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Stable equivalences of Morita type preserve many interesting prop-
erties and are proved to be the appropriate concept for studying
equivalences between stable categories. Recently the singularity
category attained much attraction and Xiao-Wu Chen and Long-
Gang Sun gave an appropriate definition of singular equivalence of
Morita type. We shall show that under some conditions singular
equivalences of Morita type have some biadjoint functor properties
and preserve positive degree Hochschild homology.
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Introduction

For a Noetherian algebra A over a commutative ring its singularity category Dsg(A) is defined to
be the Verdier quotient of the bounded derived category of finitely generated modules over A by the
full subcategory of perfect complexes. This notion was introduced in an unpublished manuscript [4]
by Ragnar-Olaf Buchweitz under the name of stable derived category. He related this category to
maximal Cohen–Macaulay modules. Later Dmitri Orlov [21] rediscovered this notion independently in
the context of algebraic geometry and mathematical physics, under the name of singularity category.
The derived category of an algebra is replaced there by the derived category of coherent sheaves over
a scheme. Orlov’s notation for this object seems now to become the standard one, also in the case of
the derived category of an algebra, and we shall concentrate here on this case.

If A is a selfinjective algebra, then Dsg(A) is equivalent to the stable category of A (cf. [14,24]).
By definition Dsg(A) is always triangulated and it is easy to see that Dsg(A) is trivial if and only
if A has finite global dimension. From this point of view Dsg(A) seems to have advantages with
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respect to the stable category of an algebra, in case the algebra is not selfinjective, and may be an
appropriate replacement. Recently much work was undertaken to understand the structure of Dsg(A)

under various conditions on A. We mention in particular Xiao-Wu Chen’s work here [6–9], but also
Bernhard Keller, Daniel Murfet and Michel van den Bergh [15] as well as Osamu Iyama, Kiriko Kato
and Jun-Ichi Miyachi [13].

Abstract equivalences between stable categories of algebras are very ill-behaved, even in case the
algebras are selfinjective. Very few properties of the algebras are preserved. However, if the equiv-
alence is induced by an exact functor of the module categories, much more can be said and a rich
structure is available. The concept developed for this purpose is Broué’s concept of stable equivalence
of Morita type [3]. Since the singularity category generalises the stable category, we cannot expect
better properties in the singularity case than we have in the stable case.

Very recently analogously to the notion of stable equivalences of Morita type, Xiao-Wu Chen and
Long-Gang Sun defined in [10] the concept of singular equivalences of Morita type. The purpose of
the present note is to study this new concept of singular equivalences of Morita type. We obtain two
main results. First, we shall prove in Theorem 3.1 that under mild conditions a singular equivalence of
Morita type gives rise to a bi-adjoint pair. This section is inspired by an analogous approach by Alex
Dugas and Roberto Martinez-Villa [11]. Then we shall investigate Hochschild homology and show in
Theorem 4.1 that Hochschild homology of a finite dimensional algebra over a field and in strictly
positive degrees is invariant under a singular equivalence of Morita type. The main tool here is Serge
Bouc’s generalisation [2] of the Hattori-Stallings trace to Hochschild homology.

The paper is organised as follows. We recall the notion and some properties of singularity cate-
gories in Section 1. Section 2 is devoted to the definition and some of the results of Chen and Sun
on singular equivalences of Morita type. We prove the biadjoint property in Section 3 and we study
Hochschild homology in Section 4.

1. Singularity categories and singularly stable categories

Let A be a right Noetherian ring. We denote by mod(A) the category of finitely generated right
A-modules, by Db(mod(A)) the bounded derived category of mod(A), by P<∞(A) the full sub-
category of mod(A) consisting of modules of finite projective dimension, and by K b(proj(A)) the
homotopy category of bounded complexes of finitely generated projective A-modules.

Definition 1.1. (See [4].) Let A be a right Noetherian ring. Then the Verdier quotient category

Dsg(A) := Db(mod(A)
)
/K b(proj(A)

)

is called the singularity category of A.

It is well-known that K b(proj(A)) is a full triangulated subcategory of Db(A). We briefly recall the
construction of the Verdier quotient. We refer to Gabriel and Zisman’s book [12, Chapter 1] for more
ample details, and give only the basic construction here for the convenience of the reader.

The objects of Dsg(A) are the same as those of Db(A). Let X and Y be objects of Dsg(A). Then a
morphism in HomDsg (A)(X, Y ) is represented by triples (ν, Z ,α) where Z is an object in Db(A), where
α ∈ HomDb(A)(Z , Y ) and where ν ∈ HomDb(A)(Z , X) so that the mapping cone of ν is isomorphic to

an object in K b(proj(A)). A triple (ν, Z ,α) is covered by a triple (ν ′, Z ′,α′) if there is a morphism
ψ ∈ HomDb(A)(Z ′, Z) so that ν ′ = ν ◦ ψ and α′ = α ◦ ψ . Two triples (ν, Z ,α) and (ν ′′, Z ′′,α′′) are
equivalent if both are covered by some triple (ν ′, Z ′,α′). This way the category of triples is directed,
and the morphism space from X to Y is the limit of this category.

The construction of the singularity category as Verdier quotient implies that Dsg(A) is always
triangulated.

Let A be any right Noetherian ring. Denote by mod(A) the stable category of (finitely generated
right) A-modules, with objects being the same as mod(A) and morphisms HomA(M, N) being the
equivalence classes of morphisms of A-modules modulo those factoring through a projective module.
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Recall that the category mod(A) admits an endo-functor Ω , the syzygy functor, defined as ker(πX ),
where for every object X in mod(A) we choose a projective object P X in mod(A) and an epimorphism
P X

πX−−→ X in mod(A).
By the very construction there are natural functors

mod(A)
F−→ mod(A),

Db(A)
G−→ Dsg(A),

mod(A)
H−→ Dsg(A)

so that the diagram

mod(A)

F

Db(A)

G

mod(A)
H

Dsg(A)

commutes. Moreover, H(M) = 0 if and only if M is of finite projective dimension. Finally H commutes
with syzygies in the sense that

H ◦ Ω � [−1] ◦ H .

A consequence of this relation is an important observation, namely that the singularity category is
in general not Hom-finite [8] and is in general not a Krull–Schmidt category. An example is given
by the 3-dimensional local algebra A = K [X, Y ]/(X2, Y 2, XY ) over a field K . Indeed, for the simple
A-module S one gets Ω(S) � S ⊕ S and this implies isomorphisms

H(S) � H
(
Ω(S)

)[1] � H(S)[1] ⊕ H(S)[1] � (
H(S)[2])4 � · · · � (

H(S)[n])2n

in Dsg(A). Moreover, H(S) 
= 0 since S is of infinite projective dimension. Therefore,

dimK EndDsg(A)

(
H(S)

) = dimK EndDsg(A)

((
H(S)[n])2n)

� 2n

for all n � 0 and this implies that dimK EndDsg (A)(H(S)) = +∞.
As we have seen, M is an A-module of finite projective dimension if and only if H(M) = 0. Hence,

it is natural to consider the following category modP<∞ (A).

Definition 1.2. Let A be a finite dimensional algebra. The singularly stable category is by definition
the quotient category of mod(A) by P<∞(A), denoted by modP<∞ (A) := mod(A)/P<∞(A).

More precisely, the objects of modP<∞ (A) are the same objects as those in mod(A) and for two
A-modules X and Y define HommodP<∞ (A)(X, Y ) to be the equivalence classes of A-module homo-
morphisms X −→ Y modulo those factoring through an object in P<∞(A).

It is clear that H factors through the natural functor

mod(A)
Π−−→ modP<∞(A)

in the sense that there is a natural functor

modP<∞(A)
L−→ Dsg(A)
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so that

H = L ◦ Π.

Remark 1.3. Observe that L is not an embedding in general. Let Q be the quiver

• •
1 2

�

��
��

�
α

β

and let A = K Q /〈α2, βα〉. Let S1 and S2 be the two simple A-modules. Then H(S1) � H(S2) since
Ω2(S2) � S1 � Ω2(S1), but S1 
� S2 in modP<∞ (A) since there is no non-zero homomorphism of
A-modules between these objects.

Remark 1.4. We could consider modules of finite projective dimension as “smooth” objects. Then the
singularly stable category measures the singularity of A. Clearly the algebra A has finite global dimen-
sion if and only if the singularly stable category has only one object with only one endomorphism.
However, the singularly stable category is only an additive category, and in general it is not trian-
gulated. If A is selfinjective, H is an equivalence (cf. [14,24]) and an A-module of finite projective
dimension is actually projective. Hence also Π is an equivalence in this case.

Remark 1.5. Let A be the algebra introduced in Remark 1.3. Then it is easy to see that Dsg(A) �
Dsg(K [X]/X2). However, these two algebras are not stably equivalent. In fact, if they were stably
equivalent, then there would be a one to one correspondence between the isomorphism classes of
non-projective indecomposable modules. However, up to isomorphisms, A has more than two non-
projective indecomposable modules and K [X]/(X2) has only one such module.

We are grateful to one of the referees who suggested the above proof which is simpler than our
original argument.

2. Singular equivalences of Morita type

As mentioned in the Introduction, general stable equivalences have very poor properties, even
for selfinjective algebras. A richer concept is given by Broué [3]. Broué defined stable equivalences
of Morita type as equivalences between stable module categories induced by tensor product with
bimodules. This concept was highly successful in the understanding of equivalence between stable
categories of selfinjective algebras and was a subject of numerous studies.

We consider the question when the singularly stable categories of two algebras are equivalent.
Since equivalences between singular categories of selfinjective algebras coincide with stable equiva-
lences, we need a richer concept than just an equivalence between triangulated categories. Recently
Xiao-Wu Chen and Long-Gang Sun introduced singular equivalences of Morita type [10] on the model
of Broué’s concept of stable equivalences of Morita type.

Let K be a commutative ring. For a K -algebra A, we denote by Ae = Aop ⊗K A its enveloping
algebra.

Definition 2.1. (See [10].) Let A and B be two K -algebras for a commutative ring K . Let A MB and
B N A be two bimodules so that

• M is finitely generated and projective as Aop-module and as B-module;
• N is finitely generated and projective as A-module and as Bop-module;
• A M ⊗B N A � A A A ⊕ A X A for a module X ∈P<∞(Ae);
• B N ⊗A MB � B B B ⊕ B Y B for a module Y ∈P<∞(Be).

We then say that the pair (A MB , B N A) induces a singular equivalence of Morita type.
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We say that A and B are singularly equivalent of Morita type if there is a pair of bimodules
(A MB , B N A) which induces a singular equivalence of Morita type.

Remark 2.2.

• It is immediate from the definition that a pair of bimodules inducing a stable equivalence of
Morita type induces a singular equivalence of Morita type as well.
However, a singular equivalence of Morita type will not be a stable equivalence of Morita type in
general since the property of X to be in P<∞(Ae) is in general much weaker than the condition
to be projective as bimodule.
Nevertheless, if A is selfinjective (and thus so is any algebra singularly equivalent of Morita type
to A, as remarked in [10]), any module with finite projective resolution is actually projective,
and hence a singular equivalence of Morita type is actually a stable equivalence of Morita type.
The concept of a singular equivalence of Morita type and of a stable equivalence of Morita type
coincide for selfinjective algebras.

• Let (A MB , B N A) induce a singular equivalence of Morita type and let M ⊗B N � A ⊕ X and N ⊗A

M � B ⊕ Y . Then X is projective as A-left module and as A-right module. Indeed, M is projective
as B-right module, hence a direct factor of some Bn . Hence M ⊗B N is a direct factor of Bn ⊗B N �
Nn . Now, X is by definition a direct factor of Nn and since N is projective as A-right module,
X is projective as A-right module. Similarly X is projective on the left. Likewise Y is projective
as B-left module and as B-right module.

From now on to the end of the present section and in Section 3 fix a field K and K -algebras will
always be supposed to be finite dimensional and modules will be always finitely generated.

The following result is a direct consequence of Definition 2.1.

Proposition 2.3. Let (A MB , B N A) be a pair of bimodules inducing a singular equivalence of Morita type be-
tween two K -algebras A and B. Then

−⊗A MB : Dsg(A) −→ Dsg(B)

is an equivalence of triangulated categories with quasi-inverse

−⊗B N A : Dsg(B) −→ Dsg(A).

Moreover, the same functors establish an equivalence of additive categories between modP<∞ (A) and
modP<∞ (B).

The following result is an adaptation to the singular situation of a proof of Yu-Ming Liu for stable
equivalences of Morita type (cf. [17, Lemma 2.2]). The proof carries over verbatim.

Proposition 2.4. (See [10].) Let A and B be K -algebras. Suppose (A MB , B N A) induces a singular equivalence
of Morita type. Then A M is a progenerator in mod(Aop), and likewise for MB , B N and N A .

The following fact is proved in [10] analogously to [18, Proposition 2.1 and Theorem 2.2].

Proposition 2.5. (See [10].) Let A and B be two K -algebras without direct summands which have finite pro-
jective dimension as bimodules. Assume that two bimodules A MB and B N A induce a singular equivalence of
Morita type between A and B.

(1) Then A and B have the same number of indecomposable summands. In particular, A is indecomposable if
and only if B is indecomposable.
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(2) Suppose that A = A1 × A2 × · · · × As and B = B1 × B2 × · · · × Bs, where all Ai and all Bi are indecom-
posable algebras. Then, there is a permutation σ of the set {1, . . . , s} so that Ai and Bσ(i) are singularly
equivalent of Morita type for all i ∈ {1, . . . , s}.

In analogy of what is known to hold for stable equivalences of Morita type, Chen and Sun also
show the following lemma.

Lemma 2.6. (See [10].) Let K be a field and let A and B be finite dimensional K -algebras. Assume that bi-
modules A MB and B N A define a singular equivalence of Morita type between A and B, and suppose that A or
B is indecomposable as an algebra. Then M and N each have a unique indecomposable bimodule summand
of infinite projective dimension. If we denote these summands as M1 and N1 respectively, then (M1, N1) also
induces a singular equivalence of Morita type between A and B.

Let K be a field, and let A and B be finite dimensional K -algebras without direct summands
having finite projective dimension as bimodules. Proposition 2.5 and Lemma 2.6 imply that for a
singular equivalence of Morita type induced by (A MB , B N A) we can always suppose that A and B are
indecomposable algebras and that A MB and B N A are indecomposable bimodules.

Remark 2.7. During the ICRA 2012 in Bielefeld, Chang-Chang Xi raised the question whether there are
algebras which are singularly equivalent of Morita type, but which are not stably equivalent of Morita
type. This remark answers this question.

For any algebra A denote by T2(A) := ( A A
0 A

)
the algebra of upper 2 × 2 triangular matrices over A.

In a forthcoming paper, Yu-Ming Liu and the first author give two indecomposable K -algebras A and
B which are stably equivalent but not Morita equivalent, but for which T2(A) is not stably equivalent
to T2(B). However, Chen and Sun [10] show that if A and B are singularly equivalent of Morita type,
then also T2(A) and T2(B) are singularly equivalent of Morita type.

3. Singular equivalences of Morita type give adjoint pairs

Our aim is to prove analogous result of Dugas and Martinez-Villa [11, Theorem 2.7] for singular
equivalences of Morita type. For a K -algebra A, denote by J (A) its Jacobson radical.

Theorem 3.1. Let K be a field and let A and B be finite dimensional indecomposable K -algebras. Suppose A
and B are not of finite projective dimension as bimodules and suppose that A/ J (A) and B/ J (B) are separable
over K . Let (A MB , B N A) be a pair of bimodules inducing a singular equivalence of Morita type between A
and B. Suppose that A MB is indecomposable as a bimodule, and suppose that HomAop (A MB , A A A) is projec-
tive as a Bop-module.

Then

B N A � HomAop (A MB , A A A)

as Bop ⊗K A-modules, and (−⊗B N,−⊗A M) is a pair of adjoint functors between the module categories
mod(B) and mod(A).

Remark 3.2. Since a singular equivalence of Morita type induces an equivalence Dsg(A) � Dsg(B)

and modP<∞ (A) � modP<∞ (B) it is clear that (−⊗A M,−⊗B N) is a pair of adjoint functors between
Dsg(A) and Dsg(B), as well as between modP<∞ (A) and modP<∞ (B). Theorem 3.1 states that the
functors form an adjoint pair between the module categories.

In order to prove Theorem 3.1, we shall use the following technical notion, motivated by Dugas
and Martinez-Villa [11].
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Definition 3.3. An Aop ⊗K B-module A U B is called strongly right nonsingular, if for each A-module
T A , the B-module Ωn

A(T ) ⊗A U B is projective for n � 0.

Lemma 3.4. Let K be a field and let A and B be finite dimensional K -algebras.

(i) Let A U B be a bimodule which is projective as a left A-module and as a right B-module. Then A U B is
strongly right nonsingular if and only if for each A-module T A , T ⊗A U B has finite projective dimension.

(ii) Objects in P<∞(Aop ⊗K B) which are projective as left A-modules and as right B-modules are strongly
right nonsingular. In particular, for a singular equivalence of Morita type induced by the pair of bimodules
(A MB , B N A), so that M ⊗B N � A ⊕ X in mod(A ⊗K Aop) and N ⊗A M � B ⊕ Y in mod(B ⊗K Bop),
the two bimodules A X A and B Y B are strongly right nonsingular bimodules.

(iii) Let A be an algebra such that A/ J (A) is separable over K . If the Ae-module A is not in P<∞(Ae), then
the bimodule A A A is not strongly right nonsingular.

(iv) Let A and B be finite dimensional indecomposable K -algebras which are not of finite projective dimension
as bimodules and such that A/ J (A) and B/ J (B) are separable over K . Let (A MB , B N A) be a pair of
bimodules inducing a singular equivalence of Morita type between A and B. Then the two bimodules
A MB and B N A are not strongly right nonsingular.

(v) A direct summand of a strongly right nonsingular bimodule is also strongly right nonsingular. The direct
sum of two right strongly nonsingular bimodules is also strongly right nonsingular.

Proof. (i). Suppose that for each A-module T A , T ⊗A U B has finite projective dimension. Then for an
A-module T A , take a minimal projective resolution

· · · → Pn → Pn−1 → ·· · → P1 → P0 → T A → 0

and apply −⊗A U B . The result is a complex of B-modules

· · · → Pn ⊗A U B → Pn−1 ⊗A U B → ·· · → P1 ⊗A U B → P0 ⊗A U B → T ⊗A U B → 0.

This complex is actually exact, as A U is projective. For n � 1, we have an exact sequence

0 → Ωn
A(T A) ⊗A U B → Pn−1 ⊗A U B → ·· · → P1 ⊗A U B → P0 ⊗A U B → T ⊗A U B → 0.

Note that for 0 � i � n − 1, Pi ⊗A U B is projective, as U B is projective. Since T ⊗A U B has finite
projective dimension, by Schanuel’s lemma, for n � 0 we get that Ωn

A(T ) ⊗A U B is projective as a
B-module. This proves that A U B is strongly right nonsingular.

Conversely, suppose that A U B is strongly right nonsingular. Take a minimal projective resolution

· · · → Pn → Pn−1 → ·· · → P1 → P0 → T A → 0

and apply −⊗A U B to get a complex

0 → Ωn
A(T ) ⊗A U B → Pn−1 ⊗A U B → ·· · → P1 ⊗A U B → P0 ⊗A U B → T ⊗A U B → 0

of B-modules. This complex is exact, as A U is projective. As for n � 0, we have that Ωn
A(T ) ⊗A U B is

projective, T ⊗A U B has finite projective dimension.
We shall use (i) in the proof of (ii)–(iv).
(ii). Let A U B be a bimodule of finite projective dimension which is projective as left and as right

module. Then there exists an exact sequence of Aop ⊗K B-modules

0 → Pn → Pn−1 → ·· · → P0 → U → 0,
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where for any 0 � i � n, Pi is a projective Aop ⊗K B-module. As A U is projective, the above sequence
splits as exact sequence of left modules. So if we apply T A⊗A−, it remains exact. Observe that all
the B-modules (T ⊗A Pi)B are projective and thus the B-module (T ⊗A U )B has finite projective
dimension. We have proved that A U B is strongly right nonsingular. The second statement follows
from the first one by observing that the two bimodules A X A and B Y B are projective as left and as
right modules.

(iii). Suppose A A A is strongly right nonsingular. Then by (i) for each right A-module T A , the mod-
ule T A � T ⊗A A A is of finite projective dimension. Therefore A has finite global dimension and by
[5, Section 1], we have A ∈ P<∞(Ae). This proves the statement. Note that the relevant conclusion
from [5, Section 1] is shown only under the hypothesis that A/ J (A) is separable.

(iv). For each right B-module T B we get isomorphisms of B-modules

T ⊗B N ⊗A MB � T ⊗B (B B B ⊕ B Y B) � T B ⊕ (T ⊗B Y B).

If A MB is strongly right nonsingular, by (i) T ⊗B N ⊗A MB has finite projective dimension as a right
B-module, and thus T B has finite projective dimension. As in (iii), this implies that the Be-module B
is an object of P<∞(Be), which is a contradiction to the hypothesis on B .

The case of B N A is similar.
(v) is trivial. �

Remark 3.5. In [5, Section 1] an example is given showing that we do need the hypothesis in (ii) and
(iii) that A/ J (A) and B/ J (B) are separable over K .

Proof of Theorem 3.1. Denote B M̌ A := HomAop (A MB , A A A) to simplify the notation. Then (−⊗B M̌ A,

−⊗A MB) is an adjoint pair of functors between mod(B) and mod(A), because

HomA(B M̌ A, A A A) = HomA
(
HomA(A MB , A A A), A A A

) � A MB ,

as A M is finitely generated projective. This pair of adjoint functors can be defined on Db(mod(B))

and Db(mod(A)), as B M̌ and A M are finitely generated projective modules. They induce functors
between Dsg(A) and Dsg(B) since −⊗A MB maps K b(proj(A)) to K b(proj(B)), and since −⊗B M̌ A

maps K b(proj(B)) to K b(proj(A)).
Moreover, −⊗A MB and −⊗B M̌ A induce functors between modP<∞ (A) and modP<∞ (B) since

P<∞(A) ⊗A MB belongs to P<∞(B) and likewise for −⊗B M̌ A .
Let η : idmod(B) −→ −⊗B M̌ ⊗A MB be the unit of the adjoint pair (−⊗B M̌ A,−⊗A MB) between

mod(B) and mod(A) and let ηB : B → B M̌ ⊗A MB be its evaluation on B . As B M̌ ⊗A MB � EndA(A MB)

as Be-modules, ηB identifies with the structure map of the right B-module structure of M . By
Lemma 2.4, ηB is injective and we can form a short exact sequence as follows:

0 → B B B
ηB−→ B M̌ ⊗A MB → B U B → 0. (∗)

Applying A MB⊗B− to the exact sequence (∗) gives the exact sequence

0 → A MB
IdM⊗ηB−−−−−→ A M ⊗B M̌ ⊗A MB → A M ⊗B U B → 0.

Now it is easy to see that the monomorphism IdM ⊗ ηB is split by the bimodule map

A M ⊗B M̌ ⊗A M � A M ⊗B EndA(A MB) → A MB

where the second map is the evaluation map. Hence

A M ⊗B M̌ ⊗A MB � A MB ⊕ (A M ⊗B U B).
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Claim 1. U B is projective and B U B is strongly right nonsingular.

We shall use this claim for the moment and give the proof of Claim 1 just after having finished
the proof of Theorem 3.1.

Applying −⊗B N to the isomorphism

A M ⊗B M̌ ⊗A MB � A MB ⊕ (A M ⊗B U B)

gives

A M ⊗B M̌ ⊗A M ⊗B N A � (
A MB ⊕ (A M ⊗B U B)

) ⊗B N A

� (A M ⊗B N A) ⊕ (A M ⊗B U ⊗B N A)

� A A A ⊕ A X A ⊕ (A M ⊗B U ⊗B N A).

But we also get

A M ⊗B M̌ ⊗A M ⊗B N A � A M ⊗B M̌ ⊗A (M ⊗B N A)

� A M ⊗B M̌ ⊗A (A A A ⊕ A X A)

� (A M ⊗B M̌ A) ⊕ (A M ⊗B M̌ ⊗A X A).

Claim 2. A M ⊗B U ⊗B N A and A M ⊗B M̌ ⊗A X A are strongly right nonsingular.

Again we shall use this claim for the moment and give the proof of Claim 2 just after having
finished the proof of Theorem 3.1.

The indecomposable Ae-module A is not strongly right nonsingular by Lemma 3.4 part (iii). The
Krull–Schmidt theorem shows that the Ae-module A is a direct factor of M ⊗B M̌ or of A M ⊗B

M̌ ⊗A X A . Claim 2 shows that A M ⊗B M̌ ⊗A X A is strongly right nonsingular, and hence all of its
direct factors. Hence the Ae-module A is a direct factor of M ⊗B M̌ . This shows that there is an
Ae-module X̃ such that

A M ⊗B M̌ A � A A A ⊕ A X̃ A . (∗∗)

The bimodule A X̃ A is strongly right nonsingular by Lemma 3.4(ii) and (v), as A X̃ A is a direct summand
of A X A ⊕ (A M ⊗B U ⊗B N A).

Now we apply N⊗A− to (∗∗) and get

B N ⊗A M ⊗B M̌ A � B N A ⊕ (B N ⊗A X̃ A),

but

B N ⊗A M ⊗B M̌ A � (B B B ⊕ B Y B) ⊗B M̌ A � B M̌ A ⊕ (B Y ⊗B M̌ A).

So

B N A ⊕ (B N ⊗A X̃ A) � B M̌ A ⊕ (B Y ⊗B M̌ A).

Claim 3. B N ⊗A X̃ A and B Y ⊗B M̌ A are strongly right nonsingular; the Bop ⊗K A-module B M̌ A is indecom-
posable.



G. Zhou, A. Zimmermann / Journal of Algebra 385 (2013) 64–79 73
Again we shall use this claim for the moment and give the proof of Claim 3 just after having
finished the proof of Theorem 3.1.

As in Lemma 3.4(iv) the module B N A is not strongly right nonsingular. We hence obtain that the
two indecomposable bimodules B N A and B M̌ A are isomorphic. �
Proof of Claim 1. As in the paragraph preceding the statement of Claim 1, we have an isomorphism
of bimodules

A M ⊗B M̌ ⊗A MB � A MB ⊕ (A M ⊗B U B).

Since MB and M̌ A are projective, M ⊗B U B is projective as a right B-module and since MB is a
progenerator by Proposition 2.4, we see that U B is projective.

Given a right B-module T B , we apply T ⊗B− to (∗) and we get an exact sequence

T B
ηT−→ T ⊗B M̌ ⊗A MB → T ⊗B U B → 0,

where ηT = idT ⊗B ηB .
As ηT is an isomorphism in Dsg(B), there exists n � 0 such that Ωn(ηT ) is an isomorphism in

mod(B). In fact, by [14, Example 2.3] or [1, Corollary 3.9(1)], given two B-modules V and W , we
have

HomDsg(B)(V , W ) = lim−→HomB

(
Ω i V ,Ω i W

)
.

Suppose that a module homomorphism f : V → W is invertible in the singularity category. Then its
inverse is induced from a module homomorphism g : Ω i(W ) → Ω i(V ). We see that Ω i( f ) ◦ g coin-
cides with IdW (resp. g ◦ Ω i( f ) coincides with IdV ) in the singularity category, so Ωn−i(Ω i( f ) ◦ g) =
Ωn( f ) ◦ Ωn−i(g) coincides with IdΩn(N) in HomB(Ωn(V ),Ωn(W )) for big enough n.

Let P∗ be the minimal projective resolution of T B and let Q ∗ be the minimal projective resolution
of T ⊗B M̌ ⊗A MB . As P∗ ⊗B M̌ ⊗A MB is also a projective resolution of T ⊗B M̌ ⊗A MB , the Comparison
Lemma gives a chain map f∗ : P∗ ⊗B M̌ ⊗A MB → Q ∗ . Therefore, we have a commutative diagram

P∗

ηP∗

T B

ηT

P∗ ⊗B M̌ ⊗A MB

f∗

T ⊗B M̌ ⊗A MB

=

Q ∗ T ⊗B M̌ ⊗A MB

Note that the induced map

Ωn
B(T B)

ηΩn
B (T B )−−−−−→ Ωn

B(T B) ⊗B M̌ ⊗A MB
fn−→ Ωn

B(T ⊗B M̌ ⊗A MB)

is just Ωn(ηT ), which is an isomorphism as n is supposed to be large enough, as we have seen.
As fn induces an isomorphism between Ωn

B(T ⊗B M̌ ⊗A MB) and Ωn
B(T ) ⊗B M̌ ⊗A MB in mod(B),

we obtain that ηΩn
B (T ) : Ωn

B(T B) → Ωn
B(T ) ⊗B M̌ ⊗A MB is an isomorphism in mod(B).

As we have an exact sequence of B-modules

Ωn
B(T B)

ηΩn
B (T B )−−−−−→ Ωn

B(T B) ⊗B M̌ ⊗A MB → Ωn
B(T B) ⊗B U B → 0,
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we deduce that ηΩn
B (T B ) has projective cokernel. In fact, let S B be an indecomposable direct summand

of Ωn
B(T B). Then ηΩn

B (T B ) is the direct sum of such ηS and ηS is an isomorphism in mod(B). If S B is
projective, ηS is injective and ηS has projective cokernel, since ηB is injective with projective coker-
nel U B by Claim 1. If S B is not projective, then the fact that ηS is an isomorphism in mod(B) implies
that ηS has projective cokernel.

Since ηΩn
B (T B ) has projective cokernel, Ωn

B(T B)⊗B U B is projective and the module B U B is strongly
right nonsingular. �
Proof of Claim 2. Let T A be an A-module. For n � 1, Ωn

A(T A) ⊗A MB � Ωn
B(T ⊗A MB) ⊕ P B with P B

projective. Then

Ωn
A(T ) ⊗A M ⊗B U ⊗B N A � (

Ωn
B(T ⊗A MB) ⊗B U ⊗B N A

) ⊕ (P ⊗B U ⊗B N A).

The A-module Ωn
B(T ⊗A MB) ⊗B U ⊗B N A is projective for n big enough, as B U B is strongly right

nonsingular and that B N A is projective as a left and right module; the module P ⊗B U ⊗B N A is
projective since U B is projective. We have proved that Ωn

A(T ) ⊗A M ⊗B U ⊗B N A is projective for
n � 0 and that A M ⊗B U ⊗B N A is strongly right nonsingular.

The fact that A M ⊗B M̌ ⊗A X A is strongly right nonsingular follows from the fact that A X A is in
P<∞(Ae) and that A M ⊗B M̌ ⊗A X A is projective as a left and right module. �
Proof of Claim 3. The fact that B N ⊗A X̃ A is strongly right nonsingular follows from that B N A is
projective as a left and right module and that A X̃ A is strongly right nonsingular.

The fact that B Y ⊗B M̌ A is strongly right nonsingular follows from that B Y B is in P<∞(Be) and
that B M̌ A is projective as a left and right module.

Suppose M̌ = M̌1 ⊕ M̌2 as Bop ⊗K A-modules. Then HomA(B M̌ A, A A A) � A MB is indecomposable
as Bop ⊗K A-module implies that HomA(M̌1, A A A) = 0 or HomA(M̌2, A A A) = 0. But MB is projective,
and so this happens only if M1 = 0 or M2 = 0. Therefore B M̌ A is indecomposable. �

We obtain the analogous result to [11, Corollary 3.1].

Corollary 3.6. Under the same assumption of Theorem 3.1, suppose further that HomB(A MB , B B B) is projec-
tive as an A-module, or HomBop (B N A, B B B) is projective as a left A-module. Then

B N A � HomAop (A MB , A A A) � HomB(A MB , B B B)

and

A MB � HomA(B N A, A A A) � HomBop (B N A, B B B).

Moreover (M⊗B−, N⊗A−) and (N⊗A−, M⊗B−) are adjoint functors between mod(Aop) and mod(Bop),
which induce pairs of equivalences of the corresponding singularity categories.

Finally (−⊗A MB ,−⊗B N A) and (−⊗B N A,−⊗A MB) are adjoint functors between mod(A) and mod(B),
which induce pairs of equivalences of the corresponding singularity categories.

Proof. As a left (resp. right) adjoint to a given functor is unique up to isomorphisms, Theorem 3.1
shows that HomA(B N A, A A A) � A MB and in particular, HomA(B N A, A A A) is projective as a right
B-module.

On the other hand, if we suppose in Theorem 3.1 that HomA(B N A, A A A) is projective as a right
B-module instead of being projective for HomAop (A MB , A A A) as a left B-module, a dual proof as that
of Theorem 3.1, by considering the functors (HomA(B N A, A A A)⊗B−, N⊗A−) between left module
categories mod(Bop) and mod(Aop), gives that

A MB � HomA(B N A, A A A)
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as Aop ⊗K B-modules, and (M⊗B−, N⊗A−) is a pair of adjoint functors between the module cate-
gories mod(Aop) and mod(Bop). As in the first paragraph, we see that HomAop (A MB , A A A) � B N A and
in particular, HomAop (A MB , A A A) is projective as a left B-module.

This shows that the condition that HomAop (A MB , A A A) is projective as a left B-module and the
condition that HomA(B N A, A A A) is projective as a right B-module are equivalent. Furthermore, under
these two equivalent conditions, we know that

(i) B N A � HomAop (A MB , A A A) and A MB � HomA(B N A, A A A).
(ii) (M⊗B−, N⊗A−) is a pair of adjoint functors between mod(Bop) and mod(Aop), which induce

pairs of equivalences of the corresponding singularity categories.
(iii) (−⊗B N A,−⊗A MB) is a pair of adjoint functors between mod(B) and mod(A), which induce

pairs of equivalences of the corresponding singularity categories.

A dual proof of the above argument shows that the condition that HomB(A MB , B B B) is projec-
tive as an A-module, and the condition that HomBop (B N A, B B B) is projective as an A-module, are
equivalent; under these two conditions, we have

(i) B N A � HomB(A MB , B B B) and A MB � HomBop (B N A, B B B).
(ii) (B N⊗A−, A M⊗B−) is a pair of adjoint functors between mod(Aop) and mod(Bop), which induce

pairs of equivalences of the corresponding singularity categories.
(iii) (−⊗A MB ,−⊗B N A) is a pair of adjoint functors between mod(A) and mod(B), which induce

pairs of equivalences of the corresponding singularity categories. �
Let νA := HomK (HomA(−, A), K ) be the Nakayama functor on mod(A). If Q A is a projective

A-module, then ν(Q A) is an injective A-module, and if I A is an injective A-module, then ν(I A) is
a projective A-module.

Lemma 3.7. Under the same assumption of Theorem 3.1, if I is injective as a B-module, then M ⊗B I is injective
as an A-module. Moreover (M⊗B−) ◦ νB � νA ◦ (M⊗B−).

Proof. We know that N � HomA(M, A) and that N⊗A− is (left and) right adjoint to M ⊗B −. Hence
for an injective A-module I we get

HomB(−, N ⊗A I) � HomA(M⊗B−, I)

by Corollary 3.6. Moreover M⊗B− is exact since M is projective as a B-module. HomA(−, I) is exact
since I is injective as an A-module. Therefore HomB(−, N ⊗A I) is exact as a functor B − mod −→
(A − mod)op , and we get therefore that N ⊗A I is injective.

We have

HomA(M⊗B−, A) � HomB
(−,HomA(M, A)

)

� HomB(−, N)

� HomB(−, B) ⊗B N

as right A modules, since N is projective as B-module. Hence,

νA(M⊗B−) = HomK
(
HomA(M⊗B−, A), K

)

� HomK
(
HomB(−, B) ⊗B N, K

)

� HomB
(
N,HomK

(
HomB(−, B), K

))
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� HomB(N, B) ⊗B HomK
(
HomB(−, B), K

)

� M ⊗B νB(−).

This shows the lemma. �
Corollary 3.8. Under the same assumption of Theorem 3.1, the functor −⊗A MB sends projective injective
A-modules to projective injective B-modules.

4. Singular equivalences of Morita type and Hochschild homology

In this section, we consider invariant property of Hochschild homology under singular equivalences
of Morita type. For stable equivalences of Morita type, in [19], Yu-Ming Liu and Chang-Chang Xi
proved that a stable equivalence of Morita type preserves Hochschild homology groups of positive
degrees. Remark that by [20, Theorem 1.1] the invariance of degree zero Hochschild homology group
under a stable equivalence of Morita type is equivalent to the famous Auslander–Reiten conjecture on
the invariance of the number of non-projective simple modules under stable equivalence.

We shall now prove that a singular equivalence of Morita type induces an isomorphism of
Hochschild homology in positive degrees.

Theorem 4.1. Let K be a Noetherian commutative ring and let A and B be Noetherian K -algebras which are
projective as K -modules. Suppose that (A MB , B N A) induce a singular equivalence of Morita type.

(1) Then there is n0 ∈ N so that H Hn(A) � H Hn(B) for each n > n0 .
(2) If K is a field, and if A and B are finite dimensional, then H Hn(A) � H Hn(B) for each n > 0.

Our proof of the first statement, inspired by [26, Section 1.2], is similar to that of [19, Theorem 4.4],
which uses a change-of-rings argument. Notice that our argument is simpler than the proof in [19]
and in fact works also for stable equivalences of Morita type. Our proof of the second statement
makes use of transfer maps and is similar to that of [20, Remark 3.3].

Proof of Theorem 4.1(1). Let BA be the bar resolution of A, that is

BA: · · · −→ A⊗5 −→ A⊗4 −→ A⊗3 −→ A⊗2(−→ A −→ 0).

Then, we my apply N ⊗A − ⊗A M and obtain an exact sequence N ⊗A BA ⊗A M of Be-modules:

· · · −→ N ⊗A A⊗4 ⊗A M −→ N ⊗A A⊗3 ⊗A M −→ N ⊗A A⊗2 ⊗A M(−→ N ⊗A M −→ 0)

of Be-modules, since M and N are projective on the right, resp. on the left.
The key observation is the following isomorphism of complexes

(A M ⊗B N A) ⊗Ae BA � B ⊗Be (B N ⊗A BA ⊗A MB),

(m ⊗ n) ⊗ u �→ 1 ⊗ (n ⊗ u ⊗ m)

which is easily verified. Taking homology groups gives

H Hn(A) ⊕ TorAe

n (X, A) � TorAe

n (M ⊗B N, A) � TorBe

n (B, N ⊗A M) � H Hn(B) ⊕ TorBe

n (B, Y )

for each n � 0. When n is large, TorAe

n (X, A) � 0 � TorBe

n (B, Y ), as X ∈ P<∞(Ae) and Y ∈ P<∞(Be),
we obtain that H Hn(A) � H Hn(B) for n � 0. �
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For the proof of Theorem 4.1(2), let us recall some properties of transfer maps in Hochschild
homology.

Let A and B be two algebras over a commutative ring k. Let M be an A–B-bimodule such that MB

is finitely generated and projective. Then we can define a transfer map tM : H Hn(A) → H Hn(B) for
each n � 0. As we don’t need the construction of this map, we refer the reader to Bouc [2] (see also
[20,16] for a summary of Bouc’s results).

Proposition 4.2. (See [2, Section 3].) Let A, B and C be k-algebras over a commutative ring k.

(1) If M is an A–B-bimodule and N is a B–C-bimodule such that M B and NC are finitely generated and
projective, then we have tN ◦ tM = tM⊗B N : H Hn(A) → H Hn(C), for each n � 0.

(2) Let

0 → L → M → N → 0

be a short exact sequence of A–B-bimodules which are finitely generated and projective as right
B-modules. Then tM = tL + tN : H Hn(A) → H Hn(B), for each n � 0.

(3) Suppose that k is an algebraically closed field and that A and B are finite dimensional k-algebras. Then
for a finitely generated projective A–B-bimodule P , the transfer map tP : H Hn(A) → H Hn(B) is zero for
each n > 0.

(4) Consider A as an A–A-bimodule by left and right multiplications, then t A : H Hn(A) → H Hn(A) is the
identity map for any n � 0.

Proof of Theorem 4.1(2). For n � 0, we have transfer maps tM : H Hn(A) → H Hn(B) and tN :
H Hn(B) → H Hn(A). By the above result,

tN ◦ tM = tM⊗B N = t A + t X = Id + t X

as maps from H Hn(A) to itself.
Let K be the algebraic closure of K and write

A = A ⊗K K ,

B = B ⊗K K ,

M = M ⊗K K ,

N = N ⊗K K ,

X = X ⊗K K ,

Y = Y ⊗K K .

Then one verifies easily that (A M B , B N A) induces a singular equivalence of Morita type between A
and B , because

A M ⊗B N A � A A A ⊕ A X A

with X ∈P<∞(Ae);

B N ⊗A M B � B B B ⊕ B Y B

with Y ∈P<∞(Be). We also have tM = tM ⊗K idK .
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Since X ∈P<∞(Ae), there is an exact sequence of Ae-modules

0 → Pn → ·· · → P 0 → X → 0

with P 0, . . . , Pn projective. By the point (2)(3) of Proposition 4.2, for n > 0, we have t X =∑n
i=0(−1)it P i

= 0 as a homomorphism from H Hn(A) → H Hn(A), and thus t X = 0 : H Hn(A) →
H Hn(A) for n > 0. This shows that

tN ◦ tM : H Hn(A) → H Hn(A)

and

tM ◦ tN : H HN(B) → H Hn(B)

are isomorphisms for n > 0. We deduce that

tM : H Hn(A) → H Hn(B)

is an isomorphism for n > 0. �
Remark 4.3. Finally we briefly mention what is known in this context about invariance of Hochschild
cohomology under stable equivalence of Morita type and under singular equivalence of Morita type.

Chang-Chang Xi proved in [25, Theorem 4.2] that a stable equivalence of Morita type between
Artin algebras preserves the Hochschild cohomology groups of positive degrees, generalising a previ-
ous result of Zygmunt Pogorzały [23, Theorem 1.1] for selfinjective algebras. Sheng-Yong Pan and the
first author further showed in [22] the invariance of stable Hochschild cohomology rings under stable
equivalences of Morita type.

Chen and Sun prove in [10] that Tate–Hochschild cohomology rings of Gorenstein algebras are
preserved under singular equivalences of Morita type. A careful study of the proof of [25, Theorem 4.2]
shows that the proof of [25, Theorem 4.2] works for singular equivalences of Morita type. We obtain
from this study that a singular equivalence of Morita type preserves Hochschild cohomology groups
of large degrees. However, we don’t know the algebra structure.
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