GERSTENHABER BRACKETS ON HOCHSCHILD COHOMOLOGY OF
QUANTUM SYMMETRIC ALGEBRAS AND THEIR GROUP EXTENSIONS

SARAH WITHERSPOON AND GUODONG ZHOU

ABSTRACT. We construct chain maps between the bar and Koszul resolutions for a quantum
symmetric algebra (skew polynomial ring). This construction uses a recursive technique involving
explicit formulae for contracting homotopies. We use these chain maps to compute the Gersten-
haber bracket, obtaining a quantum version of the Schouten-Nijenhuis bracket on a symmetric
algebra (polynomial ring). We compute brackets also in some cases for skew group algebras arising
as group extensions of quantum symmetric algebras.

1. INTRODUCTION

Hochschild [8] introduced homology and cohomology for algebras in 1945. Gerstenhaber [5]
studied extensively the algebraic structure of Hochschild cohomology—its cup product and graded
Lie bracket (or Gerstenhaber bracket)—and consequently algebras with such structure are gen-
erally termed Gerstenhaber algebras. Many mathematicians have since investigated Hochschild
cohomology for various types of algebras, and it has proven useful in many settings, including
algebraic deformation theory [6] and support variety theory [4], [15].

The graded Lie bracket on Hochschild cohomology remains elusive in contrast to the cup prod-
uct. The latter may be defined via any convenient projective resolution. The former is defined
on the bar resolution, which is useful theoretically but not computationally, and one typically
computes graded Lie brackets by translating to another more convenient resolution via explicit
chain maps. Such chain maps are not always easy to find. One would like to define the graded Lie
structure directly on another resolution or to find efficient techniques for producing chain maps.

In this paper, we begin in Section 2 by promoting a recursive technique for constructing chain
maps. The technique is not new; for example it appears in the book of Mac Lane [10]. See
also Le and the second author [9] for a more general setting. We first use this technique to
construct chain maps between the bar and Koszul resolutions for symmetric algebras, reproducing
in Theorem 3.5 the chain maps of Shepler and the first author [13] that had been obtained via
ad hoc methods. We then construct new chain maps more generally for quantum symmetric
algebras (skew polynomial rings) in Theorem 4.6. We generalize an alternative description, due
to Carqueville and Murfet [3], of these chain maps for symmetric algebras to quantum symmetric
algebras in (4.8). We use these chain maps to compute the Gerstenhaber bracket on quantum
symmetric algebras, generalizing the Schouten-Nijenhuis bracket on the Hochschild cohomology
of polynomial rings (Theorem 5.1). We then investigate the Hochschild cohomology of a group
extension of a quantum symmetric algebra, obtaining results on brackets in the special cases that
the action is diagonal (Theorem 7.1) or that the Hochschild cocycles have minimal degree as maps
on tensor powers of the algebra (Corollary 7.4). In the latter case, we thereby obtain a new proof
that all such Hochschild 2-cocycles are noncommutative Poisson structures (cf. Naidu and the first
author [12], in which algebraic deformation theory was used instead). Some results on brackets
for group extensions of polynomial rings were previously given by Halbout and Tang [7] and by
Shepler and the first author [14].
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Let k be a field. All algebras will be associative k-algebras with unity and tensor products will
be taken over k unless otherwise indicated.

2. CONSTRUCTION OF COMPARISON MORPHISMS

Let A be a ring and let M and N be two left A-modules. Let P, (respectively, @.) be a
projective resolution of M (respectively, N). It is well known that given a homomorphism of
A-modules f : M — N, there exists a chain map f. : P, — Q. lifting f (and different lifts are
equivalent up to homotopy). Sometimes in practice we need an explicit construction of such a
chain map, called a comparison morphism, to perform computations. In this section, we recall a
method to construct chain maps under the condition that P, is a free resolution (see Mac Lane
[10, Chapter IX, Theorem 6.2]). The second author and Le will present a method for arbitrary
projective resolutions in a paper in preparation ([9]).

Let us fix some notation and assumptions. Suppose that

dy dy_y df’ dg
oo — P, 5Py — - — Py (— M —0)
is a free resolution of M, that is, for each n > 0, P, = A&") for some set X,,. (The module AXn)
is a direct sum of copies of A indexed by X,. We identify each element of X,, with the identity
14 in the copy of A indexed by that element.) Suppose that a projective resolution of N,
dy d_y d? dg
== Qn = Qno1 —— - —> Qo (— N = 0),
comes equipped with a chain contraction: a collection of set maps t,, : @, — Qp+1 for each n >0
and t_1 : N — @ such that for n > 0, tn_lalfl2 + dgﬂtn = Idg,, and dOQt_l = Idy. We use these
next to construct a chain map, f, : P, — @, for n > 0, lifting f_; := f. As P, is free, we need
only specify the values of f,, on elements of X,,, the generating set of P,.

At first glance, it may appear that f,, defined below will be the zero map, since it is defined
recursively by applying the differential more than once. However, the maps t, are not in general
A-module homomorphisms. The formula (2.1) is used only to define f, on free basis elements,
and f, is then extended to an A-module map. In our examples the maps ¢,, will be k-linear, but
for the construction, they are only required to be maps of sets, since we apply them only to basis
elements. In this weaker setting, such a collection of maps may be called a weak self-homotopy as
in [1].

For n = 0, given z € Xy, define fo(z) = t_1 fdf (x). Then dS fo(z) = d9t_, fdb (z) = fd¥ (x).

Suppose that we have constructed fy,- -, fn—1 such that for 0 <i <n—1, d?fi = fi_ldf. For
z € X, define
(2'1) fn($) = tnflfnfldg(x)-
Then

dQfn(z) = dQtp_1fu1dl(x)
= fo1db(2) — ty_2d? | fu1df ()
= fo1dD(x) = tn_ofn odl_dl(z)
= foo1d} (2).
This proves the following.

Proposition 2.2. The maps f,, defined in equation (2.1) form a chain map from P, to Q. lifting
f:M— N.

In the next two sections, we use this formula (2.1) to find explicit chain maps for symmetric
and quantum symmetric algebras, and in the rest of this article we use the chain maps thus found
in computations of Gerstenhaber brackets for these algebras and their group extensions.
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3. CHAIN CONTRACTIONS AND COMPARISON MAPS FOR POLYNOMIAL ALGEBRAS

Let N be a positive integer. Let V' be a vector space over the field k with basis x1,--- , 2N, and
let
S(V) :=k[xy, - ,xN]
be the polynomial algebra in IV indeterminates. This is a Koszul algebra, so there is a standard
complex K,(S(V)) that is a free resolution of A := S(V) as an A-bimodule (equivalently as an
A¢-module where A¢ = A ® A°P). We recall this complex next: For each p, let AP(V') denote the
pth exterior power of V. Then K,(S(V)) is the complex

S AN V)@ A B AN (V) e A A0 A A 0),

that is, for 0 < p < N, the degree p term is K,(S(V)) := A® AP(V) ® A. The differential d), is
defined by

d (1®(xj1/\-~ijp)®1)
P P
Z Dty @ (@ A A B A Awg,) @1 =Y (=)@ (@ A A B A A y,) ® 2y,
- i=1
Whenever 1 <ji1 <--<jp <N andp > 0; the notation Z;, indicates that the factor z;, is
deleted. The map dy is multiplication.

From now on, we denote £ = (¢1,--- ,fy), an N-tuple of nonnegative integers, z = (z1,--- ,Tn)
and zt = 24 ... xf@’. We shall give a chain contraction of K.(S(V)) consisting of maps t_; : A —
Ao Aand t,: AQ N\P(V)® A - Ao \PTH (V) ® A for p > 0. These maps will be left A-module
homomorphisms, and thus we need only define them on choices of free basis elements of these free
left A-modules.

To define t_1, it suffices to specify t_1(1) = 1®1 and extend it A-linearly. If p = 0 and £ € NV,
define

wioat) =33 @l ) e e (o).

If p > 1, it suffices to give tp( ® (T, /\---/\xjp)®§£), for e N¥ and 1< j; < --- <Jp <N,
and we set

ty(1® (zj, A Awj,) @b

fips ¢ ¢
_ (_1)P+! bpaa =7 bipatr A AL G, g el
o ( 1) Z 1 z; inl inl'i‘l J;Af[\’) ® (le/\ Ax]l""l) ® (1;11 xjpljrl_l xjp+1)'
ijrl ]p+ r=

We note that in case j, = N, the sum is empty, and so the value of ¢, on such an element is 0.
Proposition 3.1. The above defined maps t,, p > —1, form a chain contraction for the resolution
K.(S(V)).

Proof It is easy to verify that dpt_; = Id. We need to show that for p > 0, t,_1d, + dp41t, = 1d.
We first let p = 0, and show that t_1dgy + ditg = Id.
For £ € NV, we have t_1do(1® zt) =t_q(2t) = 2! ® 1, and
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N 4
. Oi—r L4 LN 121 i1 r—1
j=1r=1
Al Ay ¢ N G, pyr s
_ i—r+1 L N 121 j—1,r—1 Z Z JT L+l In 5] J=1,.m
j=1r=l1 j=1r=1
N £;—1 N j
— fi—r i1 LN a1 lj—1 li—r_Li+1 9% 41 li—1
__Z i Ti4a N ®Ty T 1%+ZZ i i+t N Ty T T
Jj=1 r=0 j=1r=1
N N
_ L, Liv1 LN 121 U Lit1 LN 41 li-1 b
=— g Tiwiy Ty @1y T+ E i N @@ Tyl
J:]_ 7=1
al 4 l
_ j In £ j—1 J In 151 j—1
= - g T, Ty @y ri g+ E oy Ty @ Ty
J=1 Jj=2
= lel+liot

We thus obtain (t_1dy + ditg)(1®28) =2t @1 — 2! ® 14+ 1® 2t = 1 ® 2¢ and therefore confirm
the equality. Note that in the above proof, there are many terms which cancel one another.

The proof of the equality ¢,_1dy, 4+ dp41t, = Id for p > 1 is similar to the above case p = 0, but
is much more complicated. Note that as in the case p = 0, in the proof for the cases p > 1, we
must change indices several times in order to cancel many terms.

O

Now we can use the chain contraction of Proposition 3.1 to give formulae for comparison
morphisms between the normalized bar resolution and the Koszul resolution. Such comparison
morphisms were found by the first author and Shepler [13] by ad hoc methods.

For any k-algebra A, denote by A = A/(k- 1), a k-vector space. The normalized bar resolution

of A has p-th term Bj,(A) = A® A®P ® A and differentials 0p: A® AP 94— A0A" Ve A
given by

p
(A @M ® - Qap @ apr1) = Z(*l)zao R Q041 Q-+ Q Apt1
i=0
for ag,...,ap+1 € A, where an overline indicates an image in A. We shall see that this resolution

is suitable for computation using the method from Section 2.
There is a standard chain contraction of the normalized bar resolution, s, : A ® AP o A -

A® Z®(p+1) ® A, given by
(3.2) (1A QG Qapy) = ()P QU Q- 0@ TG @ L.
Each s), is then extended to a left A-module homomorphism. For convenience, we shall from now

on abuse notation and write a; in place of @;.
A chain map from the Koszul resolution to the normalized bar resolution is given by the standard

embedding: For p > 0, define @, : AQ AP(V)® A — A® A% @ A by

(3.3) (1@ (zjy A Aay,) ®1) = Z SguT @ Tj ) Q- D xj  ®1
mE€Sym,,

for 1 <j; <--- <jp <N, where Sym,, denotes the symmetric group on p symbols.

The other direction is much more complicated. We shall define ¥,, : AA®PRA = A® N (V)®A
for each p > 0. Let ¥q be the identity map. For p > 1, define ¥,, by
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(34) T,(le @0 o1)

Q@l"“ 2P, G ,jp) @(gl,m P 1 7]_p)

= Z Z x=(r1rp) ® (le Ao A xjp) ® o rp) ’
1<j1<<jp<N 0<r <3 ~1
s=1,"p
where
. (£17...,€p; jl,"',jp)
e as in [13], we define the N-tuple Q(;l ) by
— k) »'p

(QU s o)y ri+ G A T G =g
X (r1, ) J €j1++€j if js <G < fert

(L 75 1 sdp) (L P5 g1y 5dp)
e the N-tuple Qm ) is defined to be complementary to Q(Tl ) in the
- s Tp —_— I »'p
sense that
(€1 0P Gy, ip) AE P 1) )
1-*(7'1).4. ) 1_7(,,.1),‘, ) T oo = Cl','£ L ,Z'ﬁp c ]k[x e ]
£ L J1 Jp — & L 1, y LN |-

Theorem 3.5. [13] Let ®. and V. be as defined in (3.3) and (3.4). Then
(i) the map ®. is a chain map from the Koszul resolution to the normalized bar resolution;
(ii) the map W, is a chain map from the normalized bar resolution to the Koszul resolution;
(iii) the composition U, o @, is the identity map.
Proof (i). We check that this standard map follows from the method in Section 2, in order to
illustrate the method. We proceed by induction, applying (2.1) to the chain contraction s, of the
normalized bar resolution defined in (3.2).
The case for p = 0 is trivial. Now suppose that for p >0, &, : AQ AP(V)® A — A® A o A
is given by (3.3). We compute @11 (1® (x5, A---Awxj,,,) ®1), where &, is defined by equation
(2.1) in terms of ®,. We have

q)p‘l-l(l ® ('le ARERRA xjp+1) ® 1)
= sp®pdp41 (1 ® (2, A Naj,,) ®1)

pr
= Spq)P(Z(_l)l+lxji ® (wjl ARERNA Eji ARERRA wjp+l) ® 1)
=1
prl
= 5p @ (D (D)@ (g, A ATy A Awy,) D).
=1

Notice that the value of s, on
p+1 ‘
q)p(Z(_l)ZJrlxji ® (le AR fji ARERRA 33jp+1) ® 1)
i=1
is 0, since the rightmost tensor factor is 1, and we work with the normalized bar resolution. For
a permutation 7 € Sym,, that fixes some letter ¢, 1 <4 < p+1, consider the permutation 7 of the

set {1,---,i— 1,i,i4+1,---,p+ 1} corresponding to 7 via the bijection
{17 71_1azvz+1a >p}2{17 ,Z—l,%,Z—G—l, 7p+1}
sending jtojforl1 <j<i—1landtoj+1fori<j<np.
Define a new permutation 7 € Sp,41 by imposing
w(J) for j < i;
w(j+1) fori<j<p+1,;
i for j=p+1.
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Then we have sgn(7) = (—1)P~*1sgn(r), and so
q>p+1(1 ® (le JARERNA xjp+1) & 1)

p+1
= =50, (D (1)@ (2, A AT A Ay,,,) D ay,)
i=1
p+1
= *Sp( z:(*l)i+1 Z (*)p_iHSgn( ) 1@y, 1 & BT, @ 'Tjﬁ'(p+1))
i=1 €Sy 1,7 (p+1)=i
p+1
= _(_1)p+1 Z(_l)“—l Z (_)p_i—HSgn( ) 1® Lz Q- ® Ljx(p) ® Lz (p+1) ®1

TE€Spy1,T(p+1)=i
= > sen(f) 1835, © @2y OTjr, ) O 1.
TESpr1

This completes the proof of (i).

(ii). As in (i), we apply the method in Section 2 to the chain contraction ¢, of Proposition 3.1
to show that W, as defined in (3.4) is indeed the resulting chain map. We proceed by induction
on p.

Suppose that ¥, is given by (3.4). Let us apply (2.1) and show that ¥, results. First notice
that we can write

Jp+1 .
) & Jpt1) A& p+1)
tp(1® () A - Aay,) @) = (= 1P Z Z Q- j1/\"'/\$jp/\xjp+1®ggr :
]p+1 Jp+1 r=1

We have
dpi(l@zl @228 1)

£p+

ZQEI(X)QEQ" ®7Zp+ ®1+Z ®x7 ®££Urﬁl+l® - ® 2t

®1

gP-H

+ (-1 gl @02 @

Now consider
€p+1

Zl
U, (z* 2zl . @zt ®1)
. Q(ﬂ SPLS Gy ) @<£2,~-,£P+1; 15 )
— g E =T (11, sTp) ® le /\ N /\ xjp ® gﬁ(Tlv"'vTP)
Isji<-<gp=N 1<rg<est?
- - S
1<s<p
g p+1 5 jl:"':jp)

However, by definition, Q has no terms of the form zj, with u > j,. Therefore,

1 “Tp)
V(e @2t - @2t ) =0.
Similarly we can prove that for 1 < i < p,

(1o @ ot . 08 91) =0.
The only term left is ¢, ¥, ((—1)P"! @ 2 @2t @2 ©2"). We obtain



GERSTENHABER BRACKETS 7

1 2 p+1
tpU(-1) M @2t @2t @2 @2
<P Gy, dp) (e 8P Gy, i)
_ +1 Q" PO ‘ ' Q, 1
=(=1) Z Z ty(z (1, ») R @i A Ay, @ g 1) 2
1<j1<<jp<N 1< <5,
1<s<p
p+1
Gpa <el 1,-4-,Jp> Q& dp+1) (5 dpy1)

= Z Z Z Z x— (r1, 7—7"p+1 (9] :le ANERIAN ‘ij+1 ® QQTP+1

1< < <Jp§N1§"‘3§éJS Jp+1=Jp+1 r= 1

1<s<p
where )
@ 7" 7, 3 .]17 . 7]17) +£p+1‘
= (r1,,7p) -
Now notice that ) -
(€1 P51, ,dp) & jp+1) — A LT G pt)
—(7’17 Tp) + Qr pt1 o Q(Tlv"' Tp+1)
and
@(ﬁ; Jp1)  AE T G )
Zrpt1 (1, 1) ’
We have the desired result:
1 p+1
tpUpdpr(l®at © 028 @1)
1 /4 p+1
=, 0, ()P et @0 @)
Q(E,m,ﬂ’“; J10 e dpt1) S PTGy )
= Z Z =TTy RTjy A+ Axj,, @ TR
1<j1<<jps1 SN 1<ra<ts,
1<s<p+1

opt1

— U, (et @z ®1).
(iii). For 1 <id; < --- <, < N, we have
\I/pq)p(l ® ($i1 AREE /\xip) &® 1)
:\I'p( Z SgNT @ T, )y @ -+ @ T;

mESym,,

®1)

m(p)

(eiﬂ'(l) ye 767;7‘_(?)? J1>5dp)

= Z sgnm Z Z QQ(HV“ iTp) Qi A A T, ® QQ,

mESym,, 1<j1<<jp<N OSTSS(EiW(S))jS—l
szl:"'vp
where eu is the uth canonical basis vector (0,...,0,1,0,...,0), the 1 in the uth position, and

§ J1y5dp)

Q Q lef(l) Cin(p)

(. ) "’eiﬂ_ 5 j17""jp)
Notice that Q W ®)

) occurs in the sum only if (i), 5in) = (G170 5 Jp)-

. . . . [ i ; ] )t 7.7 ) .
In this case, 7 is the identity, 7 = --- = 7, = 0 and Q (1, 1>Tp) @) T S the zero vector.
Therefore,
U0,(1@ay A Awi, ®1) =1Q@a Ao Ay, @ 1.
O

For comparison, we give an alternative description of the maps V¥, due to Carqueville and
Murfet [3]: For each i, let 7; : S(V)¢ — S(V)¢ be the k-linear map that is defined on monomials
as follows. (We denote application of the map 7; by a left superscript.)

Ti (o d1 . IN Lo Ny 01 o Ji-1 Jivl 0N b b gitl i N
oy ey @ay cay) =ay o al ay @y e el oy
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Define difference quotient operators 9 : S(V') — S(V)¢ for each i, 1 <i < N, as in [3, (2.12)] by
T (f@ 1) = TTi(f R
o(f) = L ENZT O],

;01 —-1Qx;
For example, ™ (2222 ® 1) = 9 ® 22, so that

Pira®1 — 10 ® 23
r1®1-1®x

o (2329) = =272 @1 + 79 @ 77.

Similarly, Jj (2229) = 1 ® 22,
Identify elements in S(V)¢ ® AP(V) with elements in S(V) @ AP(V) ® S(V) via the canonical
isomorphism between these two spaces. Then ¥, may be expressed as in [3, (2.22)]:

‘I’p(1®££1®~--®gﬁp®1): Z (Haj] )®xh A Ty,
1<jii<<jp<N  s=1

For example, if N = 2, then ¥;(1 ® $%l‘2 R1) =212 1Qx1+ 220121+ 1® ZL'% ® x9. We
may similarly express the chain contraction ¢, as

L
tp(l & Ty ARERRA Ljp ® gi) - (_1)p+1 Z 8[]10+1]( ) ® 33]1 A Lijpt1-
Jp+1=Jp+1

4. CHAIN CONTRACTIONS AND COMPARISON MAPS FOR QUANTUM SYMMETRIC ALGEBRAS

Let N be a positive integer, and for each pair i,5 € {1,2,---, N}, let ¢; ; be a nonzero scalar
in the field k such that ¢;; = 1 and ¢;; = q;_ ]-1 for all 7, j. Denote by q the corresponding tuple of
scalars, q := (¢ij)1<ij<n- Let V be a vector space with basis z1,--- ,zn, and let

(4.1) Sq(V) = k(x1, - N | miz; = qijxjag, forall 1 <id,j < N),
the quantum symmetric algebra determined by q. This is a Koszul algebra, and there is a standard
complex K.(Sq(V)) that is a free resolution of Sq(V') as an Sq(V')-bimodule (see, e.g., Wambst
[16, Proposition 4.1(c)]). Setting A = Sq(V'), the complex is

S ANV A AN (V)9 AT AR A A 0),
with differential d, defined by

dp(1® (zj, A+ Nwj,) @ 1)

|
tﬁ w3

2
1)”1(1—[ st,ji) j; ® (2j Ao AT Ao A, ) @1
i=1 =

P P

- Z(—l)m(H%‘i,js) 1® (jy Ao ATj A AN wj,) @
i=1 s=i

whenever 1 < j; <--- < j, < N and p > 0; the map dy is multiplication.

As in the previous section, we denote £ = (¢1,--- ,{n), x = (x1,--- ,2y) and 2t = mfl . f{,\’
We shall give a chain contraction of K.(Sq(V)), t,: AQ AP(V)® A = A AP (V)@ A for p > 0
and t_1: A — A® A, which are moreover left A-module homomorphisms (cf. Wambst [16]).

Let t_1(1) = 1® 1 and extend t_; to be left A-linear. For p > 0,1 < j; < --- < jp < N, and

Le NV let
ty(1® (zj, A+ Aajy,) ®2h)
JJDJrl

. £ 1 £ 1
p+1 (5 J1y 7];7 ]p+1 -r Jp+1+ . O ) . ) 01 e Iptl r—1
Z Z Jp+1,T Jp+1 xjp+l+1 TN © Tj A /\xjp+1 ©xy xjp-!—l*l xjp+1

Jp+1=Jp+1 r=1
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where
Jp+1—1

e = (T T (M) (1 T )

=Jp+1 t=1 s=1 t=jpr1+1

We remark that compared with the maps in the previous section for polynomial algebras,
the only difference is that now there is a new coefficient. This (rather complicated) coefficient
(& J1,+dp)
jp+1vr
to its argument 1®@xj A---Axj, ® £ on the left-hand side, whenever a factor z; of z¢ has changed
positions so that it is now to the left of a factor x; with ¢ > j (including factors of the exterior

product), one should include one factor of g;;. One verifies easily that )\yi b ) has the given

form. We shall call this rule the twisting principle and shall use it several times later.

can be obtained as follows: In the right-hand side of the formula for ¢,, in comparison

Proposition 4.2. The above defined maps t,, p > —1, form a chain contraction over the resolu-
tion K.(Sq(V)).

Proof One needs to verify that for n > 0, t,—1d,, + dn11tn, = 1d, and dpt_; = Id. Notice that the
computation used in the above equalities is the same as for polynomial algebras, except that now
for quantum symmetric algebras, we have some extra coefficents. One needs to show that these
extra coefficients do not cause any problem.

Recall that in the proof of Proposition 3.1, the concrete computation is simplified by many
terms which cancel one another. For example, this occurs in the verification of the equation
t_1dp + ditg = Id in the proof of Proposition 3.1. For polynomial algebras, the proof works due
to these cancelling terms.

For quantum symmetric algebras, things are not so easy. However, the twisting principle always
holds, that is, when we apply a differential or chain contraction, once we produce a monomial
(always in lexographical order) or tensor of monomials, we need to include a coefficient before
this monomial according to the twisting principle. Thus, if two terms cancel each other for
polynomial algebras, as we have included the same coefficient, they still cancel each other for
quantum symmetric algebras. This completes the proof of the result.

g

Now we can use (2.1) and the chain contraction of Proposition 4.2 to give formulae for com-
parison morphisms between the normalized bar resolution and the Koszul resolution.

A chain map from the Koszul resolution to the normalized bar resolution is induced from the
standard embedding of the Koszul resolution into the (unnormalized) bar resolution. See also
Wambst [16, Lemma 5.3 and Theorem 5.4] for a more general setting. We give the formula as it

appears in [11, §2.2(3)]. For p > 0, we define @, : AQ AP(V) x A — A 2 A" ® A by

(4.3) Op(1@ (), Ao Aay)®@1) = Y (seam)gd P @y, @@, ®1
mESym,,

for 1 <j; <---<jp <N. In the above formula, the coefficients q] 1P are the scalars obtained
from the twistlng principle, that is,

J1yeensd _
(4.4) qr pxjﬂ'(l) Ty = Thr L
The other direction is much more complicated. We shall see that for quantum symmetric

algebras, the comparison morphism is a twisted version of that for a polynomial ring given in the
previous section, with certain coefficients included according to the twisting principle.

We define the maps ¥, : A ® AP @A 5 A® N(V) ® A as follows. Let Wy be the identity
map. For p > 1, define ¥, by

(4.5)
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\pr(1®g£1®---®$£p®1)

. (Lo AP Gy, dp) AL Py Gy p)
617"'7£p; 3", Q Q .
= E Z ME;L ’;p) J1 Jp)x (P15 7p) ® [le A A l'jp ® gf(»,lw. p) ,
1<j1 < <Gp<N 0<rs <88 —1
5217“'717
where
e as before, we define the N-tuple Q(T "; ’)]1’ " Jr) by

(Q(E,---,gp; podply [ + 0407 i =
—{r ) j 61 A i< < jen

"7£p; '7"'7' 11,00 .7 .
e the N-tuple Q )]1 ir) and scalar ,uE fip’)jl’ ) are (uniquely) defined by the
Tp
equation
1 . (L' P51 p) S5 g1 dp)
,Ug,l . va) J1,° Jp) Q(rl Tp) mjl .. 'CUjpli(Tl"”’TP) _ ggl ] :CEP c Sq(V)

Note that the coefficient ,u( =k 3100) s obtained using the twisting principle in the right-

(7“1, TP)

1o gP e ~ (¢ e o
hand side of the formula for ¥, and that Q%lfi) 100 and Qgrl o )Jl ) are the same as
in the case of the polynomial algebra k[z1,...,z,]. For comparison, we note that Wambst gave

such a chain map in degree 1 [16, Lemma 6.7].

Theorem 4.6. Let @, and V. be as defined in (4.3) and (4.5). Then

(i) the map ®. is a chain map from the Koszul resolution to the normalized bar resolution;
(ii) the map V. is a chain map from the normalized bar resolution to the Koszul resolution;
(iii) the composition W, o ®, is the identity map.

Proof (i). One direct proof was given in [11, Lemma 2.3]. (The characteristic of k was assumed
to be 0 in [11], however this assumption is not needed in that proof.) Another proof can be given
by applying (2.1) to a chain contraction s, over the normalized bar resolution as in the proof of
Theorem 3.5 (i). The twisting principle gives the coefficients.

(ii). One direct computational proof can be given by applying (2.1) to the chain contraction ¢, of
Proposition 4.2, as in the proof of Theorem 3.5 (ii). Thus the same proof as that of Theorem 3.5 (ii)
works, taking care with the coefficients, by the twisting principle.

(iii). The same proof as in the proof of Theorem 3.5 (iii) works; by the twisting principle, the
coefficients on both sides of the equation coincide.

O

We now give alternative descriptions of the maps ¢, and ¥, in this case of a quantum symmetric
algebra. The description of ¥, will generalize that of Carqueville and Murfet [3] from S(V') to
Sq(V). To this end, it is convenient to replace each term Sq(V) @ AP(V) ® Sq(V') of the Koszul
resolution by Sq(V) @ Sq(V) ® AP(V), using the canonical isomorphism

op : Sq(V) @ Sq(V) @ AP(V) = Sq(V) @ AP(V) @ Sq(V)
in which coefficients are inserted according to the twisting principle. For example, for £ € Sq(V)
and 1 < j; <---<jp <N,

N p
opl@at@ay A Aay) = ([[[]a%,) @ xin A Ay, @at
s=1t=1
Via this isomorphism between the two spaces, consider ¢, as a map from Sq(V) ® Sq(V) @ AP (V)

to Sq(V) ® Sq(V) @ APTH(V). By abuse of notation, we still denote by t, this new map; the same
rule applies to W,,.
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For 1 < j < N, define 75 : Sq(V)¢ — Sq(V)¢ to be the operator that replaces all factors of
the form z; ® 1 with 1 ® x;, but with coefficient inserted according to the twisting principle. For
example, if £ € S4(V), then

N
eton) = ( [T et eitalit sty o5,
s=7+1

It is not difficult to see that for 1 < i # j < N, 7;7; = 7j7;. Define quantum difference quotient
operators Jj;) : Sq(V) — Sq(V) ® Sq(V) for each i, 1 <i < N by

(4.7) O (f) = (i®1-1@z) ("1 (fol) =TT (f @ 1))

This definition should be understood as follows: By writing f as a linear combination of monomials,
it suffices to define J); on each monomial xt. The difference 7 7i-1 (2t @ 1) — ™7 (2£ ® 1) may be

divided by z; ® 1 — 1 ® x; on the left, by first factoring out xf" ®1-1® xfi on the left. Applying
the twisting principle, one sees that this is indeed always a factor. One must include a coefficient
given by the twisting principle, then use the identity
£;
(zi®l-10z) @il -1e2b) = fo”” @]t

r=1

For example, for f = x122, let us compute O (f). We have
Tzl @ 1) = g7 pu3 @ a1 = gip(e @ (1@ x1),
TlT?(xlx% ®1)=1® mlsc% = q%’Q(l ® m%)(l ® x1),
and so
Taay @ 1) =" (r1a3 0 1) = g1 (25 @ 1 — 1@ a3)(1 @ a1).
We obtain thus
O(f) = (@1 —=1@w) (M (w123 ®1) = "™ (2125 ® 1))
= (2201-1®2) Hga(z3®1 - 1®23)(1 ® 1))
q%z(xg RI+1Rx2)(1®x1)
= Q%,ﬂz ®x1+q1,2 ®T122.

In general, we have

7—1 l; j—1 N N
0 s Lsly Le(r=1)\ &= Lit1 N 121 li1 r—1
3{1]@)—(1_[%,3‘)2(1_[ H qs)( H Qe )Ty wilncay @xtealia
s=1 r=1 s=1t=j5+1 t=j+1

That is, one has an extra coefficient (Hi;} qﬁfj) as well as the coefficient included according to
the twisting principle.
The chain contraction t, : Sq(V) @ Sq(V) @ NP(V) = Sq(V) ® Sq(V) @ APTH(V) may be
expressed as
N N P
tp(1®§£®xj1/\"'/\xjp) = <_1)p+1 Z (Hq§;+1,t)(qup+1,jt)a[jp+1](££)®xj1/\'“/\xjp+1'
Gpr1=ip+l t=1 t=1

This can be justified as follows: The coefficient in ;] (2%) is nearly the coefficient needed by the

twisting principle. The discrepancy is that 9|, +1](§£) has an extra factor H{”:ﬁl_l qf,tija and we

N

: ; 4y P ) . . i . e . i
still need to insert ]_[t:jp+1+1 Qoo and [[;_; ¢j,.1,j; since the term x; , in x5 A--- Awj,, lies

Jp+1tl
p+1+1

o) (ITV=1 @j,11.5.) in the coefficient in Njp1] (zb).

to the right of @, A--- Axj, and of z; - -x‘f{,v in 8[jp+ﬂ(§£). Altogether, we need to include

an extra factor of (Hi\i L q§;+1
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The chain map ¥, : Sq(V) ® Sq(V) ® S’q(V)®p — Sq(V) ® Sq(V) @ AP(V) may be expressed
as:

p
1 AR s
(48) Y(eled e-w2)= Y g0 (Tlop@) @y A A,
1<j1<-<jp<N s=1

where the scalar is defined according to the twisting principle by
P
1 A 4 s
(4.9) 2l = uE}h...,jp;(H@[js](@ﬁ )z, - xj, € Sq(V).
s=1

Here in the above expression, the term (H§:1 8[]-51(@55))/ is understood as follows: Suppose
O[js](gﬁs) = a5 ® b, (symbolically), then the product ([T5_, O[js](gﬁs))/ is ([ L5 as)(I1,0s) € A.

5. GERSTENHABER BRACKETS FOR QUANTUM SYMMETRIC ALGEBRAS

The Schouten-Nijenhuis (Gerstenhaber) bracket on Hochschild cohomology of the symmetric
algebra S(V') is well known. In this section, we generalize it to the quantum symmetric algebras
Sq(V). First we recall the definition of the Gerstenhaber bracket on Hochschild cohomology as
defined on the normalized bar resolution of any k-algebra A.

Let f € Homye(A ® A @ A, A) and f’ € Homue(A ® A% g A, A). Define their bracket,
[f, £ € Homae (A A7 @ 4, 4), by

P
[f, f] = Z(_l)(qfl)(kfl)f o f' — (=1)P=1a=1)

k=1

(_1)(%1)(16*1)]0/ or f

M=

i

1
where
(for fH1®a1® @ aprg—1® 1)

=flea® Qa1 f(1Q0a @ @ Ahtgo1®1) @ Aiq @+ @ aprqg_1 ® 1).

In the above definition, the image of an element under f or f’ is understood in A, whenever
required.

Let /\q_1 (V*) be the quantum exterior algebra defined by the tuple q~!, that is, /\q_1 (V*) is the
algebra generated by the dual basis {dz1,...,dzxy} of V* with respect to the basis {z1,...,zn}
of V, subject to the relations (dz;)? = 0 and dridr; = —qgjldxjdxi for all 4, 5. We denote the
product on /\q,l(V*) by A. It is convenient to use abbreviated notation for monomials in this
algebra: If I is the p-tuple I = (i1, ... ,ip), denote by dz the element dx;, A---Adx;, of \ -1 (V*).
We also write 2\ for Tig N ATy, Another notation we shall use is dxy, defined for any b in
{0,1}" to be dzi; A -+ A dx;,, where i1, ...,i, are the positions of the entries 1 in b, all other
entries being 0. In this case we say the length of b is p, and write |b| = p.

In [11, Corollary 4.3], the Hochschild cohomology of Sq(V) is given as the graded vector subspace
of Sq(V) ® Aq-1(V™) that in degree m is

HH™(Sq(V))= P P Spany{z®® day},

b€{0,1}V aeNN
[b|=m a—beC

where N
C={ye(NU{-1})"| for cachic {1,...,N},Hqi7; =1or~y =—1}.
s=1

We wish to compute the bracket of two elements

a=z'®dry; and B=z22®dxp
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where J = (j1,...,jp) and L = (l3,...,l;). We fix some notations. We denote by J U L the
reordered disjoint union of J and L (multiplicities counted if there are equal indices), so dx jr, = 0
if JN L # @ and the entries of J U L are in increasing order. For 1 < k < p, set

Ik = (j17 o 7jk—17 l17 LR 7lqajk+17 e 7jp)7
although we do not have j; < ... <jr_1 <l <...<lg < jg+1 < ... < Jp in general. So we have
dzy, = sgn(m)qls dry i, where Jg = (1, .-+, jk—1, Jkt1, - - - » Jp)- Similarly for 1 < k < g, set

I]lc = (ll, e 7lk—17j17 NN ,jp, lk+17 ceey lq)

Once we know the bracket of two elements of this form, others may be computed by extending
bilinearly. The scalars arising in each term from the twisting principle are potentially different, so
it is more convenient to express brackets in terms of these basis elements of Hochschild cohomology.

Theorem 5.1. The graded Lie bracket of & = 22 ® dxy and = 22 ® dx, is

o8] = Y () DED M (9 (2h)) - 2% @ da g,
1<k<p
—(=1)P=Da-D) Z (—1)— k- DPZLJ (O (%)) 2 @dryug,,
1<k<q

for certain scalars p%J’L and p%;L’J, where a[jk](gé) is defined in (4.7) and Oy, (z2)) - 22 is given
by the A°-module structure over A, that is, if 0j,)(z2) = >, ui ®v; € A® A, then Oy, (a2)) - % =
> ik

Proof We denote by - the composition of two maps instead of o, in order to avoid confusion with
the circle product. We compute the bracket using the formula

[, B] = [ - U, 8- \I'q] cPpyg-1-
The element a = 22 ® dx; as a map from A® A® AP(V) to A sends 1 ® 1 @ 2™ to 6722 for
I = (i1,...,ip), similarly the element 8 = 2° ® dr, as a map from A ® A ® AY(V) to A sends

1@ 1®2" to §rp2b. By formula (4.8) for W, the map a- ¥, : ARA®A®Y 5 AR A NP(V) = A
is given by

p
1
aWlelee @ ) = plt H% ) -at,

where the scalar coefficient is defined by (4.9). We have a smnlar formula for 8- ¥,.
For 1<k <p, (a-Wp)op (8- ¥,): AR A0 AT Ly A sends 191®2™ @ @22 to

(m?t,- m k=1 mk mkta ... ,mPta—1) (mk, ,mk+q—1)
[py U g
m! mk—1 mk mhk+a mpta—1 a
(O @™ ) -+ O @™ )0 (@™ )y (@™ ) -+ Oy (2™ ) - 2
where p; and " are defined by pz™ = (Ht 1 (0 lt]m—t+k_1)) -l

For I = (i1,...,0p4q—1) With 1 <iy < -+ < ipyqe—1 < N, let us compute ((a - ¥,) of (8- ¥y)) -
®pig-1(1®1®2"). Indeed, by (4.3) and our identifications,

Opga(lolez)= > s elor 00

mESym, 4

i (p+q—1)°

Now for a fixed m € Sym,,,,_;, as input into the formula of the previous paragraph, we have

T & ptg—1
M= Cirays -o- IV = Cin(pig-1)

where e; = (0,...,0,1,0,...,0), the 1 in the ith position, and since 9;)(z;) = d;; ® 1, the factor
(a[jﬂ(

1

m k m 1 a
2™) By (@™ )0 @)y @) Oy @)
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vanishes unless

J1=ln(1)s s Jh—1 = ln(k1)s 11 = ln)s -+ 5 lg = Tn(hqe1)s Jht1 = bn(ktq)r - -+ » Ip = bn(ptq—1)s
that is, when Iy, = (1) := (ix(1)," ", ix(p4q—1)) OF €quivalently I = JyUL. Aslongas JyNL = &,
there exist unique I and permutation 7 € Sym,,,_; satisfying this property. In this case,

q
™ = ([T 0@ ™) -2 =2,
t=1

so that uy = 1 and m* = b. Consequently, the map ((a- ¥,) op (8- ¥,)) - P41 sends 1® 1@z
b;J,L b a
to 01 g, uLpy” Opjy] (z2) - % where
3 j1 9965 ’97 j seey€yj PERE)
p%J’L _ Sgn(ﬂk)qfrkugejl €104 egp),u(egl eey)
is determined by the permutation 7y as described above and the scalars defined by (4.4) and (4.9).
Therefore,
by, K
((a-Wp)og (B-Vy)) - Ppyg—1 = P a[jk]@b) -2 @ dT 0L

The formula in the statement can be obtained accordingly.

|

6. GERSTENHABER BRACKETS FOR GROUP EXTENSIONS OF QUANTUM SYMMETRIC ALGEBRAS

Let G be a finite group for which |G| # 0 in k, acting linearly on a finite dimensional vector
space V, thus inducing an action on the symmetric algebra S(V) by automorphisms. In case the
action preserves the relations on the quantum symmetric algebra Sq(V') as defined by (4.1), there
is also an action on this algebra. This is always the case, for example, if G acts diagonally on the
chosen basis 1,...,zn of V. We shall first recall the definition of a group extension, Sq(V) % G,
of Sq(V'), and explain how the Koszul resolution of Sq(V') x G is related to that of Sq(V'). In fact
this works for an arbitrary Koszul algebra, as we shall explain next. Although this is well known,
we include details for completeness.

Let R CV ®V be a G-invariant subspace. Let Ty (V) denote the tensor algebra of V' over k.
Suppose that A = Tx(V)/(R) is a Koszul algebra over k, with the induced action of G. That is,
the complex K,(A) in which Kp(A) = A® A, Ki(A)=A®V ® A, and

i—2

Ki(A) = (A V¥ @ Re Vi~ g A),

j=0
for ¢ > 2, is a free A-bimodule resolution of A under the differential from the bar resolution. In
case A = Sq(V), this can be shown to be equivalent to the Koszul resolution given in Section 4.
The group extension A x G of A, or skew group algebra, is the tensor product A ® kG as a vector
space, with multiplication given by (a® g)(b® h) = a(9b) ® gh for all a,b € A and g, h € G (where
we have used a left superscript to denote the group action). We shall denote elements of A x G
by afg, in place of a ® g, for a € A and g € G, to indicate that they are elements of this skew
group algebra. In this section we adapt and generalize the techniques of [7, 14] from S(V) x G to
Sq(V) x G, explaining how to compute the Gerstenhaber bracket via the Koszul resolution and
our chain maps from Section 4. In the next section we focus on some special cases to give explicit
results.

We know that A x G is a Koszul ring over kG (see [2, Definition 1.1.2 and Section 2.6]). In fact
let V ® kG be the kG-bimodule under the actions g- (v ® h) =9v ® gh and (v®h) - g =v ® hg
for all v € V and g, h € G. Then there is an algebra isomorphism

Tio(V @ kG) ~ Ti(V) x G

sending (v1®91) ki * - Rk (Vm—1R gm—1) kG (Vm @ gim) t0 (V1 @I Vg @« - - @IV IM=10, Y4Gq « + - G,
and the inverse isomorphism sends (v1®- - -®uvp, )ig to (V1 Req) kG« kG (Vm—1®eq) kG (Vm®g),
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where we write eg or e for the unit element of G. Via this isomorphism, R ® kG becomes a kG-
subbimodule of (V @ kG) ®ka (VRkG) ~ V ®V ®kG, and it induces an isomorphism of algebras,
AXG~ T]kg(v (%9 kG)/(R ® kG)
The Koszul resolution K,(A x G) of A x G as a Koszul ring over kG is related to the Koszul
resolution of A as follows:
Ky(AxG) = (AXxG)®ka (AXG)~2A® AkG = Ky(A) @ kG,
Ki(AxG) = (AxG)@kg (VOKG) ke (AxG) 2 AV @ A®kG = Ki(A) ®kG,
and for ¢ > 2,
i—2
= (A% G) &a [V @KG)®T @y (ROKG) @ka (V @ KG)®¢07270)) @y (A % G)
j=0
~ (A% G) e (V@ Re VP )) @ kG) ®ke (A x G)
§=0
i—2 . -
~ (Ae (V¥ @ Re VEI2")) g A) @ kG
j=0
Notice that the above isomorphism is induced by the map sending

(aofg0) ®kc (a1 ® g1) Bk +* ®ka (ap ® gp)) Ok (ap+18gp+1)
to
(ao 2 (goal R ® 90"'91'—10,,,) ® 90~~gpap+1) ® (90 .. .gp+1),
The inverse isomorphism sends (ap ® (a1 ® - -+ ® ap) ® ap+1)fg to

(aofe) ®ka ((a1 ® e) ®ka -+ - Qka (ap @ €)) Rka (apt189)-

One may check that this isomorphism commutes with the differentials. Therefore as complexes of
A x G-bimodules,
K.(AxG) ~ K.(A) ®@kG.
Under this isomorphism, the A x G-bimodule structure of K,(A) @ kG, for each p > 0, is given by
(bh) ((a0 ® (a1 @ - -+ ® ap) @ app1) @ g) (cik) = (bhao (e ® @) e hath’QC) ® hgk.
Similar statements apply to the normalized bar resolution:
B.(Ax G) ~ B.(A) @ kG,

where the former involves tensor products over kG, and the latter over k.

Now we consider the case of A := Sq(V), under the condition that the action of G on V
preserves the relations of Sq(V'). The differentials on K,(A x G) (respectively, B.(A x G)) are
those induced by the Koszul resolution (respectively, bar resolution) of Sq(V'), under the exact
functor — @ kG. Therefore the contracting homotopy and chain maps for Sq(V') may be extended
to the corresponding complexes for Sq(V') x G:

O, kG : K.(AxG)~K(A) kG — B.(A) @ kG ~ B,(A x G)
and
U, kG : B.(AxG) ~B,(A) kG — K.(A) kG ~ K.(A x G).
However, since ®, and W, are in general not G-invariant, there is no reason to expect that &, @ kG

and U, ® kG should be chain maps of complexes of (A x G)®-modules. Since |G| is invertible in
k, we can apply the Reynolds operator (that averages over images of group elements) to obtain
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chain maps of complexes of (A x G)¢-modules, which are denoted by ®, and U, respectively. We
have thus quasi-isomorphisms

0
HOm(Axg)e(K.(A) RkG,AxG)Z HOm(Axg)e(B.(A) kG, AxG).
é.
We shall use the complex on the left side to compute Lie brackets, via the chain maps ¥* and @'.
Notice that for A = Sq(V'), we have
Hom 4. qye (K.(4) @ kG, A x G) Homyge (A (V) @ kG, A x G)
Homkg(/\'(V),A X G)
(Ax G NV
We wish to express the Lie bracket at the chain level, on elements of (4 x G ® /\(V*))G The
method consists of the following steps (cf. [7, 14]).

~
~

12

(i) Compute the cohomology groups of the complexes ((AxG)® /\(V*))G In case the action
of G on V is diagonal, this computation is done in [11, Section 4].
(ii) Give a precise formula for the chain map © that is the composition

0: (A% G)® \"(V*)" 5 Hom(anay (K.(A) @ kG, A x G)

s Hom 4 ye (B.(A) ® kG, A x G) <5 Homp ey (B.(A x kG), A x G).
(iii) Give a precise formula for the chain map I" that is the composition

I: Hom(AMG)e(B.(A X kG),A X G) = HOHI(Axg)e(B.(A) R kG, A % G)

s Homacy- (FK.(A) ©kG, A % G) 5 (Ax G) @ \"(V*).
(iv) Use the formulae in the previous two steps to compute the Lie bracket of two cocycles
given by Step (i).
We obtain thus
Theorem 6.1. Let o, 3 € (A x G) @ \*(V*)Y be two cocycles. Then the Lie bracket of the two
corresponding cohomological classes is represented by the cocycle

[, 8] = T([6(a), ©(B)]).

We see that the actual computations are rather hard and we shall perform these computations
for the diagonal action case in the next section.

7. DIAGONAL ACTIONS

Assume now that G acts diagonally on the basis {z1,...,zx} of V, in which case the action
extends to an action of G on Sq(V') by automorphisms. Let x; : G — k* be the character of G
corresponding to its action on x;, that is

gz = xi(9)z;
for all g € G, and i = 1,--- ,N. For I = (i1, -+ ,4p) with 1 < i3 < -+ < 4, < N, define

L;
x1(g) = H?:l Xi; (g), and for £ € NV, define xe(g) = ngigN X;'(9), for g € G.
Let us make precise the action of G on (A x G) ® A'(V*), occurring in the isomorphism of the
previous section,

Hom e (K.(A) 9 kG, Ax Q) = (A% &)@ \"(V*)°.
Letting g,h € G, L € NN and [ = (i; < --- < ip), we have
Mabg @ dar) = "2 ® "dap) = xe(h)xr(h™") 2t § hgh™' @ day.
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In [11, Section 4], the authors compute homology of this chain complex (A x G) ® A\'(V*) with
the differential

dp(ggﬁg & d.T[) = Z( #{S 18<Z} H Qis,i .%’133 - H qi 15 ﬁg & dx1+e s

il ER ) Siig>1

where e; is the ith element of the canonical basis of NV, and I +¢; is the sequence of p+ 1 integers
obtained by inserting 1 in the ith position. Since the action of G is diagonal, this differential is G-

equivariant. So the Reynolds operator is a chain map from (AxG)®A'(V*) to ((Ax G)®/\'(V*))G
which realizes ((A % G) ® /\(V*))G as a direct summand of (A x G) ® A\"(V*) as complexes. We
shall see that in fact, the induced structure of ((A x G)® /\'(V*))G, as a complex, is the same as
the one induced from the isomorphism

Hom i) (K.(A) 9 kG, A% G) =~ (A% G) @ N\ (V¥)©
We shall prove this fact in the first step below.

We follow the step-by-step outline given towards the end of Section 6. As we shall use the result
of the second step in the first one, we begin with the second step.
Step (ii). As shown in the previous section, we have a series of isomorphisms:

Hom( ) (K.(A) @ kG, A % G)  ~ Homgea)(A'(V) @ kG, A x G)
~ Homya(N'(V),Ax G) ~ (AxG) @ N(V*)°
A map f € Hom gy (Kp(A) @ kG, A x G) corresponds to fi € Homyge (A’ V @ kG, A x G) via
haMeg) =flozMeleg)
and B
flag® 2" @ app1 © g) = (aote) f1(a" ® 9)(7 aprate).
The element f; € Homyge (A’ V ® kG, A x G) corresponds to fo € Homygg (AP V, A x G) via
foa™M) = fiaM ®e)

and

fi@ @ g) = fa(a")(1tg).

Finally, f, € Homya (AP V, A x G) corresponds to f3 € ((4A x G) ® /\p(V*))G

fa=Y_ folz") @dzy,

[l=p
and for fs = 37, 51, > jcqlargllg)@dy € (ANG@AP(V*))G, the corresponding fo € Homya (AP V, Ax
G) sends 2\ to > g ar,gtg.
Altogether, f € Hom e (Kp(A) @ kG, A x G) corresponds to f3 € (Ax G AP V*)G via
fa=)Y flezMelee) @dr;

l=p

and for f3 = 3252, > cq Giglg ®@dry € (AXG® /\p(V*))G

Flao®zM @ apy1 @ g) = Y (aote)(arnth)(1£9)(" apiate) = D aoarn(api1) thy.
heG heG

Now for a = afg @ dzy € A x G® AP(V*), the Reynolds operator
R:AXxGIN (V) = (Ax G N (V)C
gives f3 = ﬁ > ohea xs(h™1) "af hgh™!' @ dx; and thus « corresponds to f € Hom 4. qye (Kp(A4) ®
kG, A x G) sending ap ® 2/ ® ap1 ® k to 51Jﬁ Shee xa(h7h) ao(ha)(hghflaml) t hgh™1k.
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We shall compute OR(a) € Homy ((A x G)®P, A x G) corresponding to f with a = 2£, which is
the composition

1
g @ @2 tg,

,_)241@)91@&2)@ @991 () § gy -
=xp(91) - xe(gr--gp)zt ® @t ﬁgl---gp

= Xg2(91) - Xer (g1 Gp—1 Z Z palerM @2? ® gr---gp (use\,)
1| pogrsges -1
s5=1,--

1
= @Xf(gl) “Xer (91 Gp1 Z E Aps
heG 0<r <e3 —1
821,"',])

p— _ 1 . _ _
xs(h l)xdh)XQ(hgh 1) gl T pgh 191___91)7

where, as in (4.5),
(€', P51, 4jp)

)
L P gy
Q = Qi
S A P 1 )
@ B Q(Tlv"'ﬂ"p) ’
A 2Qula®@ = T ¢ g (V).

This completes the second step.

Step (i). We shall identify the cohomology groups of the complexes (4 x G ® /\(V*))G with
the computation in [11, Section 4]. It suffices to see that the map

AxGe \'(V) D (AxGe NV 2 Hompaug (K.(A) © kG, A % G)

is a chain map, where A x G ® A*(V*) is endowed with the differential given in [11, Section 4]
and Hom4 ) (K.(A) ® kG, A x G) with the differential induced from that of K.(A). We shall
use the computations in the second step to prove this statement.

In fact, given afflg ® dey € A x G ® AP(V*), by the second step, it corresponds to the map
f € Hom(4,6)e (Kp(A) @ kG, A x G) sending ap ® 2"/ @ ap11 @ k to

5IJ’G‘ Z xr(h™1) ao(" )(hghilapﬂ) § hgh™'k.

heG
Now df is the composition (for k € G and L = (I1,- -+ ,lp+1))
p+1 p+1
loaMelok- Y (—1)(( H a)e, 02" 010k~ ([]ayu) 10" @x, 0 k)
7=1 s=1 s=j
p+1 p+1
Z S (=1 1o e, X1(h H aQ;.,) — (T a,,)xi; (hgh™ ) azy, ) thgh ™).
heGJ 1 5=J

On the other hand, by [11, Section 4],
dp(iﬁﬁg 029 d.TU]) = Z( #{s ZS<Z} H qu,z $z$ - H qi zg gxz ﬁg X dx[—s—e“

i1 s:15<1t Siis>1
Which corresponds to the map sending 1 ® 2" ® 1 ® k to
Z S0 (T gind) xe (o rrexi(h)e: "a — ( T @) xi(ho) "aa:)thgh™ k.

hGG i€l S$:115<1 S11s>1
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One sees readily that these two expressions are the same.
Let us recall the result of [11, Section 4]. For g € G, define

Cy={ce (NU{-1})" | for eachi € {1,---,N}, HqCS = )or ¢; =—1}.

For g € G and v € (NU {—1})", the authors of [11] introduced certain subcomplexes K, ., of
(AxG)@ A\P(V*) with (A x G) @ A\P(V*) = @D, K- They also proved that if v € Cy, the
subcomplex K7, , has zero differential and if v ¢ Cy, the subcomplex Kj . is acyclic. (We do
not define K ., here as we shall not need the details.) Using this information, for m € N, [11

9.y
Theorem 4.1] gives

H™ (AxG)e \P(V*) ~HH"(A,Ax G~ B P span{ay @ day}.

9€G be{0,1}V aeNV
[b]l=m a—beCy

We shall use these notations when expressing the Lie bracket of two cohomological classes. This
completes the first step.

Step (iii). Now given a map f € Homg((4 x G)®*, A x G) , we compute the corresponding
I(f) e (AxG)® /\p(V*))G. Direct inspection gives

= Z Z sgnm gl f(@i g te® @ ) ®dzy,
|I|=p m€Sym,,

where ¢ = qfrl"" " is defined in (4.4), and e denotes the identity group element.
Step (iv). We can now compute the Lie bracket of two cohomological classes.

Let
a=zMg®dr; and [ =z2%h®dry

for some group elements g,h € G, where J = (j1,...,5,) and L = (l1,...,l;) and such that
a—J € Cyand b— K € Cp,. Then o and [ are cocycles for the complex AxG® A\ *(V*), because the
subcomplex K . of Hom se(K.(A), Ax G) is a complex with zero differential whenever v € C (for
details, see [11, Section 4]). Consequently, R and R are G-invariant cocycles where, as before,
R is the Reynold’s operator. The bracket operation on Hochschild cohomology is determined by
its values on cocycles of this form.

Theorem 7.1. In case G acts diagonally on the basis x1,...,xN, the graded Lie bracket of Ra
and RS, where a = z%g @ dz; and ,B = 2Yh @ dxp, is

[Ra,RB] = Y (~1)@ b= G ‘2 ST 008 9y (ah) - 2 8 kgk MR @ da g
1<s<p kleG
—(=1)ETED R 7 (-l 1)\ Gp 2 P u(at) 2t g e kg © dgo,
1<s<q kleG

for certain coefficients p?’ﬁ and pf’a

Remark 7.2. This formula generalizes Theorem 5.1 (which is the case G = 1) and [14, Corol-
lary 7.3] (which is the case ¢; ; = 1 for all 4, j).

Proof We may compute [R(«), R(5)] as I'([OR(a), OR(B)]).
Now by the third step,

F([GR(Q)7 GR(ﬁ)]) = Z Z Sgn(ﬂ) qTIr [9<Ra)7 G(R/B)](xiw(mﬁe@' ’ '®xiﬂ(p+q_1)ﬁe)®dxf'

|[I|=p4+q—1mESymy . 1
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Note that ¥, applied to an element of the form 1 ® z,, ® -+ @ 2, ® 18 1@ Ty A+ A, ® 1
ifl1 <e¢p <---<¢ <N, and is 0 otherwise. This observation will simplify considerably the
computation of [OR(«a), OR(8)|(zi, e ® - @z ., ). For 1 <s <p, we have

(OR(«) oy @R(B)(xiﬂ(l)ﬁe - ® l’jﬂ,(p)ﬁe)

= QR(Q)(xiﬁ(l)ﬁe K- @R(ﬁ) (-:Uiﬂ,(s)ﬁe Q- xiﬁ(s+q l)ﬁe) Q- xiﬂ(p+q 1)ﬁe)'

By the second step, a simple computation shows that OR(5)(z; e®- @i .1 fe) is nonzero

only when

Tr(.s

Z'71’(3) =1,... 7Z.7r(s+q71) = lqa
in which case it is equal to ﬁ e X (€ xp(€) 2240he=. Therefore, when

Z.71’(5) =l,... 7i7r(s+q71) - lqa
we have
OR(a) (@i e ® - ® @R(B)(xw e® - ® xiw(s+q—1>ﬁe) ® Loy @ B Liryy 1) le)
= OR(a)(wi, fe @ |G\ Z xo(™) 2t e @ Tinura€) @ @ Ti (. fE)
teG
=@ Z xo(? (OOR(e)(wi, e @ @z T @y, He) @ @i, te).

leG

Applying the second step, in order that the above expression be nonzero, the following condition
must hold:

n= Z.7r(1)7 ceey Js—1 = Z.7r(s—1)7js—|-1 = iﬂ(s—i—q)a ey Jp =1 m(p+q—1)-
When
Un(s) = Uoe oy ln(shga1) = lgs J1 = Un(1)s -+ -5 Js—1 = Un(s—1)s Js+1 = Un(stq)s - - -+ Jp = ln(ptq—1)»
we have
,2 Z ZXL (O)Xjapr (ERETY) - x5, (£RETT)-
kEG LeG
Z Mixs (k™ xa(k)xp (kgk™") 20 kg™ the ™",
0<r<b;,—1
where )
QQ pry xfs ]Z::Hl e x?\]]\]7
O b bje bj,—r+1
z? = S T 7
H ngg = Ljy L Eb Tjopr " Tyhp € SQ(V)v
A 292229 = gatb—eis € 5o (V).

We see that in this case we have I = J; U L. Furthermore, if this is the case, there is a unique
permutation 75 € Sym,, +q_1 such that
= Z.7rs(1)7 cey Js—1 = brs(s—1)s 7r5(s) =li,... 7i7r5(s+q—1) = lqajs—l-l = Z.7r5(s—‘,-q)7 s ajp = i7r5(p+q—1)7
that is, m4(I) = Js U L as introduced before Theorem 5.1. We obtain that when [ = J; LU L and
m=msfor 1 <s<p,

(OR(a) o5 @R(B)(l’im(l)ﬁ@ - ® l’iﬂ—s(erqfl)ﬁe) G |2 Z P p 3[JQ]($*) 22 8 kgk~ehe1,
kleG

for a certain coefficient p?’ﬁ determined by the above data.
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Finally
I([OR(a), OR(B)])

= Z Z sgn(m) ¢l [O(Ra), ORA) (@i, e @ @5, fHe) @dry
[I|=p+q—17ESym, . 4

: A & a — _
= W E E (—1)(q 1)( 1)p576 a[js}@% - 2% kgk™ 0o 1 da;
kleG1<s<p

- — 1 —1)(s— fe a — —
- (- DW S Y (—)EVETNpbe gy (@) - 2b f the kg™ @ day.
kleG 1<s<q
O

In this diagonal case, the following corollary is immediate, since the difference operators in the
bracket formula take 1 to 0. It generalizes [14, Theorem 8.1].

Corollary 7.3. Assume G acts diagonally on the chosen basis x1,...,xn of V, and let a =
ltg ® dxy and = 1th @ dxy,. Then [Ra, RG] =0€ HH'(A x G).

In fact, this result can be seen to hold in the nondiagonal case as well, even without an explicit
description of Hochschild cocycles in that case. Nonetheless we may still use a general argument
for those cocycles having a particular form.

Corollary 7.4. Assume G acts on V', not necessarily diagonally. Let o and 8 be cocycles in
(Ax G NVNG for which a (respectively, B) is a linear combination of elements of the form
18g ® dxy (respectively, 14h @ dxy). Then [a, 8] = 0 € HH'(A x G). In particular, if o is a
2-cocycle, then it is a noncommutative Poisson structure.

Proof The proof is similar to that of Theorem 7.1. However, rather than computing explicitly,
we shall only explain why the bracket is 0.

We compute [a, 3] using Theorem 6.1. Consider o as a homomorphism in Hom4,q)e (K.(4) ®
kG, A x G), then it maps into k ® kG C A x G. Now by Theorem 6.1

[, 8] = [ 0., 8- 0] - &.

Here ®, and W, are chain maps of complexes of (A x G)®-modules obtained by applying the
Reynolds operator (that averages over images of group elements) to ®, and W, respectively. So
one needs to consider certain terms like (a - W) oy (3 - *W) applied to “®(1 ® 1 ® z/\) for k > 1,
and a,b,c € G.

Recall that, if I = (i1,...,1ip), then

P(1elea™M) = Z (sgnm)g " @ Tipqy @ @ T, ® 1.

ﬂESymp

m(p)

So “®(1 ® 1 ® z) is a linear combination of terms of the form 1 ® z;, ® -+ ® x;, ® 1 for
1 <41, -+ ,jp < N. In applying (a - W) o), (3 - V) to each term above, one first applies ®¥ to
l®zj ® --®xj,,,., @1, if the degree of 3 is m. By (4.5),

\Ijm(1®xjk®”.®xjk+m71®1):Iu’®mjk/\.“/\xjk+m*1®1

for some scalar p and so b\Ilm(l RTj ® R Tjy s ® 1) is a linear combination of terms of the
form 1®xp, A---ANxy,, ®1 with 1 <4y <--- < £, <N.

Applying f to the result, we obtain 0 unless L = (¢1,--- ,£,,) for some L for which 14h ® dxp,
has a nonzero coefficient in the expression (3, in which case we obtain a nonzero scalar multiple of
1gh for that term. After factoring h to the right, this becomes 0 as an element of the normalized
bar resolution. The same argument applies to each term in [«, §], and so [a, §] = 0.

For the last statement, recall that a noncommutative Poisson structure is simply a Hochschild
2-cocycle whose square bracket is a coboundary.

g
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Compare to the proof of [12, Theorem 4.6], of which the above corollary is a consequence via

the alternative route of algebraic deformation theory.
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