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Abstract
Blind image deconvolution is the process of estimating both the original 
image and the blur kernel from the degraded image with only partial or no 
information about degradation and the imaging system. It is a bilinear ill-
posed inverse problem corresponding to the direct problem of convolution. 
Regularization methods are used to handle the ill-posedness of blind 
deconvolution and get meaningful solutions. In this paper, we investigate a 
convex regularized inverse filtering method for blind deconvolution of images. 
We assume that the support region of the blur object is known, as has been 
done in a few existing works. By studying the inverse filters of signal and 
image restoration problems, we observe the oscillation structure of the inverse 
filters. Inspired by the oscillation structure of the inverse filters, we propose to 
use the star norm to regularize the inverse filter. Meanwhile, we use the total 
variation to regularize the resulting image obtained by convolving the inverse 
filter with the degraded image. The proposed minimization model is shown 
to be convex. We employ the first-order primal-dual method for the solution 
of the proposed minimization model. Numerical examples for blind image 
restoration are given to show that the proposed method outperforms some 
existing methods in terms of peak signal-to-noise ratio (PSNR), structural 
similarity (SSIM), visual quality and time consumption.

Keywords: blind image deconvolution, total variation, star norm,  
primal-dual, regularization
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1.  Introduction

The recorded images are often degraded by blur and additive noise due to environmental 
effects and imperfections in the imaging system. In the image capturing process, blurring 
usually occurs due to out-of-focus lens, atmosphere turbulence, relative movement between 
scene and camera or object motion during exposure time (Banham and Katsaggelos 1997, 
Vogel 2002, Hansen et al 2006, Bonettini et al 2008, Katsevich et al 2011, Borcea et al 2013, 
Lou et al 2014). Blurring causes spread of edges, which leads to the loss of sharpness and con-
trast in the recorded image. Noise is an undesirable by-product of image recording that adds 
spurious and extraneous information. Image restoration is the task of estimating the original 
image from blurred and noisy measurements. Mathematically, a space-invariant model for the 
degraded image is expressed as a convolution of an original image and a point spread function 
(PSF), plus the Gaussian noise (Jiang and Wang 2003, Calvetti et al 2004, Chan and Shen 
2005, Fornasier et al 2012):

g = h ∗ f + η,� (1)

where ∗ denotes the two-dimensional linear convolution operator, g is the degraded image, f is 
the original image, η is the additive Gaussian noise and h is a PSF which represents the linear 
shift-invariant blur kernel. If the blur kernel is given as a prior, estimating the original image 
is known as a nonblind deconvolution problem. In the past, the nonblind deconvolution algo-
rithms such as Tikhonov regularization, total variation (TV) regularization and wavelet frame 
regularization have been proposed (Tikhonov and Arsenin 1977, Rudin et al 1992, Abdoulaev 
et al 2005, Paragios et al 2006, Dong et al 2011, Ito and Jin 2011, Cai et al 2012a, Chan et al 
2013, Gerth and Ramlau 2014, Pöschl and Scherzer 2015, Bao et al 2016).

However, the blur kernel of the degraded model is usually unknown in most real applica-
tions such as astronomical imaging, remote sensing, microscopy, medical imaging, optics, 
photography, super-resolution and motion tracking applications. Such estimation problems 
are often called blind deconvolution. In blind deconvolution, we need to simultaneously esti-
mate the blur kernel h and recover the original image f directly from the degraded image g 
with only partial or no information about degradation and the imaging system (Justen and 
Ramlau 2009, Zunino et al 2009, Campisi and Egiazarian 2016). The major difficulty expe-
rienced in blind deconvolution lies in the insufficient information of two unknown variables 
and the existence of the additive noise. This poses problems in the process of image restora-
tion when there may be many or even possibly an infinite number of unmeaningful solutions.

For the past decades, a lot of research has been done to develop fast and robust algorithms 
for handling the ill-posedness of blind deconvolution. Generally, there are three main classes 
of methods for blind deconvolution of images. The first class is a two-step approach. It iden-
tifies the PSF in the first step and then use it to recover the original image with one of the 
conventional image restoration methods in the second step. To achieve successful restoration, 
it is important to estimate the PSF as accurately as possible. The major advantage of this class 
is the low computational complexity. The drawback is that they can be used only in the case 
that the true image and the PSF are known to have special characteristics (Joshi et al 2008, 
Xu and Jia 2010). The second class is more generally applicable, which recovers the original 
image and estimates the PSF simultaneously. This class can be further divided into paramet-
ric and nonparametric methods. The parametric methods assume that the original image or 
the PSF follows some model. Popular parametric models include the PSFs resulting from a 
Gaussian blur system, an autoregressive prior system, linear camera motion and out-of-focus 
lens system (Molina and Ripley 1993, Kundur and Hatzinakos 1996, Likas and Galatsanos 
2004, Chung and Nagy 2010). The nonparametric estimation approaches do not assume any 

X-G Lv et alInverse Problems 34 (2018) 035003



3

parametric model of the original image or the PSF. Instead, they utilize deterministic con-
straints on the PSF or the original image such as nonnegativity, known finite support and 
existence of invariant edges. One of the earliest nonparametric methods is the iterative blind 
deconvolution (IBD) algorithm developed by Ayers and Dainty (1988). In the IBD method, it 
is assumed that the PSF is nonnegative with known finite support constraint. The IBD method 
is widely used due to its low computational complexity and its robustness in the presence 
of additive noise. The major disadvantage of the IBD method is that the global convergence 
has not been proved. Another nonparametric method given by McCallum (1990) estimates 
the PSF and the original image by minimizing a multimodal cost function with a simulated 
annealing (SA) algorithm. The SA method is reliable and produces reasonable results in the 
presence of noise. But the slow convergence and high computational complexity are major 
obstacles limiting the real-time applications. Later, nonparametric methods based on regular-
izers for both the original image and the PSF are proposed to handle the bilinear ill-posedness 
of blind deconvolution. In Chan and Wong (1998), Chan and Wong proposed double TV regu-
larizers for blind deconvolution of images. The motivation for using TV regularization for 
both the PSF and the original image is due to the fact that the PSF and the original image 
usually have edges. Numerical results indicate that the double TV scheme is quite robust to 
noise especially for discontinuous blur. To greatly reduce the computational cost and improve 
the image quality, the split Bregman iteration approach was employed in Li et al (2012) for 
solving the double TV blind deconvolution model. Recently, a nonparametric regularization 
approach was proposed in Cai et al (2012b) to remove a motion blurred image due to camera 
shake by regularizing the sparsity of both the original image and the motion blur kernel under 
tight wavelet frame systems. The authors used an adapted version of the split Bregman method 
to efficiently solve the resulting minimization problem. The third class of blind deconvolution 
is the inverse filtering methods. Approaches which belong to this class estimate the inverse 
of the PSF and then obtain the approximate image of the original image by convolving the 
degraded image with the inverse filter. One of the most popular inverse filtering method is the 
nonnegativity and support constraints recursive inverse filtering (NAS-RIF) algorithm pro-
posed by Kundur and Hatzinakos (1998). The NAS-RIF method imposes the nonnegativity 
and known finite support constraint on the original image, and assumes that the PSF and its 
inverse are absolutely summable. A variable finite impulse response (FIR) inverse filter was 
used to convolve with the degraded image and the resulting output is an estimate of the origi-
nal image. The major advantage of the NAS-RIF method is that it has lower computational 
complexity level and fast convergence to a feasible set of solutions. However, numerical simu-
lations show that the NAS-RIF method is very sensitive to noise due to the high pass property 
of the inverse filter which amplifies high frequency noise. As a result, the converged solution 
may not be the best estimate of the original image in the presence of noise. Although Kundur 
and Hatzinakos suggested that the noise amplification problem can be relieved by terminat-
ing the restoration procedure through visual inspection, in practice, it has never been easy to 
determine which is the optimal iteration for termination. In order to reduce noise amplifica-
tion, a regularization proposed by Ng et al (2000) is applied for the inverse filter used in the 
NAS-RIF method. At each iteration, the eigenvalues of the convolution matrix corresponding 
to the inverse filter, which are below a threshold are suppressed and the resulting error is also 
made a part of the overall objective function. Preliminary numerical results on some simulated 
and optical imaging problems indicate the effectiveness of the method. Other inverse filtering 
methods and extension of the NAS-RIF method can be found in Benameur et al (2008), Dolui 
and Michailovich (2011), Matsuyama et al (2000), Michailovich and Tannenbaum (2007), 
Ong and Chambers (1999) and Wang and Ng (2016).
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In this paper, we investigate a regularized inverse filtering method for blind deconvolution 
of images. In the proposed method, two regularization terms are added to the objective func-
tion of NAS-RIF so as to improve the quality of blind image restoration. One regularization 
term is the total variation of the resulting image, which is obtained by convolving the inverse 
filter with the degraded image. The TV regularization from Rudin et  al (1992) is used to 
stabilize the inverse solution and alleviate the sensitivity to noise. Especially, the TV regu-
larization method is effective in preserving sharp edges without penalizing smooth regions. 
Another regularization term is the star norm (Vese and Osher 2003, Aujol et al 2005) of the 
inverse filter. For the prior of the inverse filter, we choose the star norm as the regularization 
function. The reason is that the inverse filter lies in a space which contains signals with large 
oscillations such as textures and has a small norm in this space. We show that the proposed 
minimization model is convex. The first-order primal-dual method from Chambolle and Pock 
(2011) is applied to compute the solution of the proposed minimization problem. Quantitative 
and qualitative experimental evaluations demonstrate that the proposed method performs bet-
ter than some existing related restoration methods.

The rest of this paper is outlined as follows. In section 2, we discuss the properties of the 
inverse filters. In section 3, we propose a novel minimization model for blind deconvolution 
of images and analyze the convexity of the proposed minimization model. In section 4, we 
first briefly introduce the first-order primal-dual algorithm, and then employ it to compute the 
solution of the proposed minimization problem. Section 5 is devoted to illustrating the perfor-
mance of the proposed approach. We give the concluding remarks in section 6.

2. The basic properties of inverse filters

In this section, we study the oscillation and symmetric properties of the inverse filters. Let us 
first consider the signal/image degradation model (1) without noise:

g = h ∗ f .

In order to recover the true signal/image f, we need to find the inverse filter u of h, such that

f = u ∗ g.� (2)

2.1.  1D inverse filter

To better understand the inverse filters, we begin with the one-dimensional discrete deconvo-
lution problem. Let the original signal be

f̂ = ( f−l+1, . . . , f0, f1, . . . , fn, fn+1, . . . , fn+l)
T

and the PSF be given by

h = (h−l, h−l+1, . . . , h0, h1, . . . , hl−1, hl)
T

with center h0 and 
∑l

j = −l hj = 1. The convolution of h and f̂  leads to the blurred signal g, 
with gi =

∑i+l
j = i−l hi−jfj. In the matrix form (Ng et al 1999, Lv et al 2012), we have
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


g1
...

gn


 =




hl · · · h0 · · · h−l

hl
. . . h0 · · · h−l 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
0 hl · · · h0 · · · h−l

hl · · · h0 · · · h−l







f−l+1

f−l+2
...
f0
f1
...
fn

fn+1
...

fn+l−1

fn+l




.

�

(3)

The purpose of the nonblind signal restoration is to recover the vector f = ( f1, · · · , fn)T  given 
the PSF h and the blurred signal g = (g1, · · · , gn)

T . Thus the blurred signal g is determined 
not only by f, but also by the boundary conditions ( f−l+1, . . . , f0)T  and ( fn+1, . . . , fn+l)

T . In 
this paper, we use the periodic boundary conditions (BCs). For this case, the data outside f 
satisfies




f0 = fn
...
f−l+1 = fn−l+1

and





fn+1 = f1
...
fn+l = fl

.

By straightforward computation and careful arrangement, it is not difficult to know that (3) 
can be rewritten as

Hf = g,

where H is an n × n circulant matrix given by

H =




h0 · · · h−l 0
...

. . . . . . . . .

hl
. . . . . . . . . . . .
. . . . . . . . . . . . h−l

. . . . . . . . .
...

0 hl · · · h0




+




0 hl · · · h1

. . .
...
hl

h−l

...
. . .

h−1 · · · h−l 0




.

It should be noted that the ([ n
2 ] + 1)th column of the circulant matrix H is 

hbig = [0, . . . , 0, h, 0, . . . , 0]T  with [ n
2 ]− l zeros before h, where [ n

2 ] is the largest integer not 
exceeding n2. It is straightforward that h ∗ f = hbig ∗ f = f ∗ hbig = g.

Let ω = e−i 2π
n  and i2 = − 1 throughout the paper. In the following proposition, we give 

the existence and uniqueness of the inverse filter in the one-dimensional case.

Proposition 2.1.  For each interger n � 2l + 1, there exists a unique inverse filter u of h 

in (3) if and only if 
∏n

j = 1 ϕ(ω
j−1) �= 0 where ϕ(x) =

∑l
j = −l hjx j . Moreover, the inverse 

filter u is given by the ([ n
2 ] + 1)th column of the inverse matrix of H.

X-G Lv et alInverse Problems 34 (2018) 035003
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Proof. It is well-known that any circulant matrix can be diagonalized by the Fourier transfor-
mation matrix (Ng 2004, Lv et al 2009). For the circulant matrix H, we have

H = F∗ΛF,

where F* is the conjugate transpose of F and F is the n-by-n Fourier transformation matrix 
whose entries are given by

(F)jk =
1√
n

e−i 2π( j−1)(k−1)
n , 1�j, k�n

Here, Λ = diag(λ1, . . . ,λn) is a diagonal matrix where λj is the jth eigenvalue of H. We may 

immediately obtain that λj = ϕ(ωj−1). If 
∏n

j = 1 ϕ(ωj−1) �= 0, the matrix H is invertible 
and the inverse matrix H−1 is unique. Similar as the construction of H from h, we can get the 
inverse filter u from H−1 by extracting the ([ n

2 ] + 1)th column.� �

Let Fj be the jth row of the Fourier transformation matrix F. We can write H as

H =

n∑
j = 1

λjF∗
j Fj.

If H is nonsingular, we have

H−1 =

n∑
i = 1

λ−1
j F∗

j Fj.

Note that F∗
j Fj, j = 1, . . . , n can be seen as basis matrices for H and H−1. As the value |λj| 

decreases, the real part and the imaginary part of the basis matrix F∗
j Fj  tend to have more 

oscillations. See (Hansen et al 2006, chapter 5) for more details.
For example, let h  =  [0.25,0.5,0.25]T and n = 15. To illustrate the oscillation struc-

ture, we display signs of the real part and the imaginary part of the basis matrix F∗
j Fj  for 

j = 1, · · · , 15 in figures 1(a) and (b). It can be seen that as the index j increases from 1 to 
8 and decreases from 15 to 9, the basis matrix tends to have more high frequency content, 
ranging from the flat appearance to matrices with more oscillations. We plot |λj| in figure 1(c). 
Note that if n is odd, then λj and λn−j+2 are conjugate pairs for j = 2, . . . , n+1

2  and λ1 ∈ R. 
It is clear in figure 1 that the smaller |λj| is, the more oscillations the basis matrix F∗

j Fj  has. In 
this example, the basis matrices F∗

8 F8 and F∗
9 F9 have the largest oscillations. In figure 1(d), we 

plot the absolute value of eigenvalues |λ−1
j | for the inverse matrix. It is obvious that the basis 

matrix F∗
j Fj  corresponding to the smaller value |λj| contributes much more to H−1. Hence, 

H−1 has oscillations. Due to the circulant structure of H−1, the inverse filter u (the ([ n
2 ] + 1)th 

column of H−1) also has oscillations. We show the signs of H−1 in figure 1(e). In figure 1(f), 
we plot the signs of the inverse filter u, which is the 8th column of H−1. We see from this fig-
ure that the inverse filter has oscillations.

2.2.  2D inverse filter

The results of the one-dimensional discrete problems can be extended in a natural way 
to two-dimensional discrete image deconvolution problems. Let the original image be 
f = ( fjk)m,n

j,k = 1 ∈ Rm×n and the PSF be h = (hjk)
l
j,k = −l ∈ R(2l+1)×(2l+1) with center h0,0 

and 
∑l

j,k = −l hj,k = 1. With the periodic BCs, the resulting blurring matrix H is a block 
circulant matrix with circulant blocks. We extend the dimension of h by padding with zeros 
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to obtain the big PSF so that it has the same dimension as the original image. Let the m-by-n 
big PSF hbig be given by

hbig =




0 0 0
0 h 0
0 0 0




where the upper left corner is the ([m
2 ]− l)× ([ n

2 ]− l) zero matrix. The blurring matrix H 
can be constructed from the big PSF. We stack all the elements of hbig along columns and put 
the resulting vector at the ([ n

2 ]m + [m
2 ] + 1)th column of H. Then we obtain all elements of H 

using the block circulant with circulant blocks structure.

Proposition 2.2.  For each interger m, n � 2l + 1, there exists a unique inverse filter u of h 

if and only if 
∏m,n

j,k = 1 ϕ(ω
j−1,ωk−1) �= 0 where ϕ(x, y) =

∑l
j,k = −l hj,kx jyk. Moreover, the 

inverse filter u is obtained by reshaping the ([ n
2 ]m + [m

2 ] + 1)th column of the inverse matrix 
of H into an m × n array.

Proof. It is shown in Hansen et al (2006) that the block circulant matrix H with circulant 
blocks has the following spectral decomposition

H = F∗ΛF,

where F = En ⊗ Em, Ej ( j = m, n) is the j-by-j Fourier transformation matrix and ⊗ 
denotes the Kronecker product operator, Λ is a diagonal matrix whose diagonal elements 

j=1 j=2 j=3 j=4 j=5

j=6 j=7 j=8 j=9 j=10

j=11 j=12 j=13 j=14 j=15

(a)

j=1 j=2 j=3 j=4 j=5

j=6 j=7 j=8 j=9 j=10

j=11 j=12 j=13 j=14 j=15

(b)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

(d) (e) (f)

Figure 1.  1D example: h  =  [0.25,0.5,0.25]T, n = 15. (a) Signs of the real parts of 
the basis matrices (size: 15 × 15); (b) signs of the imaginary parts of the basis matrices 
(size: 15 × 15); (c) the absolute value of eigenvalues for H; (d) the absolute value of 
eigenvalues for the inverse matrix H−1; (e) signs of the inverse matrix (size: 15 × 15); (f) 
signs of the inverse filter(size: 15 × 1). (In (a), (b), (e) and (f), white: positive elements, 
black: negative elements, gray: zero elements).
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are the eigenvalues of H. Since FH = ΛF , we have Λemn = En ⊗ EmHI1 where emn is the 
mn-dimensional vector of all ones and I1 = (1, 0, . . . , 0)T . Hence, the eigenvalues of H can 
be obtained by the two-dimensional discrete Fourier transformation of the first column of 
H. Let λjk be the (km − m + j)th eigenvalue of H. We obtain that λjk = (EmHm,nEn)j,k for 
j = 1, . . . , m and k = 1, . . . , n, where Hm,n is obtained by reshaping the first column of H 
into an m × n matrix. More precisely, we have

Hm,n =




h0,0 h0,1 · · · h0,l 0 h0,−l · · · h0,−1

h1,0 h1,1 · · · h1,l 0 h1,−l · · · h1,−1
...

... · · ·
... 0 0

...
...

hl,0 hl,1 · · · hl,l 0 hl,−l · · · hl,−1

0 0 · · · 0
... 0 · · · 0

h−l,0 h−l,1 · · · h−l,l 0 h−l,−l · · · h−l,−1
...

... · · ·
...

...
... · · ·

...
h−1,0 h−1,1 · · · h−1,l 0 h−1,−l · · · h−1,−1




.

It then follows that λjk = ϕ(ω j−1,ωk−1) with ϕ(x, y) =
∑l

j,k = −l hj,kx jyk. If ∏m,n
j,k = 1 ϕ(ω

j−1,ωk−1) �= 0, the matrix H is invertible and the inverse matrix H−1 is unique. 
Similar as the construction of the block circulant with circulant blocks matrix H, we can get 
the inverse filter u by reshaping the ([ n

2 ]m + [m
2 ] + 1)th column of H−1 into an m × n array. �

For example, let h be the PSF generated by the MATLAB routine fspecial(‘gaussian’, 5, 
1) and m = n = 15. In figures 2(a) and (b), we show the signs of the real parts and the 
imaginary parts of some basis matrices. Note that only a 15 × 15 subregion of each matrix at 
10:24 rows and 10:24 columns is shown for better visualization. The absolute value of eigen-
values are shown in figure 2(c), in which the stars corresponding to the basis matrices shown 
in figures 2(a) and (b). The red stars correspond to large |λj| and the green stars correspond to 
small |λj|. It is easy to see that the basis matrices corresponding to small |λj| tend to have more 
oscillation information while the basis matrices corresponding to large |λj| have less oscilla-
tion information. We plot the absolute value of the eigenvalues of H−1 in figure 2(d) in which 
the star points are corresponding to figure 2(c). We show signs of the inverse matrix and signs 
of the inverse filter in figures 2(e) and (f) respectively. The oscillations of signs are obvious 
in the inverse filter.

In the following, we give some tests on the image deconvolution problems to further illus-
trate our observations. We consider three typical PSFs widely used in the image deconvolu-
tion problems: Gaussian kernel (Gaussian blur), motion kernel (motion blur) and disk kernel 
(out-of-focus blur). In figure 3, we display the PSFs and their inverse filters when applied 
on the standard test image ‘Cameraman’. It is shown that the inverse filters can recover very 
high quality images. We can observe from figure 3 that all the inverse filters have oscillation 
patterns. This motivates us to use the texture norm as a prior for the inverse filters. We choose 
the Meyer’s G space and the corresponding star norm defined for the continuous problems in 
Meyer (2001). It is proved in (Meyer (2001), lemma 14) that the oscillation functions have a 
small G norm.

Note that for the two-dimensional deconvolution problems the PSFs shown in figure 3 have 
some symmetric properties from the view point of matrix theory. For instance, the Gaussian 
PSF is rotationally symmetric, that is, hR( j,k) = hj,k for all 2D rotation transform R( j, k) 
and j, k = − l, . . . , l. The out-of-focus PSF is symmetric, i.e. hj,k = hk,j . The motion PSF 
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is centrosymmetric, i.e. hj,k = h−j,−k. Note that some usually used PSFs h are persymmet-
ric, i.e. hj,k = h−k,−j. It is not difficult to show that the inverse filter u has similar symmetry 
properties as h. More precisely, if h is rotationally symmetric, symmetric, persymmetric or 
centrosymmetric, then so is its inverse filter u. These symmetric properties can be proved by 
straightforward computation and we omit the proof here.

2.3.  Pseudo inverse filter

If the blurring matrix H is not invertible, we will find the pseudo inverse filter. In order to 
construct the pseudo inverse filter, instead of solving Hf = g, we compute the following 
least squares problem:

min
f

‖Hf − g‖2
2.� (4)

The least square problem has a unique least-squares solution f  =  H+ g of smallest norm (Golub 
and Van Loan 2012), where the pseudo inverse matrix H+ is given by

H+ =

n∑
j = 1,λj �=0

1
λj

F∗
j Fj.

j=1 j=15 j=23 j=30 j=38

j=45 j=53 j=60 j=68 j=75

j=83 j=90 j=98 j=105 j=113

(a)

j=1 j=15 j=23 j=30 j=38

j=45 j=53 j=60 j=68 j=75

j=83 j=90 j=98 j=105 j=113

(b)
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Figure 2.  2D example: h  =  fspecial(‘gaussian’, 5, 1), m = n = 15. (a) Signs of 
the real parts in subregions of some basis matrices (size: 15 × 15); (b) signs of the 
imaginary parts in subregions of some basis matrices (size: 15 × 15); (c) the absolute 
value of eigenvalues for H; (d) the absolute value of eigenvalues for the inverse matrix 
H−1; (e) signs of the inverse matrix (size: 225 × 225); (f) signs of the inverse filter (size: 
15 × 15). (In (a), (b), (e) and (f), white: positive elements, black: negative elements, 
gray: zero elements).
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Similar as the construction of the inverse filter, we choose the same column of the pseudo 
inverse matrix H+ to construct the pseudo inverse filter. Similar as the analysis and observa-
tion in section 2.2, we obtain that the pseudo inverse filter still has oscillation structure. We 
refer the interested reader to Louis (1999), Zhang (1997) and Pratt (2013) and references 
therein for the pseudo inverse filter.

Now let us consider the image degradation model (1) with noise. We aim to find the inverse 
filter u, such that

u ∗ g = f .� (5)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.  Examples of PSFs and their inverse filters. First column: From top to 
bottom are PSFs of Gaussian blur, motion blur and out-of-focus blur which are 
generated by the MATLAB routines fspecial(‘gaussian’,15, 5), fspecial(‘motion’,15, 
30) and fspecial(‘disk’, 6). Second column: the blurred images with PSFs in the first 
column. Third column: the inverse filters. Last column: the deblurred results using 
inverse filter by formula (2). (a) Guassian PSF. (b) PSNR  =  19.95 dB. (c) inverse 
filter. (d) PSNR  =  183.18 dB. (e) Motion PSF. (f) PSNR  =  20.33 dB. (g) inverse 
filter. (h) PSNR  =  231.85 dB. (i) Disk PSF. (j) PSNR  =  20.35. (k) inverse filter.  
(l) PSNR  =  240.80.
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Denote h−1 as the inverse filter constructed from H−1 if H is invertible and h−1
+  as the pseudo 

inverse filter constructed from H+ if H is not invertible. Then we have

h−1 ∗ g = f + h−1 ∗ η
or

h−1
+ ∗ g = f + h−1

+ ∗ η.

Both filters will generally yield high frequency amplification of the additive noise, thereby 

corrupting the estimate of the original image. Moreover, the construction of h−1 and h−1
+  

depends on the fact that h is known which is limited in real applications. In this paper, we pro-
pose to solve the inverse filter u by minimizing a new objective function without any known 
information about h. The objective function is convex such that the existence of inverse filter 
is guaranteed.

3. The proposed model

Firstly, let us introduce some notations. As in Chambolle (2004), the discrete gradient operator 
∇ : Rm×n → (Rm×n,Rm×n) is defined by

(∇v)j,k = ((∇1v)j,k, (∇2v)j,k)

with

(∇1v)j,k =

{
vj+1,k − vj,k, if j < m,
v1,k − vm,k, if j = m

and

(∇2v)j,k =

{
vj,k+1 − vj,k, if k < n,
vj,1 − vj,n, if k = n

for j = 1, . . . , m and k = 1, . . . , n, where vj,k represents the value of pixel ( j, k) in the 
image. The discrete divergence operator div : (Rm×n,Rm×n) → Rm×n is defined by

(divw)j,k = (∇Tw)j,k := (∇T
1 w1)j,k + (∇T

2 w2)j,k

with

(∇T
1 w1)j,k =

{
w1

m,k − w1
1,k, if j = 1,

w1
j−1,k − w1

j,k, if j > 1

and

(∇T
2 w2)j,k =

{
w2

j,n − w2
j,1, if k = 1,

w2
j,k−1 − w2

j,k, if k > 1

for j = 1, . . . , m and k = 1, . . . , n, where ∇T  is the adjoint of the operator ∇.
From Meyer (2001), we know that the discrete form of G-norm (star norm) ‖u‖� can be 

written as

‖u‖� = inf{‖w‖∞
∣∣u = divw, w = (w1, w2) ∈ (Rs×s,Rs×s),

|wj,k| =
√
(w1

j,k)
2 + (w2

j,k)
2 }
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where ‖w‖∞ = maxj,k |wj,k| := maxj,k

√
(w1

j,k)
2 + (w2

j,k)
2. It has been proved that the oscilla-

tion functions have small G norms.
Let us reformulate our blind image restoration method as follows. Given the degraded 

image

g = h ∗ f + n,

our aim is to find the inverse filter u such that

f =

{
max{u ∗ g, 0}, ( j, k) ∈ S,
fB, ( j, k) ∈ S̄.

where S is the support region, ̄S = Ω/S  is the background region, and Ω is the image domain, 
fB is the background intensity. In other words, the background region of the true image is 
known and f is nonnegative in the proposed method. Note that in the NAS-RIF method fB is 
assumed to be constant. In this paper, the background of the image to recover is known but not 
necessary to be uniformly gray, black, or white. This occurs in certain types of image process-
ing tasks with the known blurred region and real background. Note that the support region can 
be identified by the method proposed in Ong and Chambers (1999).

Based on the discussion in section 2.1, we consider the blind deconvolution of images 
using the following convex minimization model:

min
u

J(u) =
α

2
J1(u) + βJ2(u) + γJ3(u) +

1
2

J4(u),� (6)

where

J1(u) =
(
eT

s ues − 1
)2

,
J2(u) = ‖∇(u ∗ g)‖1,
J3(u) = ‖u‖�,

J4(u) = ‖u ∗ g − P(u ∗ g)‖2
F .

In the proposed model, g ∈ Rm×n is the degraded image, u ∈ Rs×s is the inverse filter to be 
determined, es = (1, . . . , 1)T  denotes a vector with length of s, eT

s ues is the sum of all ele-
ments of the inverse filter u, α, γ and β are nonnegative regularization parameters. P(v) is the 
projection operator defined as

P(v) =

{
max{v, 0}, ( j, k) ∈ S,
fB, ( j, k) ∈ S̄.� (7)

Let us give an interpretation of each term of the model. The first term J1(u) requires 
that the summation of inverse filter u equals one, which is reasonable for a filter. We know 
that the frequency response of the Dirac function δ = u ∗ h at the origin is represented by 
F(u)(0, 0) · F(h)(0, 0) = 1. Since the energy of an image is not absorbed and generated in 
the imaging system, the Fourier transformation of PSF at the origin is equal to one (Benvenuto 
et al 2009, Ding and Ren 2014). Thus, we have F(h)(0, 0) = eT

s hes = 1. So it is clear that 
F(u)(0, 0) = eT

s ues = 1.
The second term J2(u) is the total variation regularization term. It can preserve the edge 

information of the restored image u ∗ g (Rudin et al 1992, Vese 2001, Aubert and Kornprobst 
2006). The third term J3(u) is motivated by the observation in section 2 that the inverse filter 
is oscillating.
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The last term J4(u) is inspired by the NAS-RIF method where the support of blurred object 
is required (Kundur and Hatzinakos 1998). Using the projection operator P and the support 
S, we have

u ∗ g − P(u ∗ g) =

{
min{u ∗ g, 0}, (i, j) ∈ S,
u ∗ g − fB, (i, j) ∈ S̄.� (8)

Minimizing the term J4(u) is equal to penalizing the negative pixels inside the region of sup-
port and penalizing the pixels outside the region of support that are not equal to the back-
ground intensity. In other words, J4(u) asks that the restored image satisfies the nonnegative 
constraint and background constraint.

If the proposed model is strictly convex, then it admits a unique minimizer. In the follow-
ing, we show that the proposed model is strictly convex with respect to u.

Theorem 3.1.  The functional J(u) in (6) is convex. If the Fourier transform of g satisfies 
F(g)(ξ, η) �= 0 for all (ξ, η), then J(u) is strictly convex.

Proof. We will show that each component of J(u) is convex. For any u1, u2 ∈ Rs×s and 
λ ∈ [0, 1], we need to prove

Ji(λu1 + (1 − λ)u2) � λJi(u1) + (1 − λ)Ji(u2), i = 1, ..., 4.� (9)

For J1 and J2, the inequalities follow from the convexity of the quadratic function and the 
norm ‖ · ‖1 respectively.

For J3, assume u1 = divwu1 and u2 = divwu2 are two arbitrary decompositions of u1 and 
u2. Then λwu1 + (1 − λ)wu2 is an decomposition of λu1 + (1 − λ)u2, that is,

λu1 + (1 − λ)u2 = div(λwu1 + (1 − λ)wu2).

By the convexity of L∞ norm, we get

‖λwu1 + (1 − λ)wu2‖∞ � λ‖wu1‖∞ + (1 − λ)‖wu2‖∞.

Taking infimum on all the decompositions of u1 and u2, we get

‖λu1 + (1 − λ)u2‖� � λ‖u1‖� + (1 − λ)‖u2‖�
which implies the convexity of J3.

To prove the convexity of J4, let us decompose the support region as non-overlapped 
regions S+ and S− which are defined as

S+ := {( j, k) ∈ S |λu1 ∗ g + (1 − λ)u2 ∗ g � 0},

S− := {( j, k) ∈ S |λu1 ∗ g + (1 − λ)u2 ∗ g < 0}.

Another decomposition of S as four non-overlapped regions Γ++,Γ+−,Γ−+ and Γ−− is as 
follows:

Γ++ := {( j, k) ∈ S |u1 ∗ g � 0, u2 ∗ g � 0},

Γ+− := {( j, k) ∈ S |u1 ∗ g � 0, u2 ∗ g < 0},

Γ−+ := {( j, k) ∈ S |u1 ∗ g < 0, u2 ∗ g � 0},

Γ−− := {( j, k) ∈ S |u1 ∗ g < 0, u2 ∗ g < 0}.

Using the decomposition, we can rewrite the left hand side of (9) for i = 4 as
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J4(λu1 + (1 − λ)u2)

= ‖λu1 ∗ g + (1 − λ)u2 ∗ g − P(λu1 ∗ g + (1 − λ)u2 ∗ g)‖2
F

=




0, ( j, k) ∈ S+

‖λu1 ∗ g + (1 − λ)u2 ∗ g‖2
F, ( j, k) ∈ S−

‖λu1 ∗ g + (1 − λ)u2 ∗ g − fB‖2
F, ( j, k) ∈ S̄

=





0, ( j, k) ∈ S+ ∩ Γ++

0, ( j, k) ∈ S+ ∩ Γ+−

0, ( j, k) ∈ S+ ∩ Γ−+

‖λu1 ∗ g + (1 − λ)u2 ∗ g‖2
F, ( j, k) ∈ S− ∩ Γ+−

‖λu1 ∗ g + (1 − λ)u2 ∗ g‖2
F, ( j, k) ∈ S− ∩ Γ−+

‖λu1 ∗ g + (1 − λ)u2 ∗ g‖2
F, ( j, k) ∈ S− ∩ Γ−−

‖λu1 ∗ g + (1 − λ)u2 ∗ g − fB‖2
F, ( j, k) ∈ S̄

and rewrite the right hand side of (9) for i = 4 as

λJ4(u1) + (1 − λ)J4(u2)

= λ‖u1 ∗ g − P(u1 ∗ g)‖2
F + (1 − λ)‖u2 ∗ g − P(u2 ∗ g)‖2

F

=




0, ( j, k) ∈ Γ++

(1 − λ)‖u2 ∗ g‖2
F, ( j, k) ∈ Γ+−

λ‖u1 ∗ g‖2
F, ( j, k) ∈ Γ−+

λ‖u1 ∗ g‖2
F + (1 − λ)‖u2 ∗ g‖2

F, ( j, k) ∈ Γ−−

λ‖u1 ∗ g − fB‖2
F + (1 − λ)‖u2 ∗ g − fB‖2

F, ( j, k) ∈ S̄

=




0, ( j, k) ∈ S+ ∩ Γ++

(1 − λ)‖u2 ∗ g‖2
F, ( j, k) ∈ S+ ∩ Γ+−

λ‖u1 ∗ g‖2
F, ( j, k) ∈ S+ ∩ Γ−+

(1 − λ)‖u2 ∗ g‖2
F, ( j, k) ∈ S− ∩ Γ+−

λ‖u1 ∗ g‖2
F, ( j, k) ∈ S− ∩ Γ−+

‖λu1 ∗ g + (1 − λ)u2 ∗ g‖2
F, ( j, k) ∈ S− ∩ Γ−−

λ‖u1 ∗ g − fB‖2
F + (1 − λ)‖u2 ∗ g − fB‖2

F. ( j, k) ∈ S̄

.

By comparing the last expressions of the above two formulations in each region and using the 
convexity of the norm ‖ · ‖2

F, we obtain that J4 is convex. Note that another proof of convexity 
of J4 can be found in Kundur and Hatzinakos (1998).

The equalities in the above derivation hold if and only if (u − v) ∗ g = 0 and 
eT

s ues = eT
s ves. If F(g)(ξ, η) �= 0 for all (ξ, η), we have u = v, which implies the strictly 

convexity.� �

4. The algorithm

In this section, we derive an efficient numerical algorithm based on the primal-dual method. It 
is known that many numerical methods can be employed to solve the proposed minimization 
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problem (6) due to its convexity. For instance, the alternating direction method with multipli-
ers (ADMM) (Boyd et al 2011, Ouyang et al 2015), the split-Bregman algorithm (Goldstein 
and Osher 2009, Wu and Tai 2010), and the Chambolle-Pock algorithm (Chambolle and Pock 
2011). In this paper, we use the Chambolle-Pock algorithm which solves a general saddle-
point problem based on the primal-dual approach. The main reason is that, among the three 
algorithms, the Chambolle-Pock algorithm appears to be the fastest for non-smooth convex 
optimization problems arising in total variation regularization. It has been shown in Chambolle 
and Pock (2011) that the Chambolle-Pock algorithm has a convergence rate with one over the 
total number of iterations or more in some practical applications. In the following part, we 
briefly recall the Chambolle-Pock algorithm.

Let M : X → [0,+∞] and N∗ : Y → [0,+∞] be proper, convex, lower semi-continuous, 
N* be the convex conjugate of N. The Chambolle-Pock algorithm wants to solve the following 
general saddle-point problem:

minx∈X maxy∈Y M(x) + 〈Kx, y〉 − N∗(y),� (10)

where K : X → Y  is a linear map with the induced norm

‖K‖ = max{‖Kx‖ : x ∈ X with ‖x‖ � 1}.

By choosing the parameter θ ∈ [0, 1] and initializing (x(0), y(0)) ∈ X × Y  and x̄(0) = x(0), 
Chambolle and Pock developed the following iteration scheme for solving the problem (10):

y(i+1) = (I + τy∂N∗)−1(y(i) + τyKx̄(i)),

x(i+1) = (I + τx∂M)−1(x(i) − τxK∗y(i+1)),

x̄(i+1) = x(i+1) + θ(x(i+1) − x(i)),

where τx > 0 and τy > 0 are the given steps. We refer to Chambolle and Pock (2011) for more 
details.

Let us introduce two extra variables v ∈ Rm×n and w = (w1, w2) ∈ (Rs×s,Rs×s), and 
reformulate the problem (6) as the following constrained optimization problem:

minu,v,w

{
α
2 (e

T
s ues − 1)2 + β‖∇v‖1 + γ‖w‖∞ + 1

2 ‖v − P(v)‖2
F

}

subject to v = u ∗ g, u = divw.
� (11)

Then we can employ the Chambolle-Pock algorithm for solving the proposed inverse filtering 
model (6) by considering the following primal-dual optimization problem:

max
p,q,r

min
u,v,w

{
α
2 (e

T
s ues − 1)2 + β〈∇v, p〉+ γ‖w‖∞ + 1

2 ‖v − P(v)‖2
F

〈v − u ∗ g, q〉+ 〈u − divw, r〉 − IQ( p)}

}
,� (12)

where p, q and r are the dual variables. The convex set Q is given by

Q = { p = ( p1, p2) ∈ (Rm×n,Rm×n) | ‖ p‖∞ � 1}.

The function IQ denotes the indicator function of the set Q, which is defined as

IQ( p) =

{
0, if p ∈ Q,
+∞, otherwise.

Then the Chambolle-Pock algorithm is defined through the iteration scheme as follows. As 
for the dual variables p, q and r, we have
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p(i+1) = argmax
p

β〈∇v̄(i), p〉 − 1
2σp

‖ p − p(i)‖2
F − IQ( p),� (13)

q(i+1) = argmax
q

〈v̄(i) − ū(i) ∗ g, q〉 − 1
2σq

‖q − q(i)‖2
F,� (14)

r(i+1) = argmax
r

〈ū(i) − divw̄(i), r〉 − 1
2σr

‖r − r(i)‖2
F.� (15)

As for the primal variables u, v and w, we have

u(i+1) = argmin
u

α

2
(eT

s uet − 1)2 − 〈u ∗ g, q(i+1)〉+ 〈u, r(i+1)〉+ 1
2τu

‖u − u(i)‖2
F,

�

(16)

v(i+1) = argmin
v

β〈v,∇Tp(i+1)〉+ 〈v, q(i+1)〉+ 1
2
‖v − P(v)‖2

F +
1

2τv
‖v − v(i)‖2

F,

�

(17)

w(i+1) = argmin
w

γ‖w‖∞ + 〈−divw, r(i+1)〉+ 1
2τw

‖w − w(i)‖2
F.� (18)

As for the intermediate variables ū and v̄, we have

ū(i+1) = 2u(i+1) − u(i),� (19)

v̄(i+1) = 2v(i+1) − v(i),� (20)

w̄(i+1) = 2w(i+1) − w(i).� (21)

It is easy to derive the update formulas of dual variables p, q, r. For p, we have

p(i+1)
j,k = ( p(i) + βσp∇v̄(i))j,k/max(|( p(i) + βσp∇v̄(i))j,k|, 1)� (22)

for j = 1, . . . , m and k = 1, . . . , n, where | pj,k| =
√
( p1

j,k)
2 + ( p2

j,k)
2 . As for q and r, we 

have

q(i+1) = q(i) + σq(v̄(i) − ū(i) ∗ g),� (23)

r(i+1) = r(i) + σr(ū(i) − divw̄(i)).� (24)

By using the equality 〈u ∗ g, q(i+1)〉 = 〈u, g′ ∗ q(i+1)〉 where g′ is obtained from g through 
a horizontal and a vertical flip, we obtain that the update formula of u in subproblem (16) is 
given as

Vec(u(i+1)) = (I + ταes2 eT
s2)

−1 · Vec(u(i) + τu(αeseT
s + g′ ∗ q(i+1) − r(i+1))),

where Vec(u) denotes a vector obtained by stacking all the elements in the matrix u along col-
umns. This is a symmetric positive definite problem. Usually, the solution can be computed by 
the conjugate gradient method (Ding et al 2015). In this paper, we use a simple direct method. 
Using the Sherman-Morrison-Woodbury formula (Sherman and Morrison 1950), we have

(I + ταes2 eT
s2)

−1 = I − τα

τuαs2 + 1
es2 eT

s2 .
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So we get

Vec(u(i+1)) = (I − τα

τuαs2 + 1
es2 eT

s2) · Vec(u(i) + τu(αeseT
s + g′ ∗ q(i+1) − r(i+1))).

�

(25)

To get the update formula of v in the subproblem (17), let us introduce two indicator functions:

Is(vj,k) =

{
1, ( j, k) ∈ S,
0, ( j, k) ∈ S̄

and

In(vj,k) =

{
1, vj,k < 0,
0, vj,k � 0.

With the notations, we have

v − P(v) = (I − Is)(v − fB) + IsIn(v).

Then, the update equation of v is given as

v(i+1)
j,k =

(
v(i) + τv(I − Is) fB − τv(β∇Tp(i+1) + q(i+1))

)
j,k
/ (τv(I − Is + IsIn)j,k + 1)

� (26)
for j = 1, . . . , m and k = 1, . . . , n. For the w subproblem (18), we have

w(i+1) = argmin
w

‖w‖∞ +
1
τw

‖w − (w(i) + τw∇r(i+1))‖2
F.� (27)

It follows from Combettes and Wajs (2005) that

w(i+1) = w(i) + τw∇r(i+1) − PΩ(w(i) + τw∇r(i+1)),� (28)

where PΩ is the projection operator onto Ω = {w ∈ (Rs×s,Rs×s), ‖w‖1 � τw}.
Finally, the Chambolle-Pock algorithm used to solve the optimization problem (6) is sum-

marized as in algorithm 1.

Algorithm 1. 

• �Initialization: Choose τu, τv, τw, τp, τq, τr > 0, u0 = δ, v0  =  g, w0 = 0, 
p0 = 0, q0 = 0, r0 = 0.

• For k = 0, 1, 2, . . ., repeat until stoping criterion is reached
   Update p, q, r by (22), (23) and (24) respectively;
   Update u, v, w by (25), (26) and (28) respectively;
   Update ū, v̄, w̄ by (19), (20) and (21) respectively.
• Output: uk+1*g.

To enhance the numerical stability, we add the symmetry constraints as discussed in 
section  2 immediately after u is updated in algorithm 1. The constraints are realized by 
usym = (u + uT)/2 for the symmetric case, upersym = (u + JuTJ)/2 for the persymmetric 
case and ucentrosym = (u + JuJ)/2 for the centrosymmetric case, where J is the reverse iden-
tity matrix, i.e. J has ones on the cross diagonal and zeros elsewhere.

In the following, we discuss the convergence of the proposed algorithm 1. Define
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K =




0 β∇ 0
−A I 0

I 0 − div


 , x =




u
v
w


 , x̄ =




ū
v̄
w̄


 , y =




p
q
r


 ,

where A denotes the operator satisfying Au := u ∗ g. For ease of presentation, we take x, x̄, y 
and related variables as vectors by the stacking scheme. Since ‖Au‖2 = ‖u ∗ g‖2 � ‖g‖1‖u‖2 
(lemma 1.4 in Bahouri et al (2011)), it is not difficult to show that ‖A‖2 is bounded for given g. 
Then the primal-dual problem (12) is equivalent to

max
y

min
x

M(x) + 〈Kx, y〉 − N∗(y)� (29)

where

M(x) =
α

2
(eT

s uet − 1)2 + γ‖w‖∞ +
1
2
‖v − P(v)‖2

2 ,

N∗(y) = IQ( p).

By a similar argument as in (Ma et al 2013, proposition 2), we know that the saddle-point set 
of (29) is nonempty. Then we have the convergence of algorithm 1 as below.

Proposition 4.1.  Denote ‖K‖2 the operator 2-norm of K. Let (xk, x̄k, yk) be the sequence 
defined by algorithm 1. If we choose τu, τv, τw, τp, τq, τr such that

max{τu, τv, τw} ·max{τp, τq, τr} < 1/‖K‖2
2,

then the sequence (xk, yk) converges to the saddle point (x̂, ŷ) of (29).

The proposition is a special case of theorem 1 in Chambolle and Pock (2011). By the 
equivalence of the problem (29) to the problem (11) (Ekeland and Temam 1976), we get that 
û is a solution of (6). In addition, we have the following estimation for ‖K‖2. To get the bound 
of operator K, we estimate

‖Kx‖2 =

∥∥∥∥∥∥∥




β∇u
−Au + v
u − divw




∥∥∥∥∥∥∥
2

�

∥∥∥∥∥∥∥




β∇u
−Au

u




∥∥∥∥∥∥∥
2

+

∥∥∥∥
(

v
−divw

)∥∥∥∥
2

=
√
‖β∇u‖2

2 + ‖Au‖2
2 + ‖u‖2

2 +
√
‖v‖2

2 + ‖divw‖2
2

�
√
‖β∇‖2

2 + ‖A‖2
2 + 1 · ‖u‖2 +

√
1 + ‖div‖2

2 ·
√
‖v‖2

2 + ‖w‖2
2

�
√
β2‖∇‖2

2 + ‖A‖2
2 + ‖div‖2

2 + 2 · ‖x‖2.

Hence we get the estimation

‖K‖2 �
√
β2‖∇‖2

2 + ‖A‖2
2 + ‖div‖2

2 + 2.

Moreover, since ‖∇‖2
2 � 8 (Chambolle 2004), we have ‖div‖2

2 = ‖∇T‖2
2 � 8. Thus
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‖K‖2 �
√
‖A‖2

2 + 8β2 + 10,

where β is a given nonnegative regularization parameter and ‖A‖2 is bounded.

5.  Experiments and comparisons

In this section, we illustrate the performance of our proposed method for blind deconvolution 
of images by comparing it with the following closely related methods:

DTV: Double TV (DTV) method was given in Chan and Wong (1998) where the TV regu-
larization is used on both the image and the kernel. The motivation for regularizing with the 
TV norm is that it is extremely effective for recovering edges of images as well as some blur-
ring kernels such as motion blur and out-of-focus blur.

IBD: Iterative blind deconvolution (IBD) proposed in Ayers and Dainty (1988) is an itera-
tive Wiener type filtering method. In the iterative process, IBD recovers the original image and 
estimates the PSF alternately. In addition, the resulted algorithm switches between the space 
and Fourier domains, enforcing known constraints in each.

NAS-RIF: Nonnegativity and support constraints recursive inverse filtering (NAS-RIF) 
method was presented in Kundur and Hatzinakos (1998) for blind image restoration. NAS-
RIF consists of a variable finite impulse response filter with the blurred image as input. The 
output of the adaptive filter represents an estimate of the original image. This estimate is 
applied to a non-linear filter to project the estimated image into the space representing the 
known characteristics of the true image such as nonnegativity, bounds on the pixel amplitude 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.  Test data set. (a)–(c) test images with uniform black background; (d)–(f) test 
images with nonuniform background; (g)–(l) the support regions of (a)–(f) respectively. 
Figure 4(a) reproduced with permission from Gonzalez R C, Woods R E., Digital Image 
Processing. Addison-Wesley, 2010. Figure 4(b) this “SheppLogan Phantom.svg” image 
has been obtained by the author(s) from the Wikimedia website where it was made 
available by Bitic under a CC BY-SA 4.0 licence.  It is included within this article on 
that basis. It is attributed to Larry Shepp and Benjamin F Logan. Figure 4(c) reproduced 
with permission from Kundur, D. & Hatzinakos, D. (1998). IEEE Transactions on 
Signal Processing 46(2): 375–390. © Copyright 1998 IEEE. Figure 4(d) reproduced  
with permission from Best Car Magazine. Figure 4(e) © Playboy Enterprises, Inc. Figure 
4(f) reproduced with permission from http://newgrafitimakmu.blogspot.com/2010/01/
graffiti-alphabet-letter-fonts-z-light.html.
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and finite support in many real gray scale images. The output of this non-linear filter is the 
estimated image we want to recover.

TV-RIF: TV-based regularized inverse filtering method (TV-RIF) was investigated in Wang 
and Ng (2016) for blind deconvolution of images. The main idea of TV-RIF is to make use of 
nonnegativity and support constraints, and to incorporate regularization terms to establish a 
convex programming model which aims to determine an inverse filter for image deconvolution.

In this paper, all computations were carried out in Matlab R2014a. The results were 
obtained by running the Matlab codes on an Intel(R) Core(TM) i7-4790 CPU (3.60 GHz, 
3.60 GHz) computer with RAM of 8 GB. To evaluate the restoration quality, we use the peak 
signal-to-noise ratio (PSNR) and structural similarity (SSIM) index. PSNR is defined by

PSNR = 10log10

(
mn · Max2

f

‖ f̃ − f‖2
2

)
,

�

(30)

where f and f̃  are the m × n ideal image and the restored image respectively, and Maxf  is the 
maximum possible pixel value of the image f. For example, when the pixels are represented by 
8 bits per sample, the value of Maxf  is 255. The definition of SSIM can be found in Wang et al 
(2004). The SSIM index assesses the conservation of the structural information of the restored 
image. Note that the perfect restoration would have the SSIM value equal to 1. The larger the 
value of SSIM is, the better the quality of restoration will be.

In the experiments, we apply three kinds of commonly used PSFs generated by matlab 
routines as follows:

	 •	fspecial(‘gaussian’,15, 2), Gaussian blur with standard deviation 2, size 15 × 15; 
	 •	fspecial(‘motion’,7, 45), motion blur with 7 pixels along 45 degree, size 7 × 7; 
	 •	fspecial(‘disk’, 2), out-of-focus (defocus) blur with size 5 × 5.

Table 1.  SSIM and PSNR values by different methods for the test images with blur and 
without noise.

Blur Image
DTV PSNR/
SSIM

IBD PSNR/
SSIM

NAS-RIF 
PSNR/SSIM

TV-RIF 
PSNR/SSIM

Ours PSNR/
SSIM

Gaussian Cover 18.41/0.7848 17.10/0.7654 19.45/0.8655 18.21/0.8360 21.83/ 0.8914
Phantom 23.52/0.9644 20.85/0.9435 24.96/0.9682 24.69/0.9676 26.15/ 0.9688
Toy 24.83/0.8763 21.58/0.8378 26.87/0.8845 26.91/0.8847 27.13/ 0.9176
Car 19.38/0.8544 18.07/0.8437 20.15/0.9094 21.49/0.9194 23.01/ 0.9273
Lena 23.84/0.8958 21.47/0.8833 25.01/0.9283 25.94/0.9165 26.00/ 0.9366
Letters 16.16/0.9415 15.70/0.9379 19.43/0.9496 20.05/0.9611 21.19/ 0.9652

Motion Cover 18.99/0.8142 18.14/0.5688 17.54/0.7899 18.25/0.8401 22.55/ 0.8684
Phantom 25.04/0.9451 23.05/0.9234 21.16/0.9432 23.05/0.9426 25.63/ 0.9495
Toy 25.02/0.7145 22.74/0.7091 26.11/0.8849 25.93/0.8822 27.79/ 0.9041
Car 19.53/0.9021 18.51/0.8576 19.35/0.9038 20.13/0.9214 23.83/ 0.9243
Lena 25.04/0.9357 23.05/0.9268 26.22/0.9491 27.67/0.9512 29.31/ 0.9674
Letters 19.54/0.9407 16.45 /0.9097 19.59/0.9430 19.72/0.9527 21.77/ 0.9538

Defocus Cover 18.38/0.7610 18.46/0.5422 18.07/0.7849 18.22/0.8315 22.50/ 0.8716
Phantom 23.11/0.9307 24.00/0.9473 22.26/0.9434 24.21/0.9313 26.77/ 0.9595
Toy 23.62/0.6121 23.23/0.5886 25.81/0.8810 27.42/0.8752 27.52/ 0.9032
Car 19.13/0.8199 18.64/0.8183 19.24/0.8932 20.05/0.9151 24.18/ 0.9231
Lena 23.30/0.9013 22.34/0.9040 23.62/0.9067 26.87/0.9448 27.30/ 0.9483
Letters 20.96/0.9564 17.04/0.9458 20.14/0.9428 20.87/0.9547 22.50/ 0.9601
Average 21.61/0.8639 20.02/0.8252 21.94/0.9040 22.76/0.9127 24.83/ 0.9300
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We consider both the noise-free case and the noisy case with noise level of BSNR  =  30 dB. 
The definition of blurred signal-to-noise ratio (BSNR) is given by

BSNR = 10log10

(
‖g‖2

2

‖η‖2
2

)
,

where g and η are the observed image and the Gaussian white noise respectively. In the com-
peting methods, the initial guess for the PSF h or the inverse filter (PSF) u is chosen to be the 
delta function δ because in the case of no blurring δ would be the expected inverse filter. The 
sizes of the PSF or the inverse PSF for the three blurs are 7 × 7, 11 × 11 and 17 × 17 pixels, 
respectively. The stopping criterion of all competing methods is that the maximum number of 
allowed outer iterations has been carried out or the relative differences between consecutive 
iterates of the inverse filter (for NAS-RIF, TV-RIF and our method) satisfy

‖u(k+1) − u(k)‖2

‖u(k+1)‖2
< ε1

or the relative differences between consecutive iterates of the estimated PSF (for DTV and 
IBD) satisfy

‖h(k+1) − h(k)‖2

‖h(k+1)‖2
< ε2.

In all tests, we set ε1 = ε2 = 10−5 for all competing methods. The maximum number of 
outer iterations is 200 for IBD, NAS-RIF and RIF-TV while 1000 for DTV and our proposed 
method. In the NAS-RIF and RIF-TV methods, the subproblems need the conjugate gradi-
ent algorithm for the solution. The maximum number of allowed iterations for the conjugate 
gradient algorithm in the two methods is set to be 10. For the DTV method, the authors used 

Table 2.  SSIM and PSNR values by different methods for the test images with blur and 
noise of BSNR  =  30 dB.

Blur Image
DTV PSNR/
SSIM

IBD PSNR/
SSIM

NAS-RIF 
PSNR/SSIM

TV-RIF 
PSNR/SSIM

Ours PSNR/
SSIM

Gaussian Cover 18.50/0.7900 17.04/0.7627 17.20/0.7612 17.61/0.7659 19.30/ 0.8119
Phantom 23.26/0.9316 20.77/0.9119 22.81/0.9144 22.97/0.9283 24.22/ 0.9348
Toy 24.77/0.8717 21.54/0.8365 22.28/0.8567 24.65/0.8673 25.20/ 0.8741
Car 19.30/0.8514 18.05/0.8419 19.07/0.8609 19.79/0.8590 20.81/ 0.8618
Lena 23.73/0.8945 21.47/0.8835 23.64/0.9013 24.37/0.9121 24.74/ 0.9125
Letters 16.18/0.9421 15.65/0.9376 19.28/0.9464 19.40/0.9430 19.90/ 0.9510

Motion Cover 15.80/0.7634 12.40/0.5365 16.74/0.7710 18.07/0.7896 21.31/ 0.8451
Phantom 17.99/0.9154 21.99/0.8715 21.75/0.9219 23.54/0.9287 24.94/ 0.9291
Toy 19.32/0.7620 19.28/0.7382 25.11/0.8812 26.34/0.8884 26.81/ 0.8943
Car 19.03/0.8624 17.86/0.8077 18.50/0.8730 20.19/0.8808 22.97/0.8831
Lena 23.72/0.9117 25.43/0.9331 24.54/0.9435 26.98/0.9490 27.78/ 0.9498
Letters 19.73/0.9393 16.59/0.9359 17.53/0.9356 19.58/0.9369 21.35/ 0.9485

Defocus Cover 16.92/0.7754 18.21/0.7735 17.20/0.7804 18.08/0.7784 21.41/ 0.8499
Phantom 19.43/0.9287 18.11/0.8650 22.67/0.9348 24.71/0.9352 25.94/ 0.9393
Toy 21.33/0.8197 17.43/0.6632 24.88/0.8585 26.64/0.8791 26.90/ 0.8948
Car 18.97/0.8608 18.92/0.8292 17.54/0.8684 20.34/0.8795 23.04/ 0.8834
Lena 21.08/0.8769 25.06/0.9201 24.86/0.9246 25.66/0.9279 26.34/ 0.9348
Letters 14.13/0.9365 13.49/0.9125 18.28/0.9348 20.99/0.9388 22.24/ 0.9552
Average 19.62/0.8685 18.85/0.8311 20.77/0.8816 22.22/0.8887 23.62/ 0.9030
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the alternating minimization scheme to solve the double TV-based model. In this paper, we 
solve the double TV-based model with the ADMM method which is more efficient than the 
alternating minimization algorithm in the original paper; see Li et al (2012) for more details. 
As is well known, the quality of the restored image is highly dependent on the regulariza-
tion parameters. In order to have fair comparisons in all tests for the competing methods, we 
determine the best values of the regularization parameters such that the PSNR value of the 
restored image with respect to the original image is the best. Positivity constraints are used for 
both images and PSFs in all tests. Additional constraints of image mean preservation and PSF 
symmetry are used to improve the restoration results.

In the conventional NAS-RIF algorithm, the background of the degraded images is assumed 
to be uniformly gray, black or white. In addition, the object is assumed to be contained within 
a rectangular region of support. However, for nonrectangular objects the real background 
pixels within the region of support will be wrongly classified as object pixels. In this paper, 
we assume that the support region is known. But the background of the degraded images is 
not necessary to be uniformly gray, black, or white. In figure 4, we show six test images in 
the first row and their support masks in the second row. The first three test images (‘Cover, 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 5.  Comparison of results by different methods applied on blurred images with 
black background without noise. First column: the blurred images; Second to sixth 
columns: the restoration results by DTV, IBD, NAS-RIF, TV-RIF and ours respectively. 
(a) Gaussian. (b) DTV. (c) IBD. (d) NAS-RIF. (e) TV-RIF. (f) Ours. (g) Motion.  
(h) DTV. (i) IBD. (j) NAS-RIF. (k) TV-RIF. (l) Ours. (m) Defocus. (n) DTV. (o) IBD. 
(p) NAS-RIF. (q) TV-RIF. (r) Ours. Figures 5(a)–(f) reproduced with permission from 
Gonzalez R C, Woods R E., Digital Image Processing. Addison-Wesley, 2010. Figures 
5(g)–(l) this “SheppLogan Phantom.svg” image has been obtained by the author(s) 
from the Wikimedia website where it was made available by Bitic under a CC BY-SA 
4.0 licence.  It is included within this article on that basis. It is attributed to Larry Shepp 
and Benjamin F Logan. Figure 5(m)-(r) reproduced with permission from Kundur, D. 
& Hatzinakos, D. (1998). IEEE Transactions on Signal Processing 46(2): 375–390.  
© Copyright 1998 IEEE.
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Phantom, Toy’) in figure 4 have uniform background (black background), while the last three 
test images (‘Car, Lena, Letters’) in figure 4 have nonuniform background.

For quantitative comparison, we report the PSNR and SSIM values obtained by each method 
on all test images degraded by different blurs in tables 1 and 2. Clearly, table 1 includes the 
comparison results for the noise-free case while table 2 for the noisy case with noise level of 
BSNR  =  30 dB. The highest PSNR and SSIM values for each case are highlighted in bold. 
From the tables, it is easy to see that the proposed method achieves higher PSNR and SSIM 
values than DTV, IBD, NAS-RIF, TV-RIF on all test images. For example, the PSNR average 
gain of our method over DTV, IBD, NAS-RIF, TV-RIF is as much as 2.93 dB, 5.42 dB, 2.10 
dB and 1.61 dB respectively on ‘letters’ image for the noise-free case. On average, our method 
gains 4.48 dB, 5.92 dB, 2.80 dB and 1.17 dB more than DTV, IBD, NAS-RIF, TV-RIF respec-
tively on the same image in the noisy case. The proposed method performs better, with SSIM 
average values 0.9300 versus 0.8639, 0.8252, 0.9040 and 0.9127 in the DTV, IBD, NAS-RIF 
and TV-RIF algorithms on all test images for the noise-free case while with SSIM average 
values 0.9030 versus 0.8685, 0.8311, 0.8816 and 0.8887 for the noisy case. From tables 1 and 
2, our proposed method outperforms the other four methods for blind deconvolution of images 
under both the noise-free case and the noisy case.

For visual comparison of the recovered images, some of the restoration results are selected 
to display in figures 5–8. The first column are blurred images. The second to sixth columns are 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 6.  Comparison of results by different methods applied on blurred images with 
nonuniform background without noise. First column: the blurred images; Second 
to sixth columns: the restoration results by DTV, IBD, NAS-RIF, TV-RIF and ours 
respectively. (a) Gaussian. (b) DTV. (c) IBD. (d) NAS-RIF. (e) TV-RIF. (f) Ours. (g) 
Motion. (h) DTV. (i) IBD. (j) NAS-RIF. (k) TV-RIF. (l) Ours. (m) Defocus. (n) DTV. (o) 
IBD. (p) NAS-RIF. (q) TV-RIF. (r) Ours. Figures 6(a)–(f) reproduced with permission 
from Best Car Magazine. Figures 6(g)–(l) © Playboy Enterprises, Inc. Figures 6(m)–
(r) reproduced with permission from http://newgrafitimakmu.blogspot.com/2010/01/
graffiti-alphabet-letter-fonts-z-light.html.
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the recovered results by DTV, IBD, NAS-RIF, TV-RIF and our proposed method, repectively. 
In figure 5, we consider the test images with black background degraded by different blurs 
without noise. From the figure, it can be seen that the performance of our proposed method is 
quite good since it can restore the sharp edges and avoid noise amplification. Especially, we 
observe from the ‘Toy’ image that the restored image produced by DTV is oversmooth and 
the resulting image by IBD still has the blur phenomenon. The restored image by NAS-RIF 
has some artifacts and is somewhat blurry. The resuting image by the TV-RIF method looks 
more clear than NAS-RIF, but has serious artifacts. Apparently, our method achieves the best 
visual quality among the competing methods. In figure 6, we consider the test images with 
nonuniform background degraded by different blurs without noise. Obviously, the artifacts are 
clearly more visible in the restored images by DTV, IBD, NAS-RIF and TV-RIF than the one 
by our proposed method on the ‘letters’ image. For the nonuniform background case, figure 6 
shows that our proposed method can produce better restored images in visual quality and 
perform with PSNR values higher than those obtained by DTV, IBD, NAS-RIF and TV-RIF.

In figure 7, the test images with black background are degraded by different blurs with the 
noise level of BSNR  =  30 dB. We compare the visual quality of the restored images by DTV, 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 7.  Comparison of results by different methods applied on blurred images with 
black background and noise of BSNR  =  30 dB. First column: the blurred images; 
Second to sixth columns: the restoration results by DTV, IBD, NAS-RIF, TV-RIF and 
ours respectively. (a) Gaussian. (b) DTV. (c) IBD. (d) NAS-RIF. (e) TV-RIF. (f) Ours. (g) 
Motion. (h) DTV. (i) IBD. (j) NAS-RIF. (k) TV-RIF. (l) Ours. (m) Defocus. (n) DTV. (o) 
IBD. (p) NAS-RIF. (q) TV-RIF. (r) Ours. Figures 7(a)–(f) reproduced with permission 
from Gonzalez R C, Woods R E., Digital Image Processing. Addison-Wesley, 2010. 
Figures 7(g)–(l) this “SheppLogan Phantom.svg” image has been obtained by the 
author(s) from the Wikimedia website where it was made available by Bitic under a 
CC BY-SA 4.0 licence.  It is included within this article on that basis. It is attributed to 
Larry Shepp and Benjamin F. Logan. Figure 7(m)–(r) reproduced with permission from 
Kundur, D & Hatzinakos, D (1998). IEEE Transactions on Signal Processing 46(2): 
375–390. © Copyright 1998 IEEE.
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IBD, NAS-RIF, TV-RIF and our proposed method in figure 7. It is clear from the figure that 
the restoration results of our proposed method are visually better than those of DTV, IBD, 
NAS-RIF and TV-RIF. Our proposed method is able to prevent noise amplification and reduce 
ringing artifacts for the noisy case. In figure 8, the test images with nonuniform background 
are degraded by the same blurs and noise. The restoration results by the competing methods 
are displayed in figure 8. We see from the figure  that the restored images of our proposed 
method look more natural. It turns out that our proposed method is quite robust to noise. 
Compared with DTV, IBD, NAS-RIF and TV-RIF, our proposed method appears to be very 
competitive with respect to visual restoration capabilities for nonuniform background.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 8.  Comparison of results by different methods applied on blurred images 
with nonuniform background and noise of BSNR  =  30 dB. First column: the blurred 
images; Second to sixth columns: the restoration results by DTV, IBD, NAS-RIF, TV-
RIF and ours respectively. (a) Gaussian. (b) DTV. (c) IBD. (d) NAS-RIF. (e) TV-RIF. 
(f) Ours. (g) Motion. (h) DTV. (i) IBD. (j) NAS-RIF. (k) TV-RIF. (l) Ours. (m) Defocus. 
(n) DTV. (o) IBD. (p) NAS-RIF. (q) TV-RIF. (r) Ours. Figures 8(a)–(f) reproduced 
with permission from Best Car Magazine. Figures 8(g)–(l) © Playboy Enterprises, Inc. 
Figures 8(m)–(r) reproduced with permission from http://newgrafitimakmu.blogspot.
com/2010/01/graffiti-alphabet-letter-fonts-z-light.html.

Table 3.  CPU time by different methods for the ‘Lena’ image with different blurs.

Blur DTV IBD NAS-RIF TV-RIF Ours

Noise-free Gaussian 20.1 1.5 236.5 801.2 10.0
Motion 22.9 2.0 272.2 953.6 10.7
Defocus 23.5 1.1 308.6 1254.6 11.4

Noisy Gaussian 52.6 1.1 213.6 768.5 9.4
Motion 13.4 1.4 244.2 935.1 11.9
Defocus 125.9 1.3 284.2 1258.4 10.3
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To report the computational time, we take the ‘Lena’ image with size of 256 × 256 for 
example. In table 3, we give a comparison for the CPU time of DTV, IBD, NAS-RIF, TV-RIF 
and our proposed method under different blurs. For the original image ‘Lena’ degraded by 
the Gausssian blur in the absence of noise, our proposed method, DTV, IBD, NAS-RIF and 
TV-RIF need about 10.0 s, 20.1 s, 1.5 s, 236.5 s and 801.2 s respectively to estimate the blur 
kernel and recover the original image. The comparison clearly show that the proposed method 
is much faster than the DTV, NAS-RIF and TV-RIF methods. Our proposed method is more 
time consuming than IBD, however, this drawback is compensated by its outstanding perfor-
mance. From table 3, it can be seen that we have the similar time consuming results for the 
noisy case on the ‘Lena’ image. In terms of PSNR, visual quality and CPU time, the proposed 
method appears to be better than the DTV, IBD, NAS-RIF and TV-RIF methods.

6.  Conclusion

In this paper, we propose a new regularized inverse filtering method for blind deconvolution 
of images. The main idea of our method is to add two regularization terms to the objective 
function of NAS-RIF so as to improve the quality of blind image deconvolution. One regu-
larization term is the TV of the resulting image obtained by convolving the inverse filter with 
the degraded image. The TV regularization is used to stabilize the inverse solution and allevi-
ate sensitivity to noise. Another regularization term is the star norm of the inverse filter. We 
choose the star norm regularization because the inverse filter lies in a space which contains 
signals with large oscillations such as textures and has a small norm. The proposed minimiza-
tion model is proved to be convex. We employ the first-order primal-dual method for the solu-
tion of the proposed minimization problem. In terms of PSNR, SSIM, visual quality and time 
consumption, numerical examples for blind image restoration are given to demonstrate that 
the proposed method performs better than some existing related restoration methods.
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