UNBOUNDED LADDERS INDUCED BY GORENSTEIN ALGEBRAS

PU ZHANG, YUEHUI ZHANG, GUODONG ZHOU, LIN ZHU

ABSTRACT. The derived category $D(\operatorname{Mod}A)$ of a Gorenstein triangular matrix algebra A admits an unbounded ladder; and this ladder restricts to $D^-(\operatorname{Mod})$ (resp. $D^b(\operatorname{Mod})$, $D^b(\operatorname{mod})$, $K^b(\operatorname{proj})$). A left recollement of triangulated categories with Serre functors sits in a ladder of period 1; as an application, the singularity category of A admits a ladder of period 1.

Recollements ([BBD]) provide a powerful tool for studying problems in triangulated categories and algebraic geometry. To study mixed categories, ladders have been introduced ([BGS], [AHKLY]). Recollements are ladders of height 1; while ladders of height ≥ 2 give more information ([AHKLY], [HQ]). A fundamental question is when unbounded ladders occur naturally in representation theory. This essentially deals with the existence of infinite adjoint sequences. It is known that if A is an algebra of finite global dimension, then any recollement of derived category D(ModA) sits in an unbounded ladder ([AHKLY, 3.7]).

Let $A := \begin{pmatrix} B & 0 \\ M & C \end{pmatrix}$ with M a C-B-bimodule. An algebra Λ is of this form if and only if Λ has an idempotent e with $(1-e)\Lambda e = 0$. It is well-known that there is a recollement (D(ModB), D(ModA), D(ModC)) of derived categories ([AHKL], [Han]); and in fact, it sits in a ladder of height 2 ([AHKLY, 3.4]). We further claim that it sits in an unbounded ladder, provided that A, B and C are Gorenstein algebras. This unbounded ladder enjoys pleasant properties in the sense that it restricts to $D^-(\text{Mod})$ (resp. $D^b(\text{Mod})$, $D^b(\text{mod})$, $K^b(\text{proj})$).

For an adjoint pair (F, G) of categories with Serre functors, F (resp. G) always has a left (resp. right) adjoint. So a left recollement of triangulated categories with Serre functors sits in a ladder of period 1. As an application, the singularity category ([B], [O]) of a Gorenstein triangular matrix algebra admits a ladder of period 1 (Thm. 3.2), via the stable category of Gorenstein-projective modules ([EJ], [B], [H2]).

1. Preliminaries

1.1. Let \mathcal{C}' , \mathcal{C} and \mathcal{C}'' be triangulated categories. A recollement $(\mathcal{C}', \mathcal{C}, \mathcal{C}'', i^*, i_*, i^!, j_!, j^*, j_*)$ of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' ([BBD]) is a diagram of triangle functors

$$C' \xrightarrow{i^* \atop i_*} C \xrightarrow{j_1 \atop j^*} C'' \tag{1.1}$$

satisfying the following conditions:

- (R1) $(i^*, i_*), (i_*, i^!), (j_!, j^*)$ and (j^*, j_*) are adjoint pairs;
- (R2) $i_*, j_!$ and j_* are fully faithful;
- (R3) $j^*i_* = 0$ (and thus $i^*j_! = 0 = i^!j_*$);
- (R4) for $X \in \mathcal{C}$ there are distinguished triangles $j_! j^* X \xrightarrow{\epsilon_X} X \xrightarrow{\eta_X} i_* i^* X \to (j_! j^* X)[1]$ and $i_* i^! X \xrightarrow{\omega_X} X \xrightarrow{\zeta_X} j_* j^* X \to (i_* i^! X)[1]$, where the marked morphisms are the counits and the units of the adjunctions.

A left (resp. right) recollement of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' is the upper (resp. lower) two rows of (1.1) satisfying the same conditions involving only these functors ([P], [Kö]. For other or related names see e.g. [BGS], [M], [BO], [Kr], [IKM]). An opposed recollement of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' is a diagram

1

²⁰¹⁰ Mathematical Subject Classification. 18E30, 16E35, 18A40, 18A22, 16G10.

Keywords: periodic ladder, Serre functor, Gorenstein algebra, Gorenstein-projective module, splitting recollement. Supported by the NSFC 11271251 and 11431010.

$$C' \xrightarrow{i_{-1}} C \xrightarrow{j_{-1}} C''$$

such that $(\mathcal{C}'', \mathcal{C}, \mathcal{C}', j_{-1}, i_0, j_1, i_{-1}, j_0, i_1)$ is a recollement of \mathcal{C} relative to \mathcal{C}'' and \mathcal{C}' .

Lemma 1.1. (1) Given the upper two rows of (1.1), the following are equivalent:

- (i) it is a left recollement;
- (ii) (i^*, i_*) and $(j_!, j^*)$ are adjoint pairs, i_* and $j_!$ are fully faithful, and $\text{Im}i_* = \text{Ker}j^*$;
- (iii) (i^*, i_*) and $(j_!, j^*)$ are adjoint pairs, i_* and $j_!$ are fully faithful, and $\text{Im} j_! = \text{Ker} i^*$.
- (2) (see e.g. [IKM, 1.7]) Given diagram (1.1) of triangle functors, the following are equivalent:
- (i) it is a recollement;
- (ii) it satisfies (R1) and (R2), and $\operatorname{Im} i_* = \operatorname{Ker} j^*$, $\operatorname{Im} j_! = \operatorname{Ker} i^*$ and $\operatorname{Im} j_* = \operatorname{Ker} i^!$;
- (iii) it satisfies (R1) and (R2), and any one of the equalities in (2)(ii).
- 1.2. A ladder ([BGS, 1.2], [AHKLY, Sect. 3]) is a finite or an infinite diagram of triangle functors:

$$C' \xrightarrow{\stackrel{i-2}{\stackrel{j-1}{\stackrel{j_0}{\stackrel{j_1}{\stackrel{j_1}{\stackrel{j_2}{\stackrel{j_2}{\stackrel{j_1}{\stackrel{j_2}{\stackrel{j_1}{\stackrel{j_2}{\stackrel{j_1}{\stackrel{j_2}{\stackrel{j_1}{\stackrel{j_2}{\stackrel{j_1}{\stackrel{j_2}{\stackrel{j_1}{\stackrel{j_2}{\stackrel{j_1}{\stackrel{j_2}{\stackrel{j_1}}{\stackrel{j_1}{\stackrel{j_1}{\stackrel{j_1}}{\stackrel{j_1}{\stackrel{j_1}}{\stackrel{j_1}}{\stackrel{j_1}{\stackrel{j_1}}{\stackrel{j_1}{\stackrel{j_1}}{\stackrel{j_1}{\stackrel{j_1}}{\stackrel{j_1}}}\stackrel{j_1}{\stackrel{j_1}}}\stackrel{j_1}{\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}{\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1}\stackrel{j_1}\stackrel{j_1}\stackrel{j_1}}\stackrel{j_1$$

such that any two consecutive rows form a left or right recollement (or equivalently, any three consecutive rows form a recollement or an opposed recollement) of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' . Its *height* is the number of rows minus 2. Ladders of height 0 (resp. 1) are exactly left or right recollements (resp. recollements or opposed recollements). A ladder is *unbounded* if it goes infinitely both upwards and downwards.

A two-sided infinite sequence $(\cdots, F_{-1}, F_0, F_1, \cdots)$ of additive functors is an infinite adjoint sequence, if (F_n, F_{n+1}) is an adjoint pair for each $n \in \mathbb{Z}$. In such a sequence if some F_i is a triangle functor then so are all F_n 's (see e.g. [Ke1, 6.7]).

Lemma 1.2. Recollement (1.1) sits in an unbounded ladder if and only if there is an infinite adjoint sequence $(\cdots, F_{-1}, i^*, i_*, i^!, F_1, \cdots)$.

1.3. An equivalence of left recollements ([PS, 2.5], [FP]) is a triple (F', F, F'') of triangle-equivalences such that

$$C' \xrightarrow{i^*} C \xrightarrow{j_!} C''$$

$$F' \downarrow i^*_{\mathcal{D}} D' \xrightarrow{i^*_{\mathcal{D}}} D' \xrightarrow{j^*_{\mathcal{D}}} D''$$

commutes. Similarly we have an equivalence of (right, opposed) recollements.

We call $(C', C, C'', j_{2t-1}, i_{2t}, j_{2t+1}, i_{2t-1}, j_{2t}, i_{2t+1})$ in ladder (1.2) the t-th recollement, $(C', C, C'', i_{2t}, j_{2t+1}, i_{2t+2}, j_{2t}, i_{2t+1}, j_{2t+2})$ the t-th opposed recollement, and the left (right) recollement sitting in the t-th recollement the t-th left (right) recollement. An unbounded ladder (1.2) is periodic, if there is an integer $t \ge 1$ such that the t-th left recollement is equivalent to the 0-th one. Such a minimal t is called the period. The following describes the period via the associated TTF tuple, and justifies the terminology.

Lemma 1.3. (1) Given recollements (C', C, C'') and (D', D, D''), the following are equivalent:

- (i) they are equivalent;
- (ii) there is a triangle-equivalence $F: \mathcal{C} \to \mathcal{D}$ such that $F(\operatorname{Im} j_!) = \operatorname{Im} j_!^{\mathcal{D}}$, $F(\operatorname{Im} i_*) = \operatorname{Im} i_*^{\mathcal{D}}$ and $F(\operatorname{Im} j_*) = \operatorname{Im} j_*^{\mathcal{D}}$;

- (iii) there is a triangle-equivalence $F: \mathcal{C} \to \mathcal{D}$ such that one of the equalities in (ii) holds.
- (2) Given a ladder of period t, then the (qt+l)-th (left, right, opposed) recollement is equivalent to the l-th (left, right, opposed) recollement for $q \in \mathbb{Z}$ and $l = 0, \dots, t-1$, under the same equivalence.
 - (3) Given an unbounded ladder (1.2), the following are equivalent:
 - (i) it is of period t;
- (ii) t is the minimal positive integer such that there is a triangle-equivalence $F: \mathcal{C} \to \mathcal{C}$ satisfying $F(\operatorname{Im} i_{2t+1}) = \operatorname{Im} i_1$, $F(\operatorname{Im} i_{2t}) = \operatorname{Im} i_0$ and $F(\operatorname{Im} i_{2t-1}) = \operatorname{Im} i_{-1}$;
- (iii) t is the minimal positive integer such that there is a triangle-equivalence $F: \mathcal{C} \to \mathcal{C}$ satisfying one of the equalities in (ii).
- 1.4. If no specified, modules are right modules. For algebra A over a field, denote by ModA (resp. A-Mod) the category of right (resp. left) A-modules. If A is finite-dimensional, then we denote by modA (resp. A-mod) the category of finitely generated right (resp. left) A-modules, and by $\mathcal{GP}(A)$ the full subcategory of modA consisting of Gorenstein-projective modules ([EJ]). Then $\mathcal{GP}(A)$ is a Frobenius category whose projective-injective objects are exactly projective modules ([Be]), and hence the stable category $\mathcal{GP}(A)$ is triangulated ([H1]). A finite-dimensional algebra A is Gorenstein if inj.dimA A A0 and inj.dimA1 A2.

Let $K^b(\text{proj}A)$ (resp. $K^b(\text{inj}A)$) be the homotopy category of bounded complexes of finitely generated projective (resp. injective) right A-modules, D(ModA) (resp. $D^-(\text{Mod}A)$, $D^b(\text{Mod}A)$) the unbounded (resp. upper bounded, bounded) derived category of ModA, and $D^b(\text{mod}A)$ the bounded derived category of modA. Note that D(ModA) is compactly generated by A_A (see [S]; also [BN]).

For a triangulated category \mathcal{T} with coproducts, denote by \mathcal{T}^c the full subcategory of \mathcal{T} consisting of compact objects. Then $D^c(\text{Mod}A) = K^b(\text{proj}A)$ ([N1]).

2. Main results

Theorem 2.1. Let B and C be Gorenstein algebras and $_CM_B$ a C-B-bimodule, such that $A = \left(\begin{smallmatrix} B & 0 \\ M & C \end{smallmatrix} \right)$ is Gorenstein. Then there is an unbounded ladder $(D(\operatorname{Mod}B),\ D(\operatorname{Mod}A),\ D(\operatorname{Mod}C))$ of derived categories.

Remark 2.2. For the Gorensteinness of $A := \begin{pmatrix} B & 0 \\ M & C \end{pmatrix}$ we refer to [C] and [Z, Thm. 2.2]. If B and C are Gorenstein, then A is Gorenstein if and only if $\operatorname{proj.dim}_C M$ and $\operatorname{proj.dim} M_B$ are finite ([C, Thm. 3.3]). Also note that $\operatorname{gl.dim} A \ge \max\{\operatorname{gl.dim} B, \operatorname{gl.dim} C\}$.

For example, let A be the algebra given by quiver \bullet and relations λ_1^2 , λ_2^2 , λ_3^2 , $\alpha\lambda_2 - \lambda_1\alpha$, $\beta\lambda_3 - \lambda_1\beta$. Then $A = \begin{pmatrix} B & 0 \\ CM_B & C \end{pmatrix} = \begin{pmatrix} C & 0 & 0 \\ C & C & 0 \\ 0 & C & C \end{pmatrix}$, where $C := k[x]/\langle x^2 \rangle$, $B := T_2(C) := \begin{pmatrix} C & 0 \\ C & C \end{pmatrix}$ and $CM_B := C(0,C)_{T_2(C)}$. Since proj.dimCM = 0 and proj.dim $M_{T_2(C)} = 1$, $CM_{T_2(C)} = 1$, CM_{T_2

- 2.1. Let $A = \begin{pmatrix} B & 0 \\ C & M_B & C \end{pmatrix}$. A right A-module is given by $(X_B, Y_C)_{\phi}$, where $X_B \in \text{mod } B$, $Y_C \in \text{mod } C$, and $\phi : Y \otimes_C M_B \to X_B$ is a right B-map. A right A-map $(X_B, Y_C)_{\phi} \to (X_B', Y_C')_{\phi'}$ is given by (f, g) with $f \in \text{Hom}_B(X_B, X_B')$ and $g \in \text{Hom}_C(Y_C, Y_C')$, such that $f \phi = \phi'(g \otimes_B \text{Id}_M)$. A left A-module is given by $\begin{pmatrix} B^X \\ C^Y \end{pmatrix}_{\phi}$, where $BX \in B\text{-mod}$, $CY \in C\text{-mod}$, and $\phi : CM \otimes_B X \to CY$ is a left C-map. A left A-map $\begin{pmatrix} B^X \\ C^Y \end{pmatrix}_{\phi} \to \begin{pmatrix} B^{X'} \\ C^{Y'} \end{pmatrix}_{\phi'}$ is given by (f, g) with $f \in \text{Hom}_B(BX, BX')$ and $g \in \text{Hom}_C(CY, CY')$, such that $g \phi = \phi'(\text{Id}_M \otimes_B f)$. The projective right A-modules are exactly $(P_B, 0)$ and $(Q \otimes_C M, Q_C)_{\text{Id}}$, where $P_B \in \text{proj}B$ and $Q_C \in \text{proj}C$. The projective left A-modules are exactly $\begin{pmatrix} B^P \\ M \otimes_B P \end{pmatrix}_{\text{Id}}$ and $\begin{pmatrix} 0 \\ CQ \end{pmatrix}$, where $B \in B\text{-proj}$ and $C \in C\text{-proj}$. See [ARS, p.73].
- 2.2. Let A be an algebra over a field with idempotent e. The ideal AeA is stratifying ([CPS, 2.1.1]), if the multiplication map $m: Ae \otimes_{eAe} eA \to AeA$ is injective and $\operatorname{Tor}_{eAe}^n(Ae, eA) = 0$ for $n \geq 1$. As pointed out

by S. König and H. Nagase [KN, Rem. 3.2], $_A(AeA)$ (resp. $(AeA)_A$) is projective if and only if $_{eAe}(eA)$ (resp. $(Ae)_{eAe}$) is projective and the map m is injective. Thus, if AeA is projective either as a left or a right A-module, then AeA is a stratifying ideal.

Lemma 2.3. (see e.g. [AHKL, 4.5], [Han, 2.1]) If AeA is a stratifying ideal, then there is a recollement

$$D(\operatorname{Mod} A/AeA) \xrightarrow{i^*} D(\operatorname{Mod} A) \xrightarrow{j!} D(\operatorname{Mod} AeA)$$

where

$$i^* = - \overset{\mathcal{L}}{\otimes}_A A / A e A,$$
 $i_* = - \overset{\mathcal{L}}{\otimes}_{A / A e A} A / A e A,$ $i^! = \operatorname{R} \operatorname{Hom}_A (A / A e A, -),$ $j_! = - \overset{\mathcal{L}}{\otimes}_{e A e} e A,$ $j^* = - \overset{\mathcal{L}}{\otimes}_A A e,$ $j_* = \operatorname{R} \operatorname{Hom}_{e A e} (A e, -).$

2.3. Let \mathcal{T} be a triangulated category compactly generated by \mathcal{S}_0 . Denote by $\langle \mathcal{S}_0 \rangle$ the smallest triangulated subcategory of \mathcal{T} containing \mathcal{S}_0 and closed under coproducts. Brown representability (A. Neeman [N2, Thm. 3.1]) claims that every cohomological functor $F: \mathcal{T}^{op} \to \mathrm{Ab}$ which sends coproducts to products is representable (i.e., $F \cong \mathrm{Hom}_{\mathcal{T}}(-, X)$ for some $X \in \mathcal{T}$), and that $\mathcal{T} = \langle \mathcal{S}_0 \rangle$. And, Brown representability for the dual (H. Krause [Kr, Thm. A]) claims that \mathcal{T} has products, and that every cohomological functor $F: \mathcal{T} \to \mathrm{Ab}$ which sends products to products is representable (i.e., $F \cong \mathrm{Hom}_{\mathcal{T}}(X, -)$ for some $X \in \mathcal{T}$).

Using Brown representability one has

Lemma 2.4. ([N2, Thm. 4.1 and 5.1]) Let $F: \mathcal{C} \to \mathcal{D}$ be a triangle functor between compactly generated triangulated categories, with a right adjoint G. Then the following are equivalent:

- (i) G admits a right adjoint;
- (ii) F preserves compact objects;
- (iii) G preserves coproducts.

Using Brown representability for the dual one has

Lemma 2.5. Let $F: \mathcal{C} \to \mathcal{D}$ be a triangle functor between triangulated categories, where \mathcal{C} is compactly generated. Then F admits a left adjoint if and only if F preserves products (we are not assuming that \mathcal{D} has products).

Proof. The "only if' part is well-known. For the "if' part, applying Brown representability for the dual to functor $\operatorname{Hom}_{\mathcal{D}}(Y, F-) : \mathcal{C} \to \operatorname{Ab}$, for each object $Y \in \mathcal{D}$, we then see that F admits a left adjoint.

We need the following result due to P. Balmer, I. Dell'ambrogio and B. Sanders.

Lemma 2.6. ([BDS, Lemma 2.6(b)]) Let $F: \mathcal{C} \to \mathcal{D}$ be a triangle functor between compactly generated triangulated categories, with a right adjoint G. Assume that F preserves compacts, and the restriction $F|_{\mathcal{C}^c}: \mathcal{C}^c \to \mathcal{D}^c$ admits a left adjoint. Then F preserves products.

2.4. Let A be a finite-dimensional algebra over field k. Using a hoprojective (resp. hoinjective) resolution of a complex in D(ModA) ([S]; [BN]) one has the characterizations:

$$K^b(\mathrm{proj}A) = \{ P \in D(\mathrm{Mod}A) \mid \dim_k(\bigoplus_{i \in \mathbb{Z}} \mathrm{Hom}_{D(\mathrm{Mod}A)}(P,Y[i])) < \infty, \ \forall \ Y \in D^b(\mathrm{mod}A) \},$$

and

$$K^b(\mathrm{inj}A) = \{I \in D(\mathrm{Mod}A) \mid \dim_k(\bigoplus_{i \in \mathbb{Z}} \mathrm{Hom}_{D(\mathrm{Mod}A)}(Y[i],I)) < \infty, \ \forall \ Y \in D^b(\mathrm{mod}A)\}.$$

One has also the characterization:

$$D^b(\operatorname{mod} A) = \{X \in D(\operatorname{Mod} A) \mid \dim_k(\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{D(\operatorname{Mod} A)}(P, X[i])) < \infty, \ \forall \ P \in K^b(\operatorname{proj} A)\}.$$

See L. Angeleri Hügel, S. König, Q. H. Liu and D. Yang [AHKLY, Lemma 2.4]. Using these one has

Lemma 2.7. Let A and B be finite-dimensional algebras, and $F: D(ModA) \to D(ModB)$ a triangle functor with a right adjoint G. Then

- (i) ([AHKLY, Lemma 2.7]) F preserves $K^b(\text{proj})$ if and only if G preserves $D^b(\text{mod})$.
- (ii) ([HQ, Lemma 1]) F preserves $D^b(\text{mod})$ if and only if G preserves $K^b(\text{inj})$.

2.5. Let \mathcal{C} be a Hom-finite category over field k. A k-linear functor $S: \mathcal{C} \to \mathcal{C}$ is a right Serre functor, if for any objects X and Y there is a k-isomorphism $\operatorname{Hom}_{\mathcal{C}}(X,Y) \cong \operatorname{Hom}_{\mathcal{C}}(Y,SX)^*$ which is natural in X and Y, where $(-)^* = \operatorname{Hom}_k(-,k)$. We say that \mathcal{C} has a Serre functor if \mathcal{C} has a right Serre functor which is an equivalence, or equivalently, \mathcal{C} has both a right and left Serre functor ([BK], [RV]). If \mathcal{C} is a Hom-finite Krull-Schmidt triangulated category over an algebraically closed field k, then \mathcal{C} has a Serre functor if and only if \mathcal{C} has Auslander-Reiten triangles (note that the assumption that k is algebraically closed is only used in the "only if" part. See I. Reiten and M. Van den Bergh [RV, Thm. 2.4]).

The following observation will play an important role in this paper.

Lemma 2.8. Let C and D be categories with Serre functors, $F: C \to D$ an additive functors with a right adjoint G. Then F admits a left adjoint $S_C^{-1}GS_D$, and G admits a right adjoint $S_DFS_C^{-1}$, where S_C and S_D are the right Serre functors of C and D, respectively.

Proof. For $X \in \mathcal{C}$ and $Y \in \mathcal{D}$ we have

$$\operatorname{Hom}_{\mathcal{C}}(S_{\mathcal{C}}^{-1}GS_{\mathcal{D}}Y,X) \cong \operatorname{Hom}_{\mathcal{C}}(X,GS_{\mathcal{D}}Y)^* \cong \operatorname{Hom}_{\mathcal{D}}(FX,S_{\mathcal{D}}Y)^* \cong \operatorname{Hom}_{\mathcal{D}}(Y,FX).$$

Similarly $(G, S_{\mathcal{D}}FS_{\mathcal{C}}^{-1})$ is an adjoint pair.

We also need the following result due to D. Happel.

Lemma 2.9. ([Hap2, Lemma 1.5, Thm. 3.4]) Let A be a finite-dimensional algebra. Then A is Gorenstein if and only if $K^b(\text{proj}A) = K^b(\text{inj}A)$ in $D^b(\text{mod}A)$. In this case $K^b(\text{proj}A)$ has a Serre functor.

2.6. **Proof of Theorem 2.1.** Put $e := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in A$. Then $AeA = \begin{pmatrix} 0 & 0 \\ M & C \end{pmatrix} \cong (M, C)$ is a projective right A-module, and hence AeA is stratifying. Since $A/AeA \cong B$ and $eAe \cong C$ as algebras, and

$$_A(A/AeA)_B \cong _A(_0^B)_B, \quad _B(A/AeA)_A \cong _B(B,0)_A, \quad _C(eA)_A \cong _C(M,C)_A, \quad _A(Ae)_C \cong _A(_0^0)_C$$

as bimodules, it follows from Lemma 2.3 that there is a recollement

$$D(\text{Mod}B) \xrightarrow{i^*} D(\text{Mod}A) \xrightarrow{j_!} D(\text{Mod}C)$$
 (2.1)

where $i^* = -\overset{\mathcal{L}}{\otimes}_A(\begin{smallmatrix} B \\ 0 \end{smallmatrix})$, $i_* = -\overset{\mathcal{L}}{\otimes}_B(B,0)$, $i^! = \mathcal{R}\operatorname{Hom}_A((B,0)_A, -)$, $j_! = -\overset{\mathcal{L}}{\otimes}_C(M,C)$, $j^* = -\overset{\mathcal{L}}{\otimes}_A(\begin{smallmatrix} 0 \\ C \end{smallmatrix})$, $j_* = \mathcal{R}\operatorname{Hom}_C((\begin{smallmatrix} 0 \\ C \end{smallmatrix})_C, -)$.

Claim 1. There is an infinite sequence $(\cdots, F_{-3}, F_{-2}, F_{-1}, i^*)$ such that any two consecutive functors form an adjoint pair.

Since the right adjoint i_* of i^* admits a right adjoint $i^!$, it follows from Lemma 2.4 that i^* preserves compacts (this could be also seen directly: since $\binom{B}{0}$ is projective as a right B-module, it follows that $i^* = - \overset{\mathrm{L}}{\otimes}_A \begin{pmatrix} B \\ 0 \end{pmatrix}$ preserves compacts). Since (B,0) is projective as a right A-module, it follows that $i_* = - \overset{\mathrm{L}}{\otimes}_B (B,0)$ preserves compacts. Thus $(i^*|_{K^b(\mathrm{proj}A)}, i_*|_{K^b(\mathrm{proj}B)})$ is an adjoint pair. Since A and B are Gorenstein algebras, by Lemma 2.9, $K^b(\mathrm{proj}A)$ and $K^b(\mathrm{proj}B)$ have Serre functors, and hence $i^*|_{K^b(\mathrm{proj}A)}$ has a left adjoint, by Lemma 2.8. Applying Lemma 2.6 to the adjoint pair (i^*,i_*) we know that i^* preserves products, and hence by Lemma 2.5, i^* admits a left adjoint, denoted by F_{-1} .

Repeating the above arguments we get Claim 1.

Claim 2. There is an infinite sequence $(i^!, G_1, G_2, G_3, \cdots)$ such that any two consecutive functors form an adjoint pair.

Since i_* preserves compacts, it follows from Lemma 2.4 that $i^!$ admits a right adjoint, denoted by G_1 . Since i^* preserves compacts, i.e., i^* preserves $K^b(\text{proj})$, it follows from Lemma 2.7(i) that i_* preserves $D^b(\text{mod})$, and hence $i^!$ preserves $K^b(\text{inj})$ by Lemma 2.7(ii). Since we are dealing with Gorenstein algebras, by Lemma 2.9 this is exactly to say that $i^!$ preserves $K^b(\text{proj})$, i.e., $i^!$ preserves compacts. It follows from Lemma 2.4 that G_1 admits a right adjoint, denoted by G_2 .

By the same argument we know that G_1 preserves compacts, and hence by Lemma 2.4, G_2 admits a right adjoint, denoted by G_3 . Also, G_2 and G_3 preserve compacts. Repeating these arguments we get Claim 2.

Now Theorem 2.1 follows from Lemma 1.2.

Remark 2.10. The unbounded ladder in Theorem 2.1 restricts to $D^-(Mod)$, $D^b(Mod)$, $D^b(mod)$ and $K^b(proj)$. In fact, since A, B and C are Gorenstein, all the functors in recollement (2.1) restrict to $D^-(Mod)$ (resp. $D^b(Mod)$, $D^b(mod)$, $K^b(proj)$); then by Lemmas 2.4 and 2.7 we see that all the functors in the ladder restrict to $K^b(proj)$ and $D^b(mod)$, respectively. By [AHKLY, Prop. 4.11] and [AHKLY, Coroll. 4.9], we also see that all the functors in the ladder restrict to $D^-(Mod)$ and $D^b(Mod)$, respectively.

3. Ladders of period 1

3.1. We have

Proposition 3.1. (1) Let C', C and C'' be triangulated categories with Serre functors. Then

- (i) Any left (right) recollement (C', C, C'') sits in a ladder of period 1.
- (ii) Any recollement (C', C, C'') sits in a ladder of period 1.
- (2) Any recollement of triangulated category C with Serre functor sits in a ladder of period 1.

Proof. (1)(i) Let $S_{\mathcal{C}'}$, $S_{\mathcal{C}}$ and $S_{\mathcal{C}''}$ be the right Serre functors of \mathcal{C}' , \mathcal{C} and \mathcal{C}'' , respectively. Let

$$C' \stackrel{j_{-1}}{\longleftarrow} C \stackrel{i_{-1}}{\longleftarrow} C''$$

be a left recollement. Applying Lemma 2.8 to adjoint pair (j_{-1}, i_0) we know that j_{-1} admits a left adjoint $i_{-2} = S_{\mathcal{C}}^{-1} i_0 S_{\mathcal{C}'} : \mathcal{C}' \to \mathcal{C}$, and that i_0 admits a right adjoint $j_1 = S_{\mathcal{C}'} j_{-1} S_{\mathcal{C}}^{-1} : \mathcal{C} \to \mathcal{C}'$. Similarly, i_{-1} admits a left adjoint $j_{-2} = S_{\mathcal{C}''}^{-1} j_0 S_{\mathcal{C}}$, and j_0 admits a right adjoint $i_1 = S_{\mathcal{C}} i_{-1} S_{\mathcal{C}''}^{-1}$. By induction we have

$$i_{2n-1} = S_{\mathcal{C}}^n i_{-1} S_{\mathcal{C}'}^{-n} : \mathcal{C}'' \longrightarrow \mathcal{C}, \qquad i_{2n} = S_{\mathcal{C}}^n i_0 S_{\mathcal{C}'}^{-n} : \mathcal{C}' \longrightarrow \mathcal{C},$$
$$j_{2n-1} = S_{\mathcal{C}'}^n j_{-1} S_{\mathcal{C}}^{-n} : \mathcal{C} \longrightarrow \mathcal{C}', \qquad j_{2n} = S_{\mathcal{C}''}^n j_0 S_{\mathcal{C}}^{-n} : \mathcal{C} \longrightarrow \mathcal{C}''.$$

By Lemma 1.1(2) $(C', C, C'', j_{-1}, i_0, i_1, i_{-1}, j_0, j_1)$ is a recollement, and hence by Lemma 1.2 we get the desired unbounded ladder. Since $(S_{C'}, S_C, S_{C''})$ is an equivalence from the 1st left recollement to the 0-th left recollement, this ladder is of period 1.

- (ii) follows from (i) and the fact that one functor in an adjoint pair uniquely determines another.
- (2) Let $(\mathcal{C}', \mathcal{C}, \mathcal{C}'', i^*, i_*, i^!, j_!, j^*, j_*)$ be a recollement, and S a right Serre functor of \mathcal{C} . Then \mathcal{C}' has a right Serre functor $S_{\mathcal{C}'} = i^! S i_*$ with $S_{\mathcal{C}'}^{-1} = i^* S^{-1} i_*$; and \mathcal{C}'' has a right Serre functor $S_{\mathcal{C}''} = j^* S j_!$ with $S_{\mathcal{C}''}^{-1} = j^* S^{-1} j_*$ (see P. Jørgensen [J]. We stress that this result does not hold for left recollements). Then from (1)(ii) the assertion follows.

3.2. If A is Gorenstein, then $\underline{\mathcal{GP}(A)}$ is triangle-equivalent to the singularity category $D^b(\text{mod}A)/K^b(\text{proj}A)$ ([B, 4.4.1]). So the following gives a ladder of singularity categories of period 1.

Theorem 3.2. Let B and C be Gorenstein algebras and $_{C}M_{B}$ a C-B-bimodule, such that $A = \left(\begin{smallmatrix} B & 0 \\ M & C \end{smallmatrix} \right)$ is Gorenstein. Then we have a ladder $(\mathcal{GP}(B), \mathcal{GP}(A), \mathcal{GP}(C))$ of period 1.

Proof. First, by dévissage each of $\underline{\mathcal{GP}(A)}$, $\underline{\mathcal{GP}(B)}$ and $\underline{\mathcal{GP}(C)}$ has a Serre functor. In fact, since A is Gorenstein, $\mathcal{GP}(A)$ is a resolving contravariantly finite subcategory of A-mod ([EJ, Thm. 11.5.1]; also [AR, Prop. 5.1]), and hence $\mathcal{GP}(A)$ is a resolving functorially finite subcategory of A-mod ([KS, Corol. 0.3]). Then by [AS, Thm. 2.4] $\mathcal{GP}(A)$ has relative Auslander-Reiten sequences. While $\mathcal{GP}(A)$ is a Frobenius category, by a direct argument we see that $\underline{\mathcal{GP}(A)}$ has Auslander-Reiten triangles, and hence by [RV, Thm. I 2.4] $\mathcal{GP}(A)$ has a Serre functor.

Second, there is a left recollement

$$\mathcal{GP}(B) \xrightarrow{i^*} \mathcal{GP}(A) \xrightarrow{j_!} \mathcal{GP}(C)$$

In fact, ${}_{C}M_{B}$ is compatible ([Z, Thm. 2.2(iv)]), and hence by [Z, Thm. 1.4], an A-module $(X_{B}, Y_{C})_{\phi}$ is in $\mathcal{GP}(A)$ if and only if $\phi: Y \otimes_{C} M \to X$ is injective, $\operatorname{Coker} \phi \in \mathcal{GP}(B)$, and $Y \in \mathcal{GP}(C)$. So by [Z, Thm. 3.3] we get the left recollement above, where i^{*} sends $(X, Y)_{\phi}$ to $\operatorname{Coker} \phi$, i_{*} sends X to (X, 0), $j_{!}$ sends Y to $(Y \otimes_{C} M, Y)_{\mathrm{Id}}$, and j^{*} sends $(X, Y)_{\phi}$ to Y.

Now the assertion follows from Proposition 3.1(1)(i).

3.3. Recollement (1.1) is splitting, if $i^! \cong i^*$ and $j_* \cong j_!$. A splitting recollement clearly induces a ladder of period 1. The product $C' \times C''$ of triangulated categories (C', \mathcal{E}', T') and $(C'', \mathcal{E}'', T'')$ is again triangulated, where the shift $T' \times T''$ is given by $(T' \times T'')(C', C'') := (T'C', T''C'')$, and $\mathcal{E}' \times \mathcal{E}''$ is the collection of triangles of $C' \times C''$ of the form $(X', X'') \stackrel{(u', u'')}{\longrightarrow} (Y', Y'') \stackrel{(v', v'')}{\longrightarrow} (Z', Z'') \stackrel{(w', w'')}{\longrightarrow} (T'X', T''X'')$, where $X' \stackrel{u'}{\longrightarrow} Y' \stackrel{v'}{\longrightarrow} Z' \stackrel{w'}{\longrightarrow} T'X'$ belongs to \mathcal{E}' , and $X'' \stackrel{u''}{\longrightarrow} Y'' \stackrel{v''}{\longrightarrow} Z'' \stackrel{w''}{\longrightarrow} T''X''$ belongs to \mathcal{E}'' . Then $(C', C' \times C'', C'', p_1, \sigma_1, p_1, \sigma_2, p_2, \sigma_2)$ is a splitting recollement, where p_1 and p_2 are the projections, and σ_1 and σ_2 are the embeddings. As we see below, this gives all the splitting recollements, up to equivalences.

Proposition 3.3. Let $(C', C, C'', i^*, i_*, i^!, j_!, j^*, j_*)$ be a recollement of triangulated categories. Then the following are equivalent:

- (i) it is splitting;
- (ii) $i^! \cong i^*$;
- (iii) $j_* \cong j_!$;
- (iv) There is an equivalence $(\mathrm{Id}_{\mathcal{C}'}, F, \mathrm{Id}_{\mathcal{C}''}) : (\mathcal{C}', \mathcal{C}, \mathcal{C}'') \longrightarrow (\mathcal{C}', \mathcal{C}' \times \mathcal{C}'', \mathcal{C}'')$ of recollements.

A stable t-structure ([M]) on triangulated category \mathcal{C} is a pair $(\mathcal{U}, \mathcal{V})$ of triangulated subcategories such that it is a t-structure ([BBD]), i.e., $\operatorname{Hom}(\mathcal{U}, \mathcal{V}) = 0$, and for $X \in \mathcal{C}$ there is a distinguished triangle $U \to X \to V \to U[1]$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$. We call this triangle the t-decomposition of X, and U and V the t-part and the t-free part of X, respectively.

Lemma 3.4. (1) ([M], [IKM]) (i) Given a diagram of triangle functors $C' \xrightarrow{i^*} C$ such that (i^*, i_*) is an adjoint pair and i_* is fully faithful, then (Keri*, Imi*) is a stable t-structure on C, and $Y \to X \xrightarrow{\eta_X} i_* i^* X \to Y[1]$ is the t-decomposition of X, where $\eta : \operatorname{Id}_C \to i_* i^*$ is the unit.

(ii) Given a diagram of triangle functors $C' \xrightarrow{i_*} C$ such that $(i_*, i^!)$ is an adjoint pair and i_* is fully faithful, then $(\operatorname{Im} i_*, \operatorname{Ker} i^!)$ is a stable t-structure on C, and $i_*i^!X \xrightarrow{\epsilon_X} X \to Z \to (i_*i^!X)[1]$ is the t-decomposition of X, where $\epsilon: i_*i^! \to \operatorname{Id}_C$ is the counit.

- (2) Let $(\mathcal{Y}, \mathcal{Z})$ be a stable t-structure on \mathcal{C} with $\operatorname{Hom}(\mathcal{Z}, \mathcal{Y}) = 0$. Then $F : \mathcal{C} \to \mathcal{Y} \times \mathcal{Z}$ given by FX = (Y, Z) is a triangle-equivalence, where $Y \stackrel{u}{\to} X \to Z \to Y[1]$ is the t-decomposition.
- **Proof.** (2) By assumption $\operatorname{Hom}_{\mathcal{C}}(Z[-1],Y)=0$. By the exact sequence $\operatorname{Hom}_{\mathcal{C}}(X,Y) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(Y,Y)} \operatorname{Hom}_{\mathcal{C}}(Y,Y) \to \operatorname{Hom}_{\mathcal{C}}(Z[-1],Y)=0$ we see that u is a splitting monomorphism. Thus $X\cong Y\oplus Z$ ([H1, p.7]). It is straightforward that $F:\mathcal{C}\to\mathcal{Y}\times\mathcal{Z}$ given by FX=(Y,Z) is a triangle-equivalence.

Proof of Proposition 3.3. (i) \Longrightarrow (ii) and (iv) \Longrightarrow (i) are obvious.

(ii) \Longrightarrow (iii): Suppose $i^! \cong i^*$. For $X \in \mathcal{C}$ and $Y'' \in \mathcal{C}''$ applying $\operatorname{Hom}_{\mathcal{C}}(-, j_!Y'')$ to the recollement triangle $j_!j^*X \to X \to i_*i^*X \to (j_!j^*X)[1]$ we get the exact sequence

$$\operatorname{Hom}(i_*i^*X,j_!Y'') \longrightarrow \operatorname{Hom}(X,j_!Y'') \longrightarrow \operatorname{Hom}(j_!j^*X,j_!Y'') \longrightarrow \operatorname{Hom}((i_*i^*X)[-1],j_!Y'').$$

By $\operatorname{Hom}(i_*i^*X, j_!Y'') \cong \operatorname{Hom}(i^*X, i^!j_!Y'') \cong \operatorname{Hom}(i^*X, i^*j_!Y'') = 0$ and $\operatorname{Hom}((i_*i^*X)[-1], j_!Y'') = 0$, we have $\operatorname{Hom}_{\mathcal{C}}(X, j_!Y'') \cong \operatorname{Hom}_{\mathcal{C}}(j_!j^*X, j_!Y'') \cong \operatorname{Hom}_{\mathcal{C}''}(j^*X, Y'')$, i.e., $(j^*, j_!)$ is an adjoint pair. While (j^*, j_*) is also an adjoint pair, so $j_* \cong j_!$.

- (iii) ⇒ (ii) can be similarly proved.
- (i) \Longrightarrow (iv): Assume that $i^!\cong i^*$ and $j_*\cong j_!$. Since $(i_*,i^!)$ is an adjoint pair, so is (i_*,i^*) , and hence by Lemma 3.4(1)(ii) ($\operatorname{Im} i_*, \operatorname{Ker} i^*$) is a stable t-structure. Since $\operatorname{Hom}(\operatorname{Ker} i^*, \operatorname{Im} i_*)=0$ and the recollement triangle $i_*i^!X\to X\to j_*j^*X\to (i_*i^!X)[1]$ is the t-decomposition (since $j_*j^*X\in \operatorname{Im} j_*=\operatorname{Ker} i^!=\operatorname{Ker} i^*$ by the assumption), by Lemma 3.4(2) $\widetilde{F}:\mathcal{C}\to \operatorname{Im} i_*\times \operatorname{Ker} i^*$ given by $\widetilde{F}X=(i_*i^!X,j_*j^*X)$ is a triangle-equivalence. Since $\operatorname{Im} i_*\cong \mathcal{C}'$ and $\operatorname{Ker} i^*=\operatorname{Im} j_!\cong \mathcal{C}''$, we get a triangle-equivalence $F:\mathcal{C}\to\mathcal{C}'\times\mathcal{C}''$ with $FX=(i^!X,j^*X)$. Now it is straightforward that $(\operatorname{Id}_{\mathcal{C}'},F,\operatorname{Id}_{\mathcal{C}''}):(\mathcal{C}',\mathcal{C},\mathcal{C}'')\to (\mathcal{C}',\mathcal{C}'\times\mathcal{C}'',\mathcal{C}'')$ is an equivalence of recollements. We omit the details.
- **Remark 3.5.** (i) A Hom-finite k-triangulated category (C, [1]) is a d-Calabi-Yau category ([Ke2]), if there is a nonnegative integer d, such that the d-th shift [d] is a right Serre functor of C.

By Lemma 2.8 any left (right) recollement of Calabi-Yau category C sits in a splitting recollement. Thus any recollement of Calabi-Yau category is splitting.

(ii) If (C', C, C'') is a recollement with C Calabi-Yau, then obviously so are C' and C''. However, the converse is not true: otherwise, (C', C, C'') is splitting by (i); but there are a lot of examples of non-splitting recollements (C', C, C''), where C' and C'' are Calabi-Yau. For example, let $A = \binom{k \ 0}{k \ k}$ with K a field. Then one has a recollement $(D^b(k\text{-mod}), D^b(A\text{-mod}), D^b(k\text{-mod}))$ ([PS, Exam. 2.10]). Note that $D^b(k\text{-mod})$ is 0-Calabi-Yau and that $(D^b(k\text{-mod}), D^b(A\text{-mod}), D^b(k\text{-mod}))$ is not splitting (otherwise, $D^b(A\text{-mod})$ is the product of two Calabi-Yau categories, and hence again Calabi-Yau; but $D^b(A\text{-mod})$ is not Calabi-Yau).

Appendix: Proofs of lemmas in Section 1

We include proofs of lemmas in Section 1 only for convenience (although they are well-known, it seems that explicit proofs are not available in the literature).

Proof of Lemma 1.1. Since a right recollement of C relative to C' and C'' is a left recollement of C relative to C'' and C', it follows that (2) can be deduced from (1). We include a proof of (ii) \Longrightarrow (i) of (1). Since (i^*, i_*) is an adjoint pair and i_* is fully faithful, by Lemma 3.4(1)(i) $Y \to X \xrightarrow{\eta_X} i_* i^* X \to Y[1]$ is the t-decomposition of X respect to the t-structure (Ker i^* , Im i_*). Similarly, by Lemma 3.4(1)(ii) $j_! j^* X \xrightarrow{\epsilon_X} X \to Z \to (j_! j^* X)[1]$ is the t-decomposition of X respect to the t-structure (Im $j_!$, Ker j^*). Since both (Ker i^* , Im i_*) and (Im $j_!$, Ker j^*) are t-structures and Im i_* = Ker j^* , it follows that Ker i^* = Im $j_!$, and the two t-decompositions above are isomorphic. From this one easily deduces that $j_! j^* X \xrightarrow{\epsilon_X} X \xrightarrow{\eta_X} i_* i^* X \to (j_! j^* X)[1]$ is a distinguished triangle.

Lemma A.1. (see e.g. [BBD], [M], [N3], [IKM]) Let $(\mathcal{U}, \mathcal{V})$ be a stable t-structure on \mathcal{C} . Then

- (i) there is a triangle-equivalence $V_{\mathcal{V}} \circ \sigma_{\mathcal{U}} : \mathcal{U} \to \mathcal{C}/\mathcal{V}$, where $\sigma_{\mathcal{U}} : \mathcal{U} \hookrightarrow \mathcal{C}$ is the embedding, and $V_{\mathcal{V}} : \mathcal{C} \to \mathcal{C}/\mathcal{V}$ is the Verdier functor. A quasi-inverse of $V_{\mathcal{V}} \circ \sigma_{\mathcal{U}}$ sends object $X \in \mathcal{C}/\mathcal{V}$ to its t-part.
- (ii) there is a triangle-equivalence $V_{\mathcal{U}} \circ \sigma_{\mathcal{V}} : \mathcal{V} \to \mathcal{C}/\mathcal{U}$, where $\sigma_{\mathcal{V}} : \mathcal{V} \hookrightarrow \mathcal{C}$ is the embedding, and $V_{\mathcal{U}} : \mathcal{C} \to \mathcal{C}/\mathcal{U}$ is the Verdier functor. A quasi-inverse of $V_{\mathcal{U}} \circ \sigma_{\mathcal{V}}$ sends object $X \in \mathcal{C}/\mathcal{U}$ to its t-free part.

Lemma A.2. ([AHKLY, Lemma 2.2]) Let $\mathcal{C}' \xrightarrow{F} \mathcal{C} \xrightarrow{G} \mathcal{C}''$ be a sequence of triangle functors, such that F is fully faithful, $\operatorname{Im} F = \operatorname{Ker} G$, and G induces a triangle-equivalence $\mathcal{C}/\operatorname{Ker} G \cong \mathcal{C}''$. Then F has a right (resp. left) adjoint F' if and only if so does G.

In this case, the right (resp. left) adjoint G' of G is also fully faithful, $\operatorname{Im} G' = \operatorname{Ker} F'$, and F' induces a triangle-equivalence $\mathcal{C}/\operatorname{Ker} F' \cong \mathcal{C}'$.

Proof. Using the opposite category, we only need to prove the right version.

By the universal property, G is the composition of the Verdier functor $\mathcal{C} \longrightarrow \mathcal{C}/\mathrm{Ker}G$ with the equivalence $\mathcal{C}/\mathrm{Ker}G \cong \mathcal{C}''$. Thus, for simplicity, without loss of the generality we may assume that $\mathcal{C}/\mathrm{Ker}G = \mathcal{C}''$ and G is just the Verdier functor $\mathcal{C} \to \mathcal{C}/\mathrm{Ker}G$.

 \Leftarrow : Assume that G has a right adjoint pair G', i.e., a Bousefield localization functor exists for the pair $\operatorname{Ker} G \subseteq \mathcal{C}$. Thus for $X \in \mathcal{C}$, by A. Neeman [N3, Prop. 9.1.8] there is a distinguished triangle $Z \to X \xrightarrow{\eta_X} G'GX \to Z[1]$ with $Z \in \operatorname{Ker} G = \operatorname{Im} F$, where $\eta : \operatorname{Id}_{\mathcal{C}} \to G'G$ is the unit. Thus $(\operatorname{Im} F, \operatorname{Im} G')$ is a t-structure on \mathcal{C} , which induces an adjoint pair $(\sigma, \widetilde{F'})$, where $\sigma : \operatorname{Im} F \to \mathcal{C}$ is the embedding, and $\widetilde{F'} : \mathcal{C} \to \operatorname{Im} F$ sends X to its t-part Z. Since $Z \in \operatorname{Im} F$ and F is fully faithful, there is a unique object (up to isomorphism) $Z' \in \mathcal{C}'$ such that $Z \cong FZ'$. Define $F' : \mathcal{C} \to \mathcal{C}'$ to be the functor given by $X \mapsto Z'$. Since $(\sigma, \widetilde{F'})$ is an adjoint pair and F is fully faithful, it is easy to see that (F, F') is an adjoint pair. By construction we have $\operatorname{Im} G' = \operatorname{Ker} F'$. Since $(\operatorname{Im} F, \operatorname{Im} G')$ is a t-structure, it follows from Lemma A.1(i) that $X \mapsto Z$ gives an triangle-equivalence $\mathcal{C}/\operatorname{Im} G' \to \operatorname{Im} F$; together with $\operatorname{Im} F \cong \mathcal{C}'$ we see that F' induces a triangle-equivalence $\mathcal{C}/\operatorname{Ker} F' \cong \mathcal{C}'$. Since G(Z) = 0, $G(\eta_X)$ is an isomorphism, and hence by $\epsilon_{GX} \circ G(\eta_X) = \operatorname{Id}_{\mathcal{C}''}$ (where $\epsilon : GG' \to \operatorname{Id}_{\mathcal{C}''}$ is the counit) we see that ϵ_{GX} is an isomorphism for each $X \in \mathcal{C}$. Since by assumption G is dense, $\epsilon : GG' \to \operatorname{Id}_{\mathcal{C}''}$ is a natural isomorphism of functors, and thus G' is fully faithful.

 \Longrightarrow : Assume that F has a right adjoint pair F'. Then by Lemma 3.4(1)(ii) (ImF, KerF') is a t-structure on C, with t-decomposition $FF'X \xrightarrow{\omega_X} X \to Y \to (FX')[1]$ of $X \in C$, where $\omega : FF' \to \operatorname{Id}_C$ is the counit. This t-structure induces an adjoint pair (\widetilde{G}, σ) , where $\widetilde{G} : C \to \operatorname{Ker} F'$ sends X to its t-free part Y, and $\sigma : \operatorname{Ker} F' \to C$ is the embedding. By Lemma A.1(ii) the functor $\widetilde{G'} : C/\operatorname{Im} F \to \operatorname{Ker} F'$, which sends each object X to its t-free part Y, is a triangle-equivalence. Thus $G = \widetilde{G'}^{-1}\widetilde{G}$. Put $G' := \sigma \widetilde{G'} : C/\operatorname{Im} F \to C$, i.e., $G' : C'' \to C$. By construction G' is fully faithful and $\operatorname{Im} G' = \operatorname{Ker} F'$. By Lemma A.1(i) $C/\operatorname{Ker} F' \to \operatorname{Im} F$ given by $X \mapsto FF'X$ is an triangle-equivalence; together with $\operatorname{Im} F \cong C'$ we see that F' induces $C/\operatorname{Ker} F' \cong C'$. For $X \in C$ and $C'' \in C''$, since (\widetilde{G}, σ) is an adjoint pair, we have

$$\operatorname{Hom}(GX,C'') = \operatorname{Hom}(\widetilde{G'}^{-1}\widetilde{G}X,C'') \cong \operatorname{Hom}_{\operatorname{Ker} F'}(\widetilde{G}X,\widetilde{G'}C'') \cong \operatorname{Hom}_{\mathcal{C}}(X,\sigma\widetilde{G'}C'') = \operatorname{Hom}(X,G'C''),$$

i.e., (G, G') is an adjoint pair.

Proof of Lemma 1.2. It suffices to prove the "if" part. We denote the recollement (1.1) by $(\mathcal{C}', \mathcal{C}, \mathcal{C}'', j_{-1}, i_0, j_1, i_{-1}, j_0, i_1)$ (this labeling coincides with (1.2)), and assume that there is an infinite adjoint sequence $(\cdots, i_{-2}, j_{-1}, i_0, j_1, i_2, \cdots)$. Since i_1 is fully faithful and j_1 has a right adjoint pair i_2 , by applying Lemma A.2 to the sequence $\mathcal{C}'' \xrightarrow{i_1} \mathcal{C} \xrightarrow{j_1} \mathcal{C}'$ we get an adjoint pair (i_1, j_2) , such that the right adjoint of j_1 is fully faithful (i.e., i_2 is fully faithful), $\operatorname{Im} i_2 = \operatorname{Ker} j_2$, and that j_2 induces a triangle-equivalence $\mathcal{C}/\operatorname{Ker} j_2 \cong \mathcal{C}''$. Applying Lemma A.2 to the sequence $\mathcal{C}' \xrightarrow{i_2} \mathcal{C} \xrightarrow{j_2} \mathcal{C}''$, and continuing this process we then get a ladder going downwards infinitely, by Lemma 1.1.

Going upwards, and by the same argument we get a ladder going upwards infinitely. Putting together we get an unbounded ladder containing recollement $(C', C, C'', j_{-1}, i_0, j_1, i_{-1}, j_0, i_1)$.

Proof of Lemma 1.3. (1) We only prove (ii) \Longrightarrow (i). Any recollement $(\mathcal{C}', \mathcal{C}, \mathcal{C}'', i^*, i_*, i^!, j_!, j^*, j_*)$ induces an equivalence $(\widetilde{i}_*, \operatorname{Id}_{\mathcal{C}}, \widetilde{j}_*) : (\mathcal{C}', \mathcal{C}, \mathcal{C}'', i^*, i_*, i^!, j_!, j^*, j_*) \to (\operatorname{Im} i_*, \mathcal{C}, \operatorname{Im} j_*, \widetilde{i}_* i^*, \sigma_1, \widetilde{i}_* i^!, \widetilde{j}_!, \widetilde{j}_* j^*, \sigma_2)$ of recollements, where $\widetilde{i}_* : \mathcal{C}' \to \operatorname{Im} i_*$ and $\widetilde{j}_* : \mathcal{C}'' \to \operatorname{Im} j_*$ are the equivalences induced by i_* and j_* , respectively, σ_1 and σ_2 are embeddings, and $\widetilde{j}_! : \operatorname{Im} j_* \to \mathcal{C}$ is given by $j_*\mathcal{C}'' \mapsto j_!\mathcal{C}''$, $\forall \mathcal{C}'' \in \mathcal{C}''$. By restriction we get $\widetilde{F}' : \operatorname{Im} i_* \xrightarrow{\sim} \operatorname{Im} i_*^{\mathcal{D}}$ and $\widetilde{F}'' : \operatorname{Im} j_* \xrightarrow{\sim} \operatorname{Im} j_*^{\mathcal{D}}$. Thus, it suffices to prove that there is an equivalence

$$\begin{array}{c|c} \operatorname{Im} i_* & \overbrace{\widetilde{i_*}i^*}^{\widetilde{i_*}i^*} & \mathcal{C} & \overbrace{\widetilde{j_!}}^{\widetilde{j_!}} & \operatorname{Im} j_* \\ \\ \widetilde{F'} & F & & & \\ \widetilde{F'} & F & & & \\ Im i_*^{\mathcal{D}} & \overbrace{\widetilde{j_!}}^{\sigma_D} i_D^* & \mathcal{D} & \overbrace{\widetilde{j_!}}^{\widetilde{D}} j_D^* & \operatorname{Im} j_*^{\mathcal{D}} \\ \\ \operatorname{Im} i_*^{\mathcal{D}} & \overbrace{\widetilde{j_!}}^{\sigma_D} i_D^* & \mathcal{D} & \overbrace{\widetilde{j_!}}^{\widetilde{D}} j_D^* & \operatorname{Im} j_*^{\mathcal{D}} \end{array}$$

i.e., for $C \in \mathcal{C}$ and $j_*C'' \in \operatorname{Im} j_*$ with $C'' \in \mathcal{C}''$, there are natural isomorphisms: $Fi_*i^*C \cong i_*^{\mathcal{D}}i_{\mathcal{D}}^*FC$, $Fi_*i^!C \cong i_*^{\mathcal{D}}i_{\mathcal{D}}^*FC$, $Fj_!C'' \cong \widetilde{j_!^{\mathcal{D}}}Fj_*C''$, $Fj_*j^*C \cong j_*^{\mathcal{D}}j_{\mathcal{D}}^*FC$. By the recollement triangle $i_*i^!C \to C \to j_*j^*C \to (i_*i^!C)[1]$ we get distinguished triangles

$$Fi_*i^!C \to FC \to Fj_*j^*C \to (Fi_*i^!C)[1]$$
, and $i_*^{\mathcal{D}}i_{\mathcal{D}}^!FC \to FC \to j_*^{\mathcal{D}}j_{\mathcal{D}}^*FC \to (i_*^{\mathcal{D}}i_{\mathcal{D}}^!FC)[1]$.

By the assumption, they are both the t-decompositions of FC respect to the t-structure $(\operatorname{Im} i_*^{\mathcal{D}}, \operatorname{Im} j_*^{\mathcal{D}})$, hence $Fi_*i^!C \cong i_*^{\mathcal{D}}i^!_{\mathcal{D}}FC$ and $Fj_*j^*C \cong j_*^{\mathcal{D}}j_{\mathcal{D}}^*FC$. Similarly, by $j_!j^*C \to C \to i_*i^*C \to (j_!j^*C)[1]$ we get $Fj_!j^*C \cong j_!^{\mathcal{D}}j_{\mathcal{D}}^*FC$ and $Fi_*i^*C \cong i_*^{\mathcal{D}}i_{\mathcal{D}}^*FC$. It remains to prove $Fj_!C''\cong j_!^{\mathcal{D}}Fj_*C''$. By $C''\cong j^*j_*C''$ the functor $\widetilde{j}_!$ reads as $\widetilde{j}_!j_*C''=j_!j^*j_*C''$. Since $Fj_*C''\in\operatorname{Im} j_*^{\mathcal{D}}$, we have $\widetilde{j}_!^{\mathcal{D}}Fj_*C''\cong j_!^{\mathcal{D}}j_{\mathcal{D}}^*Fj_*C''$. It follows that $Fj_!C''\cong Fj_!j_*^*Fj_*C''\cong j_!^{\mathcal{D}}j_*^*Fj_*C''\cong j_!^{\mathcal{D}}Fj_*C''$.

(2) We claim that the t-th recollement is equivalent to the 0-th one. In fact, by assumption there is equivalence (F', F, F''): $(C', C, C'', j_{2t-1}, i_{2t}, i_{2t-1}, j_{2t}) \rightarrow (C', C, C'', j_{-1}, i_0, i_{-1}, j_0)$ of left recollements. It remains to prove that there are natural isomorphisms $F'j_{2t+1} \cong j_1F$ and $Fi_{2t+1} \cong i_1F''$. Since (i_{2t}, j_{2t+1}) and (j_{2t}, i_{2t+1}) are adjoint pairs, it suffices to prove $(i_{2t}, F'^{-1}j_1F)$ and $(j_{2t}, F^{-1}i_1F'')$ are also adjoint pairs. Indeed, the first adjoint pair can be seen from (and the second one is similarly proved)

$$\operatorname{Hom}(X', F'^{-1}j_1FY) \cong \operatorname{Hom}(F'X', j_1FY) \cong \operatorname{Hom}(i_0F'X', FY) \cong \operatorname{Hom}(Fi_{2t}X', FY) \cong \operatorname{Hom}(i_{2t}X', Y).$$

Going downwards (resp. upwards) step by step, by the similar argument we see the assertion.

$$(3)$$
 follows from (1) and (2) .

References

[AHKL] L. Angeleri Hügel, S. König, Q. H. Liu, Recollements and tilting objects, J. Pure Appl. Algebra 215(2011), 420-438.

[AHKLY] L. Angeleri Hügel, S. König, Q. H. Liu, D. Yang, Ladders and simplicity of derived module categories, arXiv: 1310.3479 v2.

[AR] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86(1991), 111-152.

[ARS] M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Adv. Math. 36., Cambridge Univ. Press, 1995.

[AS] M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69(1981), 426-454.

 $[BDS] \quad \text{P. Balmer, I. Dell'ambrogio, B. Sanders, Grothendieck-Neeman duality and the Wirthmüller isomorphism, arXiv: } 1501.01999v2$

[BBD] A. A. Beilinson, J. N. Bernstein, P. Deligne, Faisceaux pervers, Astérisgue 100, Soc. Math. France, Paris, 1982.

[BGS] A. A. Beilinson, V. A. Ginsburg, V. V. Schechtman, Koszul duality, J. Geom. Phys. 5(3)(1988), 317-350.

- [Be] A. Beligiannis, Cohen-Macaulay modules, (co)tosion pairs and virtually Gorenstein algebras, J. Algebra 288(1)(2005), 137-211.
- [BK] A. I. Bondal, M. Kapranov, Representable functors, Serre functors, and reconstructions, Math. USSR Izv. 35(1990), 519-541.
- [BN] M. Bökstedt, A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), 209-234.
- [BO] A. I. Bondal, D. O. Orlov, Semiorthogonal decomposition for algebraic varieties, Preprint MPI 95/15 (1995), arXiv: 9506012.
- [B] R. O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, Unpublished manuscript, 155 pages. Hamburg, 1987.
- [C] X. W. Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr. Represent. Theory 12(2009), 181-191.
- [CPS] E. Cline, B. Parshall, L. L. Scott, Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 591(1996), 1-119.
- [EJ] E. E. Enochs, O. M. G. Jenda, Relative homological algebra, de Gruyter Exposit. Math. 30. Walter De Gruyter, Berlin, New York, 2000.
- [FP] V. Franjou, T. Pirashvili, Comparison of abelian categories recollement, Doc. Math. 9(2004), 41-56.
- [Han] Y. Han, Recollement and Hochschild theory, J. Algebra 197(2014), 535-547.
- [HQ] Y. Han, Y. Y. Qin, Reducing homological conjectures by n-recollements, arviv: 1410.3223.
- [H1] D. Happel, Triangulated categories in the representation theory of finite dimensional algebras, Lond. Math. Soc. Lecture Note Ser. 119, Cambridge University Press, Cambridge, 1988.
- [H2] D. Happel, On Gorenstein algebras, in: Progress Math. vol. 95, 389-404, Birkhaüser, Basel, 1991.
- [IKM] O. Iyama, K. Kato, J.-I. Miyachi, Recollement on homotopy categories and Cohen-Macaulay modules, J.K-Theory 8(3)(2011), 507-541.
- [J] P. Jørgensen, Reflecting recollements, Osaka J. Math. 47(1)(2010), 209-213.
- [Ke1] B. Keller, Derived categories and universal problems, Comm. Algebra 19(1991), 699-747.
- [Ke2] B. Keller, Calabi-Yau triangulated categories, Trends in representation theory of algebras and related topics, 467-489, EMS Ser. Cong. Rep., Zürich, 2008.
- [Kö] S. König, Tilting complexes, perpendicular categories and recollements of derived module categories of rings, J. Pure Appl. Algebra 73(1991), 211-232.
- [KN] S. König, H. Nagase, Hochschild cohomology and stratifying ideals, J. Pure Appl. Algebra 213(2009), 886-891.
- [Kr] H. Krause, A Brown representability theorem via coherent functors, Topology 41(2002), 853-861.
- [KS] H. Krause, Ø. Solberg, Applications of cotorsion pairs, J. London Math. Soc. 68(2)(2003), 631-650.
- [M] J.-I. Miyachi, Localization of triangulated categories and derived categories, J. Algebra 141(1991), 463-483.
- [N1] A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. Eécole Norm. Sup. (4)25(5)(1992), 547-566.
- [N2] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9(1)(1996), 205-236.
- [N3] A. Neeman, Triangulated categories, Ann. Math. Studies 148, Princeton University Press, Princeton, NJ, 2001.
- [O] D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. 246(3)(2004), 227-248.
- [P] B. Parshall, Finite dimensional algebras and algebraic groups, Contemp. Math. 82(1989), 97-114.
- [PS] B. Parshall, L. L. Scott, Derived categories, quasi-hereditary algebras and algebraic groups, Carleton University Math. Notes 3(1988), 1-104.
- [RV] I. Reiten, M. Van den Bergh, Noether hereditary abelian categories satisfying Serre functor, J. Amer. Math. Soc. 15(2)(2002), 295-366.
- [S] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65(1988), 121-154.
- [Z] P. Zhang, Gorenstein-projective modules and symmetric recollements, J. Algebra 388(2013), 65-80.

Pu Zhang, College of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China, pzhang@sjtu.edu.cn

Yuehui Zhang, College of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China, zyh@sjtu.edu.cn

Guodong Zhou, Department of Mathematics, Shanghai Key laboratory of PMMP, East China Normal University, Shanghai 200241, China, gdzhou@math.ecnu.edu.cn

Lin Zhu, College of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China, zhulin2323@163.com