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1. Introduction

Due to environmental effects and imperfections in the imaging system, the recorded images are usually degraded by
blurring and noise. The goal of image restoration is to recover approximate images of original images from blurred and noisy
measurements. The problem of restoration of digital images plays an important role both in daily life applications such as
satellite television, magnetic resonance imaging, computer tomography as well as in areas of research and technology such
as optics, geographical information systems, microscopy, astronomy, film restoration, and image and video coding [ 1-4].

Typically, the image formation process is modeled as the following large scale linear system:

g=Hf +1, (1)

where f € R™ represents the true image to be restored, n € R™ represents the additive noise, and g € R™ represents the

observed, degraded image. In image deblurring, H € R™*"* related to the spread point function and the boundary condition
is an ill-conditioned matrix that models the blurring operation. In image denoising, H is the identity operator.

Three aspects of the image restoration problem make it computationally challenging [5]: the problem is large scale;
the noise 7 is random and only its statistical properties may be known; H is severely ill-conditioned in image deblurring.
Over the past decades, many computational methods for the restoration of images have been sought by several researchers.
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A general approach to compute a useful approximation solution of (1) is to replace the system by a better-conditioned nearby
system. This replacement is known as the regularization. Usually, regularization methods formulate the image restoration
problem as a minimization problem of the form

30 = Fo(f) + v Ir(F), (2)

where the regularization function gg(f) is a prior information about the object to be recovered and y > 0 is the regulariza-
tion parameter that controls the balance between the fidelity term go(f) = % |Hf — g ||§ and the regularization term gg(f).
In general, the choice of the regularization function gg(f) is related to the features of the images to be restored.

How to choose an effective functional gg(f) is an active area of research in the imaging science and its applications.
Probably one of the most popular regularization methods is Tikhonov regularization [6]. The regularization functionals
used more often are quadratic functionals of the form R(f) = ||Lf ||§, where L is usually chosen to be the identity operator
or differentiation operator. The Tikhonov regularization method is suitable and effective when the image to be restored
is made by diffused objects, such as astronomical images of nebula or certain images from microscopy [7]. Although
Tikhonov regularization has the advantage of simple calculations, it produces a smoothing effect on the restored image, i.e., it
overly smooths edges which are important features in human perception. To overcome this shortcoming, Rudin, Osher and
Fatemi [8] proposed a total variation (TV) based regularization technique, which has the capability of preserving the edge
information in the restored image. In the case of TV regularization, the estimated solution is computed by minimizing the
objective function g(f) = Jo(f) + v |IDf |1 where D is the discrete gradient operator. The TV regularization is widely used
in the denoising of medical images, such as tomographic images and digital radiographies, or photographic images with
high frequencies contents [9]. It is shown that total variation methods can realize significantly sharper edges and overall
more visually pleasing images, however, on the other hand tend to create piecewise-constant images even in regions with
smooth transitions of gray or color values in the original image. The undesired artifact is usually called staircase effect.
Staircase solutions fail to satisfy the evaluation of visual quality and they can develop false edges that do not exist in the true
image [10,11]. To remedy the drawbacks of classic TV, some other regularization methods such as high-order TV, overlapping
TV and hybrid TV are proposed [12-15].

In recent years, sparsity-based priors of images in certain domains have been widely used in many image restoration
tasks, which is based on the observation that images usually have sparse representations in some transformed domains
such as Fourier transforms, cosine transforms, wavelet or framelet transforms. In order to make use of the sparsity, one
solves the image restoration problem (1) in the corresponding transformed domain and finds a sparse solution of (1)
in this transformed domain [16]. There are three types of sparsity priors: analysis-based sparsity prior; synthesis-based
sparsity prior and balanced sparsity prior [ 17]. It should be noted that in the case of non-redundant tight frame systems, the
models involving the first two sparsity priors behave equally. The balanced sparsity prior model unifies both popular sparse
approximation models and provides balanced image quality between sparseness and regularity. For the balanced approach,
one can consider it as an intermediate between two above common sparse approximation approaches.

In [18], Cai et al. used the split Bregman iterations to solve minimization problems arising from the analysis-based prior
for image restoration and presented a set of new frame based image restoration algorithms that cover several topics in image
restorations such as image denoising, deblurring, inpainting, and cartoon-texture image decomposition. In [ 19], the iterative
algorithms based on decoupling of deblurring and denoising steps were proposed for image restoration. In the denoising
step, Wen et al. applied the analysis-based prior and used the wavelet shrinkage for the solution. In [20], a synthesis-based
method for image deblurring in tight frame domains was proposed. The authors used a modified version of the linearized
Bregman iteration for the solution. Motivated by the recent tight frame based methods on image restoration in either
the image or the transform domain, the authors in [21] proposed an iterative tight frame algorithm for image inpainting.
Numerical experiments were given to illustrate the performance of the proposed algorithm based on the balanced sparsity
prior. We know that the wavelet frame based methods are a reasonably effective procedure for noise reduction and blur
removal when the image of interest possesses a sparse wavelet representation. However, the methods implemented by
pure wavelet thresholding also revoke unpleasant artifacts around discontinuities as a result of Gibbs phenomenon.

In order to further improve the quality of the restored images, some nonconvex regularization methods are proposed.
In [22], Nikolova et al. pointed out that nonconvex nonsmooth regularization has advantages over convex regularization for
offering better possibilities to recover images with neat edges. However, its practical interest used to be limited due to the
difficulty of the computational stage which requires a nonconvex nonsmooth minimization. In [23], Nikolova et al. designed
a computational method that efficiently handles the nonsmooth nonconvex minimization. Motivated by the observation
that nonconvex regularization methods can better recover flat signal regions, the authors in [24] considered the logarithmic
penalty and the arctangent penalty for signal denoising. In their approach, they restrict the nonconvex penalties so as to
ensure the strict convexity of the object function. So, the minimizer is unique and can be reliably obtained through convex
optimization methods. For nonconvex regularization methods and their applications, we refer the reader to [25-27] and
references therein for more details.

In this paper, in order to combine the advantages of the wavelet tight frame based method and the total variation based
method and avoid their main drawbacks, we propose a new hybrid variation model for image restoration. The proposed
method can reduce the staircase effect and remove the Gibbs oscillations in the restored images. Especially, to induce
wavelet-domain sparsity, we apply a nonconvex penalty due to its strong sparsity-inducing properties. We know that
the nonconvex regularizer can promote sparsity more strongly, but generally lead to a nonconvex optimization problem
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with non-optimal local minimizer. In this paper, we use firm thresholding, a continuous piecewise-linear approximation of
hard thresholding, to compute the minimization involving the non-convex penalty. It is known that the firm thresholding
is continuous and does not shrink large entries, as desired, it may be of interest, in comparing soft shrinkage and hard
thresholding. For the TV term, we employ the classic soft shrinkage operation to compute the corresponding solution.

This paper is outlined as follows. In the next section, we first give some necessary notations and definitions. Then we
present the new hybrid model for image restoration and discuss the property of its convexity. In Section 3, we employ the
alternating direction method of multipliers (ADMM) to find the solution of the proposed model and analyze the convergence
of the implemented algorithm. Some numerical experiments are given in Section 4 to illustrate the performance of the
proposed algorithm. We give concluding remarks in Section 5.

2. The proposed model

Before introducing the new model, we give some necessary notations and definitions. Let W = [W], W{ 1reees W{ It
ceey Wé_], W&]]T € RUQ+DP X ho 3 mylti-level wavelet tight frame transform operator (i.e WTW = I) that converts an
image to its wavelet coefficients, in which Q indicates the level of wavelet decomposition and J is the number of high-pass

filters that the wavelet system used. So WF is a multi-level wavelet tight frame transform of f. Let D = (D(V; D®)) ¢ R2%xn’
be the discrete gradient operator where DV and D be the first-order finite difference matrices in the horizontal and vertical
directions, respectively [28]. More precisely, we have DV = [ ® V and D® = V ® I where V = circ(—1, 1,0, ...,0) is
an n-by-n circulant matrix [29].

In this paper, the estimated solution for image restoration is obtained by minimizing the objective function

F() = do(f) + a@(Wf) + ¥ (Df) (3)

where ®(Wf) = 392" g ((Wf);) and w (Df) = Y, ¥ ((Df);) with
2

X
x| — ——, if|x| < pu,

P =7, 2H
ER if x| > p

and
vx) =Ix|, xeR.

In the function ¢, u > 0 is a firm thresholding parameter. See [30] for more details. It is not difficult to see that ¢ is
a nonconvex function. In this paper, we use the nonconvex term @ (Wf) to improve the wavelet-domain sparsity of the
restored images. Recently, many nonconvex functions such as the logarithmic penalty, the arctangent penalty, the first-order
rational function and the I, function (0 < p < 1) are proposed for image restoration; see [23,24,26] for more details. In [26],
Woodworth and Chartrand demonstrated that compared with other nonconvex functions, the penalty function induced by
firm thresholding can be better for recovering sparse signals and images. More precisely, we plot the widely used nonconvex
functions in Fig. 1. From Fig. 1, it is not difficult to see that the firm thresholding inducing penalty function can promote
sparsity better.

In the following, we discuss the convexity of the objective function. Assume that A = diag(A, ..., A,2) is a diagonal
matrix where A; = 1if |(Wf);| < wand A; = 0 if |(Wf);| > . Hence we can rewrite the proposed objective function as
follows:

1
#0) = S IHf —gl5 + ol AWF||; — %IIAWfH% + %n(l — Aellr + BIDS 11 (4)

where e is a vector with all entries equal to 1,i.e,e = (1, ..., 1)7. For the convexity of the objective function, we have the
following theorem.

Theorem 1. If H'TH — %WTAW is positive definite, then the objective function g (f) proposed in (3) is strictly convex.
Proof. The function g(f) can be rewritten as

F() = 61(F) + O2(f) + Os(f) (3)

where
1 o
O1(f) = = |Hf — gll? — —IWF|3,
1) = 5 IR~ glls = 5 WS
o op
O (f) = al|[AWS |1 — ﬂll(l — MWFII5 + TII(I — Aell,

Os3(f) = BIIDf 1.
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Fig. 1. Nonconvex penalty functions.

It is obvious that the function @ (f) is convex. If HTH — %WTAW is positive definite, the function ®,(f) is strictly convex.
In the following, we discuss the convexity of the function &, (f).
Define the function ¢(x) as the following form

;[ if x| < 12,
= —_— = X
A A i R
2 2n

Now we discuss ¢(x) as follows.
Case 1: If 0 < x < u, then ¢(x) = x. We have that ¢’(x) = 1and ¢”(x) = 0.
Case 2: If —u < x < 0, then ¢(x) = —x. We have that ¢'(x) = —1and ¢”(x) = 0.

Case 3:If x| > p, then p(x) = & + % We have that ¢’ (x) = ﬁ and ¢”(x) = i

By the definition of ¢(x), we know that it is twice differentiable on R/{—u, 0, n}; With the discussion of ¢ (x), we have
@ (=p) = ¢\ (=), . (0) < ¢/ (0) and ¢’ (u) = ¢/, (1). By Theorem 6.4 of [31], we have that a function is convex if it
has an increasing right-derivative. Therefore, ¢ (x) is a convex function.

We rewrite the function ®,(f) as a sum of the form

(JQ+1n?
O )= > (W)
i=1
with

WD DI <
) = Wf);
PO = 18 VDL

Since the linear transformation can keep the convexity of the function ¢(-), we get that the function ®,(f) is convex.

From the above discussions, the objective function g(f) is a sum of two convex functions and one strictly convex function
when HTH — %WTAW is positive definite. Therefore, we get that g (f) is strictly convex if the matrix HTH — %WTAW is
positive definite. O

For image denoising, we have H = I.In this case, g (f) is strictly convexif © > «.Note that « is aregularization parameter
which is small enough in practice. On the other hand, i is bigger than «, since it is a thresholding of |(Wf);|. Therefore, the
objective function g(f) is always strictly convex for image denoising. For image deblurring, H is an ill-conditioned matrix,
so we need a larger p and a smaller « such that g(f) is strictly convex. The existence and uniqueness of the solution of (3)
are guaranteed by the convexity of g (f).
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3. Optimization algorithm

We recall the variable splitting method for solving separable convex optimization problems with linear constraints.
Consider the following convex optimization problem:

min 01(%1) + 62(x2)
subject to A1x; + Ayx; = b, (6)
x; € X, i=1,2

where 6; : X; — R are closed convex functions, A; € R™™ are linear transforms and b € R'is a given vector. If it has an opti-
mal solution (x7, X5) € X X X, thenits dual problem also has an optimal solution A* € R/, since the problem (6) is a convex
programming problem with linear constraints. The task of solving the problem (6) is to find (x], x5, 1*) € X1 x X, X R/,
such that

61(x1) — 61(x}) + (X1 — x}) (=A]A%) = 0,

02(x2) — 02(6) + (2 — x3) T (—AJA*) = 0, V(x1,%, 1) € X1 x X x R (7)

(A — AHT(A1XE + Axs — b) > 0.

Usually, the augmented Lagrangian method is used to find the solution (x7, x5, 1*). It is known that the augmented La-
grangian function of optimization problem in (6) is defined as

o
L(X1, X2, X) = 01(x1) + 02(x2) — AT (Aix1 + Axxo — b) + 5||A1X1 + Axx, — b (8)

where A € R! is the Lagrange multiplier and o is a penalty parameter, which controls the linear constraint [32]. The idea of
the ADMM is to iteratively solve the following subproblems:

X = arg min £(x;, x5, 15),
X1€X1

Xt = arg min £, Xy, A5, (9)
Xp€Xp

M =k — o (AT 4 Akt — b).

The main advantage of the ADMM is to make full use of the separable structure of the objective function 6;(x;) + 65 (x>).
The ADMM (9) is a splitting version of the augmented Lagrangian method where the augmented Lagrangian method’s sub-
problem is decomposed into two subproblems in the Gauss-Seidel fashion at each iteration, and thus the variables x; and
X, can be solved separably in the alternating order [33,34].

Notice that the terms added to 6;(x1) + 62(x;) in the definition of the augmented Lagrangian function £ (x1, x5, A) in (8)
can be written as a single quadratic term, leading to the following alternative form of (9):

. o
X1 = arg min 6;(x1) + = [|Aix1 + Axk — b+ d¥|2,
X1€X1 2
&
Xt = arg min 6,(x) + = [AXT 4 Ayxy — b4 d¥||2, (10)
X2 €Xo 2

2
dk+1 — dk + (AlX’;-F] +A2X12<+1 _ b)

It is easy to see that ek = —%k where A¥ is determined by (9). In this case, we derive the following ADMM algorithm:

Algorithm 1 ADMM for the minimization problem (6)

initialization: Starting point (x9, X3, €°), o > 0,

iteration:
X = argminy, 01 (%1) + 2 [Aix; + Axs — b+ d¥|1%;

X5t = argminy, 65(x2) + Z[AxK + Ayx, — b+ d¥|1%;

dk+1 — dk + (A1X’{+1 +A2Xl§+1 _ b),
k=k+1;
until a stopping criterion is satisfied.

In the following, we discuss the implementation details of the ADMM algorithm to the proposed model in (3). By intro-
ducing new auxiliary variables u, v, the problem (3) can be reformulated as the following constrained optimization problem:

N S
min EIIHf gll; +a® ) + ¥ (v). (1)

s.t. Wf =u,Df =v.
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It is not difficult to see that the problem (11) is a special case of problem in (6) with the following specifications:

R A ()

We are going to use Algorithm 1 for solving the proposed model, so we specify the augmented Lagrangian function of (3)
as the following form:

1 o o
LG, u,v.dy, d) = SIHF = gl3 +a® @) + S IWS —u+dil5 + B ) + 7IDf — v+ d5. (12)
To minimize £ with respect to f, we solve the subproblem
. 1 (o5 (o]
min > |Hf — gll3 + - IWf — u* + dill; + - IDf — v + 3 5. (13)
The minimizer can be obtained by equivalently solving a linear system

(H'™H + oyW'W + 0,D"D)f = H'g + oy W' (u* — d¥) + o (0% — df). (14)

Note that WTW = I and H, D have block circulant with circulant blocks (BCCB) structure when periodic boundary condi-
tions are used [28,35,36]. We know that the computations with BCCB matrices can be very efficient by using fast Fourier
transforms (FFTs).

To minimize .£ over u, we solve

Lo 1 UQi? o 1
min —® ) + ~llu— W +dDIB= D —¢@) + = llu— W +db)|3 (15)
u o 2 = o1 2
where
M- i
x| ——, if|x] < u,
px) = 2p
-, if |x| > u.
> x| = n
Note that the minimization in (15) is separable. With respect to each component, it is easy to show that the solution of (15) is
o
U™ = Stim ((Wf"“ +dDi, —, u) (16)
1
where
0, if |x| <8,
" . .
Stirm (X, 8, (1) = . 5(X — dsign(x)), if & < [x] < u,
X, if x| > u.

It is shown that firm thresholding has a phase transition threshold that is strictly better than that of soft shrinkage.
As for the sub-problem with respect to v, we have

2

1 2n
U@ + Sl — O+ dI3 =)

i=1

B

02

B

1
min ¥ () + = llv — (OF 4+ dy)II3 (17)
v (o)) 2

where 1 (x) = |x|. This minimization can be solved explicitly by the soft shrinkage operator:

B
V! = S0t ((Df"+1 + d5)i, — (18)
03
where
0, if x| <8,

Ssoft (X, 8) = {

x — §sign(x), if |x| > 4.

On the other hand, the updating scheme of the Lagrangian multipliers can be rewritten specifically as
dl;+l — d/]( + Wfk+1 _ uk+1 ,
d5st = d + Dfft — okt

To sum up, we obtain the following algorithm for the image restoration problem.
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(c) Bridge.

T
| 2R
(g) Zelda. (h) Car. (i) Butterfly.

Fig. 2. Original images.

Algorithm 2 ADMM for the image restoration problem (3)

initialization: u =g,v=g,k =0, «, 8, u, H, 0; and d? =0fori=1,2.
iteration:

a. Compute f**1 by solving (14) with the fast algorithm;

b. Compute u**! by using the firm thresholding (16);

c. Compute v**1 by using the soft shrinkage (18);

e. Update df“ fori = 1, 2 according to (19);

gk=k+1;

until a stopping criterion is satisfied.

There are many convergence results for ADMM discussed in the literature. For convex functions 6;(x;) and 6,(x,) the
sequence generated by ADMM converges even if each subproblem is not solved exactly [37]. To be more specific, this
algorithm converges to a solution of the objective function if the errors are summable. We refer the reader to [38-40] for
the convergences of ADMM and its variant in detail. Note that for our problem, 6;(x;) = a®(u) + B¥ (v) is not convex
even if the objective function g (f) proposed in (3) is strictly convex. However, all our experiments show that Algorithm 2
converges to the unique global minimizer since the objective function is strictly convex and all minimization subproblems
are solved exactly.

4. Numerical examples

In this section, we give some numerical experiments for comparing the proposed hybrid model with other state-of-the-
art methods such as tight frame model (Frame) and total variation model (TV) for image restoration. The tight frame model
for image restoration in [ 18] is solved by the alternating split Bregman algorithm. It is noted in [4 1] that the alternating split
Bregman algorithm is equivalent to the ADMM algorithm. The total variation model for image restoration is solved by some
efficient methods such as the alternating minimization algorithm [28], primal-dual method, the alternating split Bregman
algorithm and the ADMM algorithm [35]. In this paper, we employ the ADMM algorithm to solve the tight frame model and
the standard total variation model for a fair comparison. All computations of the present paper were carried out in Matlab
R2013b. The results were obtained by running the Matlab codes on an Intel(R) Core(TM) i5-4200 CPU (1.60 GHz, 2.30 GHz)
computer with RAM of 4 GB.

To measure the quality of the restored images, we use the peak signal-to-noise ratio (PSNR) and Structural SIMilarity
index (SSIM) defined as follows:

PSNR = 101 ( 255%n? )
= 10logyo | =
If —f112

and
Qusps +C)Q2og + 6)
(uf + 1 + C)(of + 07 + &)

SSIM =
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(a) True. (b) Degraded.

(c) Frame. (e) Proposed.

\\

¢
#
N
.

(f) Frame. (g) TV. (h) Proposed.

Fig. 3. Restoration results for the image “Brain” under the out-of-focus blur and the noise with BSNR = 40 (« = = 0.005, i = 5a/01).

where f and f are the ideal image and the restored image with size of n x n, respectively. u; and [} are averages ofuand i

respectively, oy and o} are the variances of u and f respectively and o is the covariance of f and f . The positive constants
C; and G, can be thought of as stabilizing constants for near-zero denominator values [42]. In the following experiments,
we will use the SSIM map to reveal areas of high or low similarity between two images. It is noted that the whiter the SSIM
map is, the closer between the two images are in structure. The perfect reconstruction would have SSIM value equal to 1.

We use the stopping criterion when the maximum number of allowed outer iterations N has been carried out or the
relative differences between consecutive iterates f1, f2, f3, ... satisfy

I = F4ll
IFE 2

In this paper, we set N = 100 and ¢ = 1073 for the three algorithms. In order to make the results more convincing, we
compare these algorithms with different regularization parameters. We use the best regularization parameters such that
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(a) True. (b) Degraded.

(c) Frame. (e) Proposed.
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(f) Frame. (g) TV. (h) Proposed.

Fig. 4. Restoration results for the image “House” under the out-of-focus blur and the noise with BSNR = 40 (« = 8 = 0.006, u = 3« /01).

the optimal PSNR values are achieved. It should be noted that the ADMM algorithm converges for any choice of the penalty
parameter. However, this parameter does influence the speed of the algorithms [43]. In numerical experiments, we set the
penalty parameter o; = 0.001 and o3 = 0.001 empirically.

The test images are shown in Fig. 2. The sizes of the first five images are 256 x 256 while the sizes of the last four are
512 x 512. In order to simulate the degraded operation in the tests, we generate the blurred and noisy images by blurring
the true images with the given different point spread functions and then adding the noise with different BSNR. The BSNR is
given by

gl

Inll2

where g and 7 are the degraded image and the noise added in the tests, respectively. For each image, we consider three
different blurs: the out-of-focus blur proposed in [44], the Gauss blur function psfGauss proposed in [45] and the linear

BSNR = 10log;,
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Fig. 5. Convergence results for the images “Brain” and “House” under the out-of-focus blur and the noise with BSNR = 40.
Table 1
Comparison of the performance of three methods with different blur kernels.
Blur BSNR PSNR SSIM
Frame TV Proposed Frame TV Proposed
Defocus 40 34.81 33.19 35.11 0.9347 0.8908 0.9435
Brain Motion 35 37.52 37.23 38.01 0.9536 0.9607 0.9634
Gauss 30 33.49 31.44 3353 0.9360 0.9164 0.9364
Defocus 40 32.85 32.81 3341 0.8725 0.8744 0.8821
House Motion 35 35.56 35.64 36.07 0.9192 0.9279 0.9292
Gauss 30 31.00 30.42 31.53 0.8569 0.8511 0.8627
Defocus 40 25.27 25.24 25.34 0.7784 0.7803 0.7811
Bridge Motion 35 29.76 29.88 30.16 09164 0.9194 0.9244
Gauss 30 23.24 23.14 23.36 0.6442 0.6452 0.6568
Defocus 40 28.99 28.57 29.06 0.8577 0.8410 0.8633
Barbara Motion 35 3241 31.90 32.55 0.9267 0.9245 0.9363
Gauss 30 25.46 25.16 25.58 0.7154 0.7162 0.7547
Defocus 40 33.31 33.05 3348 0.8662 0.8595 0.8706
Einstein Motion 35 36.67 36.40 36.92 0.9271 0.9236 0.9299
Gauss 30 30.95 30.92 31.66 0.8190 0.8136 0.8289
Defocus 40 32.74 32.57 32.79 0.9596 0.9575 0.9598
Elaine Motion 35 35.24 34.91 35.30 0.9783 0.9777 0.9793
Gauss 30 32.16 31.82 32.29 0.9558 0.9535 0.9565
Defocus 40 37.05 36.43 37.25 0.9789 0.9767 0.9803
Zelda Motion 35 38.63 38.41 38.86 0.9878 0.9880 0.9887
Gauss 30 35.51 34.82 3591 0.9771 0.9733 0.9774
Defocus 40 31.73 31.50 31.98 0.9643 0.9597 0.9677
Car Motion 35 34.42 34,53 34.84 0.9798 0.9814 0.9819
Gauss 30 29.73 28.80 29.79 0.9533 0.9492 0.9541
Defocus 40 32.15 31.97 32,51 0.9718 0.9697 0.9751
Butterfly Motion 35 34.48 33.61 35.47 0.9853 0.9772 0.9875
Gauss 30 30.56 30.00 30.64 0.9658 0.9621 0.9663

motion blur in [46]. In this paper, we choose the out-of-focus blur with radius 9 which is generated by the MATLAB function
ones(9, 9)/81.Itis known that the point spread function for the linear motion blur is represented by a line segment of length
r pixels in the direction of the motion. The angle 6 (in degrees) specifies the direction and is measured counter-clockwise
from the positive x-axis. In this paper, r = 7 and & = 45. Obviously, the Gauss blur psfGauss(dim, s) is related with the
dimension of the point spread function array dim and the standard deviation s. In this paper, we choose dim = 7 and s = 2.

In Figs. 3 and 4, we show the restoration results when the tight frame method, the total variation method and the hybrid
method are applied to the image restoration problem for the out-of-focus blur and the noise with BSNR = 40. From the visual
quality of restored images, the proposed method is competitive with the other two methods. For showing the effectiveness
of our method, we give the SSIM maps of the restored images with respect to the original image in Figs. 3(f)-(h) and 4(f)-(h).
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(a) True. (b) Degraded.

(e) Proposed.

(f) Frame. (g) TV. (h) Proposed.

Fig. 6. Restoration results for the image “Bridge” under the motion blur and the noise with BSNR = 35 (« = 8 = 0.01, u = 2a/07).

The SSIM is a well-known quality metric used to measure the similarity between two images. It is based on three specific
statistical measures that are much closer to how the human eye perceives differences between images. From these figures, it
is not difficult to see that the SSIM maps of our method are slight whiter than the others especially in the marked rectangle
regions. The comparison of the PSNR and SSIM values in Table 1 also proves that our method yields a better restoration
result. In Fig. 5, we plot the convergence results about PSNR versus iteration for different methods. We observe that the
proposed method is convergent and get higher PSNR values than others.

In Fig. 6, we report the experiment on the Bridge image degraded by the motion blur and the noise with BSNR = 35. The
original image and the blurred image with noise are shown in Figs. 6(a)-(b). The restored images produced by the tight frame
method, the total variation method and the proposed method are shown in Figs. 6(c)-(e). From these figures, we observe
that the restored image by our model is much better than other models in terms of the staircase effect, Gibbs artifact and
edge preservation. The proposed method performs better, with SSIM values 0.9224 versus 0.9164 and 0.9194 in the tight
frame method and the total variation method respectively. From Figs. 6(f)-(h) we also observe that the SSIM map of the
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(a) True. (b) Degraded.

(c) Frame. (d) TV. (e) Proposed.

Fig. 7. Restoration results for the image “Einstein” under the Gauss blur and the noise with BSNR = 30 (¢« = 8 = 0.01, i = 2« /o7).

restored images by the proposed method is whiter than those by the other two methods. See the marked rectangles for
example. Our method can get better SSIM map results. From Table 1, we know that, compared with the other two methods,
the proposed method performs better for restoring images with respect to the PSNR and SSIM values,

The third example is the test on the Einstein image. The original image, the degraded image and the restoration images by
the tight frame method and the total variation method and the proposed approach are exhibited in Figs. 7(a)-(e). Visually,
the proposed method is better than the other two methods since the image recovered by the proposed method preserves
more details and looks more natural. One can observe that the Gibbs effect of the tight frame method is rather clear and the
result of the TV method is rather clean but some details are lost. Our new approach avoids entirely the Gibbs oscillation and
the details are better recovered.

For a better visual comparison, we have enlarged some details of the three restored images in Figs. 8 and 9. As can be seen
in the zoomed parts (the part shown as the white rectangle in Fig. 7(a)), our method has less staircase effects and makes a
good compromise between edge preserving and smoothing. The result of the tight frame method has visible Gibbs oscillation
particularly in those rather flat regions and the total variation method loses some crucial details due to the smoothing
effect. It is not difficult to see that the images of Figs. 8(e) and 9(e) look more natural where the Gibbs oscillation has been
successfully alleviated and the staircase effect has been reduced.

In Table 1, we report the PSNR and SSIM values for all nine test images in detail. From the table, we see that our method
has higher PSNR and SSIM values than the other two methods. Therefore, we conclude that the proposed method performs
better than the tight frame method and the total variation method.

5. Conclusions

In this paper, we investigate a nonconvex hybrid variational regularization for restoring the degraded images. The
proposed model takes advantage of the wavelet tight frame model and the total variation model. In particular, we apply
a nonconvex term to induce wavelet-domain sparsity due to its strong sparsity-inducing properties. We prove that the
proposed model is strictly convex and solve the proposed optimization model by using the ADMM method. Various
numerical results were reported to exhibit the performance of the new model. It is clear that this model can recover better
details than the total variation method and avoid efficiently the Gibbs oscillation of the tight frame method.
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(a) True. (b) Degraded.

(c) Frame. (d) TV. (e) Proposed.

Fig. 8. Comparison of a small portion of the restored images for the image “Einstein” under the Gauss blur and the noise with BSNR = 30.

(a) True. (b) Degraded.

(c) Frame. (d)TV. e) Proposed.

Fig.9. Comparison of a small portion of the restored images for the image “Einstein” under the Gauss blur and the noise with BSNR = 30.
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