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ABSTRACT

In this paper, we extend theuse of the partial differential equation (PDE) method to head visualization with computed
tomography (CT) data and show how the two primary medical visualization means, surface reconstruction, and volume
rendering can be integrated into one single framework through PDEs. Our scheme first performs head segmentation from
CT slices using a variational approach, the output of which can be readily used for extraction of a small set of PDE
boundary conditions. With the extracted boundary conditions, head surface reconstruction is then executed. Because only
a few slices are used, our method can perform head surface reconstruction more efficiently in both computational time and
storage cost than the widely used marching cubes algorithm. By elaborately introducing a third parameter w to the PDE
method, a solid head can be created, based on which the head volume is subsequently rendered with 3D texture mapping.
Instead of designing a transfer function, we associate the alpha value of texels of the 3D texture with the PDE parameter w
through a linear transform. This association enables the production of a visually translucent head volume. The experimental
results demonstrate the feasibility of the developed head visualization method. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Bloor and Wilson pioneered geometric modeling with par-
tial differential equations (PDEs) in computer graphics
by proposing a parametric PDE-based surface blending
approach two and a half decades ago [1]. Since then,
advantages of the PDE method in geometric modeling have
been gradually discovered and recognized. One principal
advantage comes from the ability that the differential oper-
ators of PDEs ensure a generation of smooth surfaces,
where the smoothness is strictly governed by the order of
the PDEs used. This advantage has enabled the broad use
of PDEs in a variety of geometric modeling issues, such as
blend surface generation [1], interactive surface design [2],
surface modeling [3,4], and solid modeling [5]. The other
advantage of using the PDE method is that a PDE surface
can be generated by intuitively manipulating a relatively
small set of boundary conditions of the PDE, converting
the geometric modeling issue into a PDE solving prob-
lem of boundary values. Therefore, the PDE method can
be considered as a smoothing process in which a geomet-
ric model is obtained as a smooth transition between the

boundary conditions. This property ensures the successful
dabbling of the PDE method in computer-aided manufac-
turing [6,7], shape morphing [8], Web visualization [9],
and mesh reconstruction [4], and so on.

In this paper, we propose to extend the use of the PDE
method to head visualization with computed tomography
(CT) data. The developed method allows for, under the
same framework, the performance of both head surface
reconstruction and volume rendering. Benefiting from the
boundary value problem, our PDE method is subject to
a contour-based method in surface reconstruction and can
readily reconstruct the head surface using only a small
group of boundary conditions. The boundary conditions
are boundary curves that can be automatically extracted
from 2D head CT slices with a variational segmentation
method. Taking advantage of inherent parameterization,
our method can generalize the reconstructed head sur-
face model to a solid by elaborately introducing an extra
third parameter, w, into the conventional uv parametric gird
of PDEs. This third parameter not only can control the
solidity of the head model but also can subsequently be
employed to render the opacity of the head volume, pro-
ducing a translucent visualization result. As the developed
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Figure 1. The flowchart of the partial differential equation (PDE) method for head visualization with computed tomography (CT) data.

volume rendering process is carried out by directly texture
mapping the solid head model, it is subject to object-order
volume rendering.

Surface reconstruction and volume rendering are the
two primary technologies to visualize medical data. One
of the most widely used surface reconstruction methods
is the marching cubes (MC) algorithm, which is, how-
ever, time-consuming. For volume rendering, conventional
methods require a well-designed transfer function, which
assigns different objects of the volume data with different
color and opacity values. However, an appropriate trans-
fer function is complicated to design. There also exist
open-source software libraries for medical data analysis
and visualization, such as 3D Slicer and FMRIB Soft-
ware Library, using embedded conventional methods for
visualization. Nevertheless, neither 3D Slicer nor FMRIB
Software Library supports both surface reconstruction and
volume rendering under the same framework. Compared
with the MC algorithm, our PDE method is more effi-
cient in both computational time and storage cost, as it
uses only a small number of boundary conditions. Because
of the parametric form, our PDE method allows for con-
trol of the levels of detail of the reconstructed head model
by adjusting its parametric resolution. Instead of using
the transfer function, our method elaborately associates
the opacity value of the volume with the PDE parame-
ter w in a linear manner to produce translucent volume

rendering results, achieving visually pleasant head visu-
alization results by integrating both surface reconstruc-
tion and volume rendering into one single framework
through PDEs.

Figure 1 shows the flowchart of the developed method
for head visualization with CT slices. Given a small num-
ber of slices manually chosen from a sequence of head
cross-sectional slices, image segmentation is first carried
out ahead of boundary curve extraction. The variational
method is utilized in segmentation because it is robust to
noise and able to generate relatively precise segmentation
results. Then, the extracted boundary curves are input to
the PDE engine as boundary conditions. These boundary
conditions should contain as much as possible the neces-
sary geometry of the head in order to reconstruct the head
precisely. Either the head surface or the head solid model
can be reconstructed by solving a group of PDEs, where
each PDE produces one unique PDE patch, and one head
model may consist of several PDE patches. Following head
solid modeling, the head volume is rendered by mapping a
3D texture into the reconstructed solid grid.

The rest of the paper is structured as follows. The back-
ground knowledge upon medical data visualization and the
PDE methods are briefed in Section 2. In Section 3, we
introduce the extraction process of boundary conditions. In
Section 4, we elaborate the developed head visualization
method, consisting of head surface reconstruction, head
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solid modeling, and volume rendering. In Section 5, exper-
imental results are given to justify the developed method.
Section 6 concludes the paper.

2. BACKGROUND

Head visualization has played a crucial role in many med-
ical fields, where medical imaging technologies, such as
CT and magnetic resonance imaging (MRI), have been
widely used to scan the human head. These medical imag-
ing technologies produce only 2D parallel slices without a
3D illusion. Head visualization can synthesize the 3D head
geometry by making use of the information presented in
2D head medical slices, thus providing doctors a more real-
istic and intuitive diagnostic basis. Moreover, in forensic
medicine, head visualization recovers the unknown facial
features of an individual with head medical data for recog-
nition and identification [10,11]. In archaeology, archae-
ologists need the head visualization technology to recover
the authentic facial features of historical figures [12,13].
Besides, head visualization was also used to simulate facial
aesthetic surgery [14,15]. Because the mainstream head
visualization methods stem from the medical data ones,
this section briefs state of the art in medical data visual-
ization, summarizes the existing PDE methods, and elabo-
rates the Bloor–Wilson PDE (BWPDE) method adopted in
the paper.

2.1. Medical Data Visualization

Medical data visualization technologies can be divided into
multiplanar rendering, surface rendering, and volume ren-
dering [16]. Multiplanar rendering visualizes gray values
of an arbitrary cross section of volumetric data. The axial
slices are cut into different orthogonal planes, allowing to
view the entire structure orthogonally. The rendered data
are also 2D as original slices and thus gives no more insight
into the 3D structure than the original ones.

Surface reconstruction algorithms can be classified
into contour-based surface reconstruction and iso-surface
extraction [16]. Contour-based surface reconstruction
methods [17] need to extract the cross-sectional contour
of each axial slice and then reconstruct the 3D surface
through triangulation between the consecutive contours.
When there exist more than one contour in an axial slice,
ambiguity in connecting consecutive contours may arise.
For iso-surface extraction, the most widely used algo-
rithm is the MC algorithm [18], proposed by Lorensen
and Cline in 1987. But there also exists an ambiguity
problem during triangulation of the MC algorithm. March-
ing tetrahedrons [19] were then proposed to overcome the
ambiguity problem of the MC algorithm. The marching
tetrahedrons algorithm splits each cube into six tetrahe-
drons by cutting diagonally through each of the three pairs
of opposite faces and creates the iso-surface based on
these tetrahedrons rather than cubes. Another alternative
for MC is dividing cubes [20], where cubes are divided

into pixelwise sub-cubes. All of these algorithms can pro-
duce reasonable surface reconstruction results, but they are
computationally complex.

The mainstream volume rendering methods can be clas-
sified into two categories: the image-order and object-order
rendering methods. The main difference between the
image-order and object-order methods is that the former
renders from the viewport of the imaging plane while
the latter from that of volume data. Ray tracing [21,22]
and maximum intensity projection [23] are subject to the
image-order volume rendering algorithms, because they
both cast parallel rays from each pixel of the imag-
ing plane. The difference between these two methods
is that, the ray tracing algorithm makes all the vox-
els along a ray contribute to the projection pixel, while
the maximum intensity projection algorithm picks only
the voxel with a maximum intensity value along a ray.
In contrast to the image-order rendering algorithms, the
object-order methods, such as shear warp factorization [24]
and texture-based volume rendering [25], render the vol-
ume from the viewport of volume data. The shear warp
factorization algorithm was proposed to reduce the com-
putation cost by factoring the view transformation, while
the texture-based approach performs the rendering pro-
cess by applying 2D textures to the geometric primitives,
such as quadrangles.

However, the aforementioned volume rendering
approaches disregard optical properties observed from
real translucent materials. To this end, an improvement
based on shading model has been proposed, allowing for
sophisticated global illumination [26]. Moreover, with
the advancement in graphics processing unit (GPU),
GPU-based methods have been proposed to accelerate
the rendering process [27,28], and state of the art in
GPU-based rendering methods can be found in [29]. In
order to make rendering results visually translucent and
noiseless, the aforementioned volume rendering methods
adopt a transfer function [30]. However, an appropri-
ate transfer function is complicated to design. A survey
of these illumination techniques are reviewed in [31].
Instead of designing a complicated transfer function, our
PDE-based method implements translucent and noiseless
rendering by subtly relating the alpha value to one of the
PDE parameters before 3D texturing the head solid model.

In order to deal with the occlusion problem in visualiza-
tion, the technique of magic lens was proposed to change
the rendering styles of desired parts during visualization. In
this way, magic lens makes it possible to specify the parts
to be rendered in different styles. In [32], Kirmizibayrak et
al. have extended the magic lens to handle volume editing
operations by using the lens as a volumetric brush.

Moreover, different medical imaging devices mea-
sure different properties of the same region. There exist
demands for visualization of multi-modality data, dealing
simultaneously with various datasets, such as CT and MRI
data, in order to provide a better perception of anatomical
structures [33].
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Besides, because of the improvement of hardware
in mobile devices, visualization on mobile devices is
a promising research direction. Nevertheless, because
mobile devices have limited data processing ability,
visualization on mobile devices is a challenging task.
Researchers have studies the possibility of visualization
on mobile devices. For example, Noguera et al. proposed
a volume rendering strategy on mobile devices based on
texture mapping [34]. Because our PDE-based method
uses only a small amount of boundary conditions, it is
possible to apply our PDE method to visualization on
mobile devices.

2.2. The Partial Differential Methods

The mainstream PDE methods in geometric modeling are
summarized in Table I with the order of PDEs used, as well
as their solution methods and relevant applications.

The major distinctions among the methods listed in
Table I are the following:

� Solutions to these PDE methods are different. Theo-
retically, the PDE method can be solved either numer-
ically or analytically. An analytic solution is for those
closed boundaries; otherwise, a numerical method is
sought after. However, the numerical method is more
computationally expensive.

� Different PDEs are chosen in different circumstances.
The BWPDE method employs the biharmonic-like
fourth-order PDE. However, it can only ensure a
C1 continuity between PDE patches. If C2 continu-
ity is demanded, a sixth-order PDE [35] has to be
used, leading to a higher computational cost. More-
over, it has been proved that the BWPDE method can
be extended to an arbitrary order allowing complex
shape design with a single PDE [36].

Among the aforementioned three PDE methods, the
BWPDE method has been the most computationally effi-
cient with a widest range of applications.

2.3. The Bloor–Wilson Partial
Differential Method

The PDE method treats surface generation as a solution to
a specific PDE subject to certain boundary conditions. The
reason for using the fourth-order PDE is that a lower-order
PDE has no freedom to specify the reconstructed surface
smoothness, whereas the calculation of the higher-order
PDE is more time-consuming. In order to reach a trade-off
between the surface smoothness and computational com-
plexity, a biharmonic-like fourth-order PDE is chosen:

 
@2

@u2
C a2 @

2

@v2

!2

X .u, v/ D 0 (1)

where X.u, v/ represents the 3D surface subject to a 2D
parametric uv domain with the range 0 � u � 1, 0 � v �
2� , which has the following form:

X.u, v/ D .x.u, v/, y.u, v/, z.u, v// (2)

The parameter a is called the smoothing parameter, gov-
erning the relative rate of smoothing between the u
and v directions. To solve (1), four boundary conditions
are needed:

X.0, v/ D P0.v/ (3)

X.p1, v/ D P1.v/ (4)

X.p2, v/ D P2.v/ (5)

X.1, v/ D P3.v/ (6)

P0.v/, P1.v/, P2.v/, and P3.v/ represent the boundary con-
ditions when u D 0, p1, p2, and 1, respectively, and 0 <
p1 < p2 < 1.

Imposing an analytic solution, (1) can be solved by
separation of variables as follows:

Table I. The three mainstream PDE methods.

Methods The order of PDEs Solutions Applications

Bloor–Wilson Fourth, sixth, and nth Fourier analysis Blend surface [1], free-form surface [3], CAM [6,7],
(analytical method) shape morphing [8], facial modeling [37],

interactive design [36], and mesh approximation [4]

Zhang and You Fourth and sixth Pseudo-levy series Blend surface [38] and free-form surface [39]
(analytical method)

Du and Qin Sixth Finite difference Free-form surface [40] and solid modeling [41]
(numerical method)

PDE, partial differential equation; CAM, computer-aided manufacturing.

© 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

17of Comp. Anim. Virtual Worlds 2017; 28 e1683:4



C. CHEN et al. A PDE-based head visualization method with CT data

X.u, v/ D A0.u/C
1X

nD1

ŒAn.u/ cos.nv/C Bn.u/ sin.nv/�

(7)

where An.u/ and Bn.u/ are of the following forms:

A0.u/ D a00 C a01uC a02u2 C a03u3 (8)

An.u/ D .an1 C an2u/eanu C .an3 C an4u/e�anu (9)

Bn.u/ D .bn1 C bn2u/eanu C .bn3 C bn4u/e�anu (10)

where the vector-valued coefficients a00, a01, a02, a03, an1,
an2, an3, an4, bn1, bn2, bn3, and bn4 in (8)–(10) can be
determined by the four boundary conditions defined by
(3)–(6).

In (7), A0.u/ is considered to be the “spine” of the
reconstructed surface, which takes the form of a cubic
polynomial curve with respect to u, while the remaining
terms represent a summation of “radius” vectors that give
the position of reconstructed surface X.u, v/ relative to the
“spine.” As a result, the PDE surface patch may be pictured
as a sum of the spine vector A0.u/, plus a primary radius
vector A1.u/ cos.v/CB1.u/ sin.v/, plus a secondary radius
vector A2.u/ cos.2v/CB2.u/ sin.2v/ attached to the end of
the primary radius, and so on. The amplitude of the radius
term decays as the frequency increases. It can be observed
that the first few radii contain the most essential geometric
information. Thus, (7) can be further approximated by the
sum of a finite number of Fourier modes plus a reminder
term, R.u, v/:

X.u, v/ D A0.u/C
NX

nD1

ŒAn.u/ cos.nv/C Bn.u/ sin.nv/�

C R.u, v/
(11)

where

R.u, v/ D Œr1.v/C r2.v/u�e
!u

C Œr3.v/C r4.v/u�e
�!u

(12)

and ! D a.N C 1/, r1.v/, r2.v/, r3.v/, r4.v/ are func-
tions that can be determined by calculating the difference
between the original boundary conditions and the ones
satisfied by F.u, v/:

F.u, v/ D A0.u/C
NX

nD1

ŒAn.u/ cos.nv/C Bn.u/ sin.nv/�

(13)

An elaborate illustration of the PDE method can be found
in [42]. Examples of free-form surface generation with the
PDE method are shown in Figure 2.

Figure 2. Examples of free-form surfaces generated by apply-
ing different boundary conditions. (a and c) Different boundary
conditions; the difference between (a) and (c) is that (c) is
formed by translating the second boundary of (a) downward. (b
and d) The free-form surfaces generated using the partial dif-
ferential equation method satisfying the boundary conditions

shown in (a) and (c), respectively.

3. BOUNDARY EXTRACTION

This section is dedicated to the extraction process of
PDE boundary conditions, consisting of medical image
segmentation and boundary condition extraction. Medi-
cal image segmentation that determines the accuracy of
boundary condition extraction plays a key role in our
PDE-based visualization framework. A precise segmenta-
tion of the head region from cross-sectional medical slices
guarantees realistic reconstruction and visualization. Cur-
rently, the mainstream medical image segmentation meth-
ods include the threshold methods, edge-based methods,
region-based methods, and special theory-based methods.
The image segmentation method adopted in this paper
belongs to the special theory-based category, called vari-
ational image segmentation [43,44]. The main advantages
of variational image segmentation against other meth-
ods are that it is robust to noise and can guarantee the
segmentation accuracy.

In 2001, Chan and Vese [44] proposed a segmentation
method based on the active contour without edges. The
method minimizes

min
�,c1,c2

�Z
�
jrH.�/j dxC �

Z
�
jI � c1j

2H.�/dx

C

Z
�
jI � c2j

2 .1 � H.�//dx

� (14)

where I.x/ : � ! R is the given image, � � R2 is a
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rectangle region, �.x/ : � ! R is the level set function,
H.�/ is the Heaviside function satisfying

H.�/ D

�
1, � � 0
0, � < 0

(15)

c1 and c2 are constants, � > 0 is a fixed parameter, and
x D .x1, x2/ is the coordinate of �. The final segmenta-
tion curve is given by � D 0. � � 0 and � < 0 represent
the two regions segmented by the curve at � D 0. To solve
(14), a negative gradient descent method in [44] is usu-
ally used, which, however, converges slowly because of the
small size of the time step.

For the sake of efficiency, we use a soft segmentation
model. We generalize the model for medical data seg-
mentation, called 3D Chan–Vese soft segmentation model.
This is because in medical image segmentation, a sequence
of 2D CT or MRI slices, if consecutive scans are close
enough, can be considered as 3D data. We have the vol-
ume data I.x/ : � � R3 ! R. The 3D Chan–Vese soft
segmentation model can be written as the following energy
minimization problem:

min
p2Œ0,1�,c1,c2

�
E.p, c1, c2/ D

Z
�
jrpj dx

C �

Z
�
jI � c1j

2pdx

C�

Z
�
jI � c2j

2 .1 � p/ dx

� (16)

Here, we use a 3D soft membership function p.x/ 2 Œ0, 1�
to replace the 2D hard segmentation function H.�.x// 2
f0, 1g in (14); note that c1 and c2 remain constant.

To solve (16), we make use of the alternating minimiza-
tion method and Chambolle’s fast dual-projection method.
Firstly, we fix p and solve c1 and c2. Let @E

@c1
D 0, @E

@c2
D 0,

and we can easily deduce

8̂<
:̂

c1 D

R
� IpdxR
� pdx

c2 D

R
� I.1�p/dxR
� .1�p/dx

(17)

Then we fix c1 and c2 and solve p. The sub-problem can be
simplified as

min
p2Œ0,1�

�Z
�
jrpj dxC �

Z
�

rpdx

�
(18)

where r D jI � c1j
2 � jI � c2j

2. It is difficult to solve (18)
by a direct method because the first term (total variation) is
not differentiable. Thus, we add a new auxiliary variable q
and then relax (18) as

min
p,q2Œ0,1�

˚ R
� jrpj dxC �

R
� rqdxC �

2

R
� .p � q/2dx

�
(19)

where the last term requires that p and q should be close
enough. Then we use the alternating minimization again to
solve (19). By fixing p, the sub-problem of q is a convex
constrained optimization problem. It is straightforward to
derive the solution in closed form:

q D min.max.p � �r, 0/, 1/ (20)

where � D �
� . By fixing q, the sub-problem of p is

a standard Rudin–Osher–Fatemi model [45]. We can use
Chambolle’s fast dual-projection method [46] to solve it.
The iteration formulas are(

p D q � �div.s/

s D sC�.r.div.s/�q=�//
1Cj�.r.div.s/�q=�//j

(21)

where s is the dual variable of p and � is the step size.
Hence, the method to solve (16) becomes to alternately
iterate (17), (20), and (21). Our method is efficient, and
generally 30 iterations are enough to obtain a satisfactory
solution.

With four head CT slices arbitrarily chosen from the
dataset [47], we use the introduced algorithm to seg-
ment the head. The parameters are set as follows: � D
0.003, � D 0.1, � D 0.25. We remark that the algorithm
is not sensitive to � and � . � controls the smoothness of
the segmentation (the smaller the smoother). It can be seen
in Figure 3 that the developed 3D Chan–Vese soft seg-
mentation algorithm results in some holes. For example,
some tissues inside the head are missed out. To tackle this
problem, the largest connected component is extracted by
removing all the other small components with the area less
than some threshold and filling up the holes. The third row
of Figure 3 shows the final segmentation results. Follow-
ing segmentation, a morphological algorithm is performed
to extract boundary conditions:

ˇ.I/ D I � .I � S/ (22)

where S is a specific structuring element, I is the orig-
inal image, ˇ.I/ denotes the object boundary, and � is
the morphological erosion operation. The extraction results
of boundary conditions based on the image segmentation
results are highlighted in red in the fourth row of Figure 3.

4. HEAD VISUALIZATION

This section describes in detail the head visualization
process in our PDE method, where head surface recon-
struction, head solid modeling, and head volume rendering
are in turn performed.

4.1. Head Surface Reconstruction

After boundary condition extraction, the head surface can
be readily reconstructed by solving a group of PDEs with
these extracted boundary conditions. Because the PDE
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Figure 3. Medical image segmentation and boundary extraction. The first row shows four original computed tomography slices
arbitrarily selected from the dataset. The second row shows the segmentation results using the developed method. The third row
shows the maximum connected component of the second row. The fourth row shows the boundaries (red curves) extracted from

the segmented images in the third row.

method can be regarded as a smooth interpolation between
given boundary conditions, it is unnecessary to use up all
the extracted boundary conditions for head reconstruction.
In other words, for the sake of computational efficiency,
it is unnecessary to deal with all the head CT slices,
especially for those adjacent slices with similar geometry.
Taking this advantage of the PDE method, we can use a rel-
atively small number of PDEs for head visualization. The
number of the PDEs required may vary on demand, and
each PDE only produces a unique PDE patch for the head
surface. Because of its geometric complexity, the whole
head surface consists of several PDE patches in order to
explicitly cover all the facial organs, such as the ears, nose,
mouse, and eyes.

Suppose that we need t PDE patches to represent the
whole head surface. With the fourth-order PDEs, we
require four boundary conditions for generating each PDE
patch. If any two adjacent patches share one common
boundary condition, then a total of (3t+1) boundary con-
ditions are needed and (3t+1) slices are selected from the
dataset. The precision of the reconstructed head surface

varies, dependending on the value of t. Intuitively speak-
ing, as t increases, the more medical slices are involved and
the more geometric detail of the head can be reconstructed.

The whole parametric domain is within the following
range: 0 � u � 1, 0 � v � 2� . Because the whole head
surface is partitioned into t PDE patches along the u direc-
tion, each PDE patch accounts for 1/t of u with v remaining
from 0 to 2� . As shown in Figure 4, the whole head sur-
face is divided into 10 PDE patches, that is, a total of 31
boundary conditions are needed in Figure 4(a). Figure 4(b)
shows a 40 � 60 uv parametric grid. The results shown
in Figure 4(c) and (d) are produced by the PDE method
subject to the boundary conditions in Figure 4(a) and the
resolution of the parametric domain in Figure 4(b).

Because the PDE method adopted in this paper is a
parametric representation scheme, the head surface can be
reconstructed in multiresolution by simply scaling down
or up the resolution of the parametric uv domain. There-
fore, the geometric detail of the reconstructed head surface
is controllable by adjusting the resolution of its paramet-
ric domain, without increasing the number of PDE patches
involved. This advantage of the developed method may
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Figure 4. Head surface reconstruction using the partial differential equation method, with 0 � u � 1, 0 � v � 2� . (a) The discreted
boundary curves. (b) The sampling in the uv parametric domain. (c) The head surface in flat view. (d) The head surface in shaded view.

Figure 5. Multiresolutional reconstruction using the partial differential equation method, with 0 � u � 1, 0 � v � 2� . (a) The head
surface in 30� 40. (b) The head surface in 80� 80.

help save a considerable amount of storage expense and
facilitate the computation. Such multiresolutional heads
are illustrated in Figure 5.

4.2. Head Solid Modeling

A solid model is the geometric representation of a physical
solid object. Solid modeling has a variety of applications
from computer-aided design to health care. The common
methods to create a solid model include constructive solid
geometry, boundary representation, and cell decomposi-
tion. Du and Qin [40] proposed to represent a solid object
with a trivariate parametric PDE method, where boundary

surfaces or boundary curve networks are taken as the PDE
boundary conditions. In this paper, the PDE method is
extended to solid modeling by only introducing a third
parameter w to its solution (Equation (7)):

X.u, v, w/DA0.u/Cw
1X

nD1

ŒAn.u/ cos.nv/C Bn.u/ sin.nv/�

(23)

where 0 � w � 1. Geometrically, the term A0.u/ is
regarded as the spine of the solid and also known as the

medial axis or the skeleton. The term
1P

nD1
ŒAn.u/ cos .nv/ C

Bn.u/ sin .nv/� specifies the distance from the points on
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Figure 6. A mapping from the parametric domain to the physical domain. (a) The parametric domain. (b) The physical domain.

Figure 7. The head solid illustration using the partial differential equation method with 0 � u � 1, 0 � v � 2� , 0 � w � 1. (a) The
solid head in grid view. (b) The solid head in shaded view.

the surface X .u, v, 1/ to the spine. Thus, by sampling w
between 0 and 1 over u and v, a solid grid can be cre-
ated from the spine towards its surface according to the
given boundary conditions. In this way, our PDE method
can define a solid model without changing the boundary
conditions used for head surface reconstruction, and it can
automatically recover the interior information in the solid
model. Figure 6 depicts such a mapping from the paramet-
ric domain formed by u, v, and w to the physical domain.
Figure 7 shows the head solid model generated by our
PDE method, where the whole head model is made up of
10 PDE patches with 31 boundary conditions as shown in
Figure 4(a).

4.3. Volume Rendering of the Head

Most volume rendering methods require a well-designed
transfer function in order to make the rendering result
visually translucent and noiseless. However, the difficulty
still remains in transfer function design. In this section,
we introduce how to obtain an analogous rendering effect
through our PDE method.

4.3.1. Three-dimensional Texture Mapping.

An intuitive means for direct volume rendering is texture
mapping, where all the given 2D medical slices are stacked
up to form a 3D texture map, and the 3D texture is mapped
to a series of pre-aligned parallel planes. One disadvantage
of this method is that the volume-rendered result may con-
tain noise if there is noise in the given medical slices. For
example, Figure 8(a) shows an intuitively rendered volume
of the head with the noise from the original medical data.

Instead, we propose to map the 3D texture to the solid
grid reconstructed by the PDE method. In order to perform
the mapping, texels corresponding to the vertices of the
solid model need to be worked out. The correspondence

between the texels and vertex coordinates can be found by
normalizing the vertex coordinates in the x, y, and z direc-
tions. Because the solid grid is reconstructed by the PDE
method with the extracted boundary conditions, the noise
existing outside the head boundaries in the cross-sectional
slices can be readily removed after rendering, as shown in
Figure 8(b).
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Figure 8. The volume rendering results. (a) The rendering result by intuitive texture-mapping method with alpha values associated
with their corresponding pixel values. (b) The rendering result by our partial differential equation method.

4.3.2. Linear Interpolation of Alpha Values.

Alpha blending plays a crucial role in head volume ren-
dering, where the alpha values of texels ranging between
0 and 1 need to be specified. The alpha value determines
the opacity of the rendered volume. The larger the alpha
value, the higher the volume opacity. An intuitive way to
set the alpha value of each texel is to associate it with its
corresponding pixel value in the slice image. However, this
cannot achieve a fully perspective visualization effect, as
shown in Figure 8(a).

To obtain rendering results in high quality, a trans-
fer function is designed in conventional volume render-
ing algorithms. The transfer function maps volume data
to the optical quantities, such as opacity and color. A
well-designed transfer function reveals the structure of the
volume data with some degree of details. However, an
appropriate transfer function is complicated to design. In
this paper, in order to avoid the complicated transfer func-
tion design, we simply relate the alpha value of the volume
data with the parameter w in a linear manner.

In our method, because the parameter w in the paramet-
ric domain varies from 0, the spine of the solid model, to
1, the outermost iso-surface, we can take advantage of this
property of the PDE method by linearly associating the
alpha value with the parameter w:

˛ D .l˛ � h˛/wC h˛ (24)

where l˛ and h˛ indicate the lowest and highest ˛ val-
ues, respectively. This means that the outermost iso-surface
possesses the highest transparency and the transparency
becomes lower as the iso-surface goes inward, thus lead-
ing to a gradually perspective and translucent visualization
result, as shown in Figure 8(b).

5. EXPERIMENTAL RESULTS

This section is dedicated to experiments of the developed
head visualization method. The test data used in the experi-
ments are acquired from [47–49]. Reference [47] offers CT
head data containing 99 slices, while the head data from
[48,49] are in Digital Imaging and Communications in
Medicine, a standard format in medical imaging (DICOM)
format containing 187 and 221 slices, respectively. All the
tested medical slices are 256 � 256 in size.

5.1. Boundary Extraction Evaluation

Because our PDE method is a boundary value problem,
the precision of boundary extraction plays a crucial role in
the whole visualization method. In this paper, we evalu-
ate our boundary extraction results in accordance with the
ground truth. As shown in Figure 9, the regions enclosed by
the white curves were segmented manually as the ground
truth, while the regions enclosed by the red curves were
segmented by our method. It can be observed that the
extracted boundaries by our method overlap well with the
ground truth.

The segmentation accuracy is evaluated by the Jaccard
(JC) measure in this paper. The JC measure reported in
[50] is a common measure that evaluates the segmenta-
tion accuracy based on regional overlaps. The value of
the JC measure ranges between 0 and 1. When the value
approaches 1, a high degree of overlap occurs between the
segmentation result and the ground truth, implying a high
segmentation accuracy. The evaluation result of the dataset
in [47] is plotted in Figure 10, where the average segmen-
tation accuracy is 0.9815. It is noticeable that there are
valleys in the curve shown in Figure 10, which imply the
relatively inaccurate cases underneath. These inaccuracies

Figure 9. The comparison between the extracted boundaries and the ground truth. The red curves indicate the boundaries extracted
from the segmentation results, while the white curves indicate the ground truth.

© 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

17of Comp. Anim. Virtual Worlds 2017; 28 e1683:10



C. CHEN et al. A PDE-based head visualization method with CT data

Figure 10. Segmentation accuracy measurement with the Jaccard (JC) measure for the dataset in [47].

Table II. Segmentation accuracy measurement with the JC measure on different medical data.

Dataset Resolution Minimum accuracy Maximum accuracy Average accuracy

Cthead [47] 256� 256� 99 0.9440 0.9931 0.9815
VHF-Head [48] 256� 256� 187 0.9623 0.9873 0.9806
Neuro-Axial [49] 256� 256� 221 0.9543 0.9899 0.9791

are caused mainly by the morphological operation intro-
duced in boundary condition extraction. The segmentation
evaluation results of three head medical datasets shown
in Table II indicate a high degree of overlaps between
the segmentation results and the ground truth, demonstrat-
ing the feasibility of the variational segmentation approach
proposed in this paper.

5.2. Head Surface Reconstruction Results

Head surface reconstruction has been tested by compar-
ing our results with those produced by the MC algorithm.
Figure 11(a) and (b) shows the shaded head surface mod-
els reconstructed by our PDE method with t set to 10,
that is, a total of 31 slices are manually selected from the
dataset. Figure 11(c) and (d) shows the results produced by
the MC algorithm using up all the 99 slices in the dataset.
As we can see, the head surface models reconstructed by
our PDE method appear close to those produced by the
MC algorithm, with all the facial features well retained,
although only a small number of head medical slices are
used. Moreover, the noise around the mouth existing in the
medical data, present in both Figure 11(c) and (d), has been
suppressed in our results in Figure 11(a) and (b).

Comparisons in computational time and storage effi-
ciency between the MC algorithm and our PDE method
have also been performed. The experiments were

carried out with Pentium(R) Dual-Core CPU 3.20 GHz
and 4.00-GB RAM. Our PDE method took only 0.66 sec-
onds, while the MC algorithm consumed 874.75 seconds
for constructing the models in Figure 11. Note that the
time consumed by our PDE method excludes boundary
extraction. However, for 10 PDE patches, we need 31 med-
ical slices, the boundary curves of which are extracted
by the proposed method with 14.23 seconds. Even then,
the head surface reconstruction method in this paper still
outperforms well the MC algorithm in terms of computa-
tional efficiency. In storage cost, the MC algorithm uses
all slices in the dataset, and the surface model recon-
structed by the MC algorithm is 37 647 kB in size. In
contrast to the MC algorithm, rather than storing the whole
reconstructed head surface model, we can choose to store
only the PDE boundary conditions and reconstruct the
head surface model by solving the PDEs when needed.
For 31 boundary conditions, and each boundary condition
is about 2 kB in size, only 62 kB is needed. Thus, the
use of the PDE method can benefit network transmission
of medical data for applications of medical visualization,
such as telemedicine.

Moreover, the head surface can be reconstructed with
different numbers of PDE patches, and the number of
PDE patches influences the reconstructed detail. Generally
speaking, the larger the number of PDE patches involved,
the more geometric detail the surface reconstruction can
recover. The PDE reconstruction results with the patch
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Figure 11. The head surface reconstruction results. (a and b) Results generated by our partial differential equation method using 31
slices from the dataset. (c and d) Reconstruction results produced by the marching cubes algorithm using all the 99 slices of the

dataset.

Figure 12. The head surface reconstruction results when (a) t D 4, (b) t D 5, (c) t D 6, (d) t D 10, (e) t D 14, and (f) t D 31.

number gradually increased are displayed in Figure 12. It
can be seen that when t reaches 31, that is, 94 out of 99
slices are used, the reconstruction result appears as detailed
as the result produced by the MC algorithm shown in
Figure 11(c). If t is set to 4, then the facial features are
smoothed out. It is also observed that when t is chosen as
10 or 14, the results retain almost all the facial features
including eyes, nose, and mouth. This observation reveals
one major characteristic of the PDE method we explore
here, that is, our PDE method needs only a little amount
of information to represent complex geometry. Thus, our
PDE method is computationally efficient and fast.

The geometric detail of the reconstructed surface can
also be controlled by variant uv resolutions. As shown in

Figure 13, the test was carried out with the same PDEs and
boundary conditions as in Figure 11(a) by fixing either u or
v, while gradually increasing the sampling rate of the other.
It can be seen that the geometric detail of the head surface
is gradually unveiled.

5.3. Head Volume Rendering Results

Volume rendering is also integrated into the PDE-based
framework, and the head solid model has to be generated
ahead of volume rendering. Under the PDE-based frame-
work, the head solid model can be generated by introducing
a third parameter w into the solution, and the u, v param-
eters affect the generation of the solid model in the same
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Figure 13. The head surface reconstruction results by adjusting the uv resolution. (a) u=10, v=40. (b) u=20, v=40. (c) u=40, v=40.
(d) u=60, v=40. (e) u=80, v=40. (f) u=60, v=10. (g) u=60, v=20. (h) u=60, v=40. (i) u=60, v=60. (j) u=60, v=80.

Figure 14. Solid representation of the head. The top row is the grid view, and the bottom row is the smooth view. (a and d) 0 � u �
1, 0 � v � 2� , 0 � w � 1; (b and e) 0 � u � 1,�=2 � v � 2� , 0 � w � 1; (c and f) 0 � u � 1,�=2 � v � 2� , 0.8 � w � 1.

manner as in surface reconstruction. Besides, the range of
uvw parametric domain also determines the reconstructed
head solid model. Figure 14 shows some solid head mod-
els generated by the PDE method in different views, where
the solid head is generated by sampling u, v, and w with
40, 60, and 5 equally spaced points, respectively. Note that
the boundary conditions used in head solid modeling are
the same as in head surface reconstruction.

Following head solid modeling, 3D texture mapping is
carried out. This paper implements the 3D texture map-
ping using the OpenGL library, by mapping the 3D texture
into the head solid model to produce volume rendering

results. Figure 15(a) and (b) show the results produced
by the intuitive texture mapping method. Figure 15(c)–(f)
are generated by our PDE method. The alpha value of
the generated texture is set in a linear relation with the
parameter w in our PDE method and constrained within
the range between 0.1 and 0.9; thus, a perspective effect
can be achieved. Moreover, in Figure 15(a), there exists
a large amount of noise, compared with Figure 15(c) and
(e) rendered by our method, where noise is successfully
suppressed. To this end, without any transfer function, our
PDE method can still produce visually translucent and
noiseless rendering results.
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Figure 15. Volume rendering results. (a and b) The result produced by the intuitive texture-based volume rendering algorithm. (c–f)
Results produced by our method in different views.

6. CONCLUSION

In this paper, we present a PDE-based head visualization
framework, into which both head surface reconstruction
and volume rendering are integrated. Our framework first
segments a selected number of CT slices, followed by
boundary condition extraction. After that, the extracted
boundary conditions are input to the PDE engine to per-
form head visualization. The PDE-based head visualization
framework can reconstruct the multiresolutional head sur-
face model using only a small number of head slices and
is more efficient in both computational time and storage
cost than the conventional MC algorithm. Moreover, with-
out designing a complicated transfer function, our PDE
method can render the volume into translucent visualiza-
tion results in a fast and efficient fashion and suppress the
input noise embedded in the medical slices nicely. Note
that our volume rendering results are, however, not the best
among those existing ones in terms of visual quality but are
still visually acceptable with much details reconstructed.

The experimental results demonstrate the feasibility of our
PDE method for head medical data visualization, including
both head surface reconstruction and volume rendering.

Because our method needs only a small number of
medical slices, the number of which has to be empiri-
cally determined. The selected slices must be able to best
represent the geometric detail of the head. Hence, an auto-
matic scheme enabling intelligent selection of the medical
slice images for PDE boundary extraction is yet to be
sought after.

We believe that the development of the PDE method may
benefit many medical visualization applications, such as
rendering large-scale medical data with limited resource as
well as medical visualization on mobile devices. Rendering
large-scale medical data requires high-speed, large-storage
capabilities, while mobile 3D medical visualization dis-
plays medical data with mobile devices that have limited
data storage and transmission abilities. With a small num-
ber of boundary conditions, our PDE method can facil-
itate the representation and storage of medical data. For
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instance, instead of storing a full scale of medical slice
images, one may only need to store the boundary condi-
tions of the head geometry, saving a considerable amount
of memory.

The focus of this paper is on head medical data visual-
ization. However, our PDE method can be easily applied
to any cylinder-like organs. As for these organs with
branches, the topology of the connected PDE patches will
vary. This will be one of our future tasks based on our work
reported in this paper.
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