Harmonic Analysis— Excercises (3)

1. Let $\{u_p\}_{p=1}^{\infty} \subset L^2(\mathbb{R}^n)$ satisfy supp $\hat{u}_p \subset \{\xi \in \mathbb{R}^n : \frac{1}{C}2^{p-1} \leq |\xi| \leq C2^{p+1}\}$. Then there holds

$$|\sum_{p=1}^{\infty} u_p||_0^2 \le C' \sum_{p=1}^{\infty} ||u_p||_0^2.$$

Here C, C' are constants independent of u and p.

2. Using Littlewood-Paley decomposition to show that $H^{s}(\mathbb{R}^{n})$ is embedded into $C^{\alpha}(\mathbb{R}^{n})$ provided $s = n/2 + \alpha$ and $\alpha > 0$ is not an integer.

3. Prove the following classical time-decay estimates for the Cauchy problem of heat equation

$$\begin{cases} u_t - \Delta u = 0, & x \in \mathbb{R}^n, \ t > 0, \\ u(0, x) = \phi(x), & x \in \mathbb{R}^n. \end{cases}$$

Suppose that $\phi \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$. Then for t > 0, there hold

(1)
$$||u(t)||_{L^{p}(\mathbb{R}^{n})} \leq ||\phi||_{L^{p}(\mathbb{R}^{n})},$$

(2) $||\partial^{k}u(t)||_{L^{q}(\mathbb{R}^{n})} \leq Ct^{-(\frac{n}{2r}+\frac{k}{2})}||\phi||_{L^{p}(\mathbb{R}^{n})}.$

Here $\frac{1}{r} = \frac{1}{p} - \frac{1}{q}$, $1 \le r, q \le \infty$; *C* is a positive constant depending only on *p*, *q*, *r*, *k*; ∂^k is any *k*-th derivative with respect to *x*.

Hint: Using the Young inequality of convolutions.

4. Suppose for $f \in L^1(\mathbb{R}^1)$ there holds

$$\int_{\mathbb{R}^1} |f(x+t) - f(x)| \, dx \le |t|^2, \ t \in \mathbb{R}^1.$$

Show that f = 0.

5. (1) Let δ be the Dirac distribution: $\langle \delta, f \rangle = f(0)$. Prove that $\hat{\delta} = 1$.

(2) Show that any harmonic function in the whole space \mathbb{R}^n must be a polynomial.