10)

K = max { U100 (10,7 % (—o0,1] x5) HXHWQ"X’([O,T}X[OJ])} :

Proof. We apply Theorem 9.19 in [9, p.275], due to Métivier [10, Proposition 3.5.2 in p.67],
to prove this lemma. We remark although there is no decay with respect to y-variable,
but it is periodic, so integration by parts worked and these theorems still valid in this
situation.

1. It is easy to see that our operator L(psU+(1—¢9)U, x, dy) is symmetric, constantly
hyperbolic, and the boundary [0,7] x {z = 1} x R is non-characteristic, by smallness of
w. Furthermore, rankM = 5, which is exactly the number of incoming characteristics of
the domain (—oo, 1] x S.

2. We then need verify the uniform Kreiss-Lopatinskii condition. By Proposition 4.4 in
9, p.113], it is sufficient to show the boundary condition is strictly dissipative. However,

that is demonstrated in [9, p.413]. See also [11] or Lecture 4 for direct verification.
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3. Although the estimate (4.10) is different from the one listed in the above cited
theorem, however, by checking the proof (see the end of step 2 in [9, p.280]), it actually
holds. 0J

The following lemma concerns further regularity of the solution provided the data are

more regular, and initial data vanishes.

Lemma 4.4. Under the assumptions c), d), e) in Theorem 4.2 (but z € (—o0, 1], y € S),
and suppose Fy € H™([0, T|x (=00, 1]xS), g € H™([0, T|xS) satisfy, fork =0,1,--- ,m—
1, that OFF, =0, 0Fg =0 att =0, and the initial data VO2 = 0. Then the solution V of
Problem B) is also in H™, as well as its trace on the boundary [0,T] x {z =1} X S, and
satisfies QfV =0forj=0,1,--- ,m—1att =0, as well as the estimates

.12 2
¥ =
j?ﬂ}"([O,T]x(—oo,l}xS) jﬁfm([O,T]xS)
< G (LIRIR. gl (4.11)
- m /y -%a’y ([O,T]X(—OO,I]XS) jf’y ([OvT}XS) ’

for all v > ~v9 > 1, with positive constants C,, and vy depending only on K and m.

Proof. This is an application of Theorem 9.21 in [9, p.282] to our situation (as shown in
the proof of Lemma 4.3). The estimate follows from (9.2.58) in [9, p.283]. O

4.6. Proof of Propositions 4.1 and 4.2. We first derive the estimate satisfied by any
solution (U, ) € L*([0,T] x [0,1] x S) x H'([0,T] x S) to Problem (4.5). Set V,; = ¢,U
(j = 1,2). Then U = V; 4+ V,. By multiplying ¥, to the equations in (4.5), we get
that V12 satisfies (recall our special choice on support of ¢;,), respectively, Problem

A) and B), with F; = ;F + (L(U,x,dx)®;)U and Vi = ;U,. It is obvious that

H HU ‘ , and we also have
L2([0,1]xS) L2([o, 1]><S)
|52 = [le B
L2([0,T]%[0,1]xS) — I L2([0,11x[0,1]xS)
L2
,fyt —fyt 1 /
= 2 He FHLQ([O,T]X[O,lle) +2 ‘ AU X, dX)wj(z)U‘ L2([0,T]x[0,1] xS)

2

Lg([o,T}x[o,uxS)) '

IN

) .
c (HFHLg([o,T]x[o,uxs) + HU

Then applying estimates in Lemmas 4.1, 4.3 for VLQ respectively, and adding together,

we find that, there are constants ¢ and 7y, depending only on W* norm of U and W2
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norm of x, so that for all v > ~y,

2 2

. 2
MUt H
He ®) ¢([0,T];L2([0,1]xS)) Rt

[0l

L2([0,7]%[0,1]xS) L2([0,T]xS)

12
+ HX”%:}([O,T]XS)

2 ’th 2 V 2
< 2 et [v;
- jz_;( ¢ (1) (zf([o,:r];m([o,uxS))ij Tl L2(j0,77x10,1]x8)
V 2 V 12
+H 12=0 L2 (0.TIxS) + H 2|o=1 L2 (0.TIxS) + |‘XH.%’;1([O,T]><S)
2
2
< e (2 IE s oo + V3] o apee) + 1E M2 @10
T 2
X0l 3,6, + 19122 0115 )
1 ) 1 q- 12 2
< eI e H
=~ C (’Y H HL%([O,T]X[OJ]XS) + ¥ L2([0,7]x[0,1]xS) + 0 L2([0,1]xS)
2 -2 2
G121y + INoll 3 )+ 9132 0215 ) -
Taking o > v/2c further larger, we conclude that
i 2 . 112 . 2
o] e Y
#((0,T);L2([0,1] xS)) L£2([0,T]x[0,1]S) L2([0,T]xS)

12
+ ||X||jf1 ([0,T]xS)

Y

2
L2(0,1]S) + ||G||Lg([o,T]xs)
Xol% 3 )+ ||g||Lg([o,T]XS>) -

Finally, for T3 = 1/79 > 0 and T < T}, we choose v = 1/T to drop the weight. Then we

o (Jool

, 2
+ HU‘ZZO,].
£2([0,T]xS)

%([0,T];L2([0,1]xS)) T H ‘ L2([0,T]x[0,1]xS)

C 112
+ HXHyﬂ([o,T}xs)>

2
< c (T ||F||L2([0T 0,1]xs) 1 H ‘ + ||G||L2([07T]XS)

L2([0,1]xS)
X0l 3 )+ 19022 oy -

This gives the desired L? estimate, and in particular implies uniqueness of the solution

(for any T' > 0, using it repeatedly).
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Now we show existence part of Proposition 4.1. We solve Problems A) and B) in L? with
Fj = ;(2)F and V) = ¢;(2)U (j = 1,2). By Lemmas 4.1 and 4.3, there are L? solutions.
Denote the obtained solution to be (Vy, x), V3 respectively. Note both nonhomogeneous
terms F o and initial datum VLQ have compact support on {z € [0, %],y € S} (resp.
{z € [%, 1], y € S}), by finite speed of propagation for hyperbolic operators [9, p.73 and
p.78], we conclude that there is a 7" > 0 (depending only on the maximal characteristic
speed, or, ||U — U, and ||x]|yy1.), 50 that Vi =0 for z > I and Vo, =0 for z < L, as
long as 0 <t < T". By our choice of ¢ 9, this means there hold

(LU, \,d\) Vi = 0nF, t€[0,T], >0, y€S,
V1:¢1U0, t=0,2>0, y €S,
JAx+VQU)V, =G, te[0,T], 2=0, y €S,
X = Xos te 0,7, y €85,
\MV1:O, tel0,7), z=1,y€S
and
(LU, \,d\) Vo= toF, te[0,T], 2 <1, y€S,
VQ:wQUO, t=0, z2<1, y €S,
VQ(U)V, =0, tel0,T], z=0, y €S,
kMngg, tel0,7], z=1, yeS.

Since these are linear problems, obviously U = V; + V5 and x solve Problem (4.5), for
the time interval [0,77].

Since T" depends only on ||U — Ul|;« and ||x|lyj1, that is, 4, but not on initial or
boundary data, the existence of a L? solution for ¢ € [0,T] can be obtained by a simple
continuation method. Indeed, for t = 7", we use U(T") and x(7") as initial data and
solve the corresponding problem (4.5). We then extend the solution to [T”,27"]. Similarly
we can extend it to [377,47"]. etc. Then by finite many steps, we get a solution U in
L3([0,T] x [0,1] x S) and x € H*([0,T] x S) . This finishes proof of Proposition 4.1.

Now we prove Proposition 4.2. We still use the decomposition U = V; 4+ V,. with
V; =4;U (j = 1,2). We see (Vy, %), Vy satisfies Problem A) and B) respectively, but
with zero initial data, and F; = ¢; F + (L(U, x, dx)1;)U. So by Lemmas 4.2 and 4.4, V 5
are in H™, and y belongs to H™!, so we get Ue H™

Now we derive the estimate. By definition of weighted norms, it holds

2

2 2 !
IF oo < €I Bemmnone + [ oo
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with ¢ depending on [|[U|| 4 and ||x||gm+1- It is here we need a fact that ||au||%q <

C |lal| g ||lul ;s provided that a € H", u € S’ and r + s > 0,q < min(r, s), and ¢ <
Y

r+s—d/2, with d the dimension of the space-time where a,u are defined, see [9, Lemma

9.3 in p.251]. So totally similar as before, we get

2 2
. . )
vy HU‘ + “U|zo,1“%m([07T]X§) + ||X||jf7m+1([0,T]><S)

2

2 ([0,T]%[0,1]xS)
1 1
< c (; HF”%’”([O,T]X[O,I}XS) + 5 H

A ([0,T]x[0,1]xS)
2 2
G e oy + 19 o165
for all v > vy, with ¢ and 7y depending only on K and m. Now choosing 7o > V/2¢, it

follows that

2

v|[o

. -
* HU‘ZZOJ + XM o.71x8)

Am([0,T]%[0,1]xS) Am([0,T]xS)

1 9 ) )
< c (; HFHK%"Wm([O,T}X[O,l}XS) + ”GHt;ffym([QT]Xs) + |\g|\%m([07T]XS)) .

The final step is for 77 = 1/yy and T' < T}, taking v = % to drop the weights in the
above inequality. Since v > 1, by the definition of ™ norm, the left-hand side obviously

controls

11
—||U
a

. .12
Ul.—o,1 + HXHHWH([O,T}xS) :

2
|
H™([0,T]x[0,1]xS) H™([0,T]xS)

However, to bound the right-hand side, there is a trick.
Suppose w € H([0,T]; L*(Q)) and w|—¢ = 0. Then integration by parts and Cauchy-

Schwarz inequality imply

T
7/ /|e_7tw(t,x)|2d$dt
o Ja

1 ! T
= —= e_%t/ lw(t, z)|* dw —2/ /|e_7tw(t,x)||e_7t8tw(t,x)|dxdt
2 Q 0 0 Q

T
1
< ye Mw(t, x)||—=e " 0uw(t, x)| dx dt
[ [ ivae e oll—ze ot )

T 3 1 T 2
< (v [rerutopaa) (2 [0 [ o opar)
0o Jo 7TJo Ja

1
w”LQ([O,T}XQ) < ~ H

w € H*([0,T]; L*(Q)) so that & w|,—q = 0 for j = 0,1,--- ,k — 1, then using the above

Therefore we proved ||e_7t e‘”tath 12( Furthermore, suppose

0,7]x9) *
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inequality repeatedly, we get

- Ty
||e “’thm([O,T}xQ) < % ||e vtawaLQ([OvT]XQ).

For the term
2(Iml=lal) || o=t
||F||;;ﬂm ([0,7]x[0,1]xS) = Z R He ! 8°‘FHL2 ([0,7]x[0,1]xS) *
|| <m
set w = 0“F. By our assumption on F', w satisfies the above requirements for k = m—|a|.

Therefore

IN

2 —yt ym 2
HFH(%;”([O,T}X[OJ]XS) Crm He "D FHL?([O,T}x[U,uxg)

IN

2
Co D™ F720.11x[0,1)x5)

IN

2
HFHHm([O,T}X[O,l}XS) )

Here D™ F represents all m-th order partial derivatives of F'. Similar inequalities hold for

g and G. So finally, recall v = #, we get the desired estimate.

4.7. Proof of Theorems 4.1 and 4.2. We now prove Theorem 4.1. By the assumption
of proper symmetry, we can extend Problem (4.2) to formulate Problem (4.5). The latter
has a solution (U,X) by Proposition 4.1. We now show that MU =0 on y = 0,1. Let
U(tu 2 y) = EU(tu 2y _y)a with E = dlag(lu 17 _17 17 17 ]-7 _]-7 1) and i(ta y) = X(t7 _y)
Then dy(t,y) = diag(1, —1)dx(t, —y), and
(L(U X?dX) >|(tzy
= AUy B(OU) 1,2,y + A (U, X0 dX) (1,20 B(O:U) 12,
_AQ(U”(t,z,y)]E(ayU)|(t,z,fy)
— (A"(UE@U) + EA (U, x, dx)(2.0) — (BA*(U)(~ KE)E(9,0)) [,
= EL(U,x, dx)U](t’Z,_y) =EF(t,z,—y) = F(t,z,y).

In the last equality, we used the proper symmetry of F', and for the third equality, by
proper symmetry of U, x (note especially d,x is odd symmetric), we used that

Al <U7 X dX) (t7 Z, _y)E

1
_ <1+¢’XI4 0 )
0 1+¢’ Ty 4

A1 U_ 0 2 2
X (( ) AU )E — ¢ xA"(U)E — ¢0,xEA"(U)E ) [(t.20)

— EAI(Ua X5 dX)(t7 Z, y)7
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because E commutes with A°(U) and diag(A;(U_), A1 (Uy)).

Also, for the boundary condition on Yy, we have

]
. = 0 -1 0 0 _ :
1Y + VQ(U)Uljmoyy = ( L O) di(t, —y) + VQ(U)EU(t,0, )

= E(Jdx + VQ(U)U)|wo,—y = EG(t,—y)
= EG(t,y) = G(t,y).

Similarly we can check that U actually solves Problem (4.5). By uniqueness claimed
in Proposition 4.1, one gets U =U and X = X. Therefore the solution (U, X) itself is
also properly symmetric. This implies particularly that vy (¢, z,y) = —vs(t, z,—y). So
vy =0 on y = 0. Since the solution U is also periodic with respect to y with period 2, so
ve(t, 2z, 1) =vi(t,z,—1) = —vy(t, 2, 1), therefore v =0 on y = 1.

Therefore, by restriction of the solution to [0,7] x [0, 1] x [0, 1], we may get a solution
(U, x) to Problem (4.2) claimed by Theorem 4.1. The corresponding estimate follows
directly from that of Proposition 4.2. The proof of Theorem 4.2 is similar by using
Proposition 4.2.

5. SOLUTION OF NONLINEAR PROBLEM

This section is devoted to proving Theorem 2.1 by using linear theory and Banach

fixed-point theorem. Consider the following linear problem:

(LU + U x4 A+ )V = F
= —L(U* + U, x* + x,d(x* + x))U?, in DT,
V=0, on {0} x D,
JdY + VQ((U* + U)|,—)Viso = G
= —Jdx* + VQ((U* 4+ U)|.=)Ul. (5.1)
~Q((U* +U)|.0), on ¥,
=0, at {0} x [0, 1],
MV =g=—-MU"+g, on YT
| M'V =0, on T,

Here (U?, x*) is the approximate solution constructed in Lemma 3.6. We show below
(5.1) defines a mapping 91 : (U, x) — (V, ). It is clear that if (U, x) is a fixed-point of
N, then (U + U% x + x%) solves problem (N), due to the properties of the approximate
solution (U%, x*).
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Let m > 3 be a fixed integer. We define Sy 5, being the set of pair (U, x) € H™(DT;R®)x
H™(Ir), where T and M are parameters to be fixed later, such that the following three
hold:

o]

2) U and x are properly symmetric with order m;

3) there hold & Ul;—g =0 for j =0,1,--- ,m—1and & x|—o =0for j =0,1,--- ,m.

We note Sy is nonempty since (0,0) lies in it for any 7" > 0, M > 0. In the following,
we will show that

a): O is a mapping on Sy pr;

b): it contracts under a L?(D™) x H(IT) topology, by choosing carefully 7" and M.

5.1. Well-definition of 9 on Syj;. Suppose (U, X) € Sy, we show (V1)) € Sy for
suitably chosen 7" and M by applying Theorem 4.1 and Theorem 4.2 to (5.1). The fol-

lowing first three subsections are devoted to verifying the assumptions in these theorems.

5.1.1. H™ estimates of nonlinear terms. We first show F € H™(DT) and G € H™(IT). In
the following, we always use C' to denote constants that are independent of T', M. To esti-
mate F', we first recall that U* € H™(DT), xy € H™(IT), and fy = —L(U%, x*,dx*)U".
Therefore, by using Sobolev embedding H™(DT) — ¢*(DT), and Propositions 3.1 and
3.3, it follows

IFllmpry < ||LO0° + U X" + 3 A0+ 500U = fol |+ [ follim o

™(DT)

IN

<HA0(U“ +U) — AU

+ HAQ(U“ +U) - A2(UY)

Hm(DT) Hm(DT)

A0 + 0+ % e +50) — AU X7, dx)

Hm(DT)>
XU ppmsa oy + [ ol pom

IN

Ci(

O ) ([0, + llmerin ) + ol

< Ci(M)M [ foll prmpry - (5.2)
In the second last inequality we have assimilated the number [U||ymi1(pr) into the
nondecreasing function Ci(-), and in the last one we used Sobolev embedding theorem

and nondecreasing of C(+).
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Similarly, recalling hy = —Jdx* — Q(U“|,~¢), we have

IGllimr, < [VQUU* + 0)]ec)Ulemo = QUU* + D)) + QU)o
ol o azy
1
- / 0(V2Q((U* + 0U)|,—¢)Ul.—o, Ul.—) dO + (1ol gy
0 Hm™(IT)
< C 2 Ua UZ— Uz* UZ*
< ofvewr+ Ok, 0 [0l [O00]
+ ol ey
< Co(M)M? + |||y g - (5:3)

Here Cy(M) is again a positive non-decreasing function.

5.1.2. Proper symmetry. By construction of (U% x?), it is straightforward to see that
U+ U and y* + y are properly symmetric with s = m. The proofs of proper symmetry
of F' and G are similar to those performed in the proof of Theorem 4.1 and Theorem 4.2.

For example, remember now
U%(t, z,y) = Ut, z,y) = EU%t, 2, —y),
so as calculated before,
F(t,2,y) = LU + U, x" + X, d(x" + X)) U%|2.0)
=EL(U* + U, x" + X, d(x" + X)) U, )
=EF(t,z, —y).

This plus the fact that F' is periodic in y-variable with period 2 show proper symmetry
of F. Sob) in Theorem 4.2 is true.

5.1.3. Extension to t < 0. We already know that U® is defined for all t € R. Also,
by property 3) on Sr s, we may extend U, y to be 0 for t < 0 and the extended func-
tions belong to H™((—o0,T] x D) and H™"((—o0,T] x I) respectively. By property of
approximate solutions, assumptions c¢) and d) in Theorem 4.2 hold.

Also, with such an extension of U and ¥, by v) in Lemma 3.6, we can extended F, G, g
to be zero for t < 0 and the extended functions are still in H™((—o0,T] x D) and
H™((—o00,T] x I) respectively. This verifies f) and g) in Theorem 4.2.

Next consider assumption h) in Theorem 4.2. Since the initial data of V,jpatt=0
vanishes, we need only check that athh:o =0forj=1,---,m—1and 8f¢|t:0 =0 for
j =1,--- ,m. The procedure is similar to that of deriving compatibility conditions, by

using the fact that U|t§0 = 0 and x|i<o = 0, and v) in Lemma 3.6 (note F|;,—g = fo by
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property 3) of Sy.ar). For example, from the equation, for ¢ = 0, we get AO(U“)&V =
fo=10,s0 &:tho = 0. Then acting J, on the equation and taking ¢t = 0, by the fact that
O foli=o and @V\tzo = 0 we have proved, one gets GEV\t:o, etc. We note actually this
verifies the solution (V, w), once it exists, must satisfy property 3) in definition Sz ;.
Finally we demonstrate assumption e) in Theorem 4.2. For a fixed M so that M < M,,

we may take
K =M, + max{HU“ — Ullgms1rxpy » HXa”HmH(RxI)} < 00.

Next, to guarantee U® + U € #,, by iv) in Lemma 3.6 (we will take T < T below),
it is sufficient that HUH o < /3. Since U|t:0 =0, for any 0 < t < T, we have
L>(D

Ut 2,y)| < fOT 10,U(s, z, )| ds, hence

T T

HU@)H g/ 8'(5)H ds < VT / ‘at
Hm—l(D) 0 Hm—l(D) 0

< VT|U

‘ HHm(DT)'

1

. 2 2
Ut dt
2

Then by Sobolev embedding theorem H™ (D) — L°(D), there is a constant ¢y inde-

pendent of T, M so that HU’ o < coV/TM. Similarly we also obtain 1 AX| oo 7y <
Lo (D

coV/TM. So once we choose M < My = p/(3coy/Tp), assumption e) holds.

5.1.4. Applying Theorem 4.2. We can now apply Theorems 4.1 and 4.2 to (5.1) to conclude

there is uniquely one solution (V, w) and it has the following properties:

i) it is properly symmetric with s = m;
ii) V€ H"((—00,T] x D), V].—g € H™((—00,T] x I), and 1 € H™((—o00, T] x I).

So to guarantee that (V, ¢) € Sr.u, we only need verify property 1).

Using estimate in Theorem 4.2 and nonlinear estimates we derived above, there holds

[,

(5.4)

T H H™(DT) Hm+1(IT)

< e (TP + HfonHm(DT)) 1913y + CoMPA + oy ) -

Recall here that cx is a constant depending only on K, and C}2(M) are constants de-

pending non-decreasingly on M. Denote

=

. 2 2 2 2
My = (1ol ey + 190m ) + Mol gmrry )
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Then for 0 < T < T} = min{Ty, T1} < 1 with Ty, T; determined in Lemma 3.6 and
Theorem 4.2, there holds

VI

Vieeo | ry [
V1ol yoer, * 19

Hm™(DT)

< V3er (T(Cy (M) M? + Co( My)*M* + Mf)§

H'm+1 IT)

. . . 1 .
Now we take M = 3cx My, T = min {m, Té} with

My 1
M, < mi 5.5
b= mm{scK’ 9c2.Cy(Mp) } (5:5)
we readily get
it * 11l 19 ey < 2
H Hm(DT)+ ‘ 0 w Hm+1(JTy —

Finally, we need show that (5.5) holds. ThlS follows easily from (3.11), just by taking

T further small (depending only on approximate solution and initial-boundary data) !

5.2. Contraction. For (U’,x’) € Sy, j = 1,2, denote the corresponding solution of
(5.1) be (V7 97), and set U =TU' — U2 y = x! —x%,V =V! - V2 ¢y = ! — 92 Then
(V, 1)) satisfies the following linear problem

;

LU+ U x4+ xLd(x* + X))V =F, in DT,

V =0, on {t=0}xD,

Jdy + VQ(U* + UHV = G, on %I 5.6
b =0, at {0} x [0, 1],

MV =0, on YT

M'V =0, on Tl

where
F= (L(Ua + U2 X+ x5 A +x3) — LU+ UL x4+ x d(x® + Xl))) x (U® + V?),
and G = G + G, with
Gy = ((VQ(U* + UMU' - Q(U* + UY)) - (VQ(U" + U)U? - Q(U” + U?)) )
and
G2 = (VQ(U" +U?) - VQ(U* + U') ) V2,

By Sobolev embedding H*(D?T) — €1 (DT) c Wtee(DT), HAY(IT) — €?(Ir) C W2 (IT),
and our choice of M above, we can apply Theorem 4.1 to (5.6) to have the inequality

% IV Z2ory + 1V =0l z2(ry + 1015 ry < ex(TIFIT2ry + 1GlT2gry)- (5.7

We need control the right-hand side.
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It is rather easy to estimate F. By using the simple fact ||uv]|;. < ||ull; V]2, We

have

1 F 2 pry
|u®+Vv?

IN

[P ( > AU +UY) = AU+ U)o

j=0,2
{JANU 4+ U X A+ X)) = AU U2+ A ) 2oy )

< U gm(pry + M)ex (Ul 2oy + X 1 om))

A

> CK(||UHL2(DT) + ||X||H1(1T))

with the help of mean value theorem and Sobolev embedding theorem. We may treat

similarly the second term in G:

1Gallury = [[(VQ(U" +U?) - voe + U v*

L2(IT)

IN

V[ ey € 0N 2y
< e M ||Ul=oll g2y -
For G, we can write it as a sum of two terms G; = G11 + G2, with
G = (vcg(ua +UY) — V(U + U2)>U2,
and
G = (QU+1U?) =~ Q(U* + UY)) + VQ(U* + U )(U' - U?)
= (VQ(U*+U") - VQ(U")U — (VQ(U* + U" + (1 — 9)U?)
-VvQe(U"))U, 6€][0,1].

Similar as before, we see

11l zzqrry < e 02| gy Ul g2y < e U Lollagory
and

1Ghall p2rry < CrM (U =ol| 2y -
Substituting the above estimates of F' and G into (5.7), recall that 7" < 1, we then have
IVIIz2pry + V=0l p2rry + 180 g gy
< VBex (VT([U| gz oy + X g1 rmy) + M I[U]=oll y2rry)-

2
If we choose T', hence M further small so that T < % (%) M < —~— then
CK 2\/36}(

(HUHLQ(DT) + HXHHl(IT) + HU’Z=0HL2(IT))'

DN | —

V|2 pry + 1V ]e=oll 2y + ¥l gaary <
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So the nonlinear mapping 91 actually contracts in Sz with the above L*(DT) x H'(IT)
topology.

5.3. Solution of nonlinear problem.

Lemma 5.1. B = 87 is a bounded closed convex set in X = H™(DT;R8) x H™(IT).

Proof. Boundedness and convexity is simple. Suppose now (U, xx) € B so that U, — U
in H™(DT) and xj, — x in H™™(I7) as k — oo. To prove B is close, we only need show
Ul._o € H™(IT) and |]U\Z:01|]Hm(IT) < liminfyse0 [[Ugl=ol ym(s7)- By trace theorem, we
see Uy|,—0 — Ul.—¢ in H™ 2(IT). While since {Uy|,—o} is bounded in H™(I7), there is
a subsequence Uy, |.—o converges weakly to a V in H™ (I T), and by lower semi-continuous

of norm with respect to weak convergence,
V| im < liminf —0l| grmrry -
IV g (1) = I | Uklz=oll (IT)
Uniqueness of limit in the sense of distribution then implies U], = V. O

We define

d((U, x), (V,9)) = U = V] 2 pry + [[(U = V) o=oll 2 gry + [Ix = ¥l 1 oy
for any (U, x) and (V,¢) € B, which is a metric on B.

Lemma 5.2. B is complete under the metric d.

Proof. Suppose {(Ug, xx)}72, is a Cauchy sequence in (B,d). Then there are U €
L*(DT),W € L*(I") and x € H'(I"), so that Uy — U in L*(DT), Ug|.o0 - W in
LA(IT), xx — x in HY(IT), as k — oo. We only need show (U, x) € B and W = U|,.

Note {(Ug, X&) }72, is also bounded in X, so there is a subsequence Uy, — U’ weakly in
H™(DT™), and x;, — x' weakly in H™(I""). Moreover, since closed and convex subset of
a Banach space is weakly closed, by Lemma 5.1, we infer (U’, x’) still belongs to B. Then
by uniqueness of limit in the sense of distribution, we conclude (U, x) = (U’, ') € B, and
the subsequence {k;} may be taken as the original sequence {k}.

Now note both Uy, U are bounded in H™(DT) and ||Uj — Ull2pry — 0, then by
interpolation inequality of Sobolev spaces, U, — U in H'(DT), hence by trace theorem,
Ug|.—0 — Ul.—o in L*(IT). This proves W = Ul|,—. O

We have shown 91 is a contract mapping on (B, d). So by Banach fixed-point theorem,
9 has uniquely one fixed-point (V, x) in B. Obviously (V + U% x + x*) solve Problem
(N). Furthermore, by our construction, V +U?® takes values in %}, and (x + x*, d(x+x*))
takes value in ¥},. For p chosen small, we infer that the flow is still supersonic ahead

of shock-front, subsonic behind of it, and the transform Wy used to fixed shock-front is
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actually a homeomorphism, for ¢ € [0, T], as required. This finishes the proof of Theorem

2.1.

[7]
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