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Abstract. We realize explicitly the well-known additive decomposition of the Hochschild coho-
mology ring of a group algebra. As a result, we describe the cup product, the Batalin-Vilkovisky

operator and the Lie bracket in the Hochschild cohomology ring of a group algebra.

1. Introduction

Let k be a field and G a finite group. Then the Hochschild cohomology ring of the group algebra
kG admits an additive decomposition:

HH∗(kG) ∼=
⊕
x∈X

H∗(CG(x), k)

where X is a set of representatives of conjugacy classes of elements of G and CG(x) is the centralizer
of x ∈ G. The proof of this isomorphism can be found in [1] or [9]. The usual proof is abstract
rather than giving an explicit isomorphism. For example, one of the key steps is to use the so-called
Eckmann-Shapiro Lemma, one need to construct some comparison maps between two projective
resolutions in order to write it down explicitly, and this is usually difficult. In [9], Siegel and
Witherspoon used techniques and notations from group representation theory to interpret the above
additive decomposition explicitly. For our purpose, we need to give an explicit isomorphism in the
elements level.

A priori, the additive decomposition gives an isomorphism of vector spaces. The left handed side
has a graded commutative algebra structure given by the cup product, a graded Lie algebra structure
given by the Gerstenhaber Lie bracket ([6]), and a Batalin-Vilkovisky (BV) algebra structure given
by the 4 operator ([10]). It would be interesting to describe these structures in terms of pieces from
the right handed sided.

For graded algebra structure, it was done by Holm for abelian groups using computations ([7]),
then Cibils and Solotar gave a conceptual proof in ([3]). The general case was dealt with by Siegel and
Witherspoon ([9]), they described the cup product formula by notations from group representation
theory. Our goal in the present paper is to represent the cup product, the Lie bracket and the BV
operator in the Hochschild cohomology ring in terms of the additive decomposition. This is based
on the explicit construction of an isomorphism in the additive decomposition (although there is no
canonical choice for such an isomorphism).

The main obstruction in realizing an isomorphism in the additive decomposition comes from the
fact that, it is usually difficult to construct the comparison map between two projective resolutions
of modules. There is a surprising way to simplify such construction, namely, one can reduce it
to construct a set-like self-homotopy over one projective resolution, which is often much easier.
This method was already used in a recent paper by the second author jointly with Le ([8]). For
convenience, we shall give here a brief introduction to this idea.

This article is organized as follows. In the second section, we review the definitions of Hochschild
cohomology and cup product, using normalized bar resolutions. We use the normalized bar resolution
since it is easy to describe and can greatly simplify the computations. We also recall the graded
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Lie algebra structure and the BV algebra structure (in case that A is a symmetric algebra) over the
Hochschild cohomology ring HH∗(A) of an algebra A. In the group algebra case, we will state the
relationship of the Hochschild cohomology and the usual group cohomology.

In Section 3, we give a way to realize explicitly the additive decomposition of the Hochschild
cohomology of a group algebra. The main line of our method follows from [9]. In Section 4, we shall
use some idea from [3] to give another way to realize the additive decomposition.

We give the cup product formula in Section 5.
We deal with the 4 operator and the graded Lie bracket in the next two sections.
In the final section, we use our formulas to compute several concrete examples.

2. How to construct comparison morphisms

Definition 2.1. Let A be an algebra over a field k. Let

C• : · · · −→ Cn+1 dn+1−→ Cn
dn−→ Cn−1 −→ · · ·

be a chain complex of A-modules. If there are maps (just as maps between sets) sn : Cn −→ Cn+1

such that sn−1dn + dn+1sn = idCn for all n, then the maps {sn} are called a set-like self-homotopy
over the complex C•.

Remark 2.2. There is a set-like self-homotopy over a complex C• of A-modules if and only if C•

is an exact complex, that is, C• is a zero object in the derived category D(ModA). Compare this
with the usual self-homotopy, which is equivalent to saying that C• is a zero object in the homotopy
category K(ModA).

We will show how to use a set-like self-homotopy to construct a comparison map. Let M and N be
two A-modules, and let f : M −→ N be an A-module homomorphism. Suppose that P • = (Pi, ∂i)
is a free resolution of M , and that Q• = (Qi, di) is a projective resolution of N . Suppose further
that there is a set-like self-homotopy s = {sn}:

· · · - Q2
d2- Q1

- Q0
d1 d0- N - 0

· · · - Q2
d2- Q1

- Q0
d1 d0- N - 0.
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For each i ≥ 0, choose a basis Xi for the free A-module Pi (the i-th term of P •). We define
inductively the maps fi : Xi −→ Qi as follows: for x ∈ X0, f0(x) = s−1f∂0(x); for i > 1 and
for x ∈ Xi, fi(x) = si−1fi−1∂i(x). Extending A-linearly the maps fi we get A-homomorphisms
fi : Pi −→ Qi. It is easy to verify that {fi} gives a chain map between the complexes P • and Q•.
We illustrate the above procedure in the following diagram:

· · · - P2
∂2- P1

- P0
∂1 ∂0- M - 0

f2
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?
f
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We shall use the following standard homological fact.

Lemma 2.3. Let A and B be two rings and let F : ModA −→ ModB be an additive contravariant
functor. If C• and D• are two projective resolutions of an A-module M , then the cochain complexes
FC• and FD• of B-modules are homotopic. In particular, if ϕ : C• −→ D• and ψ : D• −→ C• are
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two chain maps inducing identity maps 1M : M −→M , then Fϕ : FD• −→ FC• and Fψ : FC• −→
FD• are inverse homotopy equivalences.

3. Remainder on Hochschild cohomology

In this section, we recall the definitions of various structures over Hochschild cohomology. For
the cup product and the Lie bracket in the Hochschild cohomology ring, we refer to Gerstenhaber’s
original paper [6]; for the Batalin-Vilkovisky algebra structure, we refer to [10].

Let k be a field and A an associative k-algebra with identity 1A. Denote by A the quotient space
A/(k · 1A). We shall write ⊗ for ⊗k and A⊗n for the n-fold tensor product A ⊗ · · · ⊗ A. The
normalized bar resolution (Bar∗(A), d∗) of A is a free resolution of A as A-A-bimodules, where

Bar−1(A) = A, and for n ≥ 0, Barn(A) = A⊗A⊗n ⊗A,
d0 : Bar0(A) = A⊗A −→ A, a0 ⊗ a1 7−→ a0a1(multiplication map), and for n ≥ 1,

dn : Barn(A) −→ Barn−1(A), a0 ⊗ a1 ⊗ · · · ⊗ an+1 7−→
n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1.

The exactness of the normalized bar resolution is an easy consequence of the following fact: there is
a set-like self-homotopy sn : Barn(A) −→ Barn+1(A) over Bar∗(A) given by

sn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ an+1.

Notice that here each sn is just a right A-module homomorphism.

Let AMA be an A-A-bimodule. Remember that any A-A-bimodule can be identified with a left
module over the enveloping algebra Ae = A ⊗ Aop. We have the Hochschild cohomology complex
(C∗(A,M), δ∗):

Cn(A,M) = HomAe(Barn(A),M) ∼= Homk(A
⊗n
,M), for n ≥ 0,

δn : Cn(A,M) −→ Cn+1(A,M), f 7−→ δn(f), where δn(f) sends a1 ⊗ · · · ⊗ an+1 to

a1f(a2 ⊗ · · · ⊗ an+1) +

n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · an+1) + (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1.

For n ≥ 0, the degree-n Hochschild cohomology group of the algebra A with coefficients in M is
defined to be

HHn(A,M) = Hn(C∗(A,M)) ∼= ExtnAe(A,M).

If in particular, A = kG the group algebra of a finite group G, then the Hochschild cohomology
complex (C∗(A,M), δ∗) has the following form:

Cn(kG,M) ' Homk(kG
⊗n
,M) 'Map(G

n
,M), for n ≥ 0,

where G = G− {1} and Map(G
×n
,M) denotes all the maps between the sets G

×n
and M , and the

differential is given by

δn : Cn(kG,M) −→ Cn+1(kG,M), f 7−→ δn(f), where δn(f) sends (g1, · · · , gn+1) ∈ Gn+1
to

g1f(g2, · · · , gn+1) +

n∑
i=1

(−1)if(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1f(g1, · · · , gn)gn+1.

When M = A with the obvious A-A-bimodule structure, we write Cn(A) (resp. HHn(A)) for
Cn(A,A) (resp. HHn(A,A)). Let f ∈ Cn(A), g ∈ Cm(A). Then the cup product f ∪ g ∈ Cn+m(A)
is defined as follows:

f ∪ g : A
⊗(n+m) −→ A, a1 ⊗ · · · ⊗ an+m 7−→ f(a1 ⊗ · · · an)g(an+1 ⊗ · · · ⊗ an+m).

This cup product is associative and induces a well-defined product over

HH∗(A) =
⊕
n≥0

HHn(A) =
⊕
n≥0

ExtnAe(A,A),

which is called the Hochschild cohomology ring of A. Moreover, HH∗(A) is graded commutative,
that is, α ∪ β = (−1)mnβ ∪ α for α ∈ HHn(A) and β ∈ HHm(A).
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The Lie bracket is defined as follows. Let f ∈ Cn(A,M), g ∈ Cm(A). If n,m ≥ 1, then for
1 ≤ i ≤ n, the so-called brace operation f ◦i g ∈ Cn+m−1(A,M) is defined by

f ◦i g(a1 ⊗ · · · an+m−1) = f(a1 ⊗ · · · ⊗ ai−1 ⊗ g(ai ⊗ · · · ⊗ ai+m−1)⊗ ai+m ⊗ · · · ⊗ an+m−1);

if n ≥ 1 and m = 0, then g ∈ A and for 1 ≤ i ≤ n, set

f ◦i g(a1 ⊗ · · · an−1) = f(a1 ⊗ · · · ⊗ ai−1 ⊗ g ⊗ ai ⊗ · · · ⊗ an−1);

for any other case, set f ◦i g to be zero. Define

f ◦ g =

n∑
i=1

(−1)(m−1)(i−1)f ◦i g ∈ Cn+m−1(A,M)

and for f ∈ Cn(A), g ∈ Cm(A), define

[f, g] = f ◦ g − (−1)(n−1)(m−1)g ◦ f ∈ Cn+m−1(A).

The above [ , ] induces a well-defined (graded) Lie bracket in Hochschild cohomology

[ , ] : HHn(A)×HHm(A) −→ HHn+m−1(A)

such that (HH∗(A),∪, [ , ]) is a Gerstenhaber algebra, that is, the following three conditions hold:

• (HH∗(A),∪) is an associative algebra and it is graded commutative;
• (HH∗(A), [ , ]) is a graded Lie algebra;
• Possion rule: [f ∪ g, h] = [f, h] ∪ g + (−1)|f |(|h|−1)f ∪ [g, h], where | · | denotes the degree.

We now assume that A is a symmetric k-algebra, that is, A is isomorphic to its dual D(A) =
Homk(A, k) as Ae-modules, or equivalently, if there exists a symmetric associative non-degenerate
bilinear form 〈 , 〉 : A × A −→ k. This bilinear form induces a duality between the Hochschild
cohomology and the Hochschild homology. In fact, for any n ≥ 0 there is an isomorphism between
HHn(A) and HHn(A) induced by the following canonical isomorphisms

Homk(A⊗Ae Barn(A), k) ∼= HomAe(Barn(A), D(A)) ∼= HomAe(Barn(A), A).

Via this duality, we have, for n ≥ 1, an operator 4 : HHn(A) −→ HHn−1(A) which corresponds
to the Connes’ B-operator on the Hochschild homology. More precisely, for any f ∈ Cn(A), 4(f) ∈
Cn−1(A) is given by the equation

〈4(f)(a1 ⊗ · · · ⊗ an−1), an〉 =

n∑
i=1

(−1)i(n−1)〈f(ai ⊗ · · · ⊗ an−1 ⊗ an ⊗ a1 ⊗ · · · ⊗ ai−1), 1〉.

Then the Gerstenhaber algebra (HH∗(A),∪, [ , ]) together with the operator4 is a Batalin-Vilkovsky
algebra (BV-algebra), that is, (HH∗(A),4) is a complex and

[α, β] = −(−1)(|α|−1)|β|(4(α ∪ β)−4(α) ∪ β − (−1)|α|α ∪4(β))

for all homogeneous elements α, β ∈ HH∗(A).

4. Remainder on group cohomology

Let G be a finite group and U a left kG-module. The group cohomology of G with coefficient
in U is defined to be Hn(G,U) = ExtnkG(k, U). The complex Bar∗(kG) ⊗kG ⊗k is the standard
resolution of the trivial module k. In fact, as the set-like homotopy sn over Bar∗(kG) are right
module homomorphisms, Bar∗(kG)⊗kG k is exact and thus a projective resolution of kG⊗kG k ' k.
We write the complex C∗(G,U) = HomkG(Bar∗(kG)⊗kG k, U). Therefore, for n ≥ 0,

Cn(G,U) ' HomkG((kG⊗ kG⊗n ⊗ kG)⊗kG k, U) ' HomkG(kG⊗ kG⊗n, U)

' Homk(kG
⊗n
, U) 'Map(G

×n
, U),

where G = G − {1} and Map(G
×n
, U) denotes all the maps between the sets G

×n
and U , and the

differential is given by
d0(x)(g) = gx− x (for x ∈ U and g ∈ G)
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and (for ϕ : G
×n −→ U and g1, · · · , gn+1 ∈ G)

dn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)+

n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1)+(−1)n+1ϕ(g1, · · · , gn).

Of particular interest to us are the following two cases which relate group cohomology to Hochschild
cohomology and in fact which underly our two realisations of the additive decomposition of the
Hochschild cohomology of a group algebra.

Let kG be a group algebra and U a kG-kG-bimodule. Note that we have an algebra isomorphism
(kG)e ∼= k(G × G) given by g1 ⊗ g2 7−→ (g1, g

−1
2 ), for g1, g2 ∈ G. Thus we can also identify each

kG-kG-bimodule M as a left k(G × G)-module: (g1, g2) · x = g1xg
−1
2 . In the sequel, we shall write

the Hochschild cohomology complex for the group algebra kG in terms of k(G×G)-modules.
Case 1. M = kG, the module kG with the obvious kG-kG-bimodule, or equivalently, the k(G×G)-

module kG with action: (g1, g2) · x = g1xg
−1
2 for g1, g2 ∈ G. It is easy to verify that there is a

k(G × G)-module isomorphism IndG×GG k = k(G × G) ⊗kG k ∼= kG ((g1, g2) ⊗ 1 7−→ g1g
−1
2 ), where

the right kG-module structure over k(G×G) is given by diagonal action. So we have

HHn(kG, kG) ' Extnk(G×G)(kG, kG) ∼= Extnk(G×G)(Ind
G×G
G k, kG)

∼= ExtnkG(k,ResG×GG kG) = ExtnkG(k, kGc)
= Hn(G, kGc),

where the third isomorphism is given by the adjoint equivalence and kGc is considered as a left
kG-module by conjugation: g · x = gxg−1 for g, x ∈ G. This verifies a well-known fact observed by
Eilenberg and Mac Lane ([4]): the Hochschild cohomology HHn(kG, kG) of kG with coefficients in
kG is isomorphic to the ordinary group cohomology Hn(G, kG) of G with coefficients in kG under
the conjugation.

Case 2. M = k, the trivial kG-kG-bimodule, or equivalently, the k(G×G)-module k with action:
(g1, g2) · 1 = 1 for g1, g2 ∈ G. Since we have

HHn(kG, k) ' Extnk(G×G)(kG, k) ∼= Extnk(G×G)(k(G×G)⊗kG k, k) ∼= ExtnkG(k, k) = Hn(G, k),

the Hochschild cohomology HHn(kG, k) of kG with coefficients in k is isomorphic to the ordi-
nary group cohomology Hn(G, k). Another way to see this iies in the fact that the two complexes
C∗(kG, k) and C∗(G, k) coincide.

et kG be a group algebra. Then kG is a symmetric algebra with the bilinear form

〈 , 〉 : kG× kG −→ k,

〈g, h〉 =

{
1 if g = h−1

0 otherwise

for g, h ∈ G. So there is a well-defined BV-algebra structure on HH∗(kG). On the other hand, since
the ordinary group cohomology Hn(G, k) is isomorphic to the Hochschild cohomology HHn(kG, k)
of kG with coefficients in the trivial module k, we can define a cup product on the group cohomology

H∗(G, k) =
⊕
n≥0

Hn(G, k)

in a similar way:

ϕ1 ∪ ϕ2 : G
×n+m −→ k, (g1, · · · , gn+m) 7−→ ϕ1(g1, · · · , gn)ϕ2(gn+1, · · · , gn+m),

where ϕ1 ∈Map(G
×n
, k), and ϕ2 ∈Map(G

×m
, k). By [5, Corollary 2.2], Hn(G, k) is a Gerstenhaber

subalgebra of HH∗(kG). In fact, as in [5, Proof of Theorem 1.8], there is a chain map at the
cohomology complex level:

HomkG(Bar∗(kG)⊗kG k, k) ↪→ Homk(G×G)(Bar∗(kG), kG),

(ϕ : G
×n −→ k) 7−→ (ψ : G

×n −→ kG), ψ(g1, · · · , gn) = ϕ(g1, · · · , gn)g1 · · · gn.
This inclusion map preserves the brace operations in the following sense:

Let ϕ1, ϕ2 ∈ Cn(kG, k) ∼= Map(G
×n
, k), and ϕ̂1, ϕ̂2 ∈ Cm(kG) be the corresponding elements

under the above inclusion map. Then ϕ̂1 ◦i ϕ̂2 = ̂ϕ1 ◦i ϕ̂2 ∈ Cn+m−1(kG).
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Notice that if G is an abelian group, then there is an isomorphism of graded rings (see [7] or [3]):

HH∗(kG, kG) ∼= kG⊗k H∗(G, k).

5. An realization of the additive decomposition

Let k be a field and G a finite group. Then the Hochschild cohomology ring of the group algebra
kG admits an additive decomposition:

HH∗(kG) ∼=
⊕
x∈X

H∗(CG(x), k)

where X is a set of representatives of conjugacy classes of elements of G and CG(x) is the centralizer
subgroup of G. In this section, we give an explicit construction of the additive decomposition. The
main technique we used here is to construct comparison maps based some set-like self-homotopys.
(cf. Section 1: Introduction.)

By definition, HH∗(kG) = H∗(Hom(kG)e(Bar∗(kG), kG)). Since there is an algebra isomorphism

(kG)e ∼= k(G × G) by g1 ⊗ g2 7−→ (g1, g
−1
2 ), we can identify H∗(Hom(kG)e(Bar∗(kG), kG)) with

H∗(Homk(G×G)(Bar∗(kG), kG)), where the k(G×G)-module structure over kG is given by (g1, g2) ·
x = g1xg

−1
2 (the same applies to the terms in Bar∗(kG)). Since we always use the normalized bar

resolutions, we have

Homk(G×G)(Barn(kG), kG) ∼= Homk(kG
⊗n
, kG) ∼= Map(G

×n
, kG).

It follows that HH∗(kG) is the cohomology of the following cochain complex:

0 −→ kG
d0−→Map(G, kG)

d1−→ · · · −→Map(G
×n
, kG)

dn−→ · · · ,
where the differential is given by

d0(x)(g) = gx− xg (for x ∈ kG and g ∈ G)

and (for ϕ : G
×n −→ kG and g1, · · · , gn+1 ∈ G)

dn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)+
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn)gn+1.

The main line of our method follows from [9], there the formula is given between cohomology
groups using standard operations like restriction, induction, conjugation, etc., while we choose some
special projective resolutions and construct maps directly on the cohomology complex level. We will
divide our construction into six steps.

The first step. Let kG be the k(G×G)-module in HH∗(kG) = Homk(G×G)(Bar∗(kG), kG). Then

we have a k(G×G)-module isomorphism k(G×G)⊗kGk ∼= kG given by (g1, g2)⊗1 7−→ g1g
−1
2 , where

kG operates diagonally on k(G×G) from the right. Moreover, k(G×G)⊗kGBar∗(kG)⊗kGk is also a
free resolution of the above k(G×G)-module kG. Notice that here and in the following we still view
the terms in Bar∗(kG) as the usual kG-kG-bimodules. If we identify k(G×G)⊗kGBarn(kG)⊗kG k
with kG⊗ kG⊗ kG⊗n, then the differential is as follows:

kG⊗ kG −→ kG, x⊗ y 7−→ xy−1;

kG⊗ kG⊗ kG −→ kG⊗ kG, x⊗ y ⊗ g1 7−→ xg1 ⊗ yg1 − x⊗ y;

· · · · · · · · ·
kG⊗ kG⊗ kG⊗n −→ kG⊗ kG⊗ kG⊗n−1, x⊗ y ⊗ g1 ⊗ · · · ⊗ gn 7−→

xg1⊗ yg1⊗ g2⊗· · ·⊗ gn +

n−1∑
i=1

(−1)ix⊗ y⊗ g1⊗· · ·⊗ gigi+1⊗· · ·⊗ gn + (−1)nx⊗ y⊗ g1⊗· · ·⊗ gn−1.

We also have

Homk(G×G)(k(G×G)⊗kG Barn(kG)⊗kG k, kG) ∼= Homk(kG
⊗n
, kG) ∼= Map(G

×n
, kG).
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Using this identification, H∗(Homk(G×G)(k(G×G)⊗kGBar∗(kG)⊗kGk, kG)) is given by the following
cochain complex:

0 −→ kG
d′0−→Map(G, kG)

d′1−→ · · · −→Map(G
×n
, kG)

d′n−→ · · · ,
where the differential is given by

d′0(x)(g) = gxg−1 − x (for x ∈ kG and g ∈ G)

and (for ϕ : G
×n −→ kG and g1, · · · , gn+1 ∈ G)

d′n(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)g−11 +
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn).

By standard homological algebra, we know that

(1) H∗(Homk(G×G)(Bar∗(kG), kG)) ∼= H∗(Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG)).

Notice that there is no canonical choice for the isomorphism in (1). However, we can always choose
a “natural” one and fix it in this paper. We will give an explicit isomorphism in (1) and its inverse,
based on the construction of the comparison maps between the two free resolutions Bar∗(kG) and
k(G × G) ⊗kG Bar∗(kG) ⊗kG k of the above k(G × G)-module kG. As explained in Introduction,
this is reduced to construct set-like self-homotopys over these resolutions. Our principle here is to
choose those set-like self-homotopys so that the computations and results are simple.

We choose a set-like self-homotopy over Bar∗(kG) as

un : kG⊗ kG⊗n ⊗ kG −→ kG⊗ kG⊗n ⊗ kG,
g0 ⊗ g1 ⊗ · · · ⊗ gn+1 7−→ (−1)n+1g0 ⊗ g1 ⊗ · · · ⊗ gn+1 ⊗ 1.

Using {un} we can construct a comparison map

α : k(G×G)⊗kG Bar∗(kG)⊗kG k −→ Bar∗(kG)

as follows (we only write down the maps on basis vectors):

α−1 : kG −→ kG, x 7−→ x,

α0 : kG⊗ kG −→ kG⊗ kG, x⊗ y 7−→ x⊗ y−1,
α1 : kG⊗ kG⊗ kG −→ kG⊗ kG⊗ kG, x⊗ y ⊗ g1 7−→ −xg1 ⊗ g−11 ⊗ y−1,

· · · · · · · · ·
αn : kG⊗kG⊗kG⊗n −→ kG⊗kG⊗n⊗kG, x⊗y⊗g1⊗· · ·⊗gn 7−→ (−1)

n(n+1)
2 xg1 · · · gn⊗g−1n ⊗· · ·⊗g−11 ⊗y−1.

Similarly, we choose a set-like self-homotopy over k(G×G)⊗kG Bar∗(kG)⊗kG k as

vn : kG⊗ kG⊗ kG⊗n −→ kG⊗ kG⊗ kG⊗n,
x⊗ y ⊗ g1 ⊗ · · · ⊗ gn 7−→ xy−1 ⊗ 1⊗ y ⊗ g1 ⊗ · · · ⊗ gn.

Using {vn} we can construct a comparison map

β : Bar∗(kG) −→ k(G×G)⊗kG Bar∗(kG)⊗kG k
as follows (we only write down the maps on basis vectors):

β−1 : kG −→ kG, x 7−→ x,

β0 : kG⊗ kG −→ kG⊗ kG, x⊗ y 7−→ x⊗ y−1,
β1 : kG⊗ kG⊗ kG −→ kG⊗ kG⊗ kG, x⊗ g1 ⊗ y 7−→ −xg1 ⊗ y−1 ⊗ g−11 ,

· · · · · · · · ·
βn : kG⊗kG⊗n⊗kG −→ kG⊗kG⊗kG⊗n, x⊗g1⊗· · ·⊗gn⊗y 7−→ (−1)

n(n+1)
2 xg1 · · · gn⊗y−1⊗g−1n ⊗· · ·⊗g−11 .

It is easy to check that the chain maps {αn} and {βn} are inverse to each other, and therefore we
get an isomorphism

Homk(G×G)(Bar∗(kG), kG) −→ Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG),

(ϕ : G
×n −→ kG) 7−→ (ϕ1 : G

×n −→ kG), ϕ1(g1, · · · , gn) = (−1)
n(n+1)

2 g1 · · · gnϕ(g−1n , · · · , g−11 ).



8 YUMING LIU AND GUODONG ZHOU∗

Its inverse is given by

Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG) −→ Homk(G×G)(Bar∗(kG), kG),

(ϕ1 : G
×n −→ kG) 7−→ (ϕ : G

×n −→ kG), ϕ(g1, · · · , gn) = (−1)
n(n+1)

2 g1 · · · gnϕ1(g−1n , · · · , g−11 ).

Passing to the cohomology, we realize an isomorphism in (1) and its inverse.

The second step. Since (k(G ×G) ⊗kG −, Homk(G×G)(k(G ×G),−)) is an adjoint pair, we have
an isomorphism (Note that k(G×G) is viewed as a right kG-module by diagonal action)

Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG) ∼= HomkG(Bar∗(kG)⊗kG k, kG),

where the kG-module structure on the last kG is given by conjugation: g · x = gxg−1 for g ∈ G.
Passing to the cohomology, we get an isomorphism

(2) H∗(Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG)) ∼= H∗(HomkG(Bar∗(kG)⊗kG k, kG)).

Remind that the right hand side is just the ordinary group cohomology H∗(G, kG) of G with coeffi-
cients in kG under the conjugation (cf. Case 1 of Example ??). We also have

HomkG(Barn(kG)⊗kG k, kG) ∼= HomkG(kG⊗ kG⊗n, kG) ∼= Homk(kG
⊗n
, kG) ∼= Map(G

×n
, kG).

Using this identification, H∗(G, kG) = H∗(HomkG(Bar∗(kG)⊗kG k, kG)) is given by the following
cochain complex:

0 −→ kG
d0−→Map(G, kG)

d1−→ · · · −→Map(G
×n
, kG)

dn−→ · · · ,
where the differential is given by

d0(x)(g) = gxg−1 − x (for x ∈ kG and g ∈ G)

and (for ϕ : G
×n −→ kG and g1, · · · , gn+1 ∈ G)

dn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)g−11 +
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn).

So formally the left hand side and the right hand side in (2) are identical,though they have different
meaning. It is also easy to check that under the above identifications, the adjoint isomorphisms are
identity maps:

Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG) −→ HomkG(Bar∗(kG)⊗kG k, kG),

(ϕ1 : G
×n −→ kG) 7−→ (ϕ2 : G

×n −→ kG), ϕ2(g1, · · · , gn) = ϕ1(g1, · · · , gn).

Its inverse is given by

HomkG(Bar∗(kG)⊗kG k, kG) −→ Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG),

(ϕ2 : G
×n −→ kG) 7−→ (ϕ1 : G

×n −→ kG), ϕ1(g1, · · · , gn) = ϕ2(g1, · · · , gn).

Passing to the cohomology, we realize an isomorphism in (2) and its inverse.

The third step. We choose a complete set X of representatives of the conjugacy classes in the
finite group G. Take x ∈ X. Then Cx = {gxg−1|g ∈ G} is the conjugacy class corresponding
to x and CG(x) = {g ∈ G|gxg−1 = x} is the centralizer subgroup. Clearly the k-space kCx
generated by the elements in Cx is a left kG-module under the conjugation action. We choose a right
coset decomposition of CG(x) in G: G = CG(x)γ1,x ∪ CG(x)γ2,x ∪ · · · ∪ CG(x)γnx,x (equivalently,

G = γ−11,xCG(x)∪γ−12,xCG(x)∪ · · ·∪γ−1nx,xCG(x) is a left coset decomposition of CG(x) in G), and such

that Cx = {x = γ−11,xxγ1,x, γ
−1
2,xxγ2,x, · · · , γ−1nx,xxγnx,x}. (We will always take γ1,x = 1, and we write

xi for γ−1i,xxγi,x.) Then we have the following kG-module isomorphisms:

kCx ∼= kG⊗kCG(x) k, xi 7−→ γ−1i,x ⊗kCG(x) 1,

kCx ∼= HomkCG(x)(kG, k), xi 7−→ γi : kG −→ k, γi(γj,x) = δij ,
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where in the first isomorphism, the left kG-module structure on kG is the usual left multiplication and
the right kCG(x)-module structure on kG is given by restriction, and k is the trivial kCG(x)-module,
and the similar as in the second isomorphism.

In the second step, we have arrived at the ordinary group cohomology H∗(G, kG) of G with
coefficients in kG, where the kG-module structure over kG is given by the conjugation. This kG has
a kG-module decomposition:

kG =
⊕
x∈X

kCx.

Denote by πx : kG −→ kCx and ix : kCx −→ kG the canonical projection and the canonical injection,
respectively. Then we have the following isomorphism

HomkG(Bar∗(kG)⊗kG k, kG) −→ HomkG(Bar∗(kG)⊗kG k,
⊕
x∈X

kCx),

(ϕ2 : G
×n −→ kG) 7−→ ϕ3 = {ϕ3,x|x ∈ X}, where ϕ3,x = πxϕ2 : G

×n −→ kCx.

Its inverse is given by

HomkG(Bar∗(kG)⊗kG k,
⊕
x∈X

kCx) −→ HomkG(Bar∗(kG)⊗kG k, kG),

ϕ3 = {ϕ3,x : G
×n −→ kCx|x ∈ X} 7−→ (ϕ2 =

∑
x∈X

ixϕ3,x : G
×n −→ kG).

Passing to the cohomology, we realize an isomorphism:

(3) H∗(G, kG) ∼=
⊕
x∈X

H∗(G, kCx),

where the kG-module structure over kG is given by the conjugation.

The fourth step. We have stated in the third step the following kG-module isomorphism

kCx ∼= HomkCG(x)(kG, k), xi 7−→ γi : kG −→ k, γi(γj,x) = δij .

Therefore we have the following isomorphism

HomkG(Bar∗(kG)⊗kG k, kCx) −→ HomkG(Bar∗(kG)⊗kG k,HomkCG(x)(kG, k)),

(ϕ3,x : G
×n −→ kCx) 7−→ (ϕ4,x : G

×n −→ HomkCG(x)(kG, k)),

where if we write ϕ3,x(g1, g2, · · · , gn) =
∑nx

i=1 ai,xxi, then ϕ4,x(g1, g2, · · · , gn) maps γi,x to ai,x for
any i. The inverse isomorphism is given by

HomkG(Bar∗(kG)⊗kG k,HomkCG(x)(kG, k)) −→ HomkG(Bar∗(kG)⊗kG k, kCx),

(ϕ4,x : G
×n −→ HomkCG(x)(kG, k)) 7−→ (ϕ3,x : G

×n −→ kCx),

where if ϕ4,x(g1, g2, · · · , gn) maps γi,x to ai,x for any i, then ϕ3,x(g1, g2, · · · , gn) =
∑nx

i=1 ai,xxi.
Passing to the cohomology, we realize an isomorphism:

(4) H∗(G, kCx) ∼= H∗(HomkG(Bar∗(kG)⊗kG k,HomkCG(x)(kG, k))).

The fifth step. Since (kG ⊗kG −, HomkCG(x)(kG,−)) is an adjoint pair, we have the following
isomorphism

HomkG(Bar∗(kG)⊗kG k,HomkCG(x)(kG, k)) −→ HomkCG(x)(Bar∗(kG)⊗kG k, k).

Passing to the cohomology, we get an isomorphism

(5) H∗(HomkG(Bar∗(kG)⊗kG k,HomkCG(x)(kG, k))) ∼= H∗(HomkCG(x)(Bar∗(kG)⊗kG k, k)),

where the right hand side is isomorphic to the ordinary group cohomology H∗(CG(x), k) of CG(x)
with coefficients in the trivial module k. Since there are kCG(x)-module isomorphisms

Bar∗(kG)⊗kG k ∼=
nx⊕
i=1

kCG(x)γi,x ⊗ kG
⊗n
,
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we have

HomkCG(x)(Bar∗(kG)⊗kG k, k) ∼= Homk(

nx⊕
i=1

kγi,x ⊗ kG
⊗n
, k) ∼= Map(Sx ×G

×n
, k),

where Sx = {γ1,x, · · · , γnx,x} (cf. The third step). Using this identification, the adjoint isomorphism
is given by

HomkG(Bar∗(kG)⊗kG k,HomkCG(x)(kG, k)) −→ HomkCG(x)(Bar∗(kG)⊗kG k, k),

(ϕ4,x : G
×n −→ HomkCG(x)(kG, k)) 7−→ (ϕ5,x : Sx ×G

×n −→ k),

where if ϕ4,x(g1, g2, · · · , gn) maps γi,x to ai,x for any i, then ϕ5,x(γi,x, g1, g2, · · · , gn) = ai,x for any
i. The inverse isomorphism is given by

HomkCG(x)(Bar∗(kG)⊗kG k, k) −→ HomkG(Bar∗(kG)⊗kG k,HomkCG(x)(kG, k)),

(ϕ5,x : Sx ×G
×n −→ k) 7−→ (ϕ4,x : G

×n −→ HomkCG(x)(kG, k)),

where if ϕ5,x(γi,x, g1, g2, · · · , gn) = ai,x for any i, then ϕ4,x(g1, g2, · · · , gn) maps γi,x to ai,x for any
i. Passing to the cohomology, we realize an isomorphism in (5) and its inverse.

The sixth step. In the fifth step, we have arrived at the ordinary group cohomology H∗(CG(x), k)
of CG(x) with coefficients in the trivial module k, where H∗(CG(x), k) is computed by the cochain
complex HomkCG(x)(Bar∗(kG) ⊗kG k, k). By the identification in fifth step, this is given by the
following cochain complex:

0 −→ k×nx
d0−→Map(Sx ×G, k)

d1−→ · · · −→Map(Sx ×G
×n
, k)

dn−→ · · · ,
where the differential is given by d0({ai,x})((γj,x, g1)) = asj ,x − aj,x, and asj ,x is determined as

follows: for {ai,x} ∈ k×nx , γj,x ∈ Sx, g1 ∈ G, we have

γj,xg1 = hj,1γsj ,x for some hj,1 ∈ CG(x) and for some 1 ≤ sj ≤ nx.

and by (for ϕ : Sx ×G
×n −→ k, γj,x ∈ Sx, g1, · · · , gn+1 ∈ G such that γj,xg1 = hj,1γsj ,x)

dn(ϕ)(γj,x, g1, · · · , gn+1) = ϕ(γsj ,x, g2, · · · , gn+1)+

n∑
i=1

(−1)iϕ(γj,x, g1, · · · , gigi+1, · · · , gn+1)+(−1)n+1ϕ(γj,x, g1, · · · , gn).

(Remark that for a fixed g1 ∈ G, {s1, s2, · · · , snx} is a permutation of {1, 2, · · · , nx}.)
The above computation for H∗(CG(x), k) uses the projective resolution Bar∗(kG) ⊗kG k of the

trivial kCG(x)-module k, which is identified as the following complex (It is in fact a projective
resolution of the trivial kG-module k, but we view it as a complex of kCG(x)-modules by restriction)

· · · −→ kG⊗ kG⊗n dn−→ · · · −→ kG⊗ kG d1−→ kG
d0−→ k −→ 0,

where the differential is given by
d0(g0) = 1 (for g0 ∈ G)

and (for g0 ∈ G, g1, · · · , gn ∈ G)

dn(g0, g1, · · · , gn) = g0g1⊗g2⊗· · ·⊗gn+

n−1∑
i=1

(−1)ig0 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn + (−1)ng0 ⊗ g1 ⊗ · · · ⊗ gn−1.

We now use another projective resolution Bar∗(kCG(x))⊗kCG(x) k of the trivial kCG(x)-module k,
which is identified as the following complex

· · · −→ kCG(x)⊗ kCG(x)
⊗n dn−→ · · · −→ kCG(x)⊗ kCG(x)

d1−→ kCG(x)
d0−→ k −→ 0,

where the differential is given by

d0(h0) = 1 (for h0 ∈ CG(x))
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and (for h0 ∈ G, h1, · · · , hn ∈ CG(x))

dn(h0, h1, · · · , hn) = h0h1⊗h2⊗· · ·⊗hn+

n−1∑
i=1

(−1)ih0 ⊗ · · · ⊗ hihi+1 ⊗ · · · ⊗ hn + (−1)nh0 ⊗ h1 ⊗ · · · ⊗ hn−1.

We have

HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k) ∼= Homk(kCG(x)⊗ kCG(x)
⊗n
, k) ∼= Map(CG(x)

×n
, k),

so H∗(CG(x), k) can also be computed by the following cochain complex

0 −→ k
d0−→Map(CG(x), k)

d1−→ · · · −→Map(CG(x)
×n
, k)

dn−→ · · · ,
where the differential is given by

d0(a)(h1) = 0 (for a ∈ k, h1 ∈ CG(x))

and (for ϕ : CG(x)
×n
−→ k, h1, · · · , hn+1 ∈ CG(x))

dn(ϕ)(h1, · · · , hn+1) = ϕ(h2, · · · , hn+1)+
n∑
i=1

(−1)iϕ(h1, · · · , hihi+1, · · · , hn+1) + (−1)n+1ϕ(h1, · · · , hn).

Clearly, we have

(6) H∗(HomkCG(x)(Bar∗(kG)⊗kG k, k)) ∼= H∗(HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k)).

To give an explicit isomorphism in (6), we need to construct the comparison maps between two
projective resolutions Bar∗(kG)⊗kG k and Bar∗(kCG(x))⊗kCG(x) k of the trivial kCG(x)-module k.
The comparison map from Bar∗(kCG(x))⊗kCG(x) k to Bar∗(kG)⊗kG k is just the inclusion map

ι : kCG(x)⊗ kCG(x)
⊗n

↪→ kG⊗ kG⊗n.
To construct the comparison map on the reverse direction, we use a set-like self-homotopy over

kCG(x)⊗ kCG(x)
⊗n

as follows (for h0 ∈ CG(x), h1, · · · , hn ∈ CG(x))

kCG(x)⊗ kCG(x)
⊗n
−→ kCG(x)⊗ kCG(x)

⊗n+1
,

h0 ⊗ h1 ⊗ · · · ⊗ hn 7−→ 1⊗ h0 ⊗ h1 ⊗ · · · ⊗ hn.
Then we get a comparison map

ρ : Bar∗(kG)⊗kG k −→ Bar∗(kCG(x))⊗kCG(x) k

as follows (we only write down the maps on basis vectors):

ρ−1 : k −→ k, 1 7−→ 1,

ρ0 : kG −→ kCG(x), hγi,x 7−→ h, where hγi,x belongs to the right coset CG(x)γi,x,

ρ1 : kG⊗kG −→ kCG(x)⊗kCG(x), hγi,x⊗g1 7−→ h⊗hi,1, where γi,xg1 = hi,1γsi,x for hi,1 ∈ CG(x),

· · · · · · · · ·
ρn : kG⊗ kG⊗n −→ kCG(x)⊗ kCG(x)

⊗n
, hγi,x ⊗ g1 ⊗ · · · ⊗ gn 7−→ h⊗ hi,1 ⊗ · · · ⊗ hi,n,

where for x ∈ X,hi,1, · · · , hi,n ∈ CG(x) are determined by the sequence {g1, · · · , gn} as follows:

γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x.

It follows that we have two homomorphisms:

HomkCG(x)(Bar∗(kG)⊗kG k, k) −→ HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k),

(ϕ5,x : Sx ×G
×n −→ k) 7−→ (ϕ6,x : CG(x)

×n
−→ k), ϕ6,x(h1, · · · , hn) = ϕ5,x(1, h1, · · · , hn) = a1,x,

where a1,x is the cofficients of x in ϕ3,x(h1, · · · , hn) =

nx∑
i=1

ai,xγ
−1
i,xxγi,x;

and
HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k) −→ HomkCG(x)(Bar∗(kG)⊗kG k, k),
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(ϕ6,x : CG(x)
×n
−→ k) 7−→ (ϕ5,x : Sx ×G

×n −→ k), ϕ5,x(γi,x, g1, · · · , gn) = ϕ6,x(hi,1, · · · , hi,n),

where for x ∈ X,hi,1, · · · , hi,n ∈ CG(x) are determined by the sequence {g1, · · · , gn} as follows:

γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x.

Since both ι and ρ induce the identity map 1 : k −→ k, by Lemma 2.3, we have inverse isomorphisms
between H∗(HomkCG(x)(Bar∗(kG)⊗kGk, k)) and H∗(HomkCG(x)(Bar∗(kCG(x))⊗kCG(x)k, k)). The
correspondence is induced by ϕ5,x ←→ ϕ6,x, as we stated above. So we realize an isomorphism in
(6) and its inverse.

Summarizing the above six steps, we get the following main result in this section.

Theorem 5.1. Let k be a field and G a finite group. Consider the additive decomposition of
Hochschild cohomology ring of the group algebra kG:

HH∗(kG) ∼=
⊕
x∈X

H∗(CG(x), k)

where X is a set of representatives of conjugacy classes of elements of G and CG(x) is the centralizer
subgroup of G. We compute the Hochschild cohomology HH∗(kG) = H∗(Homk(G×G)(Bar∗(kG), kG))
by the classical normalized bar resolution, and we compute the group cohomology H∗(CG(x), k) by
H∗(HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k)). Then, we can realize an isomorphism in additive de-
composition as follows:

HH∗(kG)
∼−→
⊕
x∈X

H∗(CG(x), k),

[ϕ : G
×n −→ kG] 7−→ [ϕ̂] =

⊕
x∈X

[ϕ̂x], ϕ̂x : CG(x)
×n
−→ k,

ϕ̂x(h1, · · · , hn) = a1,x, where πx((−1)
n(n+1)

2 h1 · · ·hnϕ(h−1n , · · · , h−11 )) =

nx∑
i=1

ai,xxi.

In other word, ϕ̂x(h1, · · · , hn) is just the coefficient of x in (−1)
n(n+1)

2 h1 · · ·hnϕ(h−1n , · · · , h−11 ) ∈ kG.
The inverse of the above isomorphism is given as follows:⊕

x∈X
H∗(CG(x), k)

∼−→ HH∗(kG),

[ϕ̂] =
⊕
x∈X

[ϕ̂x], ϕ̂x : CG(x)
×n
−→ k 7−→ [ϕ : G

×n −→ kG],

ϕ(g1, · · · , gn) = (−1)
n(n+1)

2 g1 · · · gn
∑
x∈X

nx∑
i=1

ϕ̂x(h′i,1, · · · , h′i,n)xi,

where for x ∈ X,h′i,1, · · · , h′i,n ∈ CG(x) are determined by the sequence {g−1n , · · · , g−11 } as follows:

γi,xg
−1
n = h′i,1γs1i ,x, γs1i ,xg

−1
n−1 = h′i,2γs2i ,x, · · · , γsn−1

i ,xg
−1
1 = h′i,nγsni ,x.

Proof This is a direct consequence by applying the above isomorphisms from (1) to (6) and their in-

verses. For an element ϕ : G
×n −→ kG in the n-th term Cn(kG) ∼= Map(G

×n
, kG) of the Hochschild

cohomology complex, [ϕ] denotes the corresponding element in the Hochschild cohomology group
HHn(kG). Note that the elements h′i,1, · · · , h′i,n depend on x ∈ X and the sequence (g1, · · · , gn).
For the simplicity of notations, we avoid to write them down explicitly.

�

Remark 5.2. (a) The correspondence in Theorem 5.1 can be illustrated as follows:

HH∗(kG)
(1)∼(2)∼= H∗(G, kG)

(3)∼=
⊕
x∈X

H∗(G, kCx)
(4)∼(6)∼=

⊕
x∈X

H∗(kCG(x), k).

This is just the same line used by Siegel and Witherspoon in [9]. The difference is: they realize each
step between cohomology groups using standard operations like restriction, induction, conjugation,
etc., while we construct maps directly in each step on the cohomology complex level.
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(b) Since we have
HH∗(kG) ∼= H∗(Homk(G×G)(Bar∗(kG), kG))

∼= H∗(Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG)),

we can choose either cohomology complex when discuss the ring structure of HH∗(kG), it is not
harm to the result up to isomorphism. If we compute HH∗(kG) by the projective resolution (k(G×
G)⊗kG Bar∗(kG)⊗kG k, then the correspondence in Theorem 5.1 become simpler:

HH∗(kG)
∼−→
⊕
x∈X

H∗(CG(x), k),

[ϕ : G
×n −→ kG] 7−→ [ϕ̂] =

⊕
x∈X

[ϕ̂x], ϕ̂x : CG(x)
×n
−→ k,

ϕ̂x(h1, · · · , hn) = a1,x, the coefficient of x in ϕ(h1, · · · , hn) ∈ kG;⊕
x∈X

H∗(CG(x), k)
∼−→ HH∗(kG),

[ϕ̂] =
⊕
x∈X

[ϕ̂x], ϕ̂x : CG(x)
×n
−→ k 7−→ [ϕ : G

×n −→ kG],

ϕ(g1, · · · , gn) =
∑
x∈X

nx∑
i=1

ϕ̂x(hi,1, · · · , hi,n)xi,

where for x ∈ X,hi,1, · · · , hi,n ∈ CG(x) are determined by the sequence {g1, · · · , gn} as follows:

γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x.

6. Another way to realize the additive decomposition

In [3], Cibils and Solotar constructed a subcomplex of the Hochschild cohomology complex for each
conjugacy class, and then they showed that for a finite abelian group, the subcomplex is isomorphic
to the complex computing group cohomology. We will generalize this to any finite group: for each
conjugacy class, this complex computes the cohomology of the corresponding centralizer subgroup.
As a result, we give a second way to realize the additive decomposition.

As before, let k be a field and G a finite group. Recall that the Hochschild cohomology HH∗(kG)
of the group algebra kG can be computed by the following (cochain) complex:

(H∗) 0 −→ kG
d0−→Map(G, kG)

d1−→ · · · −→Map(G
×n
, kG)

dn−→ · · · ,
where the differential is given by

d0(x)(g) = gx− xg (for x ∈ kG and g ∈ G)

and (for ϕ : G
×n −→ kG and g1, · · · , gn+1 ∈ G)

dn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)+
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn)gn+1.

We keep the following notations in Section 3: X is a complete set of representatives of the conjugacy
classes in the finite group G. For x ∈ X, Cx = {gxg−1|g ∈ G} is the conjugacy class corresponding
to x and CG(x) = {g ∈ G|gxg−1 = x} is the centralizer subgroup. Now take a conjugacy class Cx
and define

H0
x = kCx, and for n ≥ 1,

Hnx = {ϕ : G
×n −→ kG|ϕ(g1, · · · , gn) ∈ k[g1 · · · gnCx] ⊂ kG, ∀g1, · · · , gn ∈ G},

where g1 · · · gnCx denotes the subset of G by multiplying g1 · · · gn on Cx and k[g1 · · · gnCx] is the
k-subspace of kG generated by this set. Let H∗x =

⊕
n≥0Hnx . Cibils and Solotar ([3, Page 20, Proof

of the theorem]) observed that H∗x is a subcomplex of H∗ and H∗ =
⊕

x∈X H∗x.
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Lemma 6.1. H∗x is canonically isomorphic to the complex HomkG(Bar∗(kG) ⊗kG k, kCx), which
computes the group cohomology H∗(G, kCx) of G with coefficients in kCx, where kCx is a left kG-
module under conjugation.

Proof We know from Section 3 that the complex HomkG(Bar∗(kG)⊗kG k, kCx) is identified as the
following complex:

0 −→ kCx
d0−→Map(G, kCx)

d1−→ · · · −→Map(G
×n
, kCx)

dn−→ · · · ,
where the differential is given by

d0(x)(g) = gxg−1 − x (for x ∈ kCx and g ∈ G)

and (for ϕ : G
×n −→ kCx and g1, · · · , gn+1 ∈ G)

dn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)g−11 +
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn).

A direct computation shows that the following map is an isomorphism of complexes:

H∗x −→ HomkG(Bar∗(kG)⊗kG k, kCx),

(ϕ1 : G
×n −→ kG) 7−→ (ϕ2 : G

×n −→ kCx), ϕ2(g1, · · · , gn) = ϕ1(g1, · · · , gn)g−1n · · · g−11 .

Its inverse is given by
HomkG(Bar∗(kG)⊗kG k, kCx) −→ H∗x,

(ϕ2 : G
×n −→ kCx) 7−→ (ϕ1 : G

×n −→ kG), ϕ1(g1, · · · , gn) = ϕ2(g1, · · · , gn)g1 · · · gn.
Passing to the cohomology, we have H∗(H∗x) ∼= H∗(G, kCx).

�

On the other hand, we have shown that the complex HomkG(Bar∗(kG) ⊗kG k, kCx) is isomor-
phic to the complex HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k), which computes the group cohomology
H∗(CG(x), k) of the centralizer subgroup CG(x) with coefficients in the trivial module k. (cf. Sec-
tion 3, from the fourth step to the six step.) Therefore we get another realization to the additive
decomposition:

Theorem 6.2. Let k be a field and G a finite group. Consider the additive decomposition of
Hochschild cohomology ring of the group algebra kG:

HH∗(kG) ∼=
⊕
x∈X

H∗(CG(x), k)

where X is a set of representatives of conjugacy classes of elements of G and CG(x) is the centralizer
subgroup of G. We compute the Hochschild cohomology HH∗(kG) = H∗(Homk(G×G)(Bar∗(kG), kG))
by the classical normalized bar resolution, and we compute the group cohomology H∗(CG(x), k) by
H∗(HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k)). Then, we can realize an isomorphism in additive de-
composition as follows:

HH∗(kG)
∼−→
⊕
x∈X

H∗(CG(x), k),

[ϕx : G
×n −→ kG], ϕx ∈ Hnx 7−→ [ϕ̂x : CG(x)

×n
−→ k],

ϕ̂x(h1, · · · , hn) = a1,x, where ϕx(h1, · · · , hn)h−1n · · ·h−11 =

nx∑
i=1

ai,xxi ∈ kCx.

In other word, ϕ̂x(h1, · · · , hn) is just the coefficient of x in ϕx(h1, · · · , hn)h−1n · · ·h−11 ∈ kCx. The
inverse of the above isomorphism is given as follows:⊕

x∈X
H∗(CG(x), k)

∼−→ HH∗(kG),

[ϕ̂x : CG(x)
×n
−→ k] 7−→ [ϕx : G

×n −→ kG], ϕx ∈ Hnx ,
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ϕx(g1, · · · , gn) =

nx∑
i=1

ϕ̂x(hi,1, · · · , hi,n)xig1 · · · gn,

where hi,1, · · · , hi,n ∈ CG(x) are determined by the sequence {g1, · · · , gn} as follows:

γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x.

Proof This is a combination of Lemma 6.1 and the correspondence from the fourth step to the six
step in Section 3.

�

Remark 6.3. Comparing Theorem 5.1 with Theorem 6.2 we see that the two realizations of the
additive decomposition are very close to each other. In the sequel, we prefer to the second realization
since it is simpler.

7. The cup product formula

We keep the notations of the previous sections: k is a field, and G is a finite group, and so on.
We describe the cup product formula for the Hochschild cohomology ring HH∗(kG) in terms of the
additive decomposition.

Theorem 7.1. With the notations in Theorem 6.2, the cup product in the Hochschild cohomology

ring HH∗(kG) ∼= H∗(Homk(G×G)(Bar∗(kG), kG)) is given as follows. Let [ϕ̂x](ϕ̂x : CG(x)
×n
−→ k)

and [ϕ̂y](ϕ̂y : CG(y)
×m
−→ k) be two elements in Hn(CG(x), k) and in Hm(CG(y), k), respectively.

Denote by [ϕx : G
×n −→ kG](ϕx ∈ Hnx) and [ϕy : G

×m −→ kG](ϕy ∈ Hmy ) be the corresponding

elements in HH∗(kG), and denote by ϕx ∪ ϕy : G
×(n+m) −→ kG the cup product. Then, for any

z ∈ X, we have the following cup product formula:

(ϕx ∪ ϕy)z : G
×(n+m) −→ kG, (ϕx ∪ ϕy)z ∈ Hn+mz ,

(g1, · · · , gn, · · · , gn+m) 7−→
nz∑
k=1

∑
(i,j)

ϕ̂x(hi,1, · · · , hi,n)ϕ̂y(hj,1, · · · , hj,m)zk,

where the second sum takes over all pairs (i, j) such that xig1 · · · gnyjgn+1 · · · gn+m = zk. In partic-
ular, we have the following formula:

̂(ϕx ∪ ϕy)z : CG(z)
×(n+m)

−→ k,

̂(ϕx ∪ ϕy)z(h1, · · · , hn, · · · , hn+m) =
∑
(i,j)

ai,xaj,y,

where ϕx(h1, · · · , hn) =
∑nx

i=1 ai,xxi, ϕy(hn+1, · · · , hn+m) =
∑ny

j=1 aj,yyj, and where the sum takes

over all pairs (i, j) such that xi(h1 · · ·hn)yj(h1 · · ·hn)−1 = z1 = z.

Proof This is obvious from the correspondence in Theorem 6.2. Notice that hi,1, · · · , hi,n ∈ CG(x)
depend on the sequence {g1, · · · , gn} by the following steps:

γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x,

and that hj,1, · · · , hj,m ∈ CG(y) depend on the sequence {gn+1, · · · , gn+m} by the following steps:

γj,ygn+1 = hj,1γs1j ,y, γs1j ,ygn+2 = hj,2γs2j ,y, · · · , γsm−1
j ,ygn+m = hj,mγsmj ,y.

�
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Theorem 7.2. With the notations in Theorem 5.1, the cup product in the Hochschild cohomology

ring HH∗(kG) ∼= H∗(Homk(G×G)(Bar∗(kG), kG)) is given as follows. Let [ϕ̂x](ϕ̂x : CG(x)
×n
−→ k)

and [ϕ̂y](ϕ̂y : CG(y)
×m
−→ k) be two elements in Hn(CG(x), k) and in Hm(CG(y), k), respectively.

Denote by [ϕx : G
×n −→ kCx] and [ϕy : G

×m −→ kCy] be the corresponding elements in HH∗(kG),

and denote by ϕx ∪ ϕy : G
×(n+m) −→ kG the cup product. Then, for any z ∈ X, we have the

following cup product formula:

(ϕx ∪ ϕy)z : G
×(n+m) −→ kCz,

(g1, · · · , gn, · · · , gn+m) 7−→ (−1)
n2+m2+n+m

2

nz∑
k=1

∑
(i,j)

ϕ̂x(h′i,1, · · · , h′i,n)ϕ̂y(h′j,1, · · · , h′j,m)zk,

where the second sum takes over all pairs (i, j) such that g1 · · · gnxign+1 · · · gn+myj = zk. In partic-
ular, we have the following formula:

̂(ϕx ∪ ϕy)z : CG(z)
×(n+m)

−→ k,

̂(ϕx ∪ ϕy)z(h1, · · · , hn, · · · , hn+m) = (−1)
(n+m+1)(n+m)

2

∑
(i,j)

ai,xaj,y,

where ϕx(h−1n+m, · · · , h−11+m) =
∑nx

i=1 ai,xxi, ϕy(h−1m , · · · , h−11 ) =
∑ny

j=1 aj,yyj, and where the sum

takes over all pairs (i, j) such that h1 · · ·hn · · ·hn+mxiyj = z1 = z.

Proof This is obvious from the correspondence in Theorem 5.1. Notice that h′i,1, · · · , h′i,n ∈ CG(x)

depend on the sequence {g−1n , · · · , g−11 } by the following steps:

γi,xg
−1
n = h′i,1γs1i ,x, γs1i ,xg

−1
n−1 = h′i,2γs2i ,x, · · · , γsn−1

i ,xg
−1
1 = h′i,nγsni ,x,

and that h′j,1, · · · , h′j,m ∈ CG(y) depend on the sequence {g−1n+m, · · · , g−1n+1} by the following steps:

γj,yg
−1
n+m = h′j,1γs1j ,y, γs1j ,yg

−1
n+m−1 = h′j,2γs2j ,y, · · · , γsm−1

j ,yg
−1
n+1 = h′j,mγsmj ,y.

�

Remark 7.3. (1) We prefer to the cup product formula in Theorem 7.1 since it is simpler.

(2) By Remark 5.2 (a), our cup product formula in Theorem 7.2 is consistent with Siegel and
Witherspoon’s formula in [9, Theorem 5.1].

8. The 4 operator

Let k be a field and G a finite group. Recall that the group algebra kG is a symmetric algebra
with the bilinear form

〈 , 〉 : kG× kG −→ k,

〈g, h〉 =

{
1 if g = h−1

0 otherwise

for g, h ∈ G. For n ≥ 1, the operator 4 : HHn(kG) −→ HHn−1(kG) on the Hochschild cohomology
is induced by the following equation:

〈4(ϕ)(g1, · · · , gn−1), gn〉 =

n∑
i=1

(−1)i(n−1)〈ϕ(gi, · · · , gn−1, gn, g1, · · · , gi−1), 1〉

for ϕ ∈ Cn(kG) ∼= Map(G
×n
, kG), 4(ϕ) ∈ Cn−1(kG) ∼= Map(G

×n−1
, kG). This operator together

with the cup product ∪ and the Lie bracket [ , ] define a BV algebra structure on HH∗(kG).
We know from Section 4 that, for a conjugacy class Cx of G, H∗x =

⊕
n≥0Hnx is a subcomplex of

the Hochschild cohomology complex H∗, where

Hnx = {ϕ : G
×n −→ kG|ϕ(g1, · · · , gn) ∈ k[g1 · · · gnCx] ⊂ kG, ∀g1, · · · , gn ∈ G}.
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Lemma 8.1. The operator 4 : Hn −→ Hn−1 restricts to 4x : Hnx −→ Hn−1x for each conjugacy
class Cx.

Proof We need to show that 4(ϕ) ∈ Hn−1x for each ϕ ∈ Hnx . Suppose that 4(ϕ)(g1, · · · , gn−1) 6= 0
for some g1, · · · , gn−1 ∈ G. Notice that gn ∈ G with 〈4(ϕ)(g1, · · · , gn−1), gn〉 6= 0 if and only
if the coefficient of g−1n in 4(ϕ)(g1, · · · , gn−1) is nonzero. For each such gn, there exists some i
such that 〈ϕ(gi, · · · , gn−1, gn, g1, · · · , gi−1), 1〉 6= 0. This implies that 1 ∈ gi · · · gn−1gng1 · · · gi−1Cx,
or equivalently, g−1n ∈ gi · · · giCxgi · · · gn−1 = g1 · · · gn−1Cx. It follows that 4(ϕ)(g1, · · · , gn−1) ∈
k[g1 · · · gn−1Cx].

�

Now we can determine the behavior of the operator 4 under the additive decomposition.

Theorem 8.2. Let k be a field and G a finite group. Consider the additive decomposition of
Hochschild cohomology ring of the group algebra kG:

HH∗(kG) ∼=
⊕
x∈X

H∗(CG(x), k)

where X is a set of representatives of conjugacy classes of elements of G and CG(x) is the centralizer

subgroup of G. Let 4̂x : Hn(CG(x), k) −→ Hn−1(CG(x), k) be the map induced by the operator

4x : HHn(kG) −→ HHn−1(kG). Then 4̂x is defined as follows:

4̂x(ψ)(h1, · · · , hn−1) =

n∑
i=1

(−1)i(n−1)ψ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1)

for ψ : CG(x)
×n
−→ k and for h1, · · · , hn−1 ∈ CG(x).

Proof We have the following commutative diagram

Hn(H∗x)
4x //

o
��

Hn−1(H∗x)

o
��

Hn(CG(x), k)
4̂x // Hn−1(CG(x), k).

Take an element ψ : CG(x)
×n
−→ k in HomkCG(x)(Barn(kCG(x)) ⊗kCG(x) k, k) and denote by

ϕ : G
×n −→ kG the corresponding element in Hnx . By Theorem 6.2, for any h1, · · · , hn ∈ CG(x),

ψ(h1, · · · , hn) is equal to the coefficient of x in ϕ(h1, · · · , hn)h−1n · · ·h−11 ∈ kCx. On the other hand,
4x(ϕ)(g1, · · · , gn−1) ∈ k[g1 · · · gn−1Cx] is defined by the following equation:

〈4x(ϕ)(g1, · · · , gn−1), gn〉 =

n∑
i=1

(−1)i(n−1)〈ϕ(gi, · · · , gn−1, gn, g1, · · · , gi−1), 1〉,

where gn ∈ G. Under the vertical isomorphism,4x(ϕ) corresponds to 4̂x(ψ). For any h1, · · · , hn−1 ∈
CG(x), 4̂x(ψ)(h1, · · · , hn−1) is the coefficient of x in 4x(ϕ)(h1, · · · , hn−1)h−1n−1 · · ·h

−1
1 ∈ kCx, or

equivalently, the coefficient of xh1 · · ·hn−1 in 4x(ϕ)(h1, · · · , hn−1) ∈ k[h1 · · ·hn−1Cx]. This coeffi-
cient is equal to

〈4x(ϕ)(h1, · · · , hn−1), h−1n−1 · · ·h
−1
1 x−1〉

=

n∑
i=1

(−1)i(n−1)〈ϕ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1), 1〉.

We also know that ψ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1) is equal to the coefficient of x in

ϕ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1)h−1i−1 · · ·h

−1
1 xh1 · · ·hn−1h−1n−1 · · ·h

−1
i

= ϕ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1)x ∈ kCx,

which is again equal to 〈ϕ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1), 1〉. It follows that

4̂x(ψ)(h1, · · · , hn−1) =

n∑
i=1

(−1)i(n−1)ψ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1).
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�

Remark 8.3. By [5, Corollary 2.2], we know that Hn(G, k) is a Gerstenhaber subalgebra of
HH∗(kG) under the inclusion map (cf. Remark ??):

HomkG(Bar∗(kG)⊗kG k, k) ↪→ Homk(G×G)(Bar∗(kG), kG),

(ϕ : G
×n −→ k) 7−→ (ψ : G

×n −→ kG), ψ(g1, · · · , gn) = ϕ(g1, · · · , gn)g1 · · · gn.
Notice that by notations in Section 4, ψ ∈ Hn1 . So motivated by Theorem 8.2, we can similarly define
an operator 41 : Hn(G, k) −→ Hn−1(G, k) in the group cohomology H∗(G, k) as follows:

41(ϕ)(g1, · · · , gn−1) =

n∑
i=1

(−1)i(n−1)ϕ(gi, · · · , gn−1, g−1n−1 · · · g
−1
1 , g1, · · · , gi−1)

for ϕ : G
×n −→ k and for g1, · · · , gn−1 ∈ G.

We prove that Hn(G, k) is in fact a BV subalgebra of HH∗(kG).

Proposition 8.4. Let k be a field and G a finite group. Then Hn(G, k) ↪→ HH∗(kG) is a BV
subalgebra.

Proof Suppose that under the above inclusion map Hn(G, k) ↪→ HH∗(kG), ϕ : G
×n −→ k cor-

responds to ϕ̂ : G
×n −→ kG, where ϕ̂(g1, · · · , gn) = ϕ(g1, · · · , gn)g1 · · · gn. We need to show that

4̂1(ϕ) = 4(ϕ̂). For g1, · · · , gn−1 ∈ G, 4(ϕ̂)(g1, · · · , gn−1)

=

n∑
i=1

(−1)i(n−1)ϕ̂(gi, · · · , gn−1, g−1n−1 · · · g
−1
1 , g1, · · · , gi−1)

=

n∑
i=1

(−1)i(n−1)ϕ(gi, · · · , gn−1, g−1n−1 · · · g
−1
1 , g1, · · · , gi−1)

= 4̂1(ϕ)(g1, · · · , gn−1).

�

Now let G be an abelian group. In this case, the Hochschild cohomology ring HH∗(kG) of the
group algebra kG is isomorphic to the tensor product algebra of kG and the group cohomology
ring H∗(G, k): HH∗(kG) ∼= kG⊗k H∗(G, k). According to [3], this isomorphism is given as follows.
For G an abelian group, conjugacy classes are elements of G, hence a cochain ϕx of Hnx for x ∈ G
attributes a scalar multiple of g1 · · · gnx for each (g1, · · · , gn) ∈ G×n; we denote by ϕx(g1, · · · , gn)

the corresponding scalar and we obtain in this way a map ϕx : G
×n −→ k. It is not difficult to

verify that the map ϕ 7−→ Σx∈G(x ⊗ ϕx) defines a ring isomorphism C∗(kG) −→ kG ⊗ C∗(kG, k)
compatible with the differentials, and therefore it induces the above isomorphism.

Proposition 8.5. Let k be a field and G a finite abelian group. Under the above isomorphism
HH∗(kG) ∼= kG⊗kH∗(G, k), the operator 4 : HHn(kG) −→ HHn−1(kG) corresponds to the sum of
operators x⊗4x : x⊗Hn(G, k) −→ x⊗Hn−1(G, k), where x ∈ G and 4x : Hn(G, k) −→ Hn−1(G, k)
is defined as follows:

4x(ϕ)(g1, · · · , gn−1) =

n∑
i=1

(−1)i(n−1)ϕ(gi, · · · , gn−1, g−1n−1 · · · g
−1
1 x−1, g1, · · · , gi−1)

for ϕ : G
×n −→ k and for g1, · · · , gn−1 ∈ G.

Proof The proof is similar to Theorem 8.2. According to Lemma 8.1, the operator4 : Hn −→ Hn−1
restricts to 4x : Hnx −→ Hn−1x for each x ∈ G. Let ϕ ∈ Hn(G, k) corresponds to ϕ ∈ Hnx . It suffices

to show that 4x(ϕ) = 4x(ϕ). For g1, · · · , gn−1 ∈ G, 4x(ϕ)(g1, · · · , gn−1) is the coefficient of
g1 · · · gn−1x in 4x(ϕ)(g1, · · · , gn−1), and it is equal to

〈4x(ϕ)(g1, · · · , gn−1), x−1g−1n−1 · · · g
−1
1 〉
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=

n∑
i=1

(−1)i(n−1)〈ϕ(gi, · · · , gn−1, x−1g−1n−1 · · · g
−1
1 , g1, · · · , gi−1), 1〉

=

n∑
i=1

(−1)i(n−1)〈ϕ(gi, · · · , gn−1, x−1g−1n−1 · · · g
−1
1 , g1, · · · , gi−1)x, x−1〉

=

n∑
i=1

(−1)i(n−1)ϕ(gi, · · · , gn−1, x−1g−1n−1 · · · g
−1
1 , g1, · · · , gi−1)

=

n∑
i=1

(−1)i(n−1)ϕ(gi, · · · , gn−1, g−1n−1 · · · g
−1
1 x−1, g1, · · · , gi−1)

= 4x(ϕ)(g1, · · · , gn−1).

�

9. The Lie bracket

Then the Gerstenhaber algebra (HH∗(A),∪, [ , ]) together with the operator 4 is a Batalin-
Vilkovsky algebra (BV-algebra), that is, (HH∗(A),4) is a complex and

[α, β] = −(−1)(|α|−1)|β|(4(α ∪ β)−4(α) ∪ β − (−1)|α|α ∪4(β))

for all homogeneous elements α, β ∈ HH∗(A).

10. Some examples
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