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Abstract. We construct chain maps between the bar and Koszul resolutions for a quantum
symmetric algebra (skew polynomial ring). This construction uses a recursive technique involving
explicit formulae for contracting homotopies. We use these chain maps to compute the Gersten-
haber bracket, obtaining a quantum version of the Schouten-Nijenhuis bracket on a symmetric
algebra (polynomial ring). We compute brackets also in some cases for skew group algebras arising
as group extensions of quantum symmetric algebras.

1. Introduction

Hochschild [8] introduced homology and cohomology for algebras in 1945. Gerstenhaber [5]
studied extensively the algebraic structure of Hochschild cohomology—its cup product and graded
Lie bracket (or Gerstenhaber bracket)—and consequently algebras with such structure are gen-
erally termed Gerstenhaber algebras. Many mathematicians have since investigated Hochschild
cohomology for various types of algebras, and it has proven useful in many settings, including
algebraic deformation theory [6] and support variety theory [4], [15].

The graded Lie bracket on Hochschild cohomology remains elusive in contrast to the cup prod-
uct. The latter may be defined via any convenient projective resolution. The former is defined
on the bar resolution, which is useful theoretically but not computationally, and one typically
computes graded Lie brackets by translating to another more convenient resolution via explicit
chain maps. Such chain maps are not always easy to find. One would like to define the graded Lie
structure directly on another resolution or to find efficient techniques for producing chain maps.

In this paper, we begin in Section 2 by promoting a recursive technique for constructing chain
maps. The technique is not new; for example it appears in the book of Mac Lane [10]. See
also Le and the second author [9] for a more general setting. We first use this technique to
construct chain maps between the bar and Koszul resolutions for symmetric algebras, reproducing
in Theorem 3.5 the chain maps of Shepler and the first author [13] that had been obtained via
ad hoc methods. We then construct new chain maps more generally for quantum symmetric
algebras (skew polynomial rings) in Theorem 4.6. We generalize an alternative description, due
to Carqueville and Murfet [3], of these chain maps for symmetric algebras to quantum symmetric
algebras in (4.8). We use these chain maps to compute the Gerstenhaber bracket on quantum
symmetric algebras, generalizing the Schouten-Nijenhuis bracket on the Hochschild cohomology
of polynomial rings (Theorem 5.1). We then investigate the Hochschild cohomology of a group
extension of a quantum symmetric algebra, obtaining results on brackets in the special cases that
the action is diagonal (Theorem 7.1) or that the Hochschild cocycles have minimal degree as maps
on tensor powers of the algebra (Corollary 7.4). In the latter case, we thereby obtain a new proof
that all such Hochschild 2-cocycles are noncommutative Poisson structures (cf. Naidu and the first
author [12], in which algebraic deformation theory was used instead). Some results on brackets
for group extensions of polynomial rings were previously given by Halbout and Tang [7] and by
Shepler and the first author [14].
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Let k be a field. All algebras will be associative k-algebras with unity and tensor products will
be taken over k unless otherwise indicated.

2. Construction of comparison morphisms

Let A be a ring and let M and N be two left A-modules. Let P q (respectively, Q q) be a
projective resolution of M (respectively, N). It is well known that given a homomorphism of
A-modules f : M → N , there exists a chain map f q : P q → Q q lifting f (and different lifts are
equivalent up to homotopy). Sometimes in practice we need an explicit construction of such a
chain map, called a comparison morphism, to perform computations. In this section, we recall a
method to construct chain maps under the condition that P q is a free resolution (see Mac Lane
[10, Chapter IX, Theorem 6.2]). The second author and Le will present a method for arbitrary
projective resolutions in a paper in preparation ([9]).

Let us fix some notation and assumptions. Suppose that

· · · −→ Pn
dPn−→ Pn−1

dPn−1−→ · · ·
dP1−→ P0 (

dP0−→M → 0)

is a free resolution of M , that is, for each n ≥ 0, Pn = A(Xn) for some set Xn. (The module A(Xn)

is a direct sum of copies of A indexed by Xn. We identify each element of Xn with the identity
1A in the copy of A indexed by that element.) Suppose that a projective resolution of N ,

· · · −→ Qn
dQn−→ Qn−1

dQn−1−→ · · ·
dQ1−→ Q0 (

dQ0−→ N → 0),

comes equipped with a chain contraction: a collection of set maps tn : Qn → Qn+1 for each n ≥ 0

and t−1 : N → Q0 such that for n ≥ 0, tn−1d
Q
n + dQn+1tn = IdQn and dQ0 t−1 = IdN . We use these

next to construct a chain map, fn : Pn → Qn for n ≥ 0, lifting f−1 := f . As Pn is free, we need
only specify the values of fn on elements of Xn, the generating set of Pn.

At first glance, it may appear that fn defined below will be the zero map, since it is defined
recursively by applying the differential more than once. However, the maps tn are not in general
A-module homomorphisms. The formula (2.1) is used only to define fn on free basis elements,
and fn is then extended to an A-module map. In our examples the maps tn will be k-linear, but
for the construction, they are only required to be maps of sets, since we apply them only to basis
elements. In this weaker setting, such a collection of maps may be called a weak self-homotopy as
in [1].

For n = 0, given x ∈ X0, define f0(x) = t−1fd
P
0 (x). Then dQ0 f0(x) = dQ0 t−1fd

P
0 (x) = fdP0 (x).

Suppose that we have constructed f0, · · · , fn−1 such that for 0 ≤ i ≤ n− 1, dQi fi = fi−1d
P
i . For

x ∈ Xn, define

(2.1) fn(x) = tn−1fn−1d
P
n (x).

Then

dQn fn(x) = dQn tn−1fn−1d
P
n (x)

= fn−1d
P
n (x)− tn−2d

Q
n−1fn−1d

P
n (x)

= fn−1d
P
n (x)− tn−2fn−2d

P
n−1d

P
n (x)

= fn−1d
P
n (x).

This proves the following.

Proposition 2.2. The maps fn defined in equation (2.1) form a chain map from P q to Q q lifting
f : M → N .

In the next two sections, we use this formula (2.1) to find explicit chain maps for symmetric
and quantum symmetric algebras, and in the rest of this article we use the chain maps thus found
in computations of Gerstenhaber brackets for these algebras and their group extensions.
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3. Chain contractions and comparison maps for polynomial algebras

Let N be a positive integer. Let V be a vector space over the field k with basis x1, · · · , xN , and
let

S(V ) := k[x1, · · · , xN ]

be the polynomial algebra in N indeterminates. This is a Koszul algebra, so there is a standard
complex K q(S(V )) that is a free resolution of A := S(V ) as an A-bimodule (equivalently as an
Ae-module where Ae = A⊗Aop). We recall this complex next: For each p, let

∧p(V ) denote the
pth exterior power of V . Then K q(S(V )) is the complex

· · · → A⊗
∧2(V )⊗A d2−→ A⊗

∧1(V )⊗A d1−→ A⊗A(
d0−→ A→ 0),

that is, for 0 ≤ p ≤ N , the degree p term is Kp(S(V )) := A ⊗
∧p(V ) ⊗ A. The differential dp is

defined by

dp
(
1⊗ (xj1 ∧ · · · ∧ xjp)⊗ 1

)
=

p∑
i=1

(−1)i+1xji ⊗ (xj1∧· · ·∧ x̂ji∧· · ·∧ xjp)⊗ 1−
p∑
i=1

(−1)i+1 ⊗ (xj1∧· · ·∧ x̂ji∧· · ·∧ xjp)⊗ xji

whenever 1 ≤ j1 < · · · < jp ≤ N and p > 0; the notation x̂ji indicates that the factor xji is
deleted. The map d0 is multiplication.

From now on, we denote ` = (`1, · · · , `N ), an N -tuple of nonnegative integers, x = (x1, · · · , xN )

and x` = x`11 · · ·x
`N
N . We shall give a chain contraction of K q(S(V )) consisting of maps t−1 : A→

A⊗A and tp : A⊗
∧p(V )⊗A→ A⊗

∧p+1(V )⊗A for p ≥ 0. These maps will be left A-module
homomorphisms, and thus we need only define them on choices of free basis elements of these free
left A-modules.

To define t−1, it suffices to specify t−1(1) = 1⊗1 and extend it A-linearly. If p = 0 and ` ∈ NN ,
define

t0
(
1⊗ x`

)
= −

N∑
j=1

`j∑
r=1

(
x
`j−r
j x

`j+1

j+1 · · ·x
`N
N

)
⊗ xj ⊗

(
x`11 · · ·x

`j−1

j−1 x
r−1
j

)
.

If p ≥ 1, it suffices to give tp
(
1 ⊗ (xj1 ∧ · · · ∧ xjp) ⊗ x`

)
, for ` ∈ NN and 1 ≤ j1 < · · · < jp ≤ N ,

and we set

tp
(
1⊗ (xj1 ∧ · · · ∧ xjp)⊗ x`

)
= (−1)p+1

N∑
jp+1=jp+1

`jp+1∑
r=1

(
x
`jp+1

−r
jp+1

x
`jp+1+1

jp+1+1 · · ·x
`N
N

)
⊗
(
xj1∧· · ·∧xjp+1

)
⊗
(
x`11 · · ·x

`jp+1−1

jp+1−1 x
r−1
jp+1

)
.

We note that in case jp = N , the sum is empty, and so the value of tp on such an element is 0.

Proposition 3.1. The above defined maps tp, p ≥ −1, form a chain contraction for the resolution
K q(S(V )).

Proof It is easy to verify that d0t−1 = Id. We need to show that for p ≥ 0, tp−1dp + dp+1tp = Id.
We first let p = 0, and show that t−1d0 + d1t0 = Id.

For ` ∈ NN , we have t−1d0(1⊗ x`) = t−1(x`) = x` ⊗ 1, and
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d1t0(1⊗ x`)

= d1

(
−

N∑
j=1

`j∑
r=1

x
`j−r
j x

`j+1

j+1 · · ·x
`N
N ⊗ xj ⊗ x

`1
1 · · ·x

`j−1

j−1 x
r−1
j

)
= −

N∑
j=1

`j∑
r=1

x
`j−r+1
j x

`j+1

j+1 · · ·x
`N
N ⊗ x

`1
1 · · ·x

`j−1

j−1 x
r−1
j +

N∑
j=1

`j∑
r=1

x
`j−r
j x

`j+1

j+1 · · ·x
`N
N ⊗ x

`1
1 · · ·x

`j−1

j−1 x
r
j

= −
N∑
j=1

`j−1∑
r=0

x
`j−r
j x

`j+1

j+1 · · ·x
`N
N ⊗ x

`1
1 · · ·x

`j−1

j−1 x
r
j +

N∑
j=1

`j∑
r=1

x
`j−r
j x

`j+1

j+1 · · ·x
`N
N ⊗ x

`1
1 · · ·x

`j−1

j−1 x
r
j

= −
N∑
j=1

x
`j
j x

`j+1

j+1 · · ·x
`N
N ⊗ x

`1
1 · · ·x

`j−1

j−1 +

N∑
j=1

x
`j+1

j+1 · · ·x
`N
N ⊗ x

`1
1 · · ·x

`j−1

j−1 x
`j
j

= −
N∑
j=1

x
`j
j · · ·x

`N
N ⊗ x

`1
1 · · ·x

`j−1

j−1 +
N∑
j=2

x
`j
j · · ·x

`N
N ⊗ x

`1
1 · · ·x

`j−1

j−1

= −x` ⊗ 1 + 1⊗ x`.

We thus obtain (t−1d0 + d1t0)(1⊗ x`) = x` ⊗ 1− x` ⊗ 1 + 1⊗ x` = 1⊗ x` and therefore confirm
the equality. Note that in the above proof, there are many terms which cancel one another.

The proof of the equality tp−1dp + dp+1tp = Id for p ≥ 1 is similar to the above case p = 0, but
is much more complicated. Note that as in the case p = 0, in the proof for the cases p ≥ 1, we
must change indices several times in order to cancel many terms.

�

Now we can use the chain contraction of Proposition 3.1 to give formulae for comparison
morphisms between the normalized bar resolution and the Koszul resolution. Such comparison
morphisms were found by the first author and Shepler [13] by ad hoc methods.

For any k-algebra A, denote by A = A/(k · 1), a k-vector space. The normalized bar resolution

of A has p-th term Bp(A) = A⊗A⊗p ⊗A and differentials δp : A⊗A⊗p ⊗A→ A⊗A⊗(p−1) ⊗A
given by

δp(a0 ⊗ a1 ⊗ · · · ⊗ ap ⊗ ap+1) =

p∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap+1

for a0, . . . , ap+1 ∈ A, where an overline indicates an image in A. We shall see that this resolution
is suitable for computation using the method from Section 2.

There is a standard chain contraction of the normalized bar resolution, sp : A ⊗ A⊗p ⊗ A →
A⊗A⊗(p+1) ⊗A, given by

(3.2) sp(1⊗ a1 ⊗ · · · ⊗ ap ⊗ ap+1) = (−1)p+1 ⊗ a1 ⊗ · · · ⊗ ap ⊗ ap+1 ⊗ 1.

Each sp is then extended to a left A-module homomorphism. For convenience, we shall from now
on abuse notation and write ai in place of ai.

A chain map from the Koszul resolution to the normalized bar resolution is given by the standard

embedding: For p ≥ 0, define Φp : A⊗
∧p(V )⊗A→ A⊗A⊗p ⊗A by

(3.3) Φp

(
1⊗ (xj1 ∧ · · · ∧ xjp)⊗ 1

)
=

∑
π∈Symp

sgnπ ⊗ xjπ(1) ⊗ · · · ⊗ xjπ(p) ⊗ 1

for 1 ≤ j1 < · · · < jp ≤ N , where Symp denotes the symmetric group on p symbols.

The other direction is much more complicated. We shall define Ψp : A⊗A⊗p⊗A→ A⊗
∧p(V )⊗A

for each p ≥ 0. Let Ψ0 be the identity map. For p ≥ 1, define Ψp by
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Ψp(1⊗ x`
1

⊗ · · · ⊗ x`
p

⊗ 1)(3.4)

=
∑

1≤j1<···<jp≤N

∑
0≤rs≤`sjs−1
s=1,··· ,p

x
Q

(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) ⊗ (xj1 ∧ · · · ∧ xjp)⊗ x

Q̂
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) ,

where

• as in [13], we define the N -tuple Q
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) by(

Q
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp)

)
j

=

{
rj + `1j + · · ·+ `s−1

j if j = js
`1j + · · ·+ `sj if js < j < js+1

;

• the N -tuple Q̂
(`1,··· ,`p; j1,··· ,jp)

(r1,··· ,rp)
is defined to be complementary to Q

(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) in the

sense that

x
Q

(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) x

Q̂
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) xj1 · · ·xjp = x`

1

· · ·x`
p

∈ k[x1, · · · , xN ].

Theorem 3.5. [13] Let Φ q and Ψ q be as defined in (3.3) and (3.4). Then

(i) the map Φ q is a chain map from the Koszul resolution to the normalized bar resolution;
(ii) the map Ψ q is a chain map from the normalized bar resolution to the Koszul resolution;
(iii) the composition Ψ q ◦ Φ q is the identity map.

Proof (i). We check that this standard map follows from the method in Section 2, in order to
illustrate the method. We proceed by induction, applying (2.1) to the chain contraction s q of the
normalized bar resolution defined in (3.2).

The case for p = 0 is trivial. Now suppose that for p ≥ 0, Φp : A⊗
∧p(V )⊗A→ A⊗A⊗p ⊗A

is given by (3.3). We compute Φp+1

(
1⊗ (xj1 ∧ · · · ∧xjp+1)⊗ 1

)
, where Φp+1 is defined by equation

(2.1) in terms of Φp. We have

Φp+1

(
1⊗ (xj1 ∧ · · · ∧ xjp+1)⊗ 1

)
= spΦpdp+1

(
1⊗ (xj1 ∧ · · · ∧ xjp+1)⊗ 1

)
= spΦp

( p+1∑
i=1

(−1)i+1xji ⊗ (xj1 ∧ · · · ∧ x̂ji ∧ · · · ∧ xjp+1)⊗ 1
)

− spΦp

( p+1∑
i=1

(−1)i+11⊗ (xj1 ∧ · · · ∧ x̂ji ∧ · · · ∧ xjp+1)⊗ xji
)
.

Notice that the value of sp on

Φp

( p+1∑
i=1

(−1)i+1xji ⊗ (xj1 ∧ · · · ∧ x̂ji ∧ · · · ∧ xjp+1)⊗ 1
)

is 0, since the rightmost tensor factor is 1, and we work with the normalized bar resolution. For
a permutation π ∈ Symp that fixes some letter i, 1 ≤ i ≤ p+ 1, consider the permutation π̂ of the

set {1, · · · , i− 1, î, i+ 1, · · · , p+ 1} corresponding to π via the bijection

{1, · · · , i− 1, i, i+ 1, · · · , p} ' {1, · · · , i− 1, î, i+ 1, · · · , p+ 1}
sending j to j for 1 ≤ j ≤ i− 1 and to j + 1 for i ≤ j ≤ p.

Define a new permutation π̃ ∈ Sp+1 by imposing

π̃(j) =

 π̂(j) for j < i;
π̂(j + 1) for i ≤ j < p+ 1;
i for j = p+ 1.
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Then we have sgn(π̃) = (−1)p−i+1sgn(π), and so

Φp+1

(
1⊗ (xj1 ∧ · · · ∧ xjp+1)⊗ 1

)
= −spΦp

( p+1∑
i=1

(−1)i+11⊗ (xj1 ∧ · · · ∧ x̂ji ∧ · · · ∧ xjp+1)⊗ xji
)

= −sp
( p+1∑
i=1

(−1)i+1
∑

π̃∈Sp+1,π̃(p+1)=i

(−)p−i+1sgn(π̃) 1⊗ xjπ̃(1) ⊗ · · · ⊗ xjπ̃(p) ⊗ xjπ̃(p+1)

)
= −(−1)p+1

p+1∑
i=1

(−1)i+1
∑

π̃∈Sp+1,π̃(p+1)=i

(−)p−i+1sgn(π̃) 1⊗ xjπ̃(1) ⊗ · · · ⊗ xjπ̃(p) ⊗ xjπ̃(p+1)
⊗ 1

=
∑

π̃∈Sp+1

sgn(π̃) 1⊗ xjπ̃(1) ⊗ · · · ⊗ xjπ̃(p) ⊗ xjπ̃(p+1)
⊗ 1.

This completes the proof of (i).

(ii). As in (i), we apply the method in Section 2 to the chain contraction t q of Proposition 3.1
to show that Ψ q as defined in (3.4) is indeed the resulting chain map. We proceed by induction
on p.

Suppose that Ψp is given by (3.4). Let us apply (2.1) and show that Ψp+1 results. First notice
that we can write

tp
(
1⊗ (xj1 ∧ · · ·∧xjp)⊗x`

)
= (−1)p+1

N∑
jp+1=jp+1

`jp+1∑
r=1

xQ
(`; jp+1)

r ⊗xj1 ∧ · · ·∧xjp ∧xjp+1 ⊗x
Q̂

(`; jp+1)

r .

We have

dp+1(1⊗ x`
1

⊗ · · · ⊗ x`
p+1

⊗ 1)

= x`
1

⊗ x`
2

· · · ⊗ x`
p+1

⊗ 1 +

p∑
i=1

(−1)p ⊗ x`
1

⊗ · · · ⊗ x`
i+`i+1

⊗ · · · ⊗ x`
p+1

⊗ 1

+ (−1)p+1 ⊗ x`
1

⊗ · · · ⊗ x`
p

⊗ x`
p+1

.

Now consider

Ψp(x
`1 ⊗ x`

2

· · · ⊗ x`
p+1

⊗ 1)

=
∑

1≤j1<···<jp≤N

∑
1≤rs≤`s+1

js
1≤s≤p

x`
1

x
Q

(`2,··· ,`p+1; j1,··· ,jp)
(r1,··· ,rp) ⊗ xj1 ∧ · · · ∧ xjp ⊗ x

Q̂
(`2,··· ,`p+1; j1,··· ,jp)
(r1,··· ,rp) .

However, by definition, Q̂
(`2,··· ,`p+1; j1,··· ,jp)

(r1,··· ,rp)
has no terms of the form xvu with u > jp. Therefore,

tpΨp(x
`1 ⊗ x`2 · · · ⊗ x`p+1 ⊗ 1) = 0.

Similarly we can prove that for 1 ≤ i ≤ p,

tpΨp(1⊗ x`
1

⊗ · · · ⊗ x`
i+`i+1

⊗ · · · ⊗ x`
p+1

⊗ 1) = 0.

The only term left is tpΨp((−1)p+1 ⊗ x`1 ⊗ x`2 · · · ⊗ x`p ⊗ x`p+1
). We obtain
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tpΨp((−1)p+1 ⊗ x`
1

⊗ x`
2

· · · ⊗ x`
p

⊗ x`
p+1

)

= (−1)p+1
∑

1≤j1<···<jp≤N

∑
1≤rs≤`sjs

1≤s≤p

tp
(
x
Q

(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) ⊗ xj1 ∧ · · · ∧ xjp ⊗ x

Q̂
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) x`

p+1)

=
∑

1≤j1<···<jp≤N

∑
1≤rs≤`sjs

1≤s≤p

N∑
jp+1=jp+1

`p+1
jp+1∑
r=1

x
Q

(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) x

Q(`; jp+1)

rp+1 ⊗ xj1 ∧ · · · ∧ xjp+1 ⊗ x
Q̂

(`; jp+1)

rp+1 ,

where

` = Q̂
(`1,··· ,`p; j1,··· ,jp)

(r1,··· ,rp)
+ `p+1.

Now notice that

Q
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) +Q(`; jp+1)

rp+1
= Q

(`1,··· ,`p+1; j1,··· ,jp+1)

(r1,··· ,rp+1)

and

Q̂
(`; jp+1)

rp+1
= Q̂

(`1,··· ,`p+1; j1,··· ,jp+1)

(r1,··· ,rp+1)
.

We have the desired result:

tpΨpdp+1(1⊗ x`
1

⊗ · · · ⊗ x`
p+1

⊗ 1)

= tpΨp((−1)p+1 ⊗ x`
1

⊗ · · · ⊗ x`
p

⊗ x`
p+1

)

=
∑

1≤j1<···<jp+1≤N

∑
1≤rs≤`sjs
1≤s≤p+1

x
Q

(`1,··· ,`p+1; j1,··· ,jp+1)

(r1,··· ,rp+1) ⊗ xj1 ∧ · · · ∧ xjp+1 ⊗ x
Q̂

(`1,··· ,`p+1; j1,··· ,jp+1)

(r1,··· ,rp+1)

= Ψp+1(1⊗ x`
1

⊗ · · · ⊗ x`
p+1

⊗ 1).

(iii). For 1 ≤ i1 < · · · < ip ≤ N , we have

ΨpΦp

(
1⊗ (xi1 ∧ · · · ∧ xip)⊗ 1

)
= Ψp

( ∑
π∈Symp

sgnπ ⊗ xiπ(1) ⊗ · · · ⊗ xiπ(p) ⊗ 1
)

=
∑

π∈Symp

sgnπ
∑

1≤j1<···<jp≤N

∑
0≤rs≤(eiπ(s) )js−1

s=1,··· ,p

x
Q

(eiπ(1)
,··· ,eiπ(p)

; j1,··· ,jp)

(r1,··· ,rp) ⊗ xj1 ∧ · · · ∧ xjp ⊗ xQ̂,

where eu is the uth canonical basis vector (0, . . . , 0, 1, 0, . . . , 0), the 1 in the uth position, and

Q̂ = Q̂
(eiπ(1) ,··· ,eiπ(p) ; j1,··· ,jp)

(r1,··· ,rp) .

Notice that Q
(eiπ(1) ,··· ,eiπ(p) ; j1,··· ,jp)

(r1,··· ,rp) occurs in the sum only if (iπ(1), · · · , iπ(p)) = (j1, · · · , jp).

In this case, π is the identity, r1 = · · · = rp = 0 and Q
(eiπ(1) ,··· ,eiπ(p) ; j1,··· ,jp)

(r1,··· ,rp) is the zero vector.

Therefore,
ΨpΦp

(
1⊗ xi1 ∧ · · · ∧ xip ⊗ 1

)
= 1⊗ xi1 ∧ · · · ∧ xip ⊗ 1.

�

For comparison, we give an alternative description of the maps Ψp due to Carqueville and
Murfet [3]: For each i, let τi : S(V )e → S(V )e be the k-linear map that is defined on monomials
as follows. (We denote application of the map τi by a left superscript.)

τi(xj11 · · ·x
jN
N ⊗ x

l1
1 · · ·x

lN
N ) = xj11 · · ·x

ji−1

i−1 x
ji+1

i+1 · · ·x
jN
N ⊗ x

l1
1 · · ·x

li−1

i−1 x
ji+li
i x

li+1

i+1 · · ·x
lN
N .



8 SARAH WITHERSPOON AND GUODONG ZHOU

Define difference quotient operators ∂[i] : S(V )→ S(V )e for each i, 1 ≤ i ≤ N , as in [3, (2.12)] by

∂[i](f) :=
τ1···τi−1(f ⊗ 1)− τ1···τi(f ⊗ 1)

xi ⊗ 1− 1⊗ xi
.

For example, τ1(x2
1x2 ⊗ 1) = x2 ⊗ x2

1, so that

∂[1](x
2
1x2) =

x2
1x2 ⊗ 1− x2 ⊗ x2

1

x1 ⊗ 1− 1⊗ x1
= x1x2 ⊗ 1 + x2 ⊗ x1.

Similarly, ∂[2](x
2
1x2) = 1⊗ x2

1.

Identify elements in S(V )e ⊗
∧p(V ) with elements in S(V )⊗

∧p(V )⊗ S(V ) via the canonical
isomorphism between these two spaces. Then Ψp may be expressed as in [3, (2.22)]:

Ψp(1⊗ x`
1

⊗ · · · ⊗ x`
p

⊗ 1) =
∑

1≤j1<···<jp≤N

( p∏
s=1

∂[js](x
`s)
)
⊗ xj1 ∧ · · · ∧ xjp .

For example, if N = 2, then Ψ1(1⊗ x2
1x2 ⊗ 1) = x1x2 ⊗ 1⊗ x1 + x2 ⊗ x1 ⊗ x1 + 1⊗ x2

1 ⊗ x2. We
may similarly express the chain contraction tp as

tp(1⊗ xj1 ∧ · · · ∧ xjp ⊗ x`) = (−1)p+1
N∑

jp+1=jp+1

∂[jp+1](x
`)⊗ xj1 ∧ · · · ∧ xjp+1 .

4. Chain contractions and comparison maps for quantum symmetric algebras

Let N be a positive integer, and for each pair i, j ∈ {1, 2, · · · , N}, let qi,j be a nonzero scalar

in the field k such that qi,i = 1 and qj,i = q−1
i,j for all i, j. Denote by q the corresponding tuple of

scalars, q := (qi,j)1≤i,j≤N . Let V be a vector space with basis x1, · · · , xN , and let

(4.1) Sq(V ) := k〈x1, · · · , xN | xixj = qi,jxjxi, for all 1 ≤ i, j ≤ N〉,
the quantum symmetric algebra determined by q. This is a Koszul algebra, and there is a standard
complex K q(Sq(V )) that is a free resolution of Sq(V ) as an Sq(V )-bimodule (see, e.g., Wambst
[16, Proposition 4.1(c)]). Setting A = Sq(V ), the complex is

· · · → A⊗
∧2(V )⊗A d2−→ A⊗

∧1(V )⊗A d1−→ A⊗A(
d0−→ A→ 0),

with differential dp defined by

dp
(
1⊗ (xj1 ∧ · · · ∧ xjp)⊗ 1

)
=

p∑
i=1

(−1)i+1
( i∏
s=1

qjs,ji

)
xji ⊗ (xj1 ∧ · · · ∧ x̂ji ∧ · · · ∧ xjp)⊗ 1

−
p∑
i=1

(−1)i+1
( p∏
s=i

qji,js

)
1⊗ (xj1 ∧ · · · ∧ x̂ji ∧ · · · ∧ xjp)⊗ xji

whenever 1 ≤ j1 < · · · < jp ≤ N and p > 0; the map d0 is multiplication.

As in the previous section, we denote ` = (`1, · · · , `N ), x = (x1, · · · , xN ) and x` = x`11 · · ·x
`N
N .

We shall give a chain contraction of K q(Sq(V )), tp : A⊗
∧p(V )⊗A→ A⊗

∧p+1(V )⊗A for p ≥ 0
and t−1 : A→ A⊗A, which are moreover left A-module homomorphisms (cf. Wambst [16]).

Let t−1(1) = 1 ⊗ 1 and extend t−1 to be left A-linear. For p ≥ 0, 1 ≤ j1 < · · · < jp ≤ N , and
` ∈ NN , let

tp
(
1⊗ (xj1 ∧ · · · ∧ xjp)⊗ x`

)
= (−1)p+1

N∑
jp+1=jp+1

`jp+1∑
r=1

λ
(`; j1,··· ,jp)
jp+1,r

x
`jp+1

−r
jp+1

x
`jp+1+1

jp+1+1 · · ·x
`N
N ⊗ xj1∧· · ·∧xjp+1 ⊗ x

`1
1 · · ·x

`jp+1−1

jp+1−1 x
r−1
jp+1
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where

λ
(`; j1,··· ,jp)
jp+1,r

=
( jp+1−1∏

s=1

N∏
t=jp+1

q`s`ts,t

)( N∏
t=1

q`tjp+1,t

)r−1( p∏
t=1

q
`jp+1

−r
jt,jp+1

)( p+1∏
s=1

N∏
t=jp+1+1

q`tjs,t

)
.

We remark that compared with the maps in the previous section for polynomial algebras,
the only difference is that now there is a new coefficient. This (rather complicated) coefficient

λ
(`; j1,··· ,jp)
jp+1,r

can be obtained as follows: In the right-hand side of the formula for tp, in comparison

to its argument 1⊗xj1 ∧· · ·∧xjp⊗x` on the left-hand side, whenever a factor xi of x` has changed
positions so that it is now to the left of a factor xj with i > j (including factors of the exterior

product), one should include one factor of qj,i. One verifies easily that λ
(`; j1,··· ,jp)
jp+1,r

has the given

form. We shall call this rule the twisting principle and shall use it several times later.

Proposition 4.2. The above defined maps tp, p ≥ −1, form a chain contraction over the resolu-
tion K q(Sq(V )).

Proof One needs to verify that for n ≥ 0, tn−1dn + dn+1tn = Id, and d0t−1 = Id. Notice that the
computation used in the above equalities is the same as for polynomial algebras, except that now
for quantum symmetric algebras, we have some extra coefficents. One needs to show that these
extra coefficients do not cause any problem.

Recall that in the proof of Proposition 3.1, the concrete computation is simplified by many
terms which cancel one another. For example, this occurs in the verification of the equation
t−1d0 + d1t0 = Id in the proof of Proposition 3.1. For polynomial algebras, the proof works due
to these cancelling terms.

For quantum symmetric algebras, things are not so easy. However, the twisting principle always
holds, that is, when we apply a differential or chain contraction, once we produce a monomial
(always in lexographical order) or tensor of monomials, we need to include a coefficient before
this monomial according to the twisting principle. Thus, if two terms cancel each other for
polynomial algebras, as we have included the same coefficient, they still cancel each other for
quantum symmetric algebras. This completes the proof of the result.

�

Now we can use (2.1) and the chain contraction of Proposition 4.2 to give formulae for com-
parison morphisms between the normalized bar resolution and the Koszul resolution.

A chain map from the Koszul resolution to the normalized bar resolution is induced from the
standard embedding of the Koszul resolution into the (unnormalized) bar resolution. See also
Wambst [16, Lemma 5.3 and Theorem 5.4] for a more general setting. We give the formula as it

appears in [11, §2.2(3)]. For p ≥ 0, we define Φp : A⊗
∧p(V )×A→ A⊗A⊗p ⊗A by

(4.3) Φp

(
1⊗ (xj1 ∧ · · · ∧ xjp)⊗ 1

)
=

∑
π∈Symp

(sgnπ)q
j1,··· ,jp
π ⊗ xjπ(1) ⊗ · · · ⊗ xjπ(p) ⊗ 1

for 1 ≤ j1 < · · · < jp ≤ N . In the above formula, the coefficients q
j1,··· ,jp
π are the scalars obtained

from the twisting principle, that is,

(4.4) q
j1,...,jp
π xjπ(1) · · ·xjπ(p) = xj1 · · ·xjp .

The other direction is much more complicated. We shall see that for quantum symmetric
algebras, the comparison morphism is a twisted version of that for a polynomial ring given in the
previous section, with certain coefficients included according to the twisting principle.

We define the maps Ψp : A ⊗ A⊗p ⊗ A → A ⊗
∧p(V ) ⊗ A as follows. Let Ψ0 be the identity

map. For p ≥ 1, define Ψp by

(4.5)
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Ψp(1⊗ x`
1

⊗ · · · ⊗ x`
p

⊗ 1)

=
∑

1≤j1<···<jp≤N

∑
0≤rs≤`sjs−1
s=1,··· ,p

µ
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) x

Q
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) ⊗ xj1 ∧ · · · ∧ xjp ⊗ x

Q̂
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) ,

where

• as before, we define the N -tuple Q
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) by(

Q
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp)

)
j

=

{
rj + `1j + · · ·+ `s−1

j if j = js
`1j + · · ·+ `sj if js < j < js+1

;

• the N -tuple Q̂
(`1,··· ,`p; j1,··· ,jp)

(r1,··· ,rp)
and scalar µ

(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) are (uniquely) defined by the

equation

µ
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) x

Q
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) xj1 · · ·xjpx

Q̂
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) = x`

1

· · ·x`
p

∈ Sq(V ).

Note that the coefficient µ
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) is obtained using the twisting principle in the right-

hand side of the formula for Ψp, and that Q
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) and Q̂

(`1,··· ,`p; j1,··· ,jp)

(r1,··· ,rp)
are the same as

in the case of the polynomial algebra k[x1, . . . , xn]. For comparison, we note that Wambst gave
such a chain map in degree 1 [16, Lemma 6.7].

Theorem 4.6. Let Φ q and Ψ q be as defined in (4.3) and (4.5). Then

(i) the map Φ q is a chain map from the Koszul resolution to the normalized bar resolution;
(ii) the map Ψ q is a chain map from the normalized bar resolution to the Koszul resolution;
(iii) the composition Ψ q ◦ Φ q is the identity map.

Proof (i). One direct proof was given in [11, Lemma 2.3]. (The characteristic of k was assumed
to be 0 in [11], however this assumption is not needed in that proof.) Another proof can be given
by applying (2.1) to a chain contraction s q over the normalized bar resolution as in the proof of
Theorem 3.5 (i). The twisting principle gives the coefficients.

(ii). One direct computational proof can be given by applying (2.1) to the chain contraction t q of
Proposition 4.2, as in the proof of Theorem 3.5 (ii). Thus the same proof as that of Theorem 3.5 (ii)
works, taking care with the coefficients, by the twisting principle.

(iii). The same proof as in the proof of Theorem 3.5 (iii) works; by the twisting principle, the
coefficients on both sides of the equation coincide.

�

We now give alternative descriptions of the maps tp and Ψp in this case of a quantum symmetric
algebra. The description of Ψp will generalize that of Carqueville and Murfet [3] from S(V ) to
Sq(V ). To this end, it is convenient to replace each term Sq(V )⊗

∧p(V )⊗ Sq(V ) of the Koszul
resolution by Sq(V )⊗ Sq(V )⊗

∧p(V ), using the canonical isomorphism

σp : Sq(V )⊗ Sq(V )⊗
∧p(V )→ Sq(V )⊗

∧p(V )⊗ Sq(V )

in which coefficients are inserted according to the twisting principle. For example, for x` ∈ Sq(V )
and 1 ≤ j1 < · · · < jp ≤ N ,

σp(1⊗ x` ⊗ xj1 ∧ · · · ∧ xjp) =
( N∏
s=1

p∏
t=1

q`ss,jt
)
⊗ xj1 ∧ · · · ∧ xjp ⊗ x`.

Via this isomorphism between the two spaces, consider tp as a map from Sq(V )⊗Sq(V )⊗
∧p(V )

to Sq(V )⊗Sq(V )⊗
∧p+1(V ). By abuse of notation, we still denote by tp this new map; the same

rule applies to Ψp.
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For 1 ≤ j ≤ N , define τj : Sq(V )e → Sq(V )e to be the operator that replaces all factors of
the form xj ⊗ 1 with 1⊗ xj , but with coefficient inserted according to the twisting principle. For

example, if x` ∈ Sq(V ), then

τj (x` ⊗ 1) =
( N∏
s=j+1

q
`j`s
j,s

)
x`11 · · ·x

`j−1

j−1 x
`j+1

j+1 · · ·x
`N
N ⊗ x

`j
j .

It is not difficult to see that for 1 ≤ i 6= j ≤ N , τiτj = τjτi. Define quantum difference quotient
operators ∂[i] : Sq(V )→ Sq(V )⊗ Sq(V ) for each i, 1 ≤ i ≤ N by

(4.7) ∂[i](f) := (xi ⊗ 1− 1⊗ xi)−1(τ1···τi−1(f ⊗ 1)− τ1···τi(f ⊗ 1)).

This definition should be understood as follows: By writing f as a linear combination of monomials,
it suffices to define ∂[i] on each monomial x`. The difference τ1···τi−1(x`⊗ 1)− τ1···τi(x`⊗ 1) may be

divided by xi ⊗ 1− 1⊗ xi on the left, by first factoring out x`ii ⊗ 1− 1⊗ x`ii on the left. Applying
the twisting principle, one sees that this is indeed always a factor. One must include a coefficient
given by the twisting principle, then use the identity

(xi ⊗ 1− 1⊗ xi)−1(x`ii ⊗ 1− 1⊗ x`ii ) =

`i∑
r=1

x`i−ri ⊗ xr−1
i .

For example, for f = x1x
2
2, let us compute ∂[2](f). We have

τ1(x1x
2
2 ⊗ 1) = q2

1,2x
2
2 ⊗ x1 = q2

1,2(x2
2 ⊗ 1)(1⊗ x1),

τ1τ2(x1x
2
2 ⊗ 1) = 1⊗ x1x

2
2 = q2

1,2(1⊗ x2
2)(1⊗ x1),

and so
τ1(x1x

2
2 ⊗ 1)− τ1τ2(x1x

2
2 ⊗ 1) = q2

1,2(x2
2 ⊗ 1− 1⊗ x2

2)(1⊗ x1).

We obtain thus

∂[2](f) = (x2 ⊗ 1− 1⊗ x2)−1(τ1(x1x
2
2 ⊗ 1)− τ1τ2(x1x

2
2 ⊗ 1))

= (x2 ⊗ 1− 1⊗ x2)−1(q2
1,2(x2

2 ⊗ 1− 1⊗ x2
2)(1⊗ x1))

= q2
1,2(x2 ⊗ 1 + 1⊗ x2)(1⊗ x1)

= q2
1,2x2 ⊗ x1 + q1,2 ⊗ x1x2.

In general, we have

∂[j](x
`) = (

j−1∏
s=1

q`ss,j
) `j∑
r=1

(

j−1∏
s=1

N∏
t=j+1

q`s`ts,t )(
N∏

t=j+1

q
`t(r−1)
j,t )x

`j−r
j x

`j+1

j+1 · · ·x
`N
N ⊗ x

`1
1 · · ·x

`j−1

j−1 x
r−1
j .

That is, one has an extra coefficient (
∏j−1
s=1 q

`s
s,j

)
as well as the coefficient included according to

the twisting principle.
The chain contraction tp : Sq(V ) ⊗ Sq(V ) ⊗

∧p(V ) → Sq(V ) ⊗ Sq(V ) ⊗
∧p+1(V ) may be

expressed as

tp(1⊗x`⊗xj1 ∧· · ·∧xjp) = (−1)p+1
N∑

jp+1=jp+1

( N∏
t=1

q`tjp+1,t

)( p∏
t=1

qjp+1,jt

)
∂[jp+1](x

`)⊗xj1 ∧· · ·∧xjp+1 .

This can be justified as follows: The coefficient in ∂[jp+1](x
`) is nearly the coefficient needed by the

twisting principle. The discrepancy is that ∂[jp+1](x
`) has an extra factor

∏jp+1−1
t=1 q`tt,jp+1

, and we

still need to insert
∏N
t=jp+1+1 q

`t
jp+1,t

and
∏p
t=1 qjp+1,jt since the term xjp+1 in xj1 ∧ · · · ∧ xjp+1 lies

to the right of xj1 ∧ · · · ∧ xjp and of x
`jp+1+1

jp+1+1 · · ·x
`N
N in ∂[jp+1](x

`). Altogether, we need to include

an extra factor of
(∏N

t=1 q
`t
jp+1,t

)(∏p
t=1 qjp+1,jt

)
in the coefficient in ∂[jp+1](x

`).
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The chain map Ψp : Sq(V ) ⊗ Sq(V ) ⊗ Sq(V )
⊗p → Sq(V ) ⊗ Sq(V ) ⊗

∧p(V ) may be expressed
as:

(4.8) Ψp(1⊗ 1⊗ x`
1

⊗ · · · ⊗ x`
p

) =
∑

1≤j1<···<jp≤N
µ

(`1,··· ,`p)
(j1,··· ,jp)

( p∏
s=1

∂[js](x
`s)
)
⊗ xj1 ∧ · · · ∧ xjp ,

where the scalar is defined according to the twisting principle by

(4.9) x`
1

· · ·x`
p

= µ
(`1,··· ,`p)
(j1,··· ,jp)

( p∏
s=1

∂[js](x
`s)
)′
xj1 · · ·xjp ∈ Sq(V ).

Here in the above expression, the term
(∏p

s=1 ∂[js](x
`s)
)′

is understood as follows: Suppose

∂[js](x
`s) = as ⊗ bs (symbolically), then the product

(∏p
s=1 ∂[js](x

`s)
)′

is (
∏
s as)(

∏
s bs) ∈ A.

5. Gerstenhaber brackets for quantum symmetric algebras

The Schouten-Nijenhuis (Gerstenhaber) bracket on Hochschild cohomology of the symmetric
algebra S(V ) is well known. In this section, we generalize it to the quantum symmetric algebras
Sq(V ). First we recall the definition of the Gerstenhaber bracket on Hochschild cohomology as
defined on the normalized bar resolution of any k-algebra A.

Let f ∈ HomAe(A ⊗ A
⊗p ⊗ A,A) and f ′ ∈ HomAe(A ⊗ A

⊗q ⊗ A,A). Define their bracket,

[f, f ′] ∈ HomAe(A⊗A
(p+q−1) ⊗A,A), by

[f, f ′] =

p∑
k=1

(−1)(q−1)(k−1)f ◦k f ′ − (−1)(p−1)(q−1)
q∑

k=1

(−1)(p−1)(k−1)f ′ ◦k f

where

(f ◦k f ′)(1⊗ a1 ⊗ · · · ⊗ ap+q−1 ⊗ 1)

= f(1⊗ a1 ⊗ · · · ⊗ ak−1 ⊗ f ′(1⊗ ak ⊗ · · · ⊗ ak+q−1 ⊗ 1)⊗ ak+q ⊗ · · · ⊗ ap+q−1 ⊗ 1).

In the above definition, the image of an element under f or f ′ is understood in A, whenever
required.

Let
∧

q−1(V ∗) be the quantum exterior algebra defined by the tuple q−1, that is,
∧

q−1(V ∗) is the

algebra generated by the dual basis {dx1, . . . , dxN} of V ∗ with respect to the basis {x1, . . . , xN}
of V , subject to the relations (dxi)

2 = 0 and dxidxj = −q−1
i,j dxjdxi for all i, j. We denote the

product on
∧

q−1(V ∗) by ∧. It is convenient to use abbreviated notation for monomials in this

algebra: If I is the p-tuple I = (i1, . . . , ip), denote by dxI the element dxi1∧· · ·∧dxip of
∧

q−1(V ∗).

We also write x∧I for xi1 ∧ · · · ∧ xip . Another notation we shall use is dxb, defined for any b in

{0, 1}N to be dxi1 ∧ · · · ∧ dxip , where i1, . . . , ip are the positions of the entries 1 in b, all other
entries being 0. In this case we say the length of b is p, and write |b| = p.

In [11, Corollary 4.3], the Hochschild cohomology of Sq(V ) is given as the graded vector subspace
of Sq(V )⊗

∧
q−1(V ∗) that in degree m is

HHm(Sq(V )) =
⊕

b∈{0,1}N
|b|=m

⊕
a∈NN
a−b∈C

Spank{xa ⊗ dxb},

where

C = {γ ∈ (N ∪ {−1})N | for each i ∈ {1, . . . , N},
N∏
s=1

qγsis = 1 or γi = −1}.

We wish to compute the bracket of two elements

α = xa ⊗ dxJ and β = xb ⊗ dxL
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where J = (j1, . . . , jp) and L = (l1, . . . , lq). We fix some notations. We denote by J t L the
reordered disjoint union of J and L (multiplicities counted if there are equal indices), so dxJtL = 0
if J ∩ L 6= ∅ and the entries of J t L are in increasing order. For 1 ≤ k ≤ p, set

Ik := (j1, . . . , jk−1, l1, . . . , lq, jk+1, . . . , jp),

although we do not have j1 < . . . < jk−1 < l1 < . . . < lq < jk+1 < . . . < jp in general. So we have
dxIk = sgn(π)qIkπ dxJktL, where Jk = (j1, . . . , jk−1, jk+1, . . . , jp). Similarly for 1 ≤ k ≤ q, set

I ′k := (l1, . . . , lk−1, j1, . . . , jp, lk+1, . . . , lq).

Once we know the bracket of two elements of this form, others may be computed by extending
bilinearly. The scalars arising in each term from the twisting principle are potentially different, so
it is more convenient to express brackets in terms of these basis elements of Hochschild cohomology.

Theorem 5.1. The graded Lie bracket of α = xa ⊗ dxJ and β = xb ⊗ dxL is

[α, β] =
∑

1≤k≤p
(−1)(q−1)(k−1)ρ

b;J,L
k (∂[jk](x

b)) · xa ⊗ dxJktL

−(−1)(p−1)(q−1)
∑

1≤k≤q
(−1)(p−1)(k−1)ρ

a;L,J
k (∂[jk](x

a)) · xb ⊗ dxJtLk ,

for certain scalars ρ
b;J,L
k and ρ

a;L,J
k , where ∂[jk](x

b) is defined in (4.7) and ∂[jk](x
b)) · xa is given

by the Ae-module structure over A, that is, if ∂[jk](x
b)) =

∑
i ui⊗vi ∈ A⊗A, then ∂[jk](x

b)) ·xa =∑
i uix

avi.

Proof We denote by · the composition of two maps instead of ◦, in order to avoid confusion with
the circle product. We compute the bracket using the formula

[α, β] = [α ·Ψp, β ·Ψq] · Φp+q−1.

The element α = xa ⊗ dxJ as a map from A⊗A⊗
∧p(V ) to A sends 1⊗ 1⊗ x∧I to δIJx

a for
I = (i1, . . . , ip), similarly the element β = xb ⊗ dxL as a map from A ⊗ A ⊗

∧q(V ) to A sends

1⊗1⊗x∧I to δILx
b. By formula (4.8) for Ψp, the map α ·Ψp : A⊗A⊗A⊗p → A⊗A⊗

∧p(V )→ A
is given by

α ·Ψp(1⊗ 1⊗ xm1 ⊗ · · · ⊗ xmp) = µ
(m1,··· ,mp)
(j1,··· ,jp)

( p∏
s=1

(∂[js](x
ms))

)
· xa,

where the scalar coefficient is defined by (4.9). We have a similar formula for β ·Ψq.

For 1 ≤ k ≤ p, (α ·Ψp) ◦k (β ·Ψq) : A⊗A⊗A⊗p+q−1 → A sends 1⊗ 1⊗ xm1 ⊗ · · · ⊗ xmp+q−1
to

µkµ
(m1,··· ,mk−1,m̃k,mk+q ,··· ,mp+q−1)
J µ

(mk,··· ,mk+q−1)
L ·(

∂[j1](x
m1

) · · · ∂[jk−1](x
mk−1

)∂[jk](x
m̃k)∂[jk+1](x

mk+q) · · · ∂[jp](x
mp+q−1

)
)
· xa,

where µk and m̃k are defined by µkx
m̃k =

(∏q
t=1(∂[lt]x

mt+k−1
)
)
· xb.

For I = (i1, . . . , ip+q−1) with 1 ≤ i1 < · · · < ip+q−1 ≤ N , let us compute ((α ·Ψp) ◦k (β ·Ψq)) ·
Φp+q−1(1⊗ 1⊗ x∧I). Indeed, by (4.3) and our identifications,

Φp+q−1(1⊗ 1⊗ x∧I) =
∑

π∈Symp+q−1

sgn(π)qIπ ⊗ 1⊗ xiπ(1) ⊗ · · · ⊗ xiπ(p+q−1)
.

Now for a fixed π ∈ Symp+q−1, as input into the formula of the previous paragraph, we have

m1 = eiπ(1) , . . . ,m
p+q−1 = eiπ(p+q−1)

,

where ei = (0, . . . , 0, 1, 0, . . . , 0), the 1 in the ith position, and since ∂[j](xi) = δij ⊗ 1, the factor(
∂[j1](x

m1
) · · · ∂[jk−1](x

mk−1
)∂[jk](x

m̃k)∂[jk+1](x
mk+q) · · · ∂[jp](x

mp+q−1
)
)
· xa
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vanishes unless

j1 = iπ(1), . . . , jk−1 = iπ(k−1), l1 = iπ(k), . . . , lq = iπ(k+q−1), jk+1 = iπ(k+q), . . . , jp = iπ(p+q−1),

that is, when Ik = π(I) := (iπ(1), · · · , iπ(p+q−1)) or equivalently I = JktL. As long as Jk∩L = ∅,
there exist unique I and permutation πk ∈ Symp+q−1 satisfying this property. In this case,

µkx
m̃k =

( q∏
t=1

∂[lt](x
mt+q−1

)
)
· xb = xb,

so that µk = 1 and m̃k = b. Consequently, the map ((α ·Ψp) ◦k (β ·Ψq)) ·Φp+q−1 sends 1⊗ 1⊗x∧I

to δI,JktLρ
b;J,L
k ∂[jk](x

b) · xa where

ρ
b;J,L
k = sgn(πk)q

I
πk
µ

(ej1 ,...,ejk−1
,b,ejk+1

,...,ejp )

J µ
(e`1 ,...,e`q )

L

is determined by the permutation πk as described above and the scalars defined by (4.4) and (4.9).
Therefore,

((α ·Ψp) ◦k (β ·Ψq)) · Φp+q−1 = ρ
b;J,K
k ∂[jk](x

b) · xa ⊗ dxJktL.
The formula in the statement can be obtained accordingly.

�

6. Gerstenhaber brackets for group extensions of quantum symmetric algebras

Let G be a finite group for which |G| 6= 0 in k, acting linearly on a finite dimensional vector
space V , thus inducing an action on the symmetric algebra S(V ) by automorphisms. In case the
action preserves the relations on the quantum symmetric algebra Sq(V ) as defined by (4.1), there
is also an action on this algebra. This is always the case, for example, if G acts diagonally on the
chosen basis x1, . . . , xN of V . We shall first recall the definition of a group extension, Sq(V )oG,
of Sq(V ), and explain how the Koszul resolution of Sq(V )oG is related to that of Sq(V ). In fact
this works for an arbitrary Koszul algebra, as we shall explain next. Although this is well known,
we include details for completeness.

Let R ⊆ V ⊗ V be a G-invariant subspace. Let Tk(V ) denote the tensor algebra of V over k.
Suppose that A = Tk(V )/(R) is a Koszul algebra over k, with the induced action of G. That is,
the complex K q(A) in which K0(A) = A⊗A, K1(A) = A⊗ V ⊗A, and

Ki(A) =

i−2⋂
j=0

(A⊗ V ⊗j ⊗R⊗ V ⊗(i−2−j) ⊗A),

for i ≥ 2, is a free A-bimodule resolution of A under the differential from the bar resolution. In
case A = Sq(V ), this can be shown to be equivalent to the Koszul resolution given in Section 4.
The group extension AoG of A, or skew group algebra, is the tensor product A⊗ kG as a vector
space, with multiplication given by (a⊗ g)(b⊗h) = a(gb)⊗ gh for all a, b ∈ A and g, h ∈ G (where
we have used a left superscript to denote the group action). We shall denote elements of A o G
by a]g, in place of a ⊗ g, for a ∈ A and g ∈ G, to indicate that they are elements of this skew
group algebra. In this section we adapt and generalize the techniques of [7, 14] from S(V )oG to
Sq(V ) o G, explaining how to compute the Gerstenhaber bracket via the Koszul resolution and
our chain maps from Section 4. In the next section we focus on some special cases to give explicit
results.

We know that AoG is a Koszul ring over kG (see [2, Definition 1.1.2 and Section 2.6]). In fact
let V ⊗ kG be the kG-bimodule under the actions g · (v ⊗ h) = gv ⊗ gh and (v ⊗ h) · g = v ⊗ hg
for all v ∈ V and g, h ∈ G. Then there is an algebra isomorphism

TkG(V ⊗ kG) ' Tk(V ) oG

sending (v1⊗g1)⊗kG · · ·⊗kG (vm−1⊗gm−1)⊗kG (vm⊗gm) to (v1⊗g1v2⊗· · ·⊗g1···gm−1vm)]g1 · · · gm,
and the inverse isomorphism sends (v1⊗· · ·⊗vm)]g to (v1⊗eG)⊗kG · · ·⊗kG(vm−1⊗eG)⊗kG(vm⊗g),
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where we write eG or e for the unit element of G. Via this isomorphism, R ⊗ kG becomes a kG-
subbimodule of (V ⊗kG)⊗kG (V ⊗kG) ' V ⊗V ⊗kG, and it induces an isomorphism of algebras,
AoG ' TkG(V ⊗ kG)/(R⊗ kG).

The Koszul resolution K q(A o G) of A o G as a Koszul ring over kG is related to the Koszul
resolution of A as follows:

K0(AoG) = (AoG)⊗kG (AoG) ' A⊗A⊗ kG = K0(A)⊗ kG,
K1(AoG) = (AoG)⊗kG (V ⊗ kG)⊗kG (AoG) ' A⊗ V ⊗A⊗ kG = K1(A)⊗ kG,

and for i ≥ 2,

Ki(AoG)

= (AoG)⊗kG

i−2⋂
j=0

((V ⊗ kG)⊗kGj ⊗kG (R⊗ kG)⊗kG (V ⊗ kG)⊗kG(i−2−j))⊗kG (AoG)

' (AoG)⊗kG
( i−2⋂
j=0

(V ⊗j ⊗R⊗ V ⊗(i−2−j))⊗ kG
)
⊗kG (AoG)

'
(
A⊗

i−2⋂
j=0

(V ⊗j ⊗R⊗ V ⊗(i−2−j))⊗A
)
⊗ kG

' Ki(A)⊗ kG.
Notice that the above isomorphism is induced by the map sending

(a0]g0)⊗kG ((a1 ⊗ g1)⊗kG · · · ⊗kG (ap ⊗ gp))⊗kG (ap+1]gp+1)

to
(a0 ⊗ (g0a1 ⊗ · · · ⊗ g0···gp−1ap)⊗ g0···gpap+1)⊗ (g0 · · · gp+1).

The inverse isomorphism sends (a0 ⊗ (a1 ⊗ · · · ⊗ ap)⊗ ap+1)]g to

(a0]e)⊗kG ((a1 ⊗ e)⊗kG · · · ⊗kG (ap ⊗ e))⊗kG (ap+1]g).

One may check that this isomorphism commutes with the differentials. Therefore as complexes of
AoG-bimodules,

K q(AoG) ' K q(A)⊗ kG.
Under this isomorphism, the AoG-bimodule structure of Kp(A)⊗kG, for each p ≥ 0, is given by

(b]h)
(
(a0 ⊗ (a1 ⊗ · · · ⊗ ap)⊗ ap+1)⊗ g

)
(c]k) =

(
bha0 ⊗ (ha1 ⊗ · · · ⊗ hap)⊗ hap+1

hgc
)
⊗ hgk.

Similar statements apply to the normalized bar resolution:

B q(AoG) ' B q(A)⊗ kG,
where the former involves tensor products over kG, and the latter over k.

Now we consider the case of A := Sq(V ), under the condition that the action of G on V
preserves the relations of Sq(V ). The differentials on K q(A o G) (respectively, B q(A o G)) are
those induced by the Koszul resolution (respectively, bar resolution) of Sq(V ), under the exact
functor −⊗kG. Therefore the contracting homotopy and chain maps for Sq(V ) may be extended
to the corresponding complexes for Sq(V ) oG:

Φ q⊗ kG : K q(AoG) ' K q(A)⊗ kG→ B q(A)⊗ kG ' B q(AoG)

and
Ψ q⊗ kG : B q(AoG) ' B q(A)⊗ kG→ K q(A)⊗ kG ' K q(AoG).

However, since Φ q and Ψ q are in general not G-invariant, there is no reason to expect that Φ q⊗kG
and Ψ q⊗ kG should be chain maps of complexes of (A o G)e-modules. Since |G| is invertible in
k, we can apply the Reynolds operator (that averages over images of group elements) to obtain
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chain maps of complexes of (AoG)e-modules, which are denoted by Φ̃ q and Ψ̃ q respectively. We
have thus quasi-isomorphisms

Hom(AoG)e(K q(A)⊗ kG,AoG)
Ψ̃
q
//
Hom(AoG)e(B q(A)⊗ kG,AoG)

Φ̃
qoo .

We shall use the complex on the left side to compute Lie brackets, via the chain maps Ψ̃
q
and Φ̃

q
.

Notice that for A = Sq(V ), we have

Hom(AoG)e(K q(A)⊗ kG,AoG) ' HomkGe(
∧ q

(V )⊗ kG,AoG)
' HomkG(

∧ q
(V ), AoG)

'
(
AoG⊗

∧ q
(V ∗)

)G
.

We wish to express the Lie bracket at the chain level, on elements of
(
AoG⊗

∧ q
(V ∗)

)G
. The

method consists of the following steps (cf. [7, 14]).

(i) Compute the cohomology groups of the complexes
(
(AoG)⊗

∧ q
(V ∗)

)G
. In case the action

of G on V is diagonal, this computation is done in [11, Section 4].
(ii) Give a precise formula for the chain map Θ that is the composition

Θ :
(
(AoG)⊗

∧ q
(V ∗)

)G ∼−→ Hom(AoG)e(K q(A)⊗ kG,AoG)

Ψ̃
q

−→ Hom(AoG)e(B q(A)⊗ kG,AoG)
∼−→ Hom(AoG)e(B q(Ao kG), AoG).

(iii) Give a precise formula for the chain map Γ that is the composition

Γ : Hom(AoG)e(B q(Ao kG), AoG)
∼−→ Hom(AoG)e(B q(A)⊗ kG,AoG)

Φ̃
q

−→ Hom(AoG)e(K q(A)⊗ kG,AoG)
∼−→
(
(AoG)⊗

∧ q
(V ∗)

)G
.

(iv) Use the formulae in the previous two steps to compute the Lie bracket of two cocycles
given by Step (i).

We obtain thus

Theorem 6.1. Let α, β ∈ ((AoG)⊗
∧ q

(V ∗))G be two cocycles. Then the Lie bracket of the two
corresponding cohomological classes is represented by the cocycle

[α, β] = Γ
(
[Θ(α),Θ(β)]

)
.

We see that the actual computations are rather hard and we shall perform these computations
for the diagonal action case in the next section.

7. Diagonal actions

Assume now that G acts diagonally on the basis {x1, . . . , xN} of V , in which case the action
extends to an action of G on Sq(V ) by automorphisms. Let χi : G → k× be the character of G
corresponding to its action on xi, that is

g · xi = χi(g)xi

for all g ∈ G, and i = 1, · · · , N . For I = (i1, · · · , ip) with 1 ≤ i1 < · · · < ip ≤ N , define

χI(g) =
∏p
j=1 χij (g), and for ` ∈ NN , define χ`(g) =

∏
1≤i≤N χ

`i
i (g), for g ∈ G.

Let us make precise the action of G on (AoG)⊗
∧ q

(V ∗), occurring in the isomorphism of the
previous section,

Hom(AoG)e(K q(A)⊗ kG,AoG) '
(
(AoG)⊗

∧ q
(V ∗)

)G
.

Letting g, h ∈ G, ` ∈ NN , and I = (i1 < · · · < ip), we have

h(x`]g ⊗ dxI) = h(x`)]hg ⊗ h(dxI) = χ`(h)χI(h
−1) x` ] hgh−1 ⊗ dxI .
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In [11, Section 4], the authors compute homology of this chain complex (AoG)⊗
∧ q

(V ∗) with
the differential

dp(x
`]g ⊗ dxI) =

∑
i 6∈I

(−1)#{s:is<i}(( ∏
s:is<i

qis,i
)
xix

` −
( ∏
s:is>i

qi,is
)
x` gxi

)
]g ⊗ dxI+ei ,

where ei is the ith element of the canonical basis of NN , and I+ei is the sequence of p+1 integers
obtained by inserting 1 in the ith position. Since the action of G is diagonal, this differential is G-

equivariant. So the Reynolds operator is a chain map from (AoG)⊗
∧ q

(V ∗) to
(
(AoG)⊗

∧ q
(V ∗)

)G
which realizes

(
(AoG)⊗

∧ q
(V ∗)

)G
as a direct summand of (AoG)⊗

∧ q
(V ∗) as complexes. We

shall see that in fact, the induced structure of
(
(AoG)⊗

∧ q
(V ∗)

)G
, as a complex, is the same as

the one induced from the isomorphism

Hom(AoG)e(K q(A)⊗ kG,AoG) '
(
(AoG)⊗

∧ q
(V ∗)

)G
.

We shall prove this fact in the first step below.

We follow the step-by-step outline given towards the end of Section 6. As we shall use the result
of the second step in the first one, we begin with the second step.

Step (ii). As shown in the previous section, we have a series of isomorphisms:

Hom(AoG)e(K q(A)⊗ kG,AoG) ' Hom(kG)e(
∧ q

(V )⊗ kG,AoG)

' HomkG(
∧ q

(V ), AoG) '
(
(AoG)⊗

∧ q
(V ∗)

)G
.

A map f ∈ Hom(AoG)e(Kp(A)⊗ kG,AoG) corresponds to f1 ∈ HomkGe(
∧p V ⊗ kG,AoG) via

f1(x∧I ⊗ g) = f(1⊗ x∧I ⊗ 1⊗ g)

and
f(a0 ⊗ x∧I ⊗ ap+1 ⊗ g) = (a0]e)f1(x∧I ⊗ g)(g

−1
ap+1]e).

The element f1 ∈ HomkGe(
∧p V ⊗ kG,AoG) corresponds to f2 ∈ HomkG(

∧p V,AoG) via

f2(x∧I) = f1(x∧I ⊗ e)
and

f1(x∧I ⊗ g) = f2(x∧I)(1]g).

Finally, f2 ∈ HomkG(
∧p V,AoG) corresponds to f3 ∈

(
(AoG)⊗

∧p(V ∗)
)G

via

f3 =
∑
|I|=p

f2(x∧I)⊗ dxI ,

and for f3 =
∑
|J |=p

∑
g∈G(aJ,g]g)⊗dxJ ∈

(
AoG⊗

∧p(V ∗)
)G

, the corresponding f2 ∈ HomkG(
∧p V,Ao

G) sends x∧I to
∑

g∈G aI,g]g.

Altogether, f ∈ Hom(AoG)e(Kp(A)⊗ kG,AoG) corresponds to f3 ∈
(
AoG⊗

∧p V ∗
)G

via

f3 =
∑
|I|=p

f(1⊗ x∧I ⊗ 1⊗ e)⊗ dxI

and for f3 =
∑
|J |=p

∑
g∈G aJ,g]g ⊗ dxJ ∈

(
AoG⊗

∧p(V ∗)
)G

,

f(a0 ⊗ x∧I ⊗ ap+1 ⊗ g) =
∑
h∈G

(a0]e)(aI,h]h)(1]g)(g
−1
ap+1]e) =

∑
h∈G

a0aI,h
h(ap+1) ]hg.

Now for α = a]g ⊗ dxJ ∈ AoG⊗
∧p(V ∗), the Reynolds operator

R : AoG⊗
∧p(V ∗)→ (AoG⊗

∧p(V ∗))G

gives f3 = 1
|G|
∑

h∈G χJ(h−1) ha] hgh−1⊗dxJ and thus α corresponds to f ∈ Hom(AoG)e(Kp(A)⊗
kG,AoG) sending a0 ⊗ x∧I ⊗ ap+1 ⊗ k to δIJ

1
|G|
∑

h∈G χJ(h−1) a0(ha)(hgh
−1
ap+1) ] hgh−1k.
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We shall compute ΘR(α) ∈ Homk((AoG)⊗p, AoG) corresponding to f with a = x`, which is
the composition

x`
1

]g1 ⊗ · · · ⊗ x`
p

]gp

7→ x`
1

⊗ g1(x`
2

)⊗ · · · ⊗ g1···gp−1(x`
p

) ] g1 · · · gp
= χ`2(g1) · · ·χ`p(g1 · · · gp−1)x`

1

⊗ · · · ⊗ x`
p

] g1 · · · gp

7→ χ`2(g1) · · ·χ`p(g1 · · · gp−1)
∑
|I|=p

∑
0≤rs≤`sis−1
s=1,··· ,p

µ xQ ⊗ x∧I ⊗ xQ̂ ⊗ g1 · · · gp (use Ψ q)
7→ 1

|G|
χ`2(g1) · · ·χ`p(g1 · · · gp−1)

∑
h∈G

∑
0≤rs≤`sjs−1
s=1,··· ,p

λµ·

χJ(h−1)χ`(h)χ
Q̂

(hgh−1) x`
1+···+`p+`−J ] hgh−1g1 · · · gp,

where, as in (4.5),

µ = µ
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp)

Q = Q
(`1,··· ,`p; j1,··· ,jp)
(r1,··· ,rp) ,

Q̂ = Q̂
(`1,··· ,`p; j1,··· ,jp)

(r1,··· ,rp)
,

λ xQx`xQ̂ = x`
1+···+`p+`−I ∈ Sq(V ).

This completes the second step.

Step (i). We shall identify the cohomology groups of the complexes
(
AoG⊗

∧ q
(V ∗)

)G
with

the computation in [11, Section 4]. It suffices to see that the map

AoG⊗
∧ q

(V ∗)
R−→
(
AoG⊗

∧ q
(V ∗)

)G ∼−→ Hom(AoG)e(K q(A)⊗ kG,AoG)

is a chain map, where A o G ⊗
∧ q

(V ∗) is endowed with the differential given in [11, Section 4]
and Hom(AoG)e(K q(A) ⊗ kG,A o G) with the differential induced from that of K q(A). We shall
use the computations in the second step to prove this statement.

In fact, given a]g ⊗ dxI ∈ A o G ⊗
∧
p(V ∗), by the second step, it corresponds to the map

f ∈ Hom(AoG)e(Kp(A)⊗ kG,AoG) sending a0 ⊗ x∧J ⊗ ap+1 ⊗ k to

δIJ
1

|G|
∑
h∈G

χI(h
−1) a0(ha)(hgh

−1
ap+1) ] hgh−1k.

Now df is the composition (for k ∈ G and L = (l1, · · · , lp+1))

1⊗x∧L⊗1⊗k 7→
p+1∑
j=1

(−1)j−1
(( j∏

s=1

qls,lj
)
xlj ⊗x

∧(L−elj )⊗1⊗k−
( p+1∏
s=j

qlj ,ls
)
1⊗x∧(L−elj )⊗xlj ⊗k)

7→ 1

|G|
∑
h∈G

p+1∑
j=1

(−1)j−1δI,L−eljχI(h
−1)
(( j∏

s=1

qlj ,lj
)
xlj

ha−
( p+1∏
s=j

qlj ,lj
)
χlj (hgh

−1)h axlj
)
]hgh−1k).

On the other hand, by [11, Section 4],

dp(x
`]g ⊗ dxI) =

∑
i 6∈I

(−1)#{s:is<i}(( ∏
s:is<i

qis,i
)
xix

` −
( ∏
s:is>i

qi,is
)
x` gxi

)
]g ⊗ dxI+ei ,

which corresponds to the map sending 1⊗ x∧L ⊗ 1⊗ k to

1

|G|
∑
h∈G

∑
i 6∈I

(−1)#{s:is<i}(( ∏
s:is<i

qis,i
)
χL(h−1)δL,I+eiχi(h)xi

ha−
( ∏
s:is>i

qi,is
)
χi(hg) haxi

)
]hgh−1k.
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One sees readily that these two expressions are the same.
Let us recall the result of [11, Section 4]. For g ∈ G, define

Cg = {c ∈ (N ∪ {−1})N | for each i ∈ {1, · · · , N},
N∏
s=1

qcsi,s = χi(g) or ci = −1}.

For g ∈ G and γ ∈ (N ∪ {−1})N , the authors of [11] introduced certain subcomplexes K
q
g,γ of

(A o G) ⊗
∧
p
(
V ∗
)

with (A o G) ⊗
∧
p
(
V ∗
)

=
⊕

g,γ K
q
g,γ . They also proved that if γ ∈ Cg, the

subcomplex K
q
g,γ has zero differential and if γ 6∈ Cg, the subcomplex K

q
g,γ is acyclic. (We do

not define K
q
g,γ here as we shall not need the details.) Using this information, for m ∈ N, [11,

Theorem 4.1] gives

Hm
(
(AoG)⊗

∧
p
(
V ∗
))
' HHm(A,AoG) '

⊕
g∈G

⊕
b∈{0,1}N
|b|=m

⊕
a∈NN
a−b∈Cg

spank{xa]g ⊗ dxb}.

We shall use these notations when expressing the Lie bracket of two cohomological classes. This
completes the first step.

Step (iii). Now given a map f ∈ Homk((A o G)⊗
q
, A o G) , we compute the corresponding

Γ(f) ∈
(
(AoG)⊗

∧
p(V ∗)

)G
. Direct inspection gives

Γ(f) =
∑
|I|=p

∑
π∈Symp

sgnπ qIπ f(xiπ(1)]e⊗ · · · ⊗ xiπ(p)]e)⊗ dxI ,

where qIπ = q
i1,··· ,ip
π is defined in (4.4), and e denotes the identity group element.

Step (iv). We can now compute the Lie bracket of two cohomological classes.

Let
α = xa]g ⊗ dxJ and β = xb]h⊗ dxL

for some group elements g, h ∈ G, where J = (j1, . . . , jp) and L = (l1, . . . , lq) and such that
a−J ∈ Cg and b−K ∈ Ch. Then α and β are cocycles for the complex AoG⊗

∧ q
(V ∗), because the

subcomplex K
q
g,γ of HomAe(K q(A), AoG) is a complex with zero differential whenever γ ∈ Cg (for

details, see [11, Section 4]). Consequently, Rα and Rβ are G-invariant cocycles where, as before,
R is the Reynold’s operator. The bracket operation on Hochschild cohomology is determined by
its values on cocycles of this form.

Theorem 7.1. In case G acts diagonally on the basis x1, . . . , xN , the graded Lie bracket of Rα
and Rβ, where α = xa]g ⊗ dxJ and β = xb]h⊗ dxL, is

[Rα,Rβ] =
∑

1≤s≤p
(−1)(q−1)(s−1) 1

|G|2
∑
k,`∈G

ρα,βs ∂[js](x
b) · xa ] kgk−1`h`−1 ⊗ dxJstL

−(−1)(p−1)(q−1)
∑

1≤s≤q
(−1)(p−1)(s−1) 1

|G|2
∑
k,`∈G

ρβ,αs ∂[ls](x
a) · xb ] `h`−1kgk−1 ⊗ dxJtLs ,

for certain coefficients ρα,βs and ρβ,αs .

Remark 7.2. This formula generalizes Theorem 5.1 (which is the case G = 1) and [14, Corol-
lary 7.3] (which is the case qi,j = 1 for all i, j).

Proof We may compute [R(α),R(β)] as Γ([ΘR(α),ΘR(β)]).
Now by the third step,

Γ([ΘR(α),ΘR(β)]) =
∑

|I|=p+q−1

∑
π∈Symp+q−1

sgn(π) qIπ [Θ(Rα),Θ(Rβ)](xiπ(1)]e⊗· · ·⊗xiπ(p+q−1)
]e)⊗dxI .
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Note that Ψp applied to an element of the form 1 ⊗ xc1 ⊗ · · · ⊗ xcp ⊗ 1 is 1 ⊗ xc1 ∧ · · · ∧ xcp ⊗ 1
if 1 ≤ c1 < · · · < cp ≤ N , and is 0 otherwise. This observation will simplify considerably the
computation of [ΘR(α),ΘR(β)](xiπ(1)]e⊗ · · · ⊗ xiπ(p+q−1)

]e). For 1 ≤ s ≤ p, we have

(ΘR(α) ◦s ΘR(β)(xiπ(1)]e⊗ · · · ⊗ xjπ(p)]e)
= ΘR(α)(xiπ(1)]e⊗ · · · ⊗ΘR(β)(xiπ(s)]e⊗ · · · ⊗ xiπ(s+q−1)

]e)⊗ · · · ⊗ xiπ(p+q−1)
]e).

By the second step, a simple computation shows that ΘR(β)(xiπ(s)]e⊗· · ·⊗xiπ(s+q−1)
]e) is nonzero

only when
iπ(s) = l1, . . . , iπ(s+q−1) = lq,

in which case it is equal to 1
|G|
∑

`∈G χL(`−1)χb(`) x
b]`h`−1. Therefore, when

iπ(s) = l1, . . . , iπ(s+q−1) = lq,

we have

ΘR(α)(xiπ(1)]e⊗ · · · ⊗ΘR(β)(xiπ(s)]e⊗ · · · ⊗ xiπ(s+q−1)
]e)⊗ xiπ(s+q)]e⊗ · · · ⊗ xiπ(p+q−1)

]e)

= ΘR(α)(xiπ(1)]e⊗ · · · ⊗
( 1

|G|
∑
`∈G

χL(`−1)χb(`)x
b ] `h`−1 ⊗ xiπ(s+q)]e

)
⊗ · · · ⊗ xiπ(p+q−1)

]e)

=
1

|G|
∑
`∈G

χL(`−1)χb(`)ΘR(α)(xiπ(1)]e⊗ · · · ⊗ x
b ] `h`−1 ⊗ xiπ(s+q)]e)⊗ · · · ⊗ xiπ(p+q−1)

]e).

Applying the second step, in order that the above expression be nonzero, the following condition
must hold:

j1 = iπ(1), . . . , js−1 = iπ(s−1), js+1 = iπ(s+q), . . . , jp = iπ(p+q−1).

When

iπ(s) = l1, . . . , iπ(s+q−1) = lq, j1 = iπ(1), . . . , js−1 = iπ(s−1), js+1 = iπ(s+q), . . . , jp = iπ(p+q−1),

we have
(ΘR(α) ◦s ΘR(β)(xiπ(1)]e⊗ · · · ⊗ xjπ(p)]e)

=
1

|G|2
∑
k∈G

∑
`∈G

χL(`−1)χb(`)χjs+1(`h`−1) · · ·χjp(`h`−1)·∑
0≤r≤bjs−1

λµχJ(k−1)χa(k)χQ̂(kgk−1) xa+b−ejs ]kgk−1`h`−1,

where
xQ = xrjs x

bjs+1

js+1 · · ·x
bN
N ,

xQ̂ = xb11 · · ·x
bjs−1

js−1 x
bjs−r+1
js

,

µ xQxQ̂ = xj1 · · ·xjs−1 x
b xjs+1 · · ·xjp ∈ Sq(V ),

λ xQxaxQ̂ = xa+b−ejs ∈ Sq(V ).

We see that in this case we have I = Js t L. Furthermore, if this is the case, there is a unique
permutation πs ∈ Symp+q−1 such that

j1 = iπs(1), . . . , js−1 = iπs(s−1), iπs(s) = l1, . . . , iπs(s+q−1) = lq, js+1 = iπs(s+q), . . . , jp = iπs(p+q−1),

that is, πs(I) = Js t L as introduced before Theorem 5.1. We obtain that when I = Js t L and
π = πs for 1 ≤ s ≤ p,

(ΘR(α) ◦s ΘR(β)(xiπs(1)]e⊗ · · · ⊗ xiπs(p+q−1)
]e) =

1

|G|2
∑
k,`∈G

ρα,βs ∂[js](x
b) · xa ] kgk−1`h`−1,

for a certain coefficient ρα,βs determined by the above data.
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Finally

Γ([ΘR(α),ΘR(β)])

=
∑

|I|=p+q−1

∑
π∈Symp+q−1

sgn(π) qIπ [Θ(Rα),Θ(Rβ)](xiπ(1)]e⊗ · · · ⊗ xiπ(p+q−1)
]e)⊗ dxI

=
1

|G|2
∑
k,`∈G

∑
1≤s≤p

(−1)(q−1)(s−1)ρα,βs ∂[js](x
b) · xa ] kgk−1`h`−1 ⊗ dxI

− (−1)(p−1)(q−1) 1

|G|2
∑
k,`∈G

∑
1≤s≤q

(−1)(p−1)(s−1)ρβ,αs ∂[`s](x
a) · xb ] `h`−1kgk−1 ⊗ dxI .

�

In this diagonal case, the following corollary is immediate, since the difference operators in the
bracket formula take 1 to 0. It generalizes [14, Theorem 8.1].

Corollary 7.3. Assume G acts diagonally on the chosen basis x1, . . . , xN of V , and let α =
1]g ⊗ dxJ and β = 1]h⊗ dxL. Then [Rα,Rβ] = 0 ∈ HH q

(AoG).

In fact, this result can be seen to hold in the nondiagonal case as well, even without an explicit
description of Hochschild cocycles in that case. Nonetheless we may still use a general argument
for those cocycles having a particular form.

Corollary 7.4. Assume G acts on V , not necessarily diagonally. Let α and β be cocycles in
(AoG⊗

∧ q
(V ∗))G for which α (respectively, β) is a linear combination of elements of the form

1]g ⊗ dxJ (respectively, 1]h ⊗ dxL). Then [α, β] = 0 ∈ HH
q
(A o G). In particular, if α is a

2-cocycle, then it is a noncommutative Poisson structure.

Proof The proof is similar to that of Theorem 7.1. However, rather than computing explicitly,
we shall only explain why the bracket is 0.

We compute [α, β] using Theorem 6.1. Consider α as a homomorphism in Hom(AoG)e(K q(A)⊗
kG,AoG), then it maps into k⊗ kG ⊂ AoG. Now by Theorem 6.1

[α, β] = [α · Ψ̃ q, β · Ψ̃ q] · Φ̃ q.
Here Φ̃ q and Ψ̃ q are chain maps of complexes of (A o G)e-modules obtained by applying the
Reynolds operator (that averages over images of group elements) to Φ q and Ψ q respectively. So
one needs to consider certain terms like (α · aΨ) ◦k (β · bΨ) applied to cΦ(1⊗ 1⊗ x∧I) for k ≥ 1,
and a, b, c ∈ G.

Recall that, if I = (i1, . . . , ip), then

Φ(1⊗ 1⊗ x∧I) =
∑

π∈Symp

(sgnπ)q
i1,...,ip
π ⊗ xiπ(1) ⊗ · · · ⊗ xiπ(p) ⊗ 1.

So cΦ(1 ⊗ 1 ⊗ x∧I) is a linear combination of terms of the form 1 ⊗ xj1 ⊗ · · · ⊗ xjp ⊗ 1 for

1 ≤ j1, · · · , jp ≤ N . In applying (α · aΨ) ◦k (β · bΨ) to each term above, one first applies bΨ to
1⊗ xjk ⊗ · · · ⊗ xjk+m−1

⊗ 1, if the degree of β is m. By (4.5),

Ψm(1⊗ xjk ⊗ · · · ⊗ xjk+m−1
⊗ 1) = µ⊗ xjk ∧ · · · ∧ xjk+m−1

⊗ 1

for some scalar µ and so bΨm(1⊗ xjk ⊗ · · · ⊗ xjk+m−1
⊗ 1) is a linear combination of terms of the

form 1⊗ x`1 ∧ · · · ∧ x`m ⊗ 1 with 1 ≤ `1 < · · · < `m ≤ N .
Applying β to the result, we obtain 0 unless L = (`1, · · · , `m) for some L for which 1]h⊗ dxL

has a nonzero coefficient in the expression β, in which case we obtain a nonzero scalar multiple of
1]h for that term. After factoring h to the right, this becomes 0 as an element of the normalized
bar resolution. The same argument applies to each term in [α, β], and so [α, β] = 0.

For the last statement, recall that a noncommutative Poisson structure is simply a Hochschild
2-cocycle whose square bracket is a coboundary.

�
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Compare to the proof of [12, Theorem 4.6], of which the above corollary is a consequence via
the alternative route of algebraic deformation theory.
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