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High-Quality Bayesian Pansharpening
Tingting Wang, Faming Fang , Fang Li , and Guixu Zhang

Abstract— Pansharpening is a process of acquiring a multi-
spectral image with high spatial resolution by fusing a low reso-
lution multi-spectral image with a corresponding high resolution
panchromatic image. In this paper, a new pansharpening method
based on the Bayesian theory is proposed. The algorithm is
mainly based on three assumptions: 1) the geometric information
contained in the pan-sharpened image is coincident with that
contained in the panchromatic image; 2) the pan-sharpened
image and the original multi-spectral image should share the
same spectral information; and 3) in each pan-sharpened image
channel, the neighboring pixels not around the edges are sim-
ilar. We build our posterior probability model according to
above-mentioned assumptions and solve it by the alternating
direction method of multipliers. The experiments at reduced and
full resolution show that the proposed method outperforms the
other state-of-the-art pansharpening methods. Besides, we verify
that the new algorithm is effective in preserving spectral and
spatial information with high reliability. Further experiments also
show that the proposed method can be successfully extended to
hyper-spectral image fusion.

Index Terms— Pansharpening, multi-spectral image, panchro-
matic image, Bayesian theory, optimization model, alternating
direction method of multipliers.

I. INTRODUCTION

SATELLITE capture systems, such as Spot, GeoEye,
QuickBird and IKONOS, only provide two types of

images, i.e., low spatial resolution multi-spectral (LRMS)
image and high spatial resolution panchromatic (PAN) image.
Multi-spectral (MS) image usually covers a more precise
spectral range for the spectral resolution can be up to eight
bands captured in the visible and near-infrared wavelengths.
For example, the MS image provided by QuickBird satellite
has four bands: red, green, blue and near-infrared spectrum.
In contrast, PAN image contains little spectral information.
To obtain MS images with high spatial resolution, various
approaches have been raised by combining a MS image with
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the PAN image acquired over the same area. In a more
technical sense, this process is usually referred to as pansharp-
ening [1], a branch of traditional image fusion [2]. A specific
realization flowchart of pansharpening on QuickBird satellite
image is shown in Fig. 1.

As a preliminary step for enhancing images in many
remote sensing tasks, pansharpening has important applica-
tions varying from military aspect to scientific research, such
as change detection [3], target recognition [4], vegetation
mapping and disaster warning [5]. In recent years, a fast
growing number of commercial products using high-resolution
images (e.g., Google Earth and Auto Navi Map) have brought
the increasingly demand for pan-sharpened data. Since pan-
sharpening can make the best use of the acquired data provided
by commercial optical satellites, the research is significant.

The classic pansharpening methods can be broadly divided
into four classes [6]: component substitution (CS), multi-
resolution analysis (MRA), Bayesian approach, and varia-
tional approach. CS methods project the MS image into
another space to separate the spatial and spectral informa-
tion [7], then substitute the PAN image for the components
containing spatial structure [8]. The result images can be
obtained by bringing the data back to the original space
through the inverse transformation. Among these CS methods,
the intensity-hue-saturation (IHS) [9]–[11], the principal com-
ponent analysis (PCA) [12], [13], Brovey [14]–[16] and
Gram-Schmidt (GS) [17], [18] methods are most popular.

Different from CS methods which make use of per-pixel
channel transformations, MRA methods are based on the
injection of spatial details obtained by a multi-resolution
decomposition of the PAN image into the MS image
bands after resampling [8]. Representative MRA methods
contain decimated wavelet transform (DWT) [19], undeci-
mated wavelet transform (UDWT) [20], “à-trous” wavelet
transform (ATWT) [21], Laplacian pyramid (LP) [22], and
nonseparable transforms, either based on wavelets (e.g., con-
tourlet [23]) or not (e.g., curvelet [24]). Hybrid methods which
combine CS with multi-scale decomposition have also been
proposed, such as guided filter PCA (GFPCA) [25].

Bayesian model has been successfully applied to image
processing, such as deblurring [26], image segmentation [27],
super resolution [28], image interpolation [29], and face sketch
synthesis [30]. In pan-sharpening field, the Bayesian approach
is committed to finding a suitable statistical model to jointly
characterize the pansharpened result and the available LRMS
and PAN images. Since Fasbender et al. [31] proposed the
pioneering pansharpening method based on Bayesian estima-
tion theory, many contributions have flourished in the literature
to cope with the usual illposedness of the pansharpening
inverse problems. Some works take advantage of compressive
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Fig. 1. The basic idea of pansharpening (here we take a four-band MS image as an example).

sensing theory [32] or sparse signal representations [33], and
others introduce total variation penalization terms [34], [35].

The variational approach can be regarded as particular case
of the Bayesian one [6], in which the pansharpening problem
is transformed into an optimization problem by injecting the
formulation with some suitable prior knowledge. In 2006,
Ballester et al. [36] first proposed a variational model named
P+XS based on the linear combination assumption that the
geometric information is contained in the PAN image and
the upsampled MS image is the desired result after blurring,
which is an innovation in remote sensing image fusion.
Due to the difficulty of estimating an accurate blur kernel,
VWP (variational wavelet pansharpening) and AVWP (alter-
nate VWP) [37] were presented for sharping high dimensional
images by replacing this term with a spectral ratio constraint
and ensuring the approximation/detail wavelet coefficients of
fused image are closed to those of the LRMS/PAN image.
Fang et al. [38] proposed a new variational pansharpening
method based on some effective assumptions and discussed
the existence of the minimizer of the energy functional.
Aly and Sharma [39] minimized an objective function com-
prised of the sum of squared residual errors to jointly esti-
mating the HRMS images. Chen et al. [40] did not make any
assumption about the upsampled MS image but assumed that
the fused image after downsampling should be close to the
original MS image. They formulated their fusion as a convex
optimization problem which minimizes a linear combination
of a least-squares fitting term and a dynamic gradient sparsity
regularizer.

In recent years, inspired by the impressive performance of
machine learning methods in the field of computer vision,
some learning-based pan-sharpening models are proposed.
Ding et al. [41] presented a pan-sharpening method that
utilizes a Bayesian nonparametric dictionary learning model to
give an underlying sparse representation for image reconstruc-
tion. Masi et al. [42] adapted a simple and effective three-layer
architecture originally designed for super-resolution to the
pan-sharpening problem. In [43], a deep residual network is
exploited to make the full use of the high nonlinearity of
the deep learning models. Yang et al. [44] proposed a deep
network architecture for pansharpening. This trained network,
called PanNet, achieves plausible image reconstruction results.

Related researches about multi-sensor image fusion sim-
ilar to pansharpening have attracted increasing attention of
researchers in the remote sensing community. such as hyper-
spectral (HS) and MS image fusion and infrared and visible
image fusion. The former focuses on fusing HS images with
corresponding high spacial resolution MS images. Bayesian
inference offers a convenient way to tackle the ill-posed
fusion problem [45], [46]. The fusion of HS and MS images
based on spectral unmixing [47], [48] and Sparse repre-
sentation [49] has also been explored. The latter aims at
fusing thermal infrared (IR) and visible images obtained
from the same scene to enhance the performance in terms
of human visual perception and target recognition [50].
To tackle this issue, some works based on image decompo-
sition [51] and total variation minimization [52] have been
proposed.

In this paper, a high quality pansharpening model is pro-
posed by applying Bayesian theory. Our model is mainly based
on three reasonable assumptions which are formulated into
three probability terms within Bayesian framework. In each
term, we introduce multi-order gradients to capture more fine
and complete information from input images. The first term
can keep sharp edges of the HRMS image, and the second term
protects spectral information from degradation. Moreover,
we add the third term to keep the similarity of neighboring
pixels. To optimize the entire posterior probability, the alter-
nating direction method of multipliers (ADMM) [53], [54]
is applied. The optimum can be obtained with an acceptable
time cost. In summary, we make the following contributions:

• We introduce the multi-order gradients into our model
which can significantly improve the pansharpening per-
formance. To the best of our knowledge, it is the first
work that uses multi-order gradients for pansharpening.

• We design three novel probability terms based on
corrsponding reasonable assumptions to jointly character-
ize the HRMS and the available LRMS and PAN images,
and propose an efficient pansharpening model by combine
them into Bayesian framework.

• We demonstrate that our approach produces better results
than other state-of-the-art techniques. Furthermore,
we show our method can be easily extended to hyper-
spectral image fusion.
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Fig. 2. The relationship network of F, M and P .

The rest of this paper is organized as follows. In section II,
we present the proposed model based on three basic assump-
tions. In section III, we apply ADMM algorithm to minimize
the energy function. The experimental results are shown in
section IV. Finally, conclusion will be presented in section V.

II. THE PROPOSED MODEL

To explain ideas, we assume that a PAN image can be
modeled as a function P : � → R, where � is a subset
of R

2, and the LRMS image is given by a function M =
{m1, m2, . . . , mN } : � → R

N , where N is the number of
bands of the MS image. Then, let F = { f1, f2, . . . , fN } :
� → R

N be the pan-sharpened high resolution MS (HRMS)
image.

According to the principle of pansharpening, the relation-
ship among F, M and P can be illustrated as a Bayesian
network model as shown in Fig. 2, from which we have the
posterior probability:

g(F|M, P) ∝ g(P, M |F)g(F), (1)

where g(P, M |F) represents the likelihood and g(F) denotes
the prior on the required image F. Based on the D-Separation
theory [55], P and M are independent events when F is
known. Therefore, equation (1) can be rewritten as follows.

g(F|M, P) ∝ g(P|F)g(M |F)g(F). (2)

In what follows, two kinds of gradient operator, ∇2 and ∇3,
will be used. Here ∇2 denotes the general gradient operator
towards horizontal and vertical directions, respectively. Dif-
ferent from ∇2, ∇3 adds one more direction along the bands
besides horizontal and vertical directions. We now define these
terms in (2) based on three certain properties.

A. Definition of the Probability Terms
1) Term g(P|F): In the same scene, the spatial range of

the PAN image almost covers the whole range of that of the
MS image [40]. Thus, the spatial information of HRMS image
F is contained in the PAN image. It was reasonable to make
the assumption that a linear combination of all bands of F
should be closed to P in spatial information. And an image’s
spatial information can be generally expressed by the measure

Fig. 3. (a): the ground truth image. The error image �1 using (b): the simple
assumption (3), and (c): the proposed multi-order gradient assumption (4).
(For simplicity, the multi-order gradient is set as {∇2, 1√

2
∇2

2 } here.)

of gradient field [56]. Thus the assumption can be represented
as the following equation:

∇2 P =
N�

i=1

αi∇2 fi + �1, (3)

where αi represents the coefficients related to the MTF func-
tion [57] of the sensor, and �1 is the noise or error which
assumed to follow the Gaussian distribution N (0, σ 2

1 ).
However, as discussed in [26] and [58], this model is weak

and failed to capture the spatial randomness property of image
noise. To illustrate, in Fig. 3(b), we show the noise map
generated by our algorithm using the simple assumption (3).
One can see that the noise map is clearly structured and
not spatially random. In fact, since �1 is a random sequence
following Gaussian distribution, it has been proven that ∇2�1
also follows Gaussian distribution N (0, σ 2) with standard
deviation σ = √

2σ1 [59]. Therefore (3) can be reset as:

∇∗
2 P =

n�

i=1

αi∇∗
2 fi + ∇∗

2�1, (4)

where the operator ∇∗
2 = {∇2,

1√
2
∇2

2 , . . . , 1√
2

n−1 ∇n
2 , . . .} is

named as multi-order gradients. Fig. 3(c) shows the noise map
generated by our algorithm using the proposed multi-order
gradients definition (4). Obviously, Fig. 3(c) contains less
image structure compared to Fig. 3(b), which is a significant
improvement.

From (4), we build the likelihood as:

g(P|F) = g(∇∗
2�1) =

�

n

N (∇n
2 �n | 0,

√
2

n−1
σ1)

=
�

n

N (

N�

i=1

αi∇n
2 fi | ∇n

2 P,
√

2
n−1

σ1)

∝ N (

N�

i=1

αi∇∗
2 fi | ∇∗

2 P, σ1), (5)

where n = 1, 2, . . .. Thus, we have deduced that ∇∗
2�1 also

follows the Gaussian distribution.
2) Term g(M |F): The HRMS image should contain the

same spectral information as LRMS image. And for each band,
the low resolution pixels are generated by high resolution ones
with low-pass filtering followed by down-sampling. Denote
the low-pass filter and down-sampling operator as H and D,
respectively. The relationship of M and F can be formulated
as:

M = DH F + �2, (6)
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and we assume that the noise �2 obeys gaussian distribution
N (�2 | 0, σ 2

2 ).
Equation (6) only reflects the relationship between

LRMS and HRMS images in intensity. Actually, DH F and M
should be same in both spectral and spatial information. There-
fore, in order to preserve more detail information, equation (6)
can be reconstructed as a more reasonable expression:

∇∗
3 M = ∇∗

3(DH F) + ∇∗
3�2, (7)

where operator ∇∗
3 = {I, 1√

2
∇3, . . . ,

1√
2

n ∇n
3 , . . .} is multi-

order gradients, too. Compared with the former equa-
tion (6), (7) guarantees the spatial information consistency
apart from the spectral information by adding gradient
restriction like (4).

According to above analysis, ∇n
3 �2 also follows Gaussian

distribution. Therefore, the likelihood g(M |F) can be written
as follows:

g(M |F) =
�

n

N (∇n
3 �2 | 0,

√
2

n
σ2)

=
�

n

N (∇n
3 F | ∇n

3 M,
√

2
n
σ2)

∝ N (∇∗
3 F | ∇∗

3 M, σ2), (8)

where n = 0, 1, 2, . . ..
3) Term g(F): In a normal image, a pixel fi (x, y) (see

Fig. 2) not around the edges should be similar with neighbor-
ing pixels in each band of pan-sharpened image. We assume
that the similarity will not be transmitted, i.e., memoryless, and
the relationship between neighboring pixels can be represented
as a Markov random field model. Note that pixels around the
edges only take up a very small proportion, this assumption
is acceptable in probability theory. As the exponential distrib-
ution has a good property of memoryless, we thus model the
prior of F as exponential distribution:

g(F) =
N�

i=1

e−τ {�[ fi (x+1,y)− fi(x,y)]+�[ fi (x,y+1)− fi(x,y)]},

(9)

where τ is the rate parameter. Here we choose two of the
four-neighborhood pixels to express the similarity, and the sum
of differences between pixels can be simplified into the l1 norm
of first-order gradient:

g(F) = e−τ�∇2 F�1 , (10)

where � · �p is the l p-norm.
To verify the reliability of above standpoint, we take

some real images (contains approximately 108 pixels) from
QuickBird and IKONOS satellites, and calculate the histogram
of ∇2 F. The statistical result is shown in Fig. 4(a). One can
see that the histogram is well approximated by an exponential
distribution (with root-mean square error MSE = 3.6012 ×
10−4). On the other hand, Fig. 4(b) shows the histogram
of ∇∗

2 F and the corresponding fitted exponential distribution
(with MSE = 7.0299 × 10−5, much less than that of ∇2 F).
The higher fitting degree indicates the more reasonability of
multi-order gradient. Accordingly, we replace the first-order

Fig. 4. Histograms of ∇2 F and ∇∗
2 F with corresponding fitted exponential

distributions (for simplicity, ∇∗
2 F is set as {∇2, 1√

2
∇2

2 } here). The errors of

fitting are: (a) MSE=3.6012 × 10−4, (b) MSE=7.0299 × 10−5.

gradient with multi-order one. Thus (10) can be improved as
follows:

g(F) = e−τ�∇∗
2 F�1 . (11)

B. Posterior Probability and Energy Function
In conclusion, by taking all likelihood and prior definitions

into (2), the joint probability function can be expressed as:

g(F|M, P) ∝ N (

N�

i=1

αi∇∗
2 fi | ∇∗

2 P, σ1)

·N (∇∗
2 F | ∇∗

3 M, σ2) · e−τ�∇∗
2 F�1 (12)

Our aim is to pursue an optimal F to maximize the
probability g(F|M, P). By taking negative logarithm to
equation (12), i.e., E(F) = − log(g(F|M, P)), we get our
energy minimization problem expressed as:

E(F) = 1

2
�∇∗

2 P − ∇∗
2

N�

i=1

αi fi�2

+ β

2
�∇∗

3 M − ∇∗
3 DH F�2 + γ �∇∗

2 F�1, (13)

where β = σ 2
1 /σ 2

2 and γ = τσ 2
1 .

III. NUMERICAL ALGORITHM

In this section, we will solve (13) to find the optimum.
First of all, we show some analysis and presetting about the
high-order gradient operator.

Remark 1: Due to the fact that high-order gradient
∇n (n ≥ 3) contains little spatial information but greatly
increase the computational complexity, based on the analysis
in [26], we set the multi-order gradients with a maximum
number of two in our numerical algorithm as a trade-off.
That is,

∇∗
2 = {∇2,

1√
2
∇2

2 } and ∇∗
3 = {I,

1√
2
∇3,

1√
2

2 ∇2
3 }.

In addtion, large amount of the experiments also show that
the simplification satisfies the requirements on both speed and
quality of pansharpening.

Accordingly, we have following rather simple property:
Proposition 1: The ∇∗T

3 ∇∗
3 and ∇∗T

2 ∇∗
2 can be calculated

by, ⎧
⎪⎨

⎪⎩

∇∗T
3 ∇∗

3 = I + 1

2
∇T

3 ∇3 + 1

4
(∇T

3 ∇3)
2,

∇∗T
2 ∇∗

2 = ∇T
2 ∇2 + 1

2
(∇T

2 ∇2)
2.
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On the other hand, there are some methods which can
be used to solve (13), such as split-Bregman method [60]
and primal-dual hybid gradient method (PDHG) [61], [62].
In this paper we apply a classical method called ADMM,
a powerful algorithm for solving structured convex optimiza-
tion problems [54].

By replacing fi as ci , H F as B1, D B1 as B2, and ∇∗
2 F

as B3, (13) can be rewritten as:

E(F) = 1

2
�∇∗

2 P − ∇∗
2

N�

i=1

αi ci�2

+ β

2
�∇∗

3 M − ∇∗
3 B2�2 + γ �B3�1

subject to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fi = ci (i = 1, 2, . . . , N)

H F = B1

D B1 = B2

∇∗
2 F = B3

(14)

The augmented Lagrangian function of (14) is:

L = 1

2
�∇∗

2 P − ∇∗
2

N�

i=1

αi ci�2

+ β

2
�∇∗

3 M − ∇∗
3 B2�2 + γ �B3�1

+ 	�1, C − F
 + 	�2, B1 − H F
 + 	�3, B2 − D B1

+ 	�4, B3 − ∇∗

2 F
 + μ

2
�C − F�2

2 + μ

2
�B1 − H F�2

2

+ μ

2
�B2 − D B1�2

2 + μ

2
�B3 − ∇∗

2 F�2
2, (15)

where μ is a parameter, �i (i = 1, . . . , 4) is Lagrange
multiplier and C = {c1, . . . , c4}. Our purpose is to minimize
F, ci , B1, B2, B3 and maximize �i (i = 1, . . . , 4). Although
our model looks a little complicated for there are many
unknowns, the optimum could be easily obtained after some
iterative steps. We will give the iterative solution for each
variable in the following.

A. Updating ci

Firstly, we fix Ft , �t
i (i = 1, . . . , 4), ct

j ( j �= i) and
optimize ci . Here t is the iteration step. By simply setting
the partial derivation δL/δci to zero, we get:

αi∇∗T
2 (∇∗

2

N�

j=1

α j ct
j − ∇∗

2 P)

+ (�1)
t
i + μ(ci − f t

i ) = 0.

It can be rewritten as:

(lhs)ci = rhst , (16)

where

lhs = α2
i ∇∗T

2 ∇∗
2 + μ1,

rhst = αi∇∗T
2 ∇∗

2(P −
N�

j �=i

α j ct
j ) + μ f t

i − (�1)
t
i .

Fig. 5. (a) The 2D laplacian operator. (b) The 3D laplacian operator.

Due to the existence of gradient operators in (16), we operate
in the frequency domain to obtain the closed-form solution
by using fast Fourier transform (FFT) to make the computa-
tion efficient. Denoting the FFT operator and its inverse as
F and F−1, respectively, we get:

ct+1
i = F−1

	F(rhst )

F(lhs)



. (17)

The gradient operator ∇2 = [∇2x ,∇2y] can be computed by
the forward difference between variables representing neigh-
boring pixels, i.e.,

∇2x I(x, y, :) = I(x + 1, y, :) − I(x, y, :),
∇2y I(x, y, :) = I(x, y + 1, :) − I(x, y, :)

where I is a single- or multi-band image. Besides,

∇T
2 I(x, y, :) = (∇2x I(x, y, :) − ∇2x I(x − 1, y, :))

+ �∇2y I(x, y, :) − ∇2y I(x, y − 1, :)�.
As is well-known, the operator ∇T

2 ∇2 can be expressed
as a negative Laplacian operator, i.e., ∇T

2 ∇2 = −
2 where

2 is 2D Laplacian operator. And the 2D Laplacian operator
is shown in Fig. 5(a).

B. Updating F
Secondly, by fixing C t+1, Bt

i (i = 1, 2, 3), �t
i (i = 1, . . . , 4),

we have:

−�t
1 − H T �t

2 − ∇∗T
2 �t

4 − μ(C t+1 − F) − μH T

× (Bt
1 − H F) − μ∇∗T

2 (Bt
3 − ∇∗

2 F) = 0, (18)

where H is a Gaussian low-pass filter. Accordingly, we exploit
the FFT to solve (18) and get Ft+1, as shown in (19) at
the bottom of this page, where ◦ represents the element-wise
multiplication operator.

C. Updating B1

Thirdly, we optimize B1 by fixing C t+1, Ft+1, Bt
i (i =

2, 3), �t
i (i = 1, . . . , 4). Let the derivative of L w.r.t. B1 be

zero, we get:

(μ1 + μDT D)B1 = DT (�t
3 + μBt

2) + μH Ft+1 − �t
2.

(20)

Ft+1 = F−1



F [�t

1 + H T (�t
2 + μBt

1) + ∇∗T
2 (�t

4 + μBt
3) + μC t+1]

μ1 + F(H ) ◦ F(H ) + F(∇∗T
2 ∇∗

2)

�
, (19)
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Since the operator DT D is a diagonal matrix, (μ1 +
μDT D)−1 can be easily computed. Then, the closed-form
solution of B1 is,

Bt+1
1 =

�
μ1 + μDT D

�−1�
DT (�t

3+μBt
2)+μH Ft+1−�t

2

�
.

(21)

D. Updating B2

Then with C t+1, Ft+1, Bt+1
1 , Bt

3, �t
i (i = 1, . . . , 4) fixed,

we optimize B2:

−β∇∗T
3 ∇∗

3(M − B2) + �t
3 + μ(B2 − D Bt+1

1 ) = 0. (22)

By using FFT, the closed-form solution of B2 can be easily
obtained as follows:

Bt+1
2 = F−1



F [β∇∗T

3 ∇∗
3 M − �31 + μD Bt+1

1 ]
μ1 + βF(∇∗T

3 ∇∗
3)

�
. (23)

For an multi-band image I , we have ∇3 I =
{∇3x I,∇3y I,∇3z I} and the specific computations are
similar to the 2-D case. Besides, the ∇T

3 ∇3 operator is a
standard negative Laplacian operator with three-dimension
which is shown in Fig. 5(b).

E. Updating B3

Different from the above-mentioned variables, B3 has a
straightforward solution by shrinkage operator. By fixing the
values of other variables, we have:

min
B3

γ �B3�1+ < �t
4, B3 − ∇∗

2 Ft+1 > +μ

2
�B3 − ∇∗

2 Ft+1�2
2

= min
B3

γ

μ
�B3�1 + 1

2
�B3 − (∇∗

2 Ft+1 − 1

μ
�t

4)�2
2 (24)

The solution of subproblem (24) can be given directly by
the following soft-thresholding formula:

Bt+1
3 = shrink(∇∗

2 Ft+1 − 1

μ
�t

4,
γ

μ
), (25)

where

shrink(x, ζ ) = x

|x | · max(|x | − ζ, 0), (26)

F. Updating �i (i = 1, . . . , 4)

The maximum of �i (i = 1, . . . , 4) can be easily obtained
as described below:

�t+1
1 = �t

1 + μ(C t+1 − Ft+1), (27)

�t+1
2 = �t

2 + μ(Bt+1
1 − H Ft+1) (28)

�t+1
3 = �t

3 + μ(Bt+1
2 − D Bt+1

1 ) (29)

�t+1
4 = �t

4 + μ(Bt+1
3 − ∇∗

2 Ft+1) (30)

G. Summary
Overall, taking all above analyses into account, we can

summarize the complete numerical procedure for the proposed
method. The detailed description is shown in Algorithm 1.

Algorithm 1 The Overall Procedure for the Proposed Model

IV. EXPERIMENT RESULTS AND ANALYSIS

In this section, some experiment results will be presented
to illustrate the effectiveness of the proposed method. First,
we compare our method with previous works in visual and
quantitative aspects at reduced and full resolution, respectively.
Then we test the sensitivity to change in scale ratio between
MS and PAN images. Finally our method is extended to
hyper-spectral image pansharpening.

The experiments on MS pansharpening are validated on
two datasets (see: http://glcf.umd.edu/) acquired by different
sensors: a) Quickbird sensor which provides LRMS image
at 2.44-2.88 m resolution and PAN image at 0.61-0.72 m
resolution; b) IKONOS sensor, the resolution cell of which
is 4 m × 4 m for the LRMS bands and 1 m × 1 m for the
PAN band. Note that both the two sensors work in the visible
and near-infrared spectrum range with four bands (blue, green,
red, and near infrared) in MS images and the scale ratio r = 4.
All results are shown by using an RGB representation.

We compare the proposed algorithm with some relevant
state-of-the-art techniques including A-IHS [63], P+XS [36],
VWP [37], MTF-GLP-HPM [57], [64], Indusion [65],
SIRF [40], PNN [42] and PanNet [44]. The parameters
for each method are tuned individually according to the
authors’ suggestions and the best set is selected for each
method, respectively. When no authors’ specifications are
provided, the interpolation of the LRMS image for generat-
ing the input HRMS image is carried out by using bicubic
interpolation. Besides, we train the PNN and PanNet using
10000 PAN/LRMS/HRMS patch pairs of size 64 × 64/16 ×
16 from datasets of QuickBird and IKONOS satellites. The
parameters of our algorithm are selected as follows: μ ∈
[5, 15], β ∈ [0.5, 2]. The value of γ depends on the noise
amount, and is set to 0.005 in our experiments. The value
of αi depends on the MTF [57] of MS sensor. Besides,
the parameter ς in stop criterion is set as 10−4. By the way,
we note that all the following experiments are implemented
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Fig. 6. Pansharpening results comparison(sourse:IKONOS). The LRMS image is on the upper-left corner of the ground-truth. (a) Ground-truth/LRMS.
(b) A-IHS. (c) P+XS. (d) VWP. (e) MTF-GLP-HPM. (f) Indusion. (g) SIRF. (h) PNN. (i) PanNet. (j) Ours.

Fig. 7. Pansharpening results comparison(sourse:QuickBird). The LRMS image is on the upper-left corner of the ground-truth. (a) Ground-truth/LRMS.
(b) A-IHS. (c) P+XS. (d) VWP. (e) MTF-GLP-HPM. (f) Indusion. (g) SIRF. (h) PNN. (i) PanNet. (j) Ours.

using MATLAB 2015a on a desktop computer with 3.4GHZ
Intel core i7-4770 CPU, and it costs about 14s for PAN images
with 256 × 256 pixels and scale ratio r = 4.

A. Comparison at Reduced Resolution
In the first part, we do some simulated experiments at

reduced resolution based on the Wald’s protocol [66]. Firstly,
the original MS images are treated as the reference HRMS
ones, i.e., the ground truth. Then, the PAN images and corre-
sponding LRMS images at reduced resolution are generated in
the same way as illustrated in [8]. More in detail, the degra-
dation is obtained by applying to the available MS and PAN
images an LPF and a decimation operator characterized by a
sampling factor equal to the resolution ratio r .

In the following, the simulated PAN and LRMS images
will be exploited to yield the resulting HRMS images by our
method and eight previous works [36], [37], [40], [42], [44],
[57], [63]–[65], and the results will be compared with each

other in visual and quantitative aspects. Clearly, a better result
should be closer to the ground truth.

1) Visual Comparison: We now show some pan-sharpened
results as well as the ground truth images in Figs. 6–8. From
these result images we can see that each methods can obtain
images with better visual effect than LRMS image. The results
by P+XS [36], VWP [37] and Indusion are relatively inferior
at the first sight as the overall image details are blurred and
the intensities of the images have been slightly changed. Lots
of artifacts exist in the results of Indusion [65] and SIRF [40],
especially near the sharp edges, though they preserves spec-
tral information well. Images produced by A-IHS [63] and
MTF-GLP-HPM [57], [64] suffer from slight color distortion
although its edges are distinct. The results by deep learning
methods [42], [44] and the proposed methods seem much bet-
ter than others with no spectral distortion or obvious artifacts.

For better visualization, Fig. 9 shows the corresponding
error images, the pixel values of which are difference between
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Fig. 8. Pansharpening results comparison(sourse:QuickBird). The LRMS image is on the upper-left corner of the ground-truth. (a) Ground-truth/LRMS.
(b) A-IHS. (c) P+XS. (d) VWP. (e) MTF-GLP-HPM. (f) Indusion. (g) SIRF. (h) PNN. (i) PanNet. (j) Ours.

Fig. 9. The corresponding error images of results in Figs. 6-8. (a) A-IHS. (b) P+XS. (c) VWP. (d) MTF-GLP-HPM. (e) Indusion. (f) SIRF. (g) PNN.
(h) PanNet. (i) Ours.

the pan-sharpened HRMS images and the corresponding
ground-truth and are rescaled. From these error images, any
deficiencies can be clearly observed, which is consistent with
above analysis. For example, owing to severe spatial and
spectral distortion, the performance of P+XS [36] and Indu-
sion [65] is poorer than others. VWP [37] and SIRF [40] have
some blurriness near edges. A-IHS [63] suffers from relatively
severe spectral distortion, while MTF-GLP-HPM [57], [64]
has slight spectral and spatial distortion. The errors of
PNN [42] and PanNet [44] are minor and spread over
the whole image, while errors of our proposed method are
also minor but sparser distributed, which means that our
pansharpened result is closer to the ground-truth.

2) Quantitative Analysis: There are many metrics for eval-
uating the quality of the pan-sharpened product, with respect
to an available reference HRMS image. Since each metric has
its own advantages and limitations, we choose nine common
metrics for comprehensive assessment. Four global indexes
are used including the Erreur Relative Globale Adimension-
nelle de Synthèse (ERGAS) [67], universal image quality
index (Q-index) [68], Root Mean Squared Error (RMSE)

and Peak Signal to Noise Ratio (PSNR). Three metrics
account for spectral distortion, including Spectral Angle Map-
per (SAM) [69], A vector extension of the Q-index (Q4) [70]
and Relative Average Spectral Error(RASE) [71]. The Spatial
Correlation Coefficient (SCC) [72] and Correlation Coefficient
(CC) [67] are introduced for evaluating spatial distortion.
We declare that the block size for calculating Q4 is 32 in our
experiments.

The quantitative results of aforementioned three contrast
tests, i.e., Figs. 6-8, are presented in Tables I-III, respectively.
The ideal value for each metric is shown in the last row and the
best value for each measure has been highlighted. We can use
these data to better analyse previous works and the proposed
method. P+XS and Indusion perform worse than others with
respect to most measures. Beyond that, A-IHS has a relative
poor rank in terms of metrics evaluating spectral distortion,
such as SAM and RASE, while VWP is not good as to
metrics evaluating spatial distortion. The performance of SIRF
and PNN was mediocre. MTF-GLP-HPM, PanNet and ours
usually obtain top three results using most measures. Viewed
as a whole, our method is better than all previous methods
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TABLE I

PERFORMANCE COMPARISON ON THE IMAGES IN FIG. 6

TABLE II

PERFORMANCE COMPARISON ON THE IMAGES IN FIG. 7

TABLE III

PERFORMANCE COMPARISON ON THE IMAGES IN FIG. 8

TABLE IV

AVERAGE PERFORMANCE COMPARISON ON LARGE IMAGES

in terms of most metrics, which is enough to demonstrate the
effectiveness of our methods.

3) Large Scale Images: In order to verify the validity of
the above analysis, we do experiments on some large-scale
images with the number of pixels from 6.4 ×106 to 1.6 ×107

for original MS images. These images, containing vegetation

(e.g., forest, crops), bodies of water (e.g., lake, river) and urban
area (e.g., house, road), are typically partitioned into tiles for
efficient processing. Here we give the average metric results of
these images which are listed in Table IV. Clearly, our method
is consistently better than all previous methods. Once again,
these results demonstrate the success of our method.
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Fig. 10. Pansharpening results comparison (sourse:Quickbird) on the real-world images. (a) MS. (b) A-IHS. (c) P+XS. (d) VWP. (e) MTF-GLP-HPM.
(f) Indusion. (g) SIRF. (h) PNN. (i) PanNet. (j) Ours.

Fig. 11. The zoomed-in areas of PAN image and results of Indusion, SIRF,
PNN, PanNet and ours in Fig. 10. (a) PAN. (b) Indusion. (c) SIRF. (d) PNN.
(e) PanNet. (f) Ours.

B. Comparison at Full Resolution
In the second part, we evaluate different pansharpening

algorithms at full resolution which are also acquired by Quick-
Bird and IKONOS satellites. The PAN and LRMS images are
at their capture resolution and we do not add any artificial
transformation on them.

1) Visual Comparison: The results are shown in Fig. 10.
As is shown, many results obtained in the analysis performed
at reduced resolution are in line with those obtained at full
resolution. The results by VWP and P+XS are so blurry that
many details are missing. As for images yield by Indusion
and A-IHS, we can see that color in the vegetation area
tends to change, which is a sign of color distortion. Although
SIRF and MTF-GLP-HPM preserve details well, they have
many artifacts near edges. PNN suffers from slight blurriness.
By comparison, PanNet and our method perform better, with
no obvious artifacts or color distortion.

A closer look at the fused images of Indusion, SIRF,
PNN, PanNet and ours (top five methods in the following
quantitative evaluation) are shown in Fig. 11, which presents

TABLE V

AVERAGE PERFORMANCE ON THE 22 IKONOS IMAGES

the zoomed-in areas. One can clearly see that there are color
artifacts near the road edges in all images. Artifacts of our
proposed method are relatively slighter.

2) Quantitative Analysis: In order to perform quantitative
assessment at full resolution, the Quality with No Refer-
ence (QNR) index [73] was proposed. The QNR index is
defined as

QN R = (1 − Dλ)
α(1 − DS)β (31)

The two separate values Dλ and DS quantify the spectral
and the spatial distortion, respectively. We consider 22 images
from IKONOS satellite and 16 images from QuickBird satel-
lite, all with size 512×512 for PAN images. Tables V and VI
report the average values of the Dλ, DS and QNR. Again we
find that the proposed method outperforms the other methods.

C. Sensitivity to Change in Scale Ratio r
All experiments we mentioned above are validated on PAN

images and corresponding LRMS images with the scale ratio
r = 4. What will the effects be if the scale ratio changes?
In order to verify the reliability of our method, we do one more
comparison experiment. With different scale ratio r , we com-
pute PSNR of each method to measure their performance.
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TABLE VI

AVERAGE PERFORMANCE ON THE 16 QUICKBIRD IMAGES

Fig. 12. PSNR of results with different scale ratio.

The result is shown in Fig. 12, in which the deep learning
based model PanNet [44] and PNN [42] are not involved
for it is time-consuming to retrain the two models with
different scale ratio. We can obviously see that although PSNR
decreases with the increasing of scale ratio for all methods,
the proposed method always outperforms the others.

D. Extension to Hyper-Spectral (HS) Images

The proposed method can be easily extended to HS pan-
sharpening without modifications, in which the MS image is
replaced by the HS image. The number of bands and the
scale ratio are dependent on the input data. Some experimental
tests were conducted at reduced resolution with Moffett field
datasets according to the Wald’s protocol [66]. The dimen-
sions of the PAN are 185 × 395 with a spatial resolution
of 20m whereas the size of the HS image is 37 × 75 with
a spatial resolution of 100m, which means the scale ratio
is 5. The HS image contains 224 bands covering the spectral
range 0.4-2.5 nm. Note that the running time is about 1000s.
We compared our method with GS [17] and GFPCA [25],
two methods which originally designed for MS pansharp-
ening but can be also extended to HS pansharpening, and
CNMF [47], method designed for HS pansharpening. And we
select four metrics to evaluate these methods. The result is
shown in Table VII. With no doubt, CNMF [47] performs best
with respect to all metrics for its pertinence. Our performance
is closed to the best one, and among those methods which are
applicable for both MS and HS pansharpening, the proposed
method is superior to others with slight advantage.

TABLE VII

PERFORMANCE COMPARISON ON THE MOFFETT FIELD DATASETS

V. CONCLUSION

In this paper, a novel and powerful pansharpening algorithm
is proposed based on Bayesian theory. The model turns three
reasonable assumptions into a combination of three probability
terms, the negative log function of which is a minimization
problem. Then ADMM is used to find the optimum of the
problem, with sufficient implementation details. To evaluate
the effectiveness of our method, several kinds of experiments
were conducted at full and reduced resolusion. The results
show that the proposed method outperforms other state-of-
the-art fusion methods in terms of both spectral and spatial
qualities, with higher reliability. Further experiment shows
that the proposed method can be easily extended to HS
pansharpening.

Our method may benefit some applications in remote sens-
ing because of the high accuracy and high reliability property.
Of course, our method is not perfect. For example, three
parameters need to be tuned manually in our algorithm. In the
future, we will focus on auto-tuning parameters and try to
improve Bayesian model to pansharpening task.
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