Harmonic Analysis- Excercises (3)

1. Let $\left\{u_{p}\right\}_{p=1}^{\infty} \subset L^{2}\left(\mathbb{R}^{n}\right)$ satisfy supp $\hat{u}_{p} \subset\left\{\xi \in \mathbb{R}^{n}: \frac{1}{C} 2^{p-1} \leq|\xi| \leq C 2^{p+1}\right\}$. Then there holds

$$
\left\|\sum_{p=1}^{\infty} u_{p}\right\|_{0}^{2} \leq C^{\prime} \sum_{p=1}^{\infty}\left\|u_{p}\right\|_{0}^{2}
$$

Here C, C^{\prime} are constants independent of u and p.
2. Using Littlewood-Paley decomposition to show that $H^{s}\left(\mathbb{R}^{n}\right)$ is embedded into $C^{\alpha}\left(\mathbb{R}^{n}\right)$ provided $s=n / 2+\alpha$ and $\alpha>0$ is not an integer.
3. Prove the following classical time-decay estimates for the Cauchy problem of heat equation

$$
\begin{cases}u_{t}-\Delta u=0, & x \in \mathbb{R}^{n}, t>0 \\ u(0, x)=\phi(x), & x \in \mathbb{R}^{n}\end{cases}
$$

Suppose that $\phi \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$. Then for $t>0$, there hold

$$
\begin{aligned}
& \text { (1) }\|u(t)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\phi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \text { (2) }\left\|\partial^{k} u(t)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C t^{-\left(\frac{n}{2 r}+\frac{k}{2}\right)}\|\phi\|_{L^{p}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

Here $\frac{1}{r}=\frac{1}{p}-\frac{1}{q}, 1 \leq r, q \leq \infty ; C$ is a positive constant depending only on p, q, r, k; ∂^{k} is any $k-$ th derivative with respect to x.

Hint: Using the Young inequality of convolutions.
4. Suppose for $f \in L^{1}\left(\mathbb{R}^{1}\right)$ there holds

$$
\int_{\mathbb{R}^{1}}|f(x+t)-f(x)| d x \leq|t|^{2}, t \in \mathbb{R}^{1}
$$

Show that $f=0$.
5. (1) Let δ be the Dirac distribution: $\langle\delta, f\rangle=f(0)$. Prove that $\hat{\delta}=1$.
(2) Show that any harmonic function in the whole space \mathbb{R}^{n} must be a polynomial.

