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Abstract

Image fusion is important in computer vision where the main goal is to integrate several

sources images of the same scene into a more informative image. In this paper, we propose a

variational image fusion method based on the first and second-order gradient information.

Firstly, we select the target first-order and second-order gradient information from the

source images by a new and simple salience criterion. Then we build our model by requiring

that the first-order and second-order gradient information of the fused image match with

the target gradient information, and meanwhile the fused image is close to the source

images. Theoretically, we can prove that our variational model has a unique minimizer. In

the numerical implementation, we take use of the split Bregman method to get an efficient

algorithm. Moreover, four-direction difference scheme is proposed to discrete gradient

operator, which can dramatically enhance the fusion quality. A number of experiments and

comparisons with some popular existing methods demonstrate that the proposed model is

promising in various image fusion applications.
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1. Introduction

Image fusion has become an active issue in image processing and computer vision owing

to the availability of multisensor data in many fields. The main goal of image fusion is to

integrate multiple source images of the same scene into a single highly informative image which

is more suitable for human or computer vision. Despite the dissimilarity of the source images,

they are highly correlated with each other and complementary in nature [17]. Hence, by fusing

these images into a single one, remarkable improvement can be expected. In recent years, im-

age fusion has attracted a large amount of attention in a wide variety of applications such as

concealed weapon detection, remote sensing, medical diagnosis, defect inspection, and military

surveillance [4,8]. For example, due to limited depth-of-focus of optical lenses in CCD devices,

it is extremely hard to get an ideal image such that all the involved objects are “in focus”.

However, in each image, only the object in focus is clear. Image fusion process is thus required
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to provide an all “in focus” ideal image [34]. In medical imaging, computer tomography (CT)

is usually good for imaging bone structures, while magnetic resonance imaging (MRI) is more

suitable for soft tissues. Hence, by fusion, it is possible to obtain a single image that describes

bone structure as well as soft tissues, which evidently is important for medical diagnosis [36].

In remote sensing imagery, some sensors are good at capturing high resolution spatial informa-

tion without spectral information, while some other sensors are powerful at recording spectral

information but with low spatial information. Fusing these different types of data thus could

provide images with both spectral information and high resolution spatial information [2, 32].

During the past two decades, many image fusion methods have been developed. Based on the

levels where information is integrated, image fusion methods can be roughly classified into three

levels: pixel-level, feature-level and decision-level [1]. In pixel-level fusion, the pixel values of

the fused image are derived from the pixel values of all the source images by some principles [38].

The main advantage of pixel-level fusion is that the original measured quantities are directly

processed and the algorithms are easy to implement [35]. We focus on pixel-level fusion in this

paper. Moreover, generally speaking, the pixel-level fusion methods can be categorized into

spatial domain fusion methods [23,25,26,45] and transform domain fusion methods [9,29,30,34].

Let us first introduce some notations before reviewing the fusion methods.

Assume that fi : Ω → R, i = 1, · · · ,m are the source images to be fused, where Ω ⊂ R2

denotes the image domain which typically is a bounded rectangle. For each pixel x ∈ Ω, the

value fi(x) represents the gray level at x. Furthermore, let us suppose that u : Ω → R is the

required fused image. Assuming that S(·) represents certain feature selection rule, the space

domain fusion can be formulated as [44, chapter 12]:

u(x) = S (f1(x), · · · , fm(x)) .

Simple examples of spatial domain fusion include average and weighted average of the source

images [26, 45]. On the other side, transform domain fusion method enables the use of a

rather general framework where the salient image features are more clearly depicted than in

the spatial domain. Let T denote a transform operator and S(·) again the feature selection

rule. The transform domain fusion method can be outlined as:

u(x) = T −1
{
S {T (f1(x), · · · , fm(x))}

}
.

The transform domain based method has been popular ever since the introduction of pyramid

transform in mid-80’s [9]. For instance, we have the Laplacian pyramid [9] and Gradient

pyramid [10]. As the development of wavelet methods, wavelet multiscale decomposition is

later applied to replace pyramid decomposition in image fusion with the similar idea. Evidently,

the key step in transform domain fusion is the selection rule of transform coefficient. Many

strategies have been developed in literatures [10,29,34,49].

Recently, some variational fusion methods [36,41,43] have been introduced based on struc-

ture tensor and first-order gradient information. Structure tensor is widely used to enhance

coherence in image restoration problems [15, 27, 47]. Since the first-order method is closely

related to the proposed method in this paper, we recall the basic idea of first-order fusion

approach below (for details, see [36]).

Let us first introduce the structure tensor which is widely used to extract local image feature

from the source images. Giving source images fi : Ω → R, i = 1, · · · ,m, the structure tensor is
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defined as

G(x) :=

m∑
i=1

∇fi(x)∇fT
i (x), ∀x ∈ Ω,

where ∇fi := (∂fi∂x ,
∂fi
∂y ). Note that for each x , G is a symmetric matrix which can be decom-

posed as

G = λ1e1e
T
1 + λ2e2e

T
2 ,

where λ1, λ2 denote the largest and smallest eigenvalues of G, and e1, e2 denote their corre-

sponding unit eigenvectors. Geometrically, the first eigenvector e1 indicates the orientation

maximizing the gray-value fluctuations, while e2 is perpendicular to e1. The eigenvalues λ1, λ2

convey shape information. In practice, one can often use a smoothed version of fi in the con-

struction of structure tensor to remove noise and fine structures. Remark that a weighted

version of structure tensor is used in [36] and structure tensor in multiple resolution is used

in [43] for image fusion. Basically, in the first-order fusion method, the target vector field

V : Ω → R2 of the fused image u is constructed as:

V :=
√

λ1e1,

where the direction of e1 is chosen to satisfy ⟨e1,
∑m

i=1 ∇fi⟩ ≥ 0. Then the fused image u is

obtained by solving the following problem:

min
u

∫
Ω

|∇u− V |2dx. (1.1)

In [36], an improved version of first-order method (1.1) is proposed by adding some other

variational terms from [3] to enhance the local contrast. Generally gradient descent method is

used in the numerical implementation. Model (1.1) is effective in image fusion, however, there

is still room for improvement.

In this paper, we consider a somewhat different approach as a complementary. Indeed,

firstly, we construct other target information from the source images which can preserve the

desired prominent information. Since higher order methods have been widely used and proven

to be very effective in image society [5,7,13,22,31], we intend to use both the first-order and the

second-order gradient information as the target. Meanwhile, a new salience criterion is built to

choose the target information from the given source images. Secondly, we propose a new model

based on (1.1). In the proposed model, we require that the corresponding gradient information

of fused image match with the target first-order and second-order gradient information in the

sense of L1 norm, meanwhile the fused image is close to the source images in the sense of L2

norm. Theoretically, the existence of a unique minimizer for the proposed model is proved.

Numerically, a fast algorithm is proposed using split Bregman technique and an effective four-

direction difference scheme is proposed to discrete the gradient operator.

The paper is organized as follows. In Section 2, we present the salience criterion for feature

selection, and then build the novel variational model with a theoretical analysis of the existence

of the minimizer. Then in Section 3 we give the fast algorithm based on the split Bregman

technique. The numerical experiments are reported in Section 4. Finally, we conclude the paper

in Section 5.
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2. The Proposed Model

2.1. Feature selection

Assume that the source images are fi, i = 1, · · · ,m, which are almost noise-free and aligned.

If the images are noisy or not aligned, we need do denoising or registration processing first. Since

image denoising and registration are widely studied topics in literature and many effective

methods are proposed, we will not go to the details. Now suppose that we have the first-

order and second-order gradient fields of the source images which are represented by ∇fi and

∇2fi, i = 1, · · · ,m respectively.

Our first task is to construct the target first-order and second-order gradient fields based on

the source images. Our basic idea is to choose the most salient feature in each component of the

gradient information. Inspired by the feature selection strategies in literatures [10, 29, 34, 49],

here we propose a very simple and effective one which is then integrated into our coming

variational model for image fusion. We remark that other feature selection rule can also be

used in this step.

Assume that we have two features Mi : Ω → R, i = 1, 2. For x, y ∈ Ω, let us define a mean

kernel function

K(x, y) =

{
1/|ω|, if y ∈ ωx,

0, otherwise,

where ωx denotes a bounded neighborhood of the pixel x with area |ω|. Using the average value

of M2
i as a salience measure, a binary mask can be obtained by choosing the salient feature as

follows,

B(x) =

{
1, if K ∗M2

1 > K ∗M2
2 ,

0, otherwise.

After that, the fusion binary mask is given by smoothing and thresholding

B̃(x) =

{
1, if K ∗B > 0.5,

0, otherwise.

This step aims to make the selection more consistent in neighborhoods since isolated points or

tiny structures will be removed. Finally, the selected feature is set to be

M = B̃M1 + (1− B̃)M2.

The above selection scheme is designed for two features. In the case of more than two

features, we use recursive method and at one time only two features are combined. Using this

scheme, we can select first-order feature from each component of ∇f1, · · · , ∇fm and denote

the result as v. Similarly, we select second-order feature from ∇2f1, · · · , ∇2fm and denote the

result asw. By this procedure we get the target first-order feature v and the target second-order

feature w.

2.2. The proposed model

We are aim to search for the fused image which combines all the important salient features

in the source images. So the fused image u is expected to have first-order gradient information

matching with the target v, and second-order gradient information matching with w. Similar
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as functional (1.1), we can immediately write down the cost function:∫
Ω

|∇u− v|2 + α|∇2u−w|2dx, (2.1)

where |s|(x) :=
√∑

si(x)2 denotes the Euclidean distance and α is a positive balancing pa-

rameter. In contrast, we prefer to use L1 norm to measure the distance here:∫
Ω

|∇u− v|+ α|∇2u−w|dx. (2.2)

The underline reason to choose not L2 but L1 is as follows. Firstly, since images usually

have sparse gradient information, that is, ∇u,∇fi,∇2u,∇2fi are all sparse. Then we can also

assume that v and w are sparse by the selection rule. Hence ∇u − v and ∇2u − w are also

sparse. As is well known, L1 norm ensures more sparsity than L2 norm. Secondly, in statistics,

L2 norm comes from Gaussian distribution, while L1 norm comes from Laplacian distribution

by taking − log operation. To show the difference, we take the cameraman test images shown

in the first row of Fig. 4.1 as an example (see Section 4). The desired fusion result is u equals

the ground truth image I in Fig. 4.1(a). v and w are the selected first order and second

order features from the source images Fig. 4.1(b)-(c) by method described in Section 2.1. We

show the distribution of data ∇I − v and ∇2I −w in Fig. 2.1 together with the Gaussian and

Laplacian fitting results. We find that the distributions of the first and second order gradient

errors ∇I − v and ∇2I − w match Laplacian distribution better than Gaussian distribution.

Indeed, Laplacian fitting has a mean square error (MSE ) much smaller than Gaussian fitting.

Hence, it is more reasonable to use L1 norm to measure the distance as (2.2) than use L2 norm

as in (2.1).

−150 −100 −50 0 50 100 150 200
−1

0

1

2

3

4

5

6

7

8

9

10
x 10

5

Histogram

 

 
∇ I − v

∇ 2I − w

(a)

−150 −100 −50 0 50 100 150 200
−5

0

5

10

15

20

Data ∇ I − v

lo
g 2 P

ro
ba

bi
lit

y

 

 
∇ I − v
Gaussian
Laplacian

(b)

−150 −100 −50 0 50 100 150 200
−5

0

5

10

15

20

Data ∇ 2I − w

lo
g 2 P

ro
ba

bi
lit

y

 

 

∇ 2I − w
Gaussian
Laplacian

(c)

Fig. 2.1. A Laplacian distribution is a better model of ∇I−v and ∇2I−w than a Gaussian distribution.
(a) The histogram of ∇I − v and ∇2I −w respectively; (b) the distribution of ∇I − v (in red), along
with a Gaussian fit (in green, MSE = 4.3085), and a Laplacian fit (in blue, MSE = 2.6052); (b) the
distribution of ∇2I −w (in red), along with a Gaussian fit (in green, MSE = 6.5732), and a Laplacian
fit (in blue, MSE = 3.5446).

Directly minimizing functional (2.2) yields many solutions. If u∗ is a minimizer, then u∗+ c

is also a minimizer, where c is a constant. To avoid this drawback, we add a data-fidelity term

which requires that the fused image should be close to a predefined image u0, which comes from

the source images. A quite natural choice for u0 is u0 = 1
m

∑m
i=1 fi. However, this choice may

cause contrast loss. For example, if the contrast of the source images are quite different, then

by taking average, u0 probably has low contrast. To tackle this problem, we introduce an index
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called average contrast (AC) to quantify the contrast of an image I as:

AC(I) =

∫
Ω

∫
Ω
|I(x)− I(y)|dxdy

|Ω|2
.

Then we choose u0 to be the source image with highest AC if the difference of ACs for source

images are larger than some threshhold, otherwise, we choose the average.

Overall, our resulted model is:

min
u

∫
Ω

|∇u− sv|+ α|∇2u− sw|dx+
λ

2

∫
Ω

|u− u0|2dx, (2.3)

where α ≥ 0, λ > 0, s ≥ 1. When s = 1, the model is for image fusion. When s > 1, the

magnitude of target first-order and second-order features v,w is enlarged, the model can be

used for both image fusion and enhancement.

Comparing with the first order method (1), the main theoretical merit of our model is that

the existence and uniqueness of minimizer can be proved in some suitable space. Moreover, our

general framework can be readily extended. For instance, other second order methods such as

TGV2 [5–7] can also be considered similarly. We leave this as future work.

2.3. Mathematical analysis

In this section, we will give some mathematical analysis of the proposed model (2.3). In

the continuous setting, the gradient operator ∇,∇2 should be understood as weak derivative

in the sense of Radon measure as D,D2 in BV (Ω) and BV 2(Ω) [16, 18, 21]. We remark that

BV (Ω) is a suitable functional space for images as it allows sharp edges. In contrast, at a first

glance, BV 2(Ω) seems a less suitable functional space for describing images since the embedding

from BV 2(Ω) into W 1,1(Ω) is compact. However, as a functional in BV (Ω), each image can

be approximated by smooth functions [18, Theorem 2, page 172]. Moreover, the gap between

BV (Ω) and W 1,1(Ω) will be significantly reduced/removed in the discrete situation where each

image has first-order and second-order gradient information defined by finite difference schemes.

Indeed, in the numerical aspect, the variational methods involving BV 2(Ω) have shown to be

very effective in image restoration which can well preserve edges while smoothing [13,21,28,31].

Hence, we follow to assume that images belong to BV 2(Ω) in this paper and leave the extension

as future work.

Generally, we let Ω ⊂ Rn be a bounded, open and convex domain with uniform C1−boundary.

Let V = Rn or V = Rn×n. For k = 1, 2, Ck
c (Ω, V ) denotes the set of vector valued, matrix

valued, respectively, k−times continuously differentiable functions with compact support in Ω

and range in V . We denote by

Ek(V ) :=
{
ϕ ∈ Ck

c (Ω, V ) : |ϕ| ≤ 1 for all x ∈ Ω
}
.

Here | · | denote Euclidean norm for vector and Frobenius norm for matrix.

For mathematical analysis, we firstly assume that v and w are finite vector-valued and

matrix-valued Radon measures, i.e.,∫
Ω

|v| := sup

{∫
Ω

v · ϕ : ϕ ∈ E∞(Rn)

}
< +∞, (2.4)
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|w| := sup

{∫
Ω

w · φ : φ ∈ E∞(Rn×n)

}
< +∞. (2.5)

In the case of α = 0, we rewrite the proposed model (2.3) as:

inf
u∈BV (Ω)∩L2(Ω)

E1(u) =

∫
Ω

|Du− sv|+ λ

2

∫
Ω

|u− u0|2dx. (2.6)

In the case of α > 0, the model is:

inf
u∈BV 2(Ω)∩L2(Ω)

E2(u) =

∫
Ω

|Du− sv|+ α

∫
Ω

|D2u− sw|+ λ

2

∫
Ω

|u− u0|2dx. (2.7)

Remark that ∫
Ω

|Du− v| := sup

{∫
Ω

u divϕ+ v · ϕdx : ϕ ∈ E∞(Rn)

}
, (2.8)∫

Ω

|D2u−w| := sup

{∫
Ω

u div2φ+w · φdx : φ ∈ E∞(Rn×n)

}
. (2.9)

Then we can deduce the following inequalities immediately:∫
Ω

|Du| ≤
∫
Ω

|Du− v|+
∫
Ω

|v|, (2.10)

∫
Ω

|D2u| ≤
∫
Ω

|D2u−w|+
∫
Ω

|w|. (2.11)

Then we are ready to prove the existence of a unique minimizer for problem (2.6) and (2.7)

respectively.

Theorem 2.1. Assume that u0 ∈ BV (Ω)∩L2(Ω), i = 1, · · · ,m, v is finite vector-valued Radon

measure satisfying (2.4), then the minimization problem (2.6) has a unique minimizer u∗ ∈
BV (Ω) ∩ L2(Ω).

Theorem 2.2. Assume that u0 ∈ BV 2(Ω) ∩ L2(Ω), i = 1, · · · ,m,v and w are finite Radon

measures satisfying (2.4) and (2.5), α > 0, then the minimization problem (2.7) has a unique

minimizer u ∈ BV 2(Ω) ∩ L2(Ω).

Since the proof of Theorem 2.1 and Theorem 2.2 are quite similar, we only prove Theorem 2.2

in the following.

Proof. The infimum of energy E2 must be finite since E2(0) < ∞. Let {uk}∞k=1 ∈ BV 2(Ω)∩
L2(Ω) be a minimizing sequence of E2. Then there exists a constant C > 0, such that

E2(u
k) :=

∫
Ω

|Duk − v|+ α

∫
Ω

|D2uk −w|+ λ

2

∫
Ω

|uk − u0|2dx ≤ C. (2.12)

Together with inequality (2.10) and (2.11) we deduce that:∫
Ω

|Duk| ≤ C,

∫
Ω

|D2uk| ≤ C, (2.13)
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and ∫
Ω

|uk − u0|2dx ≤ C. (2.14)

By using triangle inequalities of L2 norm on (2.14) and the embedding L2(Ω) ⊂ L1(Ω), we can

deduce from (2.14) that ∫
Ω

|uk|2dx ≤ C,

∫
Ω

|uk|dx ≤ C. (2.15)

Using the definition of BV 2 norm, we get from (2.13) and (2.15) that {uk}∞k=1 is bounded in

BV 2(Ω) ∩ L2(Ω). By the compactness of embedding BV 2(Ω) ⊂ W 1,1(Ω) and the reflexive

property of L2(Ω), we know that there exists a subsequence (again denoted by {uk}∞k=1) and a

function u∗ ∈ W 1,1(Ω) ∩ L2(Ω) such that

uk → u∗ strongly in W 1,1(Ω),

uk ⇀ u∗ weakly in L2(Ω).

Then by a similar deduction of the lower semi-continuity of bounded variation and second

bounded variation, from (2.8) and (2.9) we get that∫
Ω

|Du∗ − v| ≤ lim inf
k→∞

∫
Ω

|Duk − v|, (2.16)∫
Ω

|D2u∗ −w| ≤ lim inf
k→∞

∫
Ω

|D2uk −w|, (2.17)

which in particular implies that u∗ ∈ BV 2(Ω). Meanwhile by the lower semi-continuity of L2

norm, ∫
Ω

|u∗ − u0|2dx ≤ lim inf
k→∞

∫
Ω

|uk − u0|2dx, i = 1, · · · ,m. (2.18)

Combining inequalities (2.16)-(2.18), on a suitable subsequence, we have established that

E2(u
∗) ≤ lim inf

k→∞
E2(u

k)

and hence u∗ is a minimizer.

The uniqueness follows immediately from the strict convexity of E2. �

3. Numerical Scheme

In this section, we derive the numerical algorithm using alternating split Bregman method

which converges and then give the difference scheme in detail.

3.1. The algorithm

In this section, we introduce an efficient algorithm to solve the proposed model based on the

popular alternating split Bregman method [11, 20]. Remark that the primal-dual method [14]

can also be used to drive an efficient algorithm following [5].

Firstly we give a brief introduction on the split Bregman method. Assume that H and |Φ|
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are convex functionals. Let us consider the problem:

min
u,d

|d|+H(u) s.t. Φ(u) = d.

Define F (u, d) = |d|+H(u)+ µ
2

∥∥Φ(u)− d+ bk
∥∥2
2
. The alternating split Bregman algorithm for

this problem is given by the following iteration scheme:

uk+1 = min
u

F (u, dk),

dk+1 = min
d

F (uk+1, d),

bk+1 = bk +Φ(uk+1)− dk+1.

It has been proved that the alternating split Bregman algorithm converges under some condi-

tions [42].

Without loss of generality, we restrict our analysis on s = 1. Let us recall the proposed

model:

min
u

∫
Ω

|∇u− v|+ α|∇2u−w|dx+
λ

2

∫
Ω

|u− u0|2dx. (3.1)

where all variables are understood as matrices in finite dimension Euclidean space. To im-

plement the alternating split Bregman method on the proposed model (2.3), we first add two

auxiliary variables d1,d2 and rewrite (2.3) as:

min
u,d1,d2

E(u,v,w) :=

∫
Ω

|d1|dx+ α

∫
Ω

|d2|dx+
λ

2

∫
Ω

|u− u0|2dx,

s.t. ∇u− v = d1, ∇2u−w = d2.

Then using the alternating split Bregman technique on the constraints, we get the iteration

scheme:

uk+1 = min
u

Er

(
u,dk

1 ,d
k
2

)
, (3.2)(

dk+1
1 ,dk+1

2

)
= min

d1,d2

Er

(
uk+1,d1,d2

)
, (3.3)

bk+1
1 = bk

1 +∇uk+1 − v − dk+1
1 , (3.4)

bk+1
2 = bk

2 +∇2uk+1 −w − dk+1
2 , (3.5)

where

Er(u,d1,d2) :=


∫
Ω
|d1|dx+ α

∫
Ω
|d2|dx+ λ

2

∫
Ω
|u− u0|2dx

+µ
2

∫
Ω
|∇u− v − d1 + bk

1 |2dx
+µα

2

∫
Ω
|∇2u−w − d2 + bk

2 |2dx

 . (3.6)

Here µ is a positive parameter which corresponds to the constraints in (3.1). In the following,

we derive the formulas for u,d1 and d2 respectively from (3.3) and (3.6) with alternating

minimization method.

3.1.1. Solving u

Fixing d1 and d2, the subproblem for u is equivalent to:

min
u

{
λ
2

∫
Ω
|u− u0|2dx+ µ

2

∫
Ω
|∇u− v − d1 + bk

1 |2dx
+µα

2

∫
Ω
|∇2u−w − d2 + bk

2 |2dx

}
.
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The corresponding Euler-Lagrangian equation about u is:

λ(u− u0) + µ∇T (∇u− v − d1 + bk
1) + µα(∇2)T (∇2u−w − d2 + bk

2) = 0,

where ∇T denotes the conjugate operator of ∇ and (∇2)T denotes the conjugate operator of

∇2. That is:(
γ +∇T∇+ α(∇2)T∇2

)
u = γu0 +∇T (v + d1 − bk

1) + α(∇2)T
(
w + d2 − bk

2

)
.

with γ = λ
µ . It can be abbreviated as:

Ru = rhs,

where

R = γ +∇T∇+ α(∇2)T∇2 (3.7)

rhs = γu0 +∇T (v + d1 − bk
1) + α(∇2)T

(
w + d2 − bk

2

)
. (3.8)

Since R can be regarded as convolution operator, under the assumption of periodic boundary

condition, we can solve the system efficiently by

u = F−1

(
F (rhs)

F (R)

)
(3.9)

where F denotes the fast Fourier transform (FFT) and F−1 denotes the inverse fast Fourier

transform (IFFT). See section 3.2 for more details.

3.1.2. Solving d1 and d2

Fixing u, since the subproblems for d1 and d2 are separable, we can solve them one by one.

The subproblem for d1 is equivalent to:

min
d1

{∫
Ω

|d1|dx+
µ

2

∫
Ω

|∇u− v − d1 + bk
1 |2dx

}
.

A simple calculation gives the closed-form solution of this problem:

d1 = max
{∣∣bk

1 +∇u− v
∣∣− 1/µ, 0

} bk
1 +∇u− v∣∣bk
1 +∇u− v

∣∣ . (3.10)

The subproblem for d2 is equivalent to:

min
d2

{∫
Ω

|d2|dx+
µ

2

∫
Ω

|∇2u−w − d2 + bk
2 |2dx

}
.

Similar calculation gives the following closed-form solution:

d2 = max
{∣∣bk

2 +∇2u−w
∣∣− 1/µ, 0

} bk
2 +∇2u−w∣∣bk
2 +∇2u−w

∣∣ . (3.11)
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Finally, we summarize the algorithm as in Program 1.

Program 1

• Initialization: u0 = 0,b0
1 = 0,b0

2 = 0,d0
1 = 0,d0

2 = 0.

• For k = 0, 1, 2, . . ., repeat until a stopping criterion is reached

uk+1 = F−1

(
F (rhs)

F (R)

)
, see (3.7), (3.8) for the formula of R and rhs,

dk+1
1 = max

{∣∣bk
1 +∇uk+1 − v

∣∣− 1/µ, 0
} bk

1 +∇uk+1 − v∣∣bk
1 +∇uk+1 − v

∣∣ ,
dk+1
2 = max

{∣∣bk
2 +∇2uk+1 −w

∣∣− 1/µ, 0
} bk

2 +∇2uk+1 −w∣∣bk
2 +∇2uk+1 −w

∣∣ ,
bk+1
1 = bk

1 +∇uk+1 − v − dk+1
1 ,

bk+1
2 = bk

2 +∇2uk+1 −w − dk+1
2 .

• Output: uk+1.

Theorem 3.1. The sequence {uk}k∈N generated by the alternating split Bregman algorithm in

Program 1 converges to the minimizer of the proposed energy in (3.1).

Proof. With a standard argument similar to the proof of Theorem 2.2, we can prove that in

discrete setting the functional in (3.1) is proper, convex, restrictive and lower semi-continuous,

and thus the uniqueness of minimizer is guaranteed. According to Theorem 5 and Corollary 1

in [42], the convergence result holds. �

3.2. Difference scheme

In discrete setting, we will utilize a two-dimensional regular Cartesian grid of size N ×N :

Ω = {(i, j)|i = 1, · · · , N, j = 1, · · · , N}

where (i, j) denotes a pixel of the image. In this paper, we utilize both the two-direction

difference scheme and the four-direction difference scheme for first-order gradient operator.

Let us define the following difference operators at x, y, 45◦ and 135◦ directions with periodic

boundary condition:

∇xu(i, j) =

{
u(i, j)− u(i, j − 1), i = 1, · · · , N, j = 2, · · · , N
u(i, 1)− u(i,N), i = 1, · · · , N, j = 1.

∇yu(i, j) =

{
u(i, j)− u(i− 1, j), i = 2, · · · , N, j = 1, · · · , N
u(1, j)− u(N, j), i = 1, j = 1, · · · , N.
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∇/u(i, j) =


[u(i, j)− u(i− 1, j + 1)] /

√
2, i = 2, · · · , N, j = 1, · · · , N − 1

[u(1, j)− u(N, j + 1)] /
√
2, i = 1, j = 1, · · · , N − 1

[u(i,N)− u(i− 1, 1)] /
√
2, i = 2, · · · , N, j = N

[u(1, N)− u(N, 1)] /
√
2, i = 1, j = N.

∇\u(i, j) =


[u(i, j)− u(i− 1, j − 1)] /

√
2, i = 2, · · · , N, j = 2, · · · , N

[u(1, j)− u(N, j − 1)] /
√
2, i = 1, j = 2, · · · , N

[u(i, 1)− u(i− 1, N)] /
√
2, i = 2, · · · , N, j = 1

[u(1, 1)− u(N,N)] /
√
2, i = 1, j = 1.

Periodic boundary condition is chosen to enable the use of FFT. The corresponding conju-

gate of the above four operators are then simply the negative finite differences. See Fig. 3.1 for

an intuitive description of these operators.

Remark that ∇x,∇y are backward difference scheme widely used in image community to

discrete the gradient operator in image restoration problems [12]. While the last two operators

∇/,∇\ are rarely used. Actually, we have tested that in the well know total variation denoising

model [40], four-direction difference scheme has similar performance as the common used two-

direction difference scheme. However, as will be shown in Section 4,the four-direction scheme

seems superior to two-direction scheme in image fusion problem. One possible reason is that

the role of gradient term in image fusion is something different from that in image denoising.

Indeed, in image denoising,
∫
Ω
|∇u|dx is a regularization term to smooth the solution image,

and both versions of difference scheme approximate to the same total variation value. However,

in image fusion,
∫
Ω
|∇u−v|dx is a fidelity term which requires that ∇u matches with v, where

more directions on difference provide extra information as our feature selection procedure to

build v,w (see Section 2.1) is nonlinear.

(a)

Fig. 3.1. The first-order difference scheme. The difference operators at x, y, 45◦ and 135◦ directions,
∇x,∇y,∇/ and ∇\, are vectors in sold line in red; the corresponding conjugate operators, ∇T

x ,∇T
y ,∇T

/ ,

and ∇T
\ , are vectors in dashed line in blue.

The second-order difference operators can be obtained though the composition of first-order

difference operators. For example, in the two-direction case, let ∇ = (∇x,∇y), correspondingly

∇T = (∇T
x ,∇T

y ), then the second-order difference operators are

∇2 =

(
∇x∇x,∇x∇y,

∇y∇x,∇y∇y

)
,

(
∇2

)T
=

(
∇T

x∇T
x ,∇T

y ∇T
x ,

∇T
x∇T

y ,∇T
y ∇T

y

)
.
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There are three individual operators in ∇2 and
(
∇2

)T
since the derivatives can change turn,

i.e., ∇x∇y = ∇y∇x and ∇T
y ∇T

x = ∇T
x∇T

y . Similarly, if four-direction difference scheme

is used for first-order gradient operator, i.e., ∇ = (∇x,∇y,∇/,∇\), correspondingly ∇T =

(∇T
x ,∇T

y ,∇T
/ ,∇

T
\ ), then the second-order operators are

∇2 =


∇x∇x,∇x∇y,∇x∇/,∇x∇\,

∇y∇x,∇y∇y,∇y∇/,∇y∇\,

∇/∇x,∇/∇y,∇/∇/,∇/∇\,

∇\∇x,∇\∇y,∇\∇/,∇\∇\

 ,
(
∇2)T =


∇T

x∇T
x ,∇T

y ∇T
x ,∇T

/ ∇T
x ,∇T

\ ∇T
x ,

∇T
x∇T

y ,∇T
y ∇T

y ,∇T
/ ∇T

y ,∇T
\ ∇T

y ,

∇T
x∇T

/ ,∇T
y ∇T

/ ,∇T
/ ∇T

/ ,∇T
\ ∇T

/ ,

∇T
x∇T

\ ,∇T
y ∇T

\ ,∇/∇T
\ ,∇T

\ ∇T
\

 . (3.12)

There are ten individual operators in ∇2 and
(
∇2

)T
respectively. In numerical implementation,

we take use of this symmetric property to reduce the computational time. Remark that we

display ∇2 in matrix form, but we rearrange it to vector form in the model (2.3) and the

algorithm for simplicity.

Since we use FFT to solve u in the algorithm, to calculate F (R) in Program 1, we need the

form of first-order difference operators ∇x,∇y,∇/,∇\ as convolution kernels. It can be directly

obtained from their definitions that the kernels are

[
1 − 1

0 0

]
,

[
1 0

−1 0

]
,

[
0 − 1

1 0

]
√
2

,

[
−1 0

0 1

]
√
2

.

The corresponding higher order operators as convolution kernels can be obtained by convolution

of the first-order kernels. For example, the convolution kernel of ∇x∇y is[
1 − 1

0 0

]
∗
[

1 0

−1 0

]
=

[
1 − 1

−1 1

]
.

4. Numerical Results

In this section, we test our algorithm on several sets of source images. Some of the ex-

perimental results are compared with existing popular algorithms including Laplacian pyra-

mid, Gradient pyramid, discrete wavelet transform pyramid, first-order variational model (1.1),

methods in [25] and [45]. For simplicity the first five methods are abbreviated as Laplacian,

Gradient, DWT and Order1-old respectively. Remark that for fair comparison, we use the same

feature selection rule as described in Section 2.1 in high frequency for the pyramid methods

and the proposed method. To choose low frequency features in the pyramid methods, we use

the commonly used average method. For variational method Order1-old, we follow the setting

in [36].

In the proposed algorithm, we test three cases:

Order1-2 : first-order method with α = 0, ∇ = (∇x,∇y).

Order1-4 : first-order method with α = 0, ∇ = (∇x,∇y,∇/,∇\).

Order2 : second-order method with α > 0, ∇ = (∇x,∇y,∇/,∇\) and ∇2 as in (3.12).

We use the following parameters setting for gray level image fusion in the proposed method:

window size = 5 × 5 for feature selection, λ = 0.01, µ = 0.5. Specially we set iteration = 5 in
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Order1-2 and Order1-4, while α = 0.02, iteration = 6 in Order2. These parameters are chosen

by trail-and-error in order to achieve the optimal results.

Remark that all source images in the following experiments except Cameraman in Fig. 4.1

are downloaded from the website [19]. There also include some introductions of the source

images.

All the experiments are performed under Windows 8 and MATLAB R2012a with Intel Core

i7-4500 CPU@1.80GHz and 8GB memory. The programming language is MATLAB.

4.1. Test 1

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4.1. Test on synthetic images. (a)-(c) test images with size 256× 256: (a) the ground truth image
of Cameraman; (b) and (c) input source images by blurring the left part and right part of (a); (d)-(i)
fused images obtained by the existing methods: (d) Laplacian; (e) Gradient ; (f) DWT ; (g) method
in [25]; (h) method in [45]; (g) Order1-old ; (j)-(l) fused images obtained by the proposed methods: (j)
Order1-2 ; (k) Order1-4 ; (l) Order2.

Firstly we test synthetic images in Fig. 4.1 by the proposed method and some other methods.

Fig. 4.1(a) is the ground truth Cameraman image. Fig. 4.1(b) and Fig. 4.1(c) are input source

images to be fused. They are created by blurring (a) in the left part and right part respectively

with a Gaussian kernel with mean zero and standard deviation σ = 2 (kernel size 5× 5). The

source images are complementary. By careful observation, we find that Fig. 4.1(e), the result

of gradient pyramid, has lost some contrast as the whole image is dark. While the edge details
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of Fig. 4.1(g)-(i), the results of variational model (1.1) and methods in [25] and [45], seem not

salient compared with Fig. 4.1(d), Fig. 4.1(f) and Fig. 4.1(j)-(l).

In order to see the difference more clearly, we display the residues of ground truth image

with the fused images in Fig. 4.2. It is obvious that Fig. 4.2(b) contains much contrast and edge

information, Fig. 4.2(c)-(f) contain some edge information. However the Laplacian pyramid

and the proposed method lost very little information in the residues except along the middle

line, which is the boundary of true information and damaged information in source images. It

suggests that Laplacian pyramid and the proposed method have recovered more salient features

such as edges than other methods. Comparing Fig. 4.2(a) and Fig. 4.2(g)-(i), the residues are

similar. However, by careful observation we find that Fig. 4.2(a) and Fig. 4.2(g) lost more

information along the middle line than Fig. 4.2(h)-(i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.2. The residues of ground truth image I and the fused images u, display I − u + 150. (a)-(f)
residues of the exiting methods (a) Laplacian; (b) Gradient ; (c) DWT ; (d) method in [25]; (e) method
in [45]; (f) Order1-old ; (g)-(i) residues of the proposed methods: (g) Order1-2 ; (h) Order1-4 ; (i) Order2.

For quantitative comparison, we calculate image quality measures illustrated in Table 4.1.

Since in this test, we have ground truth, so peak signal-to-noise ratio (PSNR) and structural

similarity index (SSIM) are standard performance measures. Higher PSNR is better. For SSIM,

the maximum value is 1 and larger is better. We also calculate three popular fusion quality

measures requiring no reference image including: MI – which is mutual information [39], QAB\F
– which takes into account the edge strength and orientation preserving values [48], and QE –
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which takes into account the locations as well as magnitude of distortions [36, 37, 46]. Remark

that MI,QAB\F , QE are normalized and ideal values are all 1, and bigger is better.

In each row of Table 4.1, the bold-faced number is the best one and the italic number

is the second best. Among all, Order2 achieves all the best quality measures, and Order1-

4 gains all the second best measures. The pyramid method Laplacian and Order1-2 gain

similar performance measures. Gradient has the lowest quality measures which coincides with

its poor visual quality. The performance of methods in [25], [45] and Order1-old are similar

which are better than Gradient in every quality measure. DWT ranks in the middle. Let us

pay more attention to measures PSNR and SSIM which are widely used when the reference

image is available. Laplacian and Order1-2 have similar PSNR about 46.5dB, which are much

higher than Gradient, [25], [45], Order1-old and DWT. As four directions are used in first-order

difference scheme, Order1-4 dramatically improves the PSNR about 1dB. Furthermore, if the

second-order derivatives are also considered, Order2 achieves a PSNR about 0.6 dB higher

than Order1-4. SSIM measures seem almost consistent with PSNR. Gradient and Order1-old

have the lowest SSIM. [25], [45], DWT and Laplacian are ranked in the middle. The proposed

methods outperform others in SSIM index, among which Order2 is the best. We remark that

SSIM is quite similar for the proposed methods which are very close to the maximum 1.

We also report the computational time (average of ten times running) of each method

in Table 4.1. The noniterative methods Laplacian, Gradient and DWT are much faster than

others which takes less than 0.04s. The method in [25] is most time consuming (3.4112s) since it

process the image pixel by pixel. The iterative method in [45] takes about 1.5 seconds. Order1-

old and the proposed methods takes less than 1 second. Order1-old is slower than our methods

since gradient descent method is used in the implementation which needs about one hundred

iterations, while our methods take only 5-6 iterations. Among the proposed methods, Order2

is the most time-consuming and Order1-2 is the fastest. It is obvious that the computational

time is closely related with the number of directions involved in the difference scheme. With

more directions, the algorithm is more time-consuming in one iteration.

Table 4.1: Quality measures and computational time for different tested fusion methods corresponding
to Fig. 4.1.

Laplacian Gradient DWT [25] [45] Order1-old Order1-2 Order1-4 Order2

PSNR 46.5143 30.7681 37.2532 32.7390 33.6798 31.3811 46.5163 47.6896 48.2745
SSIM 0.9991 0.9708 0.9922 0.9796 0.9850 0.9678 0.9993 0.9994 0.9995
MI 0.5838 0.4554 0.5082 0.5181 0.5233 0.4753 0.5968 0.6141 0.6169
QAB\F 0.7434 0.7026 0.7104 0.7423 0.7455 0.7321 0.7460 0.7467 0.7470
QE 0.7604 0.7329 0.7513 0.7391 0.7496 0.7406 0.7607 0.7609 0.7610
Time(s) 0.0318 0.0123 0.0178 3.4112 1.5326 0.9018 0.1082 0.1843 0.8840

4.2. Test 2

From test 1 we know that except our methods, Laplacian and DWT perform better than

others. Therefore in this test we limit our comparison with these two methods in the fusion

of two medical images. Fig. 4.3(a) shows the CT image in which the structure of bone is

better visualized, while Fig. 4.3(b) is the MR image in which the pathological soft tissues are

better visualized. By fusing them into a single image, one can obtain salient features in both

modalities and at the same time display the relative position of soft tissues and bone structure.

Fig. 4.3(c)-(g) show the fused results. By careful observation, we find that there are some

artifacts in the fused image by DWT especially along the bone in the bottom of the image.
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Moreover, the results of Laplacian and DWT show some extent of contrast loss. While by our

methods, the contrast is better preserved in Fig. 4.3(e)-(g). The reason is that the source image

Fig. 4.3(b) has much higher AC than Fig. 4.3(a) and thus the former is chosen to be u0. For

further comparison, we report the fusion measures MI,QAB\F and QE . Remark that there is

no reference image in this case. Table 4.2 shows that: Order2 achieve the best performance,

Order1-4 gains the second best performance of MI and QE . DWT has the worst performance.

Laplacian performs better than DWT but worse than the proposed methods.

The computational time of each method is reported in Table 4.2. The noniterative methods

Laplacian and DWT are much faster than others. Among the proposed methods, similar to

Test 1, we find that Order2 is the most time-consuming and Order1-2 is the fastest.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4.3. Test on medical images. First row: the input source images with size 256 × 256: (a) CT
image; (b) MRI image, fused images obtained by (c) Laplacian; (d) DWT ; Second row: fused image
obtained by (e) Order1-2 ; (f) Order1-4 ; (g) Order2.

Table 4.2: Quality measure and computational time for different tested fusion methods corresponding
to Fig. 4.3.

Laplacian DWT Order1-2 Order1-4 Order2

MI 0.3416 0.3676 0.3731 0.4421 0.4583
QAB\F 0.7284 0.5156 0.7941 0.7930 0.7954
QE 0.5753 0.4627 0.6938 0.6981 0.6999
Time(s) 0.0139 0.0189 0.1156 0.2017 0.9116

4.3. Test 3

In the following, we display more results on various tasks of image fusion and enhancing to

demonstrate the effectiveness of the proposed model. Here we report the results of Order1-4

and Order2.

In Fig. 4.4, we test three pairs of images including multi-focus images, aircraft images

and remote sensing images. The first and second columns are the test image pairs. The

third and fourth column show the fusion results of the proposed methods Order1-4 and Order2
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 4.4. Fusion of more images with the proposed methods. First row is multi-focus image fusion:
(a) source image focused in the right clock; (b) source image focused in the left clock; (c) the fused
image by Order1-4 ; (d) the fused image by Order2 ; (e) the fused and enhanced image by Order2 ;
Second row is aircraft navigation image fusion: (f) LLTV image; (g) FLIR image; (h) the fused image
by Order1-4 ; (i) the fused image by Order2 ; (j) the fused and enhanced image by Order2 ; Third row
is remote sensing image fusion: (k) and (l) are two bands of source images obtained by multispectral
scanner; (m) the fused image by Order1-4 ; (n) the fused image by Order2 ; (o) the fused and enhanced
image by Order2.

respectively. Since the performance of these two methods are quite similar, we choose to display

the enhanced results of Order2 only in the last column. Let us give more details of Fig. 4.4 in

the following. In the first row of Fig. 4.4, fusion of multi-focus images is tested. Fig. 4.4(a)

and Fig. 4.4 (b) show an image pair focused in right clock and left clock respectively. In the

fused image Fig. 4.4(c)-(d), which display the fusion results of the proposed methods Order1-4

and Order2 respectively, both of the clocks are in focus and clear. In the enhanced version

Fig. 4.4(e) by method Order2, the numbers in the clocks are more highlighted. The second

row shows fusion of aircraft navigation images. To allow helicopter pilots navigate under poor

visibility conditions (such as fog or heavy rain) helicopters are equipped with several imaging

sensors, which can be viewed by the pilot in a helmet mounted display. For example, Fig. 4.4(f)

is the source image captured using a low-light-television (LLTV) sensor and Fig. 4.4(g) is the

source image obtained using a forward-looking-infrared (FLIR) sensor. Note that LLTV sensor

provides the surface information of the ground, building and vegetation details around. While

FLIR sensor provides the information of road network details accurately. In the fused image
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Fig. 4.4(h)-(i), all the salient features are clear. In Fig. 4.4(j), the details of the ground and

the roads are enhanced and better visualized. The third row shows the fusion of two bands

of multispectral scanner images in Fig. 4.4(k)-(l). Band 1 penetrates water, which is useful

for mapping along costal areas and distinguishing soft-vegetation and forest type. Band 2 is

good at detecting green vegetation water-land interface [36]. The fused image Fig. 4.4(m)-(n)

combines the useful salient features in both bands and obviously enhanced in Fig. 4.4(o).

4.4. Test 4

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.5. Multi-exposure images fusion. (a)-(e) Five source images f1, f2, f3, f4 and f5; (f) the fused
image by the proposed method Order1-4 ; (g) the fused image by the proposed method Order2 ; (h) the
enhanced image of fused result (g).

This example is multi-exposure images fusion. It is sometimes impossible to obtain a single

image of a scene where all areas appear well-exposed. Some scene areas may appear under-

exposed or over-exposed in a single shot. Each local area in a scene may require a different

shutter speed to best capture its details [19]. By fusion, we combine the five images of a

scene captured at different shutter speeds into a single image where all scene areas appear well

exposed, see Fig. 4.5(f)-(g) for the fusion results of the proposed method Order1-4 and Order2

respectively. The results of these two methods are quite similar. In this example, as shown in

Fig. 4.5(e), f5 has the largest average contrast. So we set u0 = f5 in the algorithm. For better

visualization, we apply the variational model for retinex [33] on Fig. 4.5(g) to enhance the

image (since Fig. 4.5(f)-(g) are quite similar, we take the latter as an example). The enhanced

result is shown in Fig. 4.5(h).

Two parts around the house are enlarged in Fig. 4.6. The first and second rows show the

enlarged regions of the source images. The last row show the enlarged regions of the fused images

by the proposed method Order1-4 and Order2 respectively. The results are quite similar. The

leaves are better visualized in Fig. 4.6(k)-(l), since they have more details than Fig. 4.6(e) and

they have no artifacts as in Fig. 4.6(a)-(d) around the leaves. In Fig. 4.6(m)-(n), the trees

behind the house are better visualized than in Fig. 4.6(j) since the formers include most salient

details in source images.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

Fig. 4.6. Two parts of the source images and fused result are zoomed for comparison. (a)-(e) and
(f)-(j) are parts of source images in Fig. 4.5(a)-(e); (k) and (l) are parts of fused image in Fig. 4.5(f)
by the proposed method Order1-4, respectively; (m) and (n) are parts of fused image in Fig. 4.5(g) by
the proposed method Order2, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.7. Medical image fusion with noise. (a)-(b) The noisy source images are noisy versions of
Fig. 4.3(a)-(b) which are contaminated by Gaussian noise with standard deviation 10 and mean zero;
(c)-(d) the denoised source images by solving total variation denoising model [40] with split Bregman
method; (e)-(f) the fusion results of the proposed methods Order1-4 and Order2 on noisy source images
respectively; (g)-(h) the fusion results of the proposed methods Order1-4 and Order2 on denoised source
images (c) and (d), respectively.
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(a) (b) (c) (d)

Fig. 4.8. Medical image fusion with miss match. The source images (a) is the as Fig. 4.3(a); The source
image (b) is obtained by shifting Fig. 4.3(b) 2 pixels along x axis and y axis respectively; (c)-(d) the
fusion result of the proposed methods Order1-4 and Order2 respectively.

4.5. Test 5

In the last example, we test the robustness of the proposed method for images with small

noise and miss match. In Fig. 4.6, we add Gaussian noise with standard deviation 10 on

the source images which are tested in Fig. 4.3. Without preprocessing, the results of the

proposed methods Order1-4 and Order2 are somewhat noisy, see Fig. 4.6(c)-(d). However,

after preprocessed by total variation denoising method in [40], the results are very good as

shown in Fig. 4.6(e)-(f). In Fig. 4.7, we test the robustness of the proposed methods when

the source images are slightly miss match. The two source images in Fig. 4.7(a)-(b) are miss

match by shifting 2 pixels along each axis. From the fusion results in Fig 4.7(c)-(d), we find

that the miss match affects the fusion results slightly.

5. Conclusions

We have presented in this paper a new variational approach to image fusion. The contribu-

tion of our paper is clear. Indeed, both the first-order and second-order gradient information

at different directions have been considered as features in our framework. And a new feature

selection rule has been built. Mathematically we established the existence of unique minimizer

for the proposed model. The proposed four-direction difference scheme for gradient operator

seems promising in image fusion. More important, our variational framework (2.3) can be read-

ily extended in various aspects. In the future work, we will study high order regularization

technique TGV2 [5] in the fusion process which should be more suitable for images with edges

and consider to handle the contrast loss problem in a variational framework such as in [36]

rather than using a preprocessing method. We will also generalize the proposed model to other

image fusion applications such as pan-sharpening.
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