Harmonic Analysis— Excercises (2)

1. Show there exists at most one smooth solution of this initial value problem for the telegraph equation

$$
\begin{cases}u_{t t}+d u_{x}-u_{x x}=f & \text { in }(-\infty, \infty) \times(0, T) \\ u=g, u_{t}=h & \text { on }(-\infty, \infty) \times\{t=0\}\end{cases}
$$

Here d is a constant.
2. Show there exists at most one smooth solution of this problem for the beam equation

$$
\begin{cases}u_{t t}+u_{x x x x}=0 & \text { in }(0,1) \times(0, T) \\ u=u_{x}=0 & \text { on }(\{0\} \times(0, T)) \cup(\{1\} \times(0, T)) \\ u=g, u_{t}=h & \text { on }(0,1) \times\{t=0\}\end{cases}
$$

3. Let $G(u)=\lambda|u|^{p-1} u$. Show that for p any odd integer and $s>\frac{1}{2}$ any real number (note that u may be complex-valued):
(1) $G: u \mapsto G(u)$ is a continuous map on $H^{S}\left(\mathbb{R}^{1}\right)$;
(2) For any $u, v \in H^{s}\left(\mathbb{R}^{1}\right)$, there is a function $L(x, y)$ which is nondecreasing for each independent variables $x \geq 0, y \geq 0$ such that

$$
\|G(u)-G(v)\|_{H^{s}\left(\mathbb{R}^{1}\right)} \leq L\left(\|u\|_{H^{s}\left(\mathbb{R}^{1}\right)},\|v\|_{H^{s}\left(\mathbb{R}^{1}\right)}\right)\|u-v\|_{H^{s}\left(\mathbb{R}^{1}\right)}
$$

4. Show that $H^{1}\left(\mathbb{R}^{n}\right)$ is dense in $H^{\frac{1}{2}}\left(\mathbb{R}^{n}\right)$.
5. Assume that $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right) \cap L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and $u(x) \geq 0$. Show that if $\hat{u} \in$ $L^{\infty}\left(\mathbb{R}^{n}\right)$, then $u \in L^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\|u\|_{L^{1}\left(\mathbb{R}^{n}\right)}=\|\hat{u}\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} .
$$

Hint: Consider $u_{k}(x)=\chi(x / k) u(x)$, with $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \chi \leq 1, \chi(0)=1$.

