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UNBOUNDED LADDERS INDUCED BY GORENSTEIN ALGEBRAS

PU ZHANG, YUEHUI ZHANG, GUODONG ZHOU, LIN ZHU

Abstract. The derived category D(ModA) of a Gorenstein triangular matrix algebra A admits an

unbounded ladder; and this ladder restricts to D
−(Mod) (resp. D

b(Mod), D
b(mod), K

b(proj)). A

left recollement of triangulated categories with Serre functors sits in a ladder of period 1; as an

application, the singularity category of A admits a ladder of period 1.

Recollements ([BBD]) provide a powerful tool for studying problems in triangulated categories and alge-

braic geometry. To study mixed categories, ladders have been introduced ([BGS], [AHKLY]). Recollements

are ladders of height 1; while ladders of height ≥ 2 give more information ([AHKLY], [HQ]). A fundamental

question is when unbounded ladders occur naturally in representation theory. This essentially deals with

the existence of infinite adjoint sequences. It is known that if A is an algebra of finite global dimension,

then any recollement of derived category D(ModA) sits in an unbounded ladder ([AHKLY, 3.7]).

Let A := ( B 0
M C ) with M a C-B-bimodule. An algebra Λ is of this form if and only if Λ has an idempotent

e with (1− e)Λe = 0. It is well-known that there is a recollement (D(ModB), D(ModA), D(ModC)) of

derived categories ([AHKL], [Han]); and in fact, it sits in a ladder of height 2 ([AHKLY, 3.4]). We further

claim that it sits in an unbounded ladder, provided that A, B and C are Gorenstein algebras. This

unbounded ladder enjoys pleasant properties in the sense that it restricts to D−(Mod) (resp. Db(Mod),

Db(mod), Kb(proj)).

For an adjoint pair (F,G) of categories with Serre functors, F (resp. G) always has a left (resp. right)

adjoint. So a left recollement of triangulated categories with Serre functors sits in a ladder of period 1.

As an application, the singularity category ([B], [O]) of a Gorenstein triangular matrix algebra admits a

ladder of period 1 (Thm. 3.2), via the stable category of Gorenstein-projective modules ([EJ], [B], [H2]).

1. Preliminaries

1.1. Let C′, C and C′′ be triangulated categories. A recollement (C′, C, C′′, i∗, i∗, i
!, j!, j

∗, j∗) of C relative

to C′ and C′′ ([BBD]) is a diagram of triangle functors

C′

✛

✲

✛
C
✛

✲

✛
C′′

i∗

i∗

i!

j!
j∗

j∗
(1.1)

satisfying the following conditions:

(R1) (i∗, i∗), (i∗, i
!), (j!, j

∗) and (j∗, j∗) are adjoint pairs;

(R2) i∗, j! and j∗ are fully faithful;

(R3) j∗i∗ = 0 (and thus i∗j! = 0 = i!j∗);

(R4) for X ∈ C there are distinguished triangles j!j
∗X

ǫX−→ X
ηX−→ i∗i

∗X → (j!j
∗X)[1] and i∗i

!X
ωX−→

X
ζX−→ j∗j

∗X → (i∗i
!X)[1], where the marked morphisms are the counits and the units of the adjunctions.

A left (resp. right) recollement of C relative to C′ and C′′ is the upper (resp. lower) two rows of (1.1)

satisfying the same conditions involving only these functors ([P], [Kö]. For other or related names see e.g.

[BGS], [M], [BO], [Kr], [IKM]). An opposed recollement of C relative to C′ and C′′ is a diagram

2010 Mathematical Subject Classification. 18E30, 16E35, 18A40, 18A22, 16G10.

Keywords: periodic ladder, Serre functor, Gorenstein algebra, Gorenstein-projective module, splitting recollement.

Supported by the NSFC 11271251 and 11431010.

1

http://arxiv.org/abs/1507.07333v3


2 P. ZHANG, Y. H. ZHANG, G. D. ZHOU, L. ZHU

C′
✲

✛

✲
C

✲

✛

✲
C′′

i−1

j0
i1

j−1

i0
j1

such that (C′′, C, C′, j−1, i0, j1, i−1, j0, i1) is a recollement of C relative to C′′ and C′.

Lemma 1.1. (1) Given the upper two rows of (1.1), the following are equivalent:

(i) it is a left recollement;

(ii) (i∗, i∗) and (j!, j
∗) are adjoint pairs, i∗ and j! are fully faithful, and Imi∗ = Kerj∗;

(iii) (i∗, i∗) and (j!, j
∗) are adjoint pairs, i∗ and j! are fully faithful, and Imj! = Keri∗.

(2) (see e.g. [IKM, 1.7]) Given diagram (1.1) of triangle functors, the following are equivalent:

(i) it is a recollement;

(ii) it satisfies (R1) and (R2), and Imi∗ = Kerj∗, Imj! = Keri∗ and Imj∗ = Keri!;

(iii) it satisfies (R1) and (R2), and any one of the equalities in (2)(ii).

1.2. A ladder ([BGS, 1.2], [AHKLY, Sect. 3]) is a finite or an infinite diagram of triangle functors:

C′

...
✲

✛

✲

✛

✲

...

C

...
✲

✛

✲

✛

✲

...

C′′

i−2 j−2

i−1j−1

i0 j0
j1 i1
i2 j2

(1.2)

such that any two consecutive rows form a left or right recollement (or equivalently, any three consecutive

rows form a recollement or an opposed recollement) of C relative to C′ and C′′. Its height is the number of

rows minus 2. Ladders of height 0 (resp. 1) are exactly left or right recollements (resp. recollements or

opposed recollements). A ladder is unbounded if it goes infinitely both upwards and downwards.

A two-sided infinite sequence (· · · , F−1, F0, F1, · · · ) of additive functors is an infinite adjoint sequence,

if (Fn, Fn+1) is an adjoint pair for each n ∈ Z. In such a sequence if some Fi is a triangle functor then so

are all Fn’s (see e.g. [Ke1, 6.7]).

Lemma 1.2. Recollement (1.1) sits in an unbounded ladder if and only if there is an infinite adjoint

sequence ( · · · , F−1, i∗, i∗, i!, F1, · · · ).

1.3. An equivalence of left recollements ([PS, 2.5], [FP]) is a triple (F ′, F, F ′′) of triangle-equivalences

such that
C′

✛

✲ C
✛

✲ C′′
i∗

i∗

j!
j∗

F ′ F F ′′

❄ ❄ ❄

D′
✛

✲ D
✛

✲ D′′

i∗
D

iD
∗

jD
!

j∗
D

commutes. Similarly we have an equivalence of (right, opposed) recollements.

We call (C′, C,C′′, j2t−1, i2t, j2t+1, i2t−1, j2t, i2t+1) in ladder (1.2) the t-th recollement, (C′, C, C′′, i2t, j2t+1,

i2t+2, j2t, i2t+1, j2t+2) the t-th opposed recollement, and the left (right) recollement sitting in the t-th rec-

ollement the t-th left (right) recollement. An unbounded ladder (1.2) is periodic, if there is an integer t ≥ 1

such that the t-th left recollement is equivalent to the 0-th one. Such a minimal t is called the period. The

following describes the period via the associated TTF tuple, and justifies the terminology.

Lemma 1.3. (1) Given recollements (C′, C, C′′) and (D′,D,D′′), the following are equivalent:

(i) they are equivalent;

(ii) there is a triangle-equivalence F : C → D such that F (Imj!) = ImjD! , F (Imi∗) = ImiD∗ and

F (Imj∗) = ImjD∗ ;
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(iii) there is a triangle-equivalence F : C → D such that one of the equalities in (ii) holds.

(2) Given a ladder of period t, then the (qt+ l)-th (left, right, opposed) recollement is equivalent to the

l-th (left, right, opposed) recollement for q ∈ Z and l = 0, · · · , t− 1, under the same equivalence.

(3) Given an unbounded ladder (1.2), the following are equivalent:

(i) it is of period t;

(ii) t is the minimal positive integer such that there is a triangle-equivalence F : C → C satisfying

F (Imi2t+1) = Imi1, F (Imi2t) = Imi0 and F (Imi2t−1) = Imi−1;

(iii) t is the minimal positive integer such that there is a triangle-equivalence F : C → C satisfying one

of the equalities in (ii).

1.4. If no specified, modules are right modules. For algebra A over a field, denote by ModA (resp. A-Mod)

the category of right (resp. left) A-modules. If A is finite-dimensional, then we denote by modA (resp.

A-mod) the category of finitely generated right (resp. left) A-modules, and by GP(A) the full subcategory

of modA consisting of Gorenstein-projevtive modules ([EJ]). Then GP(A) is a Frobenius category whose

projective-injective objects are exactly projective modules ([Be]), and hence the stable category GP(A) is

triangulated ([H1]). A finite-dimensional algebra A is Gorenstein if inj.dimAA < ∞ and inj.dimAA < ∞.

Let Kb(projA) (resp. Kb(injA)) be the homotopy category of bounded complexes of finitely generated

projective (resp. injective) right A-modules, D(ModA) (resp. D−(ModA), Db(ModA)) the unbounded

(resp. upper bounded, bounded) derived category of ModA, and Db(modA) the bounded derived category

of modA. Note that D(ModA) is compactly generated by AA (see [S]; also [BN]).

For a triangulated category T with coproducts, denote by T c the full subcategory of T consisting of

compact objects. Then Dc(ModA) = Kb(projA) ([N1]).

2. Main results

Theorem 2.1. Let B and C be Gorenstein algebras and CMB a C-B-bimodule, such that A = ( B 0
M C ) is

Gorenstein. Then there is an unbounded ladder (D(ModB), D(ModA), D(ModC)) of derived categories.

Remark 2.2. For the Gorensteinness of A := ( B 0
M C ) we refer to [C] and [Z, Thm. 2.2]. If B and C are

Gorenstein, then A is Gorenstein if and only if proj.dimCM and proj.dimMB are finite ([C, Thm. 3.3]).

Also note that gl.dimA ≥ max{gl.dimB, gl.dimC}.

For example, let A be the algebra given by quiver •

λ3

�� β
// •

λ1

��
•

αoo

λ2

��
and relations λ2

1, λ
2
2, λ2

3, αλ2−

λ1α, βλ3 − λ1β. Then A =
(

B 0
CMB C

)
=

(
C 0 0
C C 0
0 C C

)
, where C := k[x]/〈x2〉, B := T2(C) := (C 0

C C ) and

CMB := C(0, C)T2(C). Since proj.dimCM = 0 and proj.dimMT2(C) = 1, A is Gorenstein of gl.dimA = ∞.

2.1. Let A =
(

B 0
CMB C

)
. A right A-module is given by (XB , YC)φ, where XB ∈ mod B, YC ∈ mod C,

and φ : Y ⊗C MB → XB is a right B-map. A right A-map (XB , YC)φ → (X ′
B , Y ′

C)φ′ is given by (f, g)

with f ∈ HomB(XB , X ′
B) and g ∈ HomC(YC , Y

′
C), such that fφ = φ′(g ⊗B IdM ). A left A-module is

given by
(

BX

CY

)
φ
, where BX ∈ B-mod, CY ∈ C-mod, and φ : CM ⊗B X → CY is a left C-map. A left

A-map
(

BX

CY

)
φ
→

(
BX′

CY ′

)
φ′

is given by (f, g) with f ∈ HomB(BX, BX ′) and g ∈ HomC(CY, CY
′), such

that gφ = φ′(IdM ⊗B f). The projective right A-modules are exactly (PB , 0) and (Q⊗C M,QC)Id, where

PB ∈ projB and QC ∈ projC. The projective left A-modules are exactly
(

BP
M⊗BP

)
Id

and
(

0
CQ

)
, where

BP ∈ B-proj and CQ ∈ C-proj. See [ARS, p.73].

2.2. Let A be an algebra over a field with idempotent e. The ideal AeA is stratifying ([CPS, 2.1.1]), if the

multiplication map m : Ae⊗eAe eA → AeA is injective and TorneAe(Ae, eA) = 0 for n ≥ 1. As pointed out
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by S. König and H. Nagase [KN, Rem. 3.2], A(AeA) (resp. (AeA)A) is projective if and only if eAe(eA)

(resp. (Ae)eAe) is projective and the map m is injective. Thus, if AeA is projective either as a left or a

right A-module, then AeA is a stratifying ideal.

Lemma 2.3. (see e.g. [AHKL, 4.5], [Han, 2.1]) If AeA is a stratifying ideal, then there is a recollement

D(ModA/AeA)
✛

✲

✛
D(ModA)

✛

✲

✛
D(Mod eAe)

i∗

i∗

i!

j!
j∗

j∗

where
i∗ = −

L
⊗A A/AeA, i∗ = −

L
⊗A/AeA A/AeA, i! = RHomA(A/AeA,−),

j! = −
L
⊗eAe eA, j∗ = −

L
⊗A Ae, j∗ = RHomeAe(Ae,−).

2.3. Let T be a triangulated category compactly generated by S0. Denote by 〈S0〉 the smallest triangu-

lated subcategory of T containing S0 and closed under coproducts. Brown representability (A. Neeman

[N2, Thm. 3.1]) claims that every cohomological functor F : T op → Ab which sends coproducts to products

is representable (i.e., F ∼= HomT (−, X) for some X ∈ T ), and that T = 〈S0〉. And, Brown representability

for the dual (H. Krause [Kr, Thm. A]) claims that T has products, and that every cohomological functor

F : T → Ab which sends products to products is representable (i.e., F ∼= HomT (X,−) for some X ∈ T ).

Using Brown representability one has

Lemma 2.4. ([N2, Thm. 4.1 and 5.1]) Let F : C → D be a triangle functor between compactly generated

triangulated categories, with a right adjoint G. Then the following are equivalent:

(i) G admits a right adjoint;

(ii) F preserves compact objects;

(iii) G preserves coproducts.

Using Brown representability for the dual one has

Lemma 2.5. Let F : C → D be a triangle functor between triangulated categories, where C is compactly

generated. Then F admits a left adjoint if and only if F preserves products (we are not assuming that D

has products).

Proof. The “only if” part is well-known. For the “if” part, applying Brown representability for the dual

to functor HomD(Y, F−) : C → Ab, for each object Y ∈ D, we then see that F admits a left adjoint. �

We need the following result due to P. Balmer, I. Dell’ambrogio and B. Sanders.

Lemma 2.6. ([BDS, Lemma 2.6(b)]) Let F : C → D be a triangle functor between compactly generated

triangulated categories, with a right adjoint G. Assume that F preserves compacts, and the restriction

F |Cc : Cc → Dc admits a left adjoint. Then F preserves products.

2.4. Let A be a finite-dimensional algebra over field k. Using a hoprojective (resp. hoinjective) resolution

of a complex in D(ModA) ([S]; [BN]) one has the characterizations:

Kb(projA) = {P ∈ D(ModA) | dimk(
⊕

i∈Z

HomD(ModA)(P, Y [i])) < ∞, ∀ Y ∈ Db(modA)},

and

Kb(injA) = {I ∈ D(ModA) | dimk(
⊕

i∈Z

HomD(ModA)(Y [i], I)) < ∞, ∀ Y ∈ Db(modA)}.

One has also the characterization:

Db(modA) = {X ∈ D(ModA) | dimk(
⊕

i∈Z

HomD(ModA)(P,X[i])) < ∞, ∀ P ∈ Kb(projA)}.

See L. Angeleri Hügel, S. König, Q. H. Liu and D. Yang [AHKLY, Lemma 2.4]. Using these one has
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Lemma 2.7. Let A and B be finite-dimensional algebras, and F : D(ModA) → D(ModB) a triangle

functor with a right adjoint G. Then

(i) ([AHKLY, Lemma 2.7]) F preserves Kb(proj) if and only if G preserves Db(mod).

(ii) ([HQ, Lemma 1]) F preserves Db(mod) if and only if G preserves Kb(inj).

2.5. Let C be a Hom-finite category over field k. A k-linear functor S : C → C is a right Serre functor,

if for any objects X and Y there is a k-isomorphism HomC(X,Y ) ∼= HomC(Y, SX)∗ which is natural in X

and Y , where (−)∗ = Homk(−, k). We say that C has a Serre functor if C has a right Serre functor which is

an equivalence, or equivalently, C has both a right and left Serre functor ([BK], [RV]). If C is a Hom-finite

Krull-Schmidt triangulated category over an algebraically closed field k, then C has a Serre functor if and

only if C has Auslander-Reiten triangles (note that the assumption that k is algebraically closed is only

used in the “only if” part. See I. Reiten and M. Van den Bergh [RV, Thm. 2.4]).

The following observation will play an important role in this paper.

Lemma 2.8. Let C and D be categories with Serre functors, F : C → D an additive functors with a right

adjoint G. Then F admits a left adjoint S−1
C GSD, and G admits a right adjoint SDFS−1

C , where SC and

SD are the right Serre functors of C and D, respectively.

Proof. For X ∈ C and Y ∈ D we have

HomC(S
−1
C GSDY,X) ∼= HomC(X,GSDY )∗ ∼= HomD(FX,SDY )∗ ∼= HomD(Y, FX).

Similarly (G,SDFS−1
C ) is an adjoint pair. �

We also need the following result due to D. Happel.

Lemma 2.9. ([Hap2, Lemma 1.5, Thm. 3.4]) Let A be a finite-dimensional algebra. Then A is Gorenstein

if and only if Kb(projA) = Kb(injA) in Db(modA). In this case Kb(projA) has a Serre functor.

2.6. Proof of Theorem 2.1. Put e := ( 0 0
0 1 ) ∈ A. Then AeA = ( 0 0

M C ) ∼= (M,C) is a projective right

A-module, and hence AeA is stratifying. Since A/AeA ∼= B and eAe ∼= C as algebras, and

A(A/AeA)B ∼= A (B
0 )B , B(A/AeA)A ∼= B(B, 0)A, C(eA)A ∼= C(M,C)A, A(Ae)C ∼= A ( 0

C )
C

as bimodules, it follows from Lemma 2.3 that there is a recollement

D(ModB)
✛

✲

✛
D(ModA)

✛

✲

✛
D(ModC)

i∗

i∗

i!

j!
j∗

j∗
(2.1)

where i∗ = −
L
⊗A(B

0 ) , i∗ = −
L
⊗B(B, 0), i! = RHomA((B, 0)A,−), j! = −

L
⊗C(M,C), j∗ = −

L
⊗A( 0

C ) , j∗ =

RHomC(( 0
C )

C
,−).

Claim 1. There is an infinite sequence (· · · , F−3, F−2, F−1, i
∗) such that any two consecutive functors

form an adjoint pair.

Since the right adjoint i∗ of i∗ admits a right adjoint i!, it follows from Lemma 2.4 that i∗ preserves

compacts (this could be also seen directly: since (B
0 ) is projective as a right B-module, it follows that

i∗ = −
L
⊗A (B

0 ) preserves compacts). Since (B, 0) is projective as a right A-module, it follows that

i∗ = −
L
⊗B (B, 0) preserves compacts. Thus (i∗|Kb(projA), i∗|Kb(projB)) is an adjoint pair. Since A and

B are Gorenstein algebras, by Lemma 2.9, Kb(projA) and Kb(projB) have Serre functors, and hence

i∗|Kb(projA) has a left adjoint, by Lemma 2.8. Applying Lemma 2.6 to the adjoint pair (i∗, i∗) we know

that i∗ preserves products, and hence by Lemma 2.5, i∗ admits a left adjoint, denoted by F−1.

Repeating the above arguments we get Claim 1.
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Claim 2. There is an infinite sequence (i!, G1, G2, G3, · · · ) such that any two consecutive functors

form an adjoint pair.

Since i∗ preserves compacts, it follows from Lemma 2.4 that i! admits a right adjoint, denoted by G1.

Since i∗ preserves compacts, i.e., i∗ preserves Kb(proj), it follows from Lemma 2.7(i) that i∗ preserves

Db(mod), and hence i! preserves Kb(inj) by Lemma 2.7(ii). Since we are dealing with Gorenstein algebras,

by Lemma 2.9 this is exactly to say that i! preserves Kb(proj), i.e., i! preserves compacts. It follows from

Lemma 2.4 that G1 admits a right adjoint, denoted by G2.

By the same argument we know that G1 preserves compacts, and hence by Lemma 2.4, G2 admits a

right adjoint, denoted by G3. Also, G2 and G3 preserve compacts. Repeating these arguments we get

Claim 2.

Now Theorem 2.1 follows from Lemma 1.2. �

Remark 2.10. The unbounded ladder in Theorem 2.1 restricts to D−(Mod), Db(Mod), Db(mod) and

Kb(proj). In fact, since A, B and C are Gorenstein, all the functors in recollement (2.1) restrict to

D−(Mod) (resp. Db(Mod), Db(mod), Kb(proj)); then by Lemmas 2.4 and 2.7 we see that all the functors

in the ladder restrict to Kb(proj)) and Db(mod), respectively. By [AHKLY, Prop. 4.11] and [AHKLY,

Coroll. 4.9], we also see that all the functors in the ladder restrict to D−(Mod) and Db(Mod), respectively.

3. Ladders of period 1

3.1. We have

Proposition 3.1. (1) Let C′, C and C′′ be triangulated categories with Serre functors. Then

(i) Any left (right) recollement (C′, C,C′′) sits in a ladder of period 1.

(ii) Any recollement (C′, C, C′′) sits in a ladder of period 1.

(2) Any recollement of triangulated category C with Serre functor sits in a ladder of period 1.

Proof. (1)(i) Let SC′ , SC and SC′′ be the right Serre functors of C′, C and C′′, respectively. Let

C′
✛

✲ C
✛

✲ C′′

j−1

i0

i−1

j0

be a left recollement. Applying Lemma 2.8 to adjoint pair (j−1, i0) we know that j−1 admits a left adjoint

i−2 = S−1
C i0SC′ : C′ → C, and that i0 admits a right adjoint j1 = SC′j−1S

−1
C : C → C′. Similarly, i−1

admits a left adjoint j−2 = S−1
C′′ j0SC, and j0 admits a right adjoint i1 = SCi−1S

−1
C′′ . By induction we have

i2n−1 = Sn
C i−1S

−n
C′′ : C′′ −→ C, i2n = Sn

C i0S
−n
C′ : C′ −→ C,

j2n−1 = Sn
C′j−1S

−n
C : C −→ C′, j2n = Sn

C′′j0S
−n
C : C −→ C′′.

By Lemma 1.1(2) (C′, C, C′′, j−1, i0, i1, i−1, j0, j1) is a recollement, and hence by Lemma 1.2 we get the

desired unbounded ladder. Since (SC′ , SC, SC′′) is an equivalence from the 1st left recollement to the 0-th

left recollement, this ladder is of period 1.

(ii) follows from (i) and the fact that one functor in an adjoint pair uniquely determines another.

(2) Let (C′, C, C′′, i∗, i∗, i
!, j!, j

∗, j∗) be a recollement, and S a right Serre functor of C. Then C′ has a

right Serre functor SC′ = i!Si∗ with S−1
C′ = i∗S−1i∗; and C′′ has a right Serre functor SC′′ = j∗Sj! with

S−1
C′′ = j∗S−1j∗ (see P. Jørgensen [J]. We stress that this result does not hold for left recollements). Then

from (1)(ii) the assertion follows. �
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3.2. IfA is Gorenstein, then GP(A) is triangle-equivalent to the singularity categoryDb(modA)/Kb(projA)

([B, 4.4.1]). So the following gives a ladder of singularity categories of period 1.

Theorem 3.2. Let B and C be Gorenstein algebras and CMB a C-B-bimodule, such that A = ( B 0
M C ) is

Gorenstein. Then we have a ladder (GP(B), GP(A), GP(C)) of period 1.

Proof. First, by dévissage each of GP(A), GP(B) and GP(C) has a Serre functor. In fact, since A is

Gorenstein, GP(A) is a resolving contravariantly finite subcategory of A-mod ([EJ, Thm. 11.5.1]; also [AR,

Prop. 5.1]), and hence GP(A) is a resolving functorially finite subcategory of A-mod ([KS, Corol. 0.3]).

Then by [AS, Thm. 2.4] GP(A) has relative Auslander-Reiten sequences. While GP(A) is a Frobenius

category, by a direct argument we see that GP(A) has Auslander-Reiten triangles, and hence by [RV, Thm.

I 2.4] GP(A) has a Serre functor.

Second, there is a left recollement

GP(B)
✛

✲ GP(A)
✛

✲ GP(C)
i∗

i∗

j!

j∗

In fact, CMB is compatible ([Z, Thm. 2.2(iv)]), and hence by [Z, Thm. 1.4], an A-module (XB , YC)φ is

in GP(A) if and only if φ : Y ⊗C M → X is injective, Cokerφ ∈ GP(B), and Y ∈ GP(C). So by [Z, Thm.

3.3] we get the left recollement above, where i∗ sends (X,Y )φ to Cokerφ, i∗ sends X to (X, 0), j! sends

Y to (Y ⊗C M,Y )Id, and j∗ sends (X,Y )φ to Y .

Now the assertion follows from Proposition 3.1(1)(i). �

3.3. Recollement (1.1) is splitting, if i! ∼= i∗ and j∗ ∼= j!. A splitting recollement clearly induces a ladder of

period 1. The product C′ ×C′′ of triangulated categories (C′, E ′, T ′) and (C′′, E ′′, T ′′) is again triangulated,

where the shift T ′ × T ′′ is given by (T ′ × T ′′)(C′, C′′) := (T ′C′, T ′′C′′), and E ′ × E ′′ is the collection

of triangles of C′ × C′′ of the form (X ′, X ′′)
(u′,u′′)
−→ (Y ′, Y ′′)

(v′,v′′)
−→ (Z′, Z′′)

(w′,w′′)
−→ (T ′X ′, T ′′X ′′), where

X ′ u′

−→ Y ′ v′

−→ Z′ w′

−→ T ′X ′ belongs to E ′, and X ′′ u′′

−→ Y ′′ v′′

−→ Z′′ w′′

−→ T ′′X ′′ belongs to E ′′. Then

(C′, C′ × C′′, C′′, p1, σ1, p1, σ2, p2, σ2) is a splitting recollement, where p1 and p2 are the projections, and σ1

and σ2 are the embeddings. As we see below, this gives all the splitting recollements, up to equivalences.

Proposition 3.3. Let (C′, C,C′′, i∗, i∗, i
!, j!, j

∗, j∗) be a recollement of triangulated categories. Then the

following are equivalent:

(i) it is splitting;

(ii) i! ∼= i∗;

(iii) j∗ ∼= j!;

(iv) There is an equivalence (IdC′ , F, IdC′′) : (C′, C, C′′) −→ (C′, C′ × C′′, C′′) of recollements.

A stable t-structure ([M]) on triangulated category C is a pair (U ,V) of triangulated subcategories such

that it is a t-structure ([BBD]), i.e., Hom(U ,V) = 0, and for X ∈ C there is a distinguished triangle

U → X → V → U [1] with U ∈ U and V ∈ V. We call this triangle the t-decomposition of X, and U and

V the t-part and the t-free part of X, respectively.

Lemma 3.4. (1) ([M], [IKM]) (i) Given a diagram of triangle functors C′
✛

C✲

i∗

i∗ such that

(i∗, i∗) is an adjoint pair and i∗ is fully faithful, then (Keri∗, Imi∗) is a stable t-structure on C, and

Y → X
η
X−−→ i∗i

∗X → Y [1] is the t-decomposition of X, where η : IdC → i∗i
∗ is the unit.

(ii) Given a diagram of triangle functors C′
✛ C

✲

i!

i∗

such that (i∗, i
!) is an adjoint pair and i∗

is fully faithful, then (Imi∗, Keri!) is a stable t-structure on C, and i∗i
!X

ǫ
X−−→ X → Z → (i∗i

!X)[1] is the

t-decomposition of X, where ǫ : i∗i
! → IdC is the counit.
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(2) Let (Y,Z) be a stable t-structure on C with Hom(Z,Y) = 0. Then F : C → Y × Z given by

FX = (Y,Z) is a triangle-equivalence, where Y
u
→ X → Z → Y [1] is the t-decomposition.

Proof. (2) By assumption HomC(Z[−1], Y ) = 0. By the exact sequence HomC(X,Y )
Hom(u,Y )

−→ HomC(Y, Y )

→ HomC(Z[−1], Y ) = 0 we see that u is a splitting monomorphism. Thus X ∼= Y ⊕ Z ([H1, p.7]). It is

straightforward that F : C → Y × Z given by FX = (Y,Z) is a triangle-equivalence. �

Proof of Proposition 3.3. (i) =⇒ (ii) and (iv) =⇒ (i) are obvious.

(ii) =⇒ (iii) : Suppose i! ∼= i∗. For X ∈ C and Y ′′ ∈ C′′ applying HomC(−, j!Y
′′) to the recollement

triangle j!j
∗X → X → i∗i

∗X → (j!j
∗X)[1] we get the exact sequence

Hom(i∗i
∗X, j!Y

′′) −→ Hom(X, j!Y
′′) −→ Hom(j!j

∗X, j!Y
′′) −→ Hom((i∗i

∗X)[−1], j!Y
′′).

By Hom(i∗i
∗X, j!Y

′′) ∼= Hom(i∗X, i!j!Y
′′) ∼= Hom(i∗X, i∗j!Y

′′) = 0 and Hom((i∗i
∗X)[−1], j!Y

′′) = 0,

we have HomC(X, j!Y
′′) ∼= HomC(j!j

∗X, j!Y
′′) ∼= HomC′′(j∗X,Y ′′), i.e., (j∗, j!) is an adjoint pair. While

(j∗, j∗) is also an adjoint pair, so j∗ ∼= j!.

(iii) =⇒ (ii) can be similarly proved.

(i) =⇒ (iv) : Assume that i! ∼= i∗ and j∗ ∼= j!. Since (i∗, i
!) is an adjoint pair, so is (i∗, i

∗), and hence

by Lemma 3.4(1)(ii) (Imi∗,Keri∗) is a stable t-structure. Since Hom(Keri∗, Imi∗) = 0 and the recollement

triangle i∗i
!X → X → j∗j

∗X → (i∗i
!X)[1] is the t-decomposition (since j∗j

∗X ∈ Imj∗ = Keri! = Keri∗

by the assumption), by Lemma 3.4(2) F̃ : C → Imi∗ × Keri∗ given by F̃X = (i∗i
!X, j∗j

∗X) is a triangle-

equivalence. Since Imi∗ ∼= C′ and Keri∗ = Imj! ∼= C′′, we get a triangle-equivalence F : C → C′ × C′′

with FX = (i!X, j∗X). Now it is straightforward that (IdC′ , F, IdC′′) : (C′, C,C′′) → (C′, C′ × C′′, C′′) is an

equivalence of recollements. We omit the details. �

Remark 3.5. (i) A Hom-finite k-triangulated category (C, [1]) is a d-Calabi-Yau category ([Ke2]), if

there is a nonnegative integer d, such that the d-th shift [d] is a right Serre functor of C.

By Lemma 2.8 any left (right) recollement of Calabi-Yau category C sits in a splitting recollement. Thus

any recollement of Calabi-Yau category is splitting.

(ii) If (C′, C, C′′) is a recollement with C Calabi-Yau, then obviously so are C′ and C′′. However, the

converse is not true: otherwise, (C′, C, C′′) is splitting by (i); but there are a lot of examples of non-splitting

recollements (C′, C, C′′), where C′ and C′′ are Calabi-Yau. For example, let A = ( k 0
k k ) with k a field. Then

one has a recollement (Db(k-mod), Db(A-mod), Db(k-mod)) ([PS, Exam. 2.10]). Note that Db(k-mod) is

0-Calabi-Yau and that (Db(k-mod), Db(A-mod), Db(k-mod)) is not splitting (otherwise, Db(A-mod) is the

product of two Calabi-Yau categories, and hence again Calabi-Yau; but Db(A-mod) is not Calabi-Yau).

Appendix: Proofs of lemmas in Section 1

We include proofs of lemmas in Section 1 only for convenience (although they are well-known, it seems

that explicit proofs are not available in the literature).

Proof of Lemma 1.1. Since a right recollement of C relative to C′ and C′′ is a left recollement of C

relative to C′′ and C′, it follows that (2) can be deduced from (1). We include a proof of (ii) =⇒ (i) of (1).

Since (i∗, i∗) is an adjoint pair and i∗ is fully faithful, by Lemma 3.4(1)(i) Y → X
η
X−−→ i∗i

∗X →

Y [1] is the t-decomposition of X respect to the t-structure (Keri∗, Imi∗). Similarly, by Lemma 3.4(1)(ii)

j!j
∗X

ǫ
X−−→ X → Z → (j!j

∗X)[1] is the t-decomposition of X respect to the t-structure (Imj!, Kerj∗). Since

both (Keri∗, Imi∗) and (Imj!, Kerj∗) are t-structures and Imi∗ = Kerj∗, it follows that Keri∗ = Imj!,

and the two t-decompositions above are isomorphic. From this one easily deduces that j!j
∗X

ǫ
X−→ X

η
X−→

i∗i
∗X → (j!j

∗X)[1] is a distinguished triangle. �

Lemma A.1. (see e.g. [BBD], [M], [N3], [IKM]) Let (U ,V) be a stable t-structure on C. Then
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(i) there is a triangle-equivalence VV ◦ σU : U → C/V, where σU : U →֒ C is the embedding, and

VV : C → C/V is the Verdier functor. A quasi-inverse of VV ◦ σU sends object X ∈ C/V to its t-part.

(ii) there is a triangle-equivalence VU ◦ σV : V → C/U, where σV : V →֒ C is the embedding, and

VU : C → C/U is the Verdier functor. A quasi-inverse of VU ◦ σV sends object X ∈ C/U to its t-free part.

Lemma A.2. ([AHKLY, Lemma 2.2]) Let C′ F
−→ C

G
−→ C′′ be a sequence of triangle functors, such that

F is fully faithful, ImF = KerG, and G induces a triangle-equivalence C/KerG ∼= C′′. Then F has a right

(resp. left) adjoint F ′ if and only if so does G.

In this case, the right (resp. left) adjoint G′ of G is also fully faithful, ImG′ = KerF ′, and F ′ induces

a triangle-equivalence C/KerF ′ ∼= C′.

Proof. Using the opposite category, we only need to prove the right version.

By the universal property, G is the composition of the Verdier functor C −→ C/KerG with the equiva-

lence C/KerG ∼= C′′. Thus, for simplicity, without loss of the generality we may assume that C/KerG = C′′

and G is just the Verdier functor C → C/KerG.

⇐=: Assume that G has a right adjoint pair G′, i.e., a Bousefield localization functor exists for the

pair KerG ⊆ C. Thus for X ∈ C, by A. Neeman [N3, Prop. 9.1.8] there is a distinguished triangle

Z → X
ηX−→ G′GX → Z[1] with Z ∈ KerG = ImF , where η : IdC → G′G is the unit. Thus (ImF, ImG′)

is a t-structure on C, which induces an adjoint pair (σ, F̃ ′), where σ : ImF → C is the embedding, and

F̃ ′ : C → ImF sends X to its t-part Z. Since Z ∈ ImF and F is fully faithful, there is a unique object

(up to isomorphism) Z′ ∈ C′ such that Z ∼= FZ′. Define F ′ : C → C′ to be the functor given by

X 7→ Z′. Since (σ, F̃ ′) is an adjoint pair and F is fully faithful, it is easy to see that (F, F ′) is an adjoint

pair. By construction we have ImG′ = KerF ′. Since (ImF, ImG′) is a t-structure, it follows from Lemma

A.1(i) that X 7→ Z gives an triangle-equivalence C/ImG′ → ImF ; together with ImF ∼= C′ we see that F ′

induces a triangle-equivalence C/KerF ′ ∼= C′. Since G(Z) = 0, G(ηX) is an isomorphism, and hence by

ǫGX ◦ G(ηX) = IdC′′ (where ǫ : GG′ → IdC′′ is the counit) we see that ǫGX is an isomorphism for each

X ∈ C. Since by assumption G is dense, ǫ : GG′ → IdC′′ is a natural isomorphism of functors, and thus G′

is fully faithful.

=⇒: Assume that F has a right adjoint pair F ′. Then by Lemma 3.4(1)(ii) (ImF, KerF ′) is a t-

structure on C, with t-decomposition FF ′X
ωX−→ X → Y → (FX ′)[1] of X ∈ C, where ω : FF ′ → IdC is

the counit. This t-structure induces an adjoint pair (G̃, σ), where G̃ : C → KerF ′ sends X to its t-free

part Y , and σ : KerF ′ → C is the embedding. By Lemma A.1(ii) the functor G̃′ : C/ImF → KerF ′, which

sends each object X to its t-free part Y , is a triangle-equivalence. Thus G = G̃′
−1

G̃. Put G′ := σG̃′ :

C/ImF → C, i.e., G′ : C′′ → C. By construction G′ is fully faithful and ImG′ = KerF ′. By Lemma A.1(i)

C/KerF ′ → ImF given by X 7→ FF ′X is an triangle-equivalence; together with ImF ∼= C′ we see that F ′

induces C/KerF ′ ∼= C′. For X ∈ C and C′′ ∈ C′′, since (G̃, σ) is an adjoint pair, we have

Hom(GX,C′′) = Hom(G̃′
−1

G̃X,C′′) ∼= HomKerF ′(G̃X, G̃′C′′) ∼= HomC(X,σG̃′C′′) = Hom(X,G′C′′),

i.e., (G,G′) is an adjoint pair. �

Proof of Lemma 1.2. It suffices to prove the “if” part. We denote the recollement (1.1) by (C′, C,C′′,

j−1, i0, j1, i−1, j0, i1) (this labeling coincides with (1.2)), and assume that there is an infinite adjoint se-

quence ( · · · , i−2, j−1, i0, j1, i2, · · · ). Since i1 is fully faithful and j1 has a right adjoint pair i2, by applying

Lemma A.2 to the sequence C′′ i1−→ C
j1−→ C′ we get an adjoint pair (i1, j2), such that the right adjoint

of j1 is fully faithful (i.e., i2 is fully faithful), Imi2 = Kerj2, and that j2 induces a triangle-equivalence

C/Kerj2 ∼= C′′. Applying Lemma A.2 to the sequence C′ i2−→ C
j2−→ C′′, and continuing this process we then

get a ladder going downwards infinitely, by Lemma 1.1.
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Going upwards, and by the same argument we get a ladder going upwards infinitely. Putting together

we get an unbounded ladder containing recollement (C′, C, C′′, j−1, i0, j1, i−1, j0, i1). �

Proof of Lemma 1.3. (1) We only prove (ii) =⇒ (i). Any recollement (C′, C, C′′, i∗, i∗, i
!, j!, j

∗, j∗) in-

duces an equivalence (ĩ∗, IdC , j̃∗) : (C
′, C, C′′, i∗, i∗, i

!, j!, j
∗, j∗) → (Imi∗, C, Imj∗, ĩ∗i

∗, σ1, ĩ∗i
!, j̃!, j̃∗j

∗, σ2)

of recollements, where ĩ∗ : C′ → Imi∗ and j̃∗ : C′′ → Imj∗ are the equivalences induced by i∗ and j∗, respec-

tively, σ1 and σ2 are embeddings, and j̃! : Imj∗ → C is given by j∗C
′′ 7→ j!C

′′, ∀ C′′ ∈ C′′. By restriction

we get F̃ ′ : Imi∗
∼

−→ ImiD∗ and F̃ ′′ : Imj∗
∼

−→ ImjD∗ . Thus, it suffices to prove that there is an equivalence

Imi∗

✛

✲

✛

C

✛

✲

✛

Imj∗

ĩ∗i
∗

σ1

ĩ∗i
!

j̃!

j̃∗j
∗

σ2

F̃ ′ F F̃ ′′

❄ ❄ ❄

ImiD∗

✛

✲

✛

D

✛

✲

✛

ImjD∗

˜iD
∗

i∗
D

σD

1

˜iD
∗

i!
D

˜jD
!

˜jD
∗

j∗
D

σD

2

i.e., for C ∈ C and j∗C
′′ ∈ Imj∗ with C′′ ∈ C′′, there are natural isomorphisms: Fi∗i

∗C ∼= iD∗ i∗DFC, F i∗i
!C ∼=

iD∗ i!DFC, Fj!C
′′ ∼= j̃D! Fj∗C

′′, F j∗j
∗C ∼= jD∗ j∗DFC. By the recollement triangle i∗i

!C → C → j∗j
∗C →

(i∗i
!C)[1] we get distinguished triangles

Fi∗i
!C → FC → Fj∗j

∗C → (Fi∗i
!C)[1], and iD∗ i!DFC → FC → jD∗ j∗DFC → (iD∗ i!DFC)[1].

By the assumption, they are both the t-decompositions of FC respect to the t-structure (ImiD∗ , ImjD∗ ),

hence Fi∗i
!C ∼= iD∗ i!DFC and Fj∗j

∗C ∼= jD∗ j∗DFC. Similarly, by j!j
∗C → C → i∗i

∗C → (j!j
∗C)[1] we get

Fj!j
∗C ∼= jD! j∗DFC and Fi∗i

∗C ∼= iD∗ i∗DFC. It remains to prove Fj!C
′′ ∼= j̃D! Fj∗C

′′. By C′′ ∼= j∗j∗C
′′ the

functor j̃! reads as j̃!j∗C
′′ = j!j

∗j∗C
′′. Since Fj∗C

′′ ∈ ImjD∗ , we have j̃D! Fj∗C
′′ ∼= jD! j∗DFj∗C

′′. It follows

that Fj!C
′′ ∼= Fj!j

∗j∗C
′′ ∼= jD! j∗DFj∗C

′′ ∼= j̃D! Fj∗C
′′.

(2) We claim that the t-th recollement is equivalent to the 0-th one. In fact, by assumption there is

equivalence (F ′, F, F ′′) : (C′, C, C′′, j2t−1, i2t, i2t−1, j2t) → (C′, C, C′′, j−1, i0, i−1, j0) of left recollements. It

remains to prove that there are natural isomorphisms F ′j2t+1
∼= j1F and Fi2t+1

∼= i1F
′′. Since (i2t, j2t+1)

and (j2t, i2t+1) are adjoint pairs, it suffices to prove (i2t, F
′−1j1F ) and (j2t, F

−1i1F
′′) are also adjoint

pairs. Indeed, the first adjoint pair can be seen from (and the second one is similarly proved)

Hom(X ′, F ′−1j1FY ) ∼= Hom(F ′X ′, j1FY ) ∼= Hom(i0F
′X ′, FY ) ∼= Hom(Fi2tX

′, FY ) ∼= Hom(i2tX
′, Y ).

Going downwards (resp. upwards) step by step, by the similar argument we see the assertion.

(3) follows from (1) and (2). �
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