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a b s t r a c t

Pan-sharpening is a process of combining a low resolution multi-spectral (MS) image and a high
resolution panchromatic (PAN) image to obtain a single high resolution MS image. In this paper, we
propose two pan-sharpening methods based on the framelet framework. The first method, as a basic
work, is called a framelet-based pan-sharpening (FP) method. In the FP method, we first decompose the
MS and PAN images into framelet coefficients, then obtain a new set of coefficients by choosing the
approximation coefficients in MS and detail coefficients in PAN, and finally construct the pan-sharpened
image from the new set of coefficients. To overcome the inflexibility of FP, in the second method, by
combining FP and other three fusion requirements, i.e., geometry keeping, spectral preserving and
the sparsity of the image in the framelet domain, four assumptions are established. Based on these
assumptions, a framelet based variational energy functional, whose minimizer is related to the final pan-
sharpened result, is then formulated. To improve the numerical efficiency, the split Bregman iteration is
further introduced, and the result of FP method is set as an initial value. We refer this method as the
variational framelet pan-sharpening (VFP) method. To verify the effectiveness of our methods, we
present the results of the two methods on the QuickBird and IKONOS images, compare them with five
existing methods qualitatively and quantitatively, analyze the influence of parameters of VFP, and extend
the VFP to hyperspectral data as well as comparison study. The experimental results demonstrate the
superiority of our methods.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing amount of images acquired from the earth
observing satellites, the demand of high quality representation is
also increasing. However, due to technical reasons, many sensors do
not provide imagery with both high spatial and spectral resolutions.
Instead, dual images, a multi-spectral image (MS) and a panchro-
matic image (PAN), are often captured. For example, as a high
resolution satellite, QuickBird provides a single band PAN image
(spatial resolutions: 0.7 m), and a four-band MS image: red (R),
green (G), blue (B) and near-infrared (NIR) (spatial resolutions:
2.8 m). The MS image contains high spectral quality with low
spatial resolution, whereas the PAN image collects fine spatial
details with less spectral information [1,2]. In order to make better
use of these satellite data, there is always a demand to obtain a high
resolution MS image by using an image processing technique [3].
This technique, generally called fusion, integration or pan-sharpen-
ing, has become an important direction, and it is very useful for
many remote sensing problems such as target recognition, change

detection, spectrum matching, vegetation mapping and hazard
monitoring [4–6].

More specifically, pan-sharpening is a process of integrating a
low resolution MS with a PAN image to construct a higher
resolution MS result. For effective pan-sharpening, the following
conditions must be established [7,8]: (1) the time interval between
acquiring MS and PAN images should be short; and (2) the MS and
PAN images should be registered. The result of pan-sharpening
should be more suitable for various types of applications. Thus, we
should try to construct a pan-sharpened image which contains
both high spectral and spatial qualities [2].

In the past few decades, a variety of pan-sharpening methods
have been developed. Some of them, such as the intensity-hue-
saturation (IHS) [9–11], Brovey [12], principal-component-analysis
[9,12] and Gram–Schmidt (GS) [13,14], can be classified as compo-
nent substitution (CS) methods [15]. The CS methods have access to
high spatial quality but suffer noticeable spectral distortion. Another
family of pan-sharpening methods, e.g., wavelet [16,17] and Laplacian
pyramids [18,19], is the multi-resolution analysis (MRA) methods, in
which each image is decomposed into a set of bandpass channels in
the spatial frequency domain [15]. MRA methods can overcome the
spectral distortion problem of the CS methods. However, in the case
of high-pass detail injection, their results sustain some spatial
degradation, such as ringing or aliasing effects [20].
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Recently, the variational methods are widely used in image
processing. A variational method generally presents an energy
functional for a certain problem based on some properties, and
tries to search local or global minima for this energy, where the
minima correspond to the desired result. Compared with other
schemes, a variational method has remarkable advantages in both
theory and numerical implementation [21]. For a detailed descrip-
tion of variational methods, one may refer to [21–23]. In 2006,
based on the main assumption that the topographic map of the
PAN image should contain the geometry of the spectral channels,
Ballester et al. presented the first variational pan-sharpening
method named PþXS [24]. The PþXS can produce a promising
result, but it faces some spatial blurring. Following the idea
of combining the advantages of wavelet and PþXS algorithms,
Moeller et al. proposed a variational wavelet pan-sharpening
method (VWP) [25] in 2009. This method, to some extent, can
overcome the spatial degradation. However, its time complexity is
high due to the space conversion between the wavelet and the
spatial domain. To address this problem, an alternate VWP (AVWP)
was then deduced to reduce the running time at the expense of
the image quality [25].

In all the above methods, the wavelet-based fusion methods
are prominent due to the well balancing of preserving the high
spectral and spatial information [26]. The main idea of these
methods is as follows. First, each image is decomposed into
wavelet coefficients; second, with a proper pan-sharpening rule,
a new set of coefficients is composed; finally the pan-sharpened
result is obtained from the new set of coefficients by an inverse
wavelet transform [27,28]. In terms of the pan-sharpening rule,
many schemes have been proposed. Among them, a remarkable
idea is introduced by Zhou et al. [16], in which the detail
coefficients of the PAN image and the approximation coefficients
of each MS band are taken to compose the new coefficients. The
choice of a wavelet transform also has a great influence on the
fused image. As mentioned in [29], the orthogonal wavelet trans-
form may suffer some aliasing effects. To avoid this drawback, the
stationary wavelet transform, which leads to many redundant
information because it does not subsample after each decomposi-
tion, is raised. This transform obviously outperforms the orthogo-
nal wavelet transform [25,30].

As mentioned in many literatures, such as [31,32], the framelet
transform is more precise than wavelet in extracting the spectral
and spatial information. Thus, in this paper, we will introduce the
framelet transform into pan-sharpening work, and will develop
two new methods for pan-sharpening. The first method, which is
similar to the aforementioned wavelet fusion [16], is named the
framelet-based pan-sharpening method (FP), in which each image
is first decomposed into framelet coefficients; then a new set
of coefficients is composed by a certain rule; finally the pan-
sharpening result is acquired from the new set of coefficients using
an inverse framelet transform. To overcome the inflexibility of the
FP method, by combining FP with other three reasonable assump-
tions, a variational pan-sharpening method in the framelet domain
is then performed. We refer this method as the variational
framelet pan-sharpening method (VFP). Furthermore, we compare
our methods with many state-of-the-art schemes qualitatively and
quantitatively using the QuickBird and IKONOS data, analyze the
influence of parameters of VFP, and extend the VFP to hyperspec-
tral data as well as comparison study.

The rest of the paper is organized as follows. In Section 2, we
introduce the framelet theory and image representation. In Section 3,
the FP method based on framelet system is developed. In Section 4,
we detail the VFP method and present its numerical scheme using
the split Bregman iterator. In Section 5, we perform our pan-
sharpened results as well as comparison study. Finally the conclusion
is given in Section 6.

2. Framelets and image representation

In this section, we give a brief introduction to the framelet
system. For simplicity, we only show the univariate framelets, and
the framelets in the bivariate setting can be obtained by a tensor
product of univariate framelets. Tight frames in a finite dimen-
sional space, which is derived from framelets and their matrix
forms, are also performed. One who is interested in the framelets
can refer to [33–35] for more details.

2.1. Framelets in L2ðRÞ

First, we give the definition of the tight frame. A countable
function subset X � L2ðRÞ is called a tight frame of L2ðRÞ, if
f ¼ ∑

hAX
〈f ;h〉h; 8 f AL2ðRÞ:

This is equivalent to

‖f‖2 ¼ ∑
hAX

j〈f ;h〉j2; 8 f AL2ðRÞ;

where 〈�; �〉 denotes the inner product of L2ðRÞ, and J � J ¼ 〈�; �〉1=2 is
the norm of L2ðRÞ.

As a generalization of the orthogonal basis, the tight frame
relaxes the requirements of the orthogonality and linear indepen-
dence to bring in redundancy. This redundancy has been verified
to be useful in many applications such as deblurring [35].

Given a finite set Φ≔fϕ1
;…;ϕrg � L2ðRÞ, a wavelet system XðΦÞ

is defined as the collection of dilations and shifts of Φ, i.e.,

XðΦÞ≔f2k=2ϕjð2kx� lÞ : 1r jrr; k; lAZg:
When XðΦÞ forms a tight frame, it is named as a wavelet tight
frame, and ϕj is named as a (tight) framelet.

In order to construct compactly supported wavelet tight frames
XðΦÞ, one generally first obtains a compactly supported refinable
function ψAL2ðRÞwith a refinement mask (low-pass filter) g0 such
that

ψ ðxÞ ¼∑
l
g0ðlÞψ ð2x� lÞ:

Then a wavelet tight frame can be constructed by finding
an appropriate set of framelets Φ≔fϕ1

;…;ϕrg � L2ðRÞ, which is
defined as

ϕj ¼∑
l
gjðlÞψ ð2x� lÞ; j¼ 1;…; r;

where gj is a high-pass filter. Thus, the construction of frameletsΦ
essentially is to design the filters g0; g1;…; gr . The unitary exten-
sion principle (UEP) in [36] asserts that the system XðΦÞ forms a
tight frame in L2ðRÞ if the filters g0; g1;…; gr satisfy

ζg0 ðωÞζg0 ðωþγπÞþ ∑
r

j ¼ 1
ζgj ðωÞζgj ðωþγπÞ ¼ δðγÞ; γ ¼ 0;1;

for almost all ωAR. Here ζgðωÞ ¼∑lgðlÞeilω and δðγÞ is a delta
function.

As a conventional application of the UEP, a piecewise linear
B-spline is used as the refinable function ψ. The corresponding
filters are

g0 ¼
1
4
;
1
2
;
1
4

� �
; g1 ¼ �1

4
;
1
2
; �1

4

� �
; g2 ¼

ffiffiffi
2

p

4
;0; �

ffiffiffi
2

p

4

" #
:

2.2. Frames in RN

Since images are finite dimensional, we are concentrated to
obtain the framelet coefficients of a finite dimension vector in
a certain frame. This task can be realized by matrix operation
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directly. We will describe how to convert a vector of RN to
coefficients in a certain frame.

Let A be a matrix with size of K � NðKZNÞ. We denote the
system, which consists of all the rows of A, as A again. Then, A is a
tight frame in RN if

‖x‖22 ¼ ∑
yAA

j〈x; y〉j2; 8xARN ;

which is equivalent to the perfect reconstruction formula:

x¼ ∑
yAA

〈x; y〉y;

where 〈�; �〉 and J � J are inner product and norm in RN respectively.
The matrix A is named as the decomposition (analysis) operator and
AT is named as the reconstruction (synthesis) operator. Then, the
perfect decomposition and reconstruction process can be formulated
as

x¼ATAx:

Thus, A is a tight frame in RN if and only if ATA¼ I . Here in general
AAT aI , unless in the orthogonal case.

Next, we construct A from the filters related to any certain
framelet system. For a given filter g ¼ fgðjÞgJj ¼ � J , under the
Neumann boundary condition, let SðgÞ be the convolution operator
with filter g, then

SðgÞ ¼ T ðgÞþHðgÞ;

where T ðgÞ and HðgÞ are Toeplitz and Hankel matrices respec-
tively, which are defined as [36,37]

T ðgÞ ¼

gð0Þ ⋯ gð� JÞ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮

gðJÞ ⋱ ⋱ ⋱ gð� JÞ
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ gðJÞ ⋯ gð0Þ

2
6666664

3
7777775;

HðgÞ ¼

gð1Þ gð2Þ ⋯ gðJÞ 0
gð2Þ ⋱ ⋱ ⋱ gð� JÞ
⋮ ⋱ ⋱ ⋱ ⋮

gðJÞ ⋱ ⋱ ⋱ gð�2Þ
0 gð� JÞ ⋯ gð�2Þ gð�1Þ

2
6666664

3
7777775:

Many applications tend to use a multi-level tight frame system
relating to the tight framelet decomposition without downsam-
pling. To introduce it, recalling the aforementioned filter g ¼
fgðjÞgJj ¼ � J , we define the filter gl at level l corresponding to the

decomposition without downsampling as

gl ¼ gð� JÞ;0;…;0|fflfflffl{zfflfflffl}
2l� 1 �1

; gð� Jþ1Þ;0;…;0; gð�1Þ;0;…;0|fflfflffl{zfflfflffl}
2l� 1 �1

;

8><
>:
gð0Þ;0;…;0|fflfflffl{zfflfflffl}

2l� 1 �1

; gð1Þ;0;…;0;hðJ�1Þ;0;…;0|fflfflffl{zfflfflffl}
2l� 1 �1

;hðJÞ

9>=
>;:

For the given filters fgjgrj ¼ 0, by denoting Zl
j ¼ SðgljÞ, then the

decomposition matrix A with L level is given by

A¼

∏
L�1

l ¼ 0
ZL� l

0

ZL
1 ∏
L�1

l ¼ 1
ZL� l

0

⋮

ZL
r ∏
L�1

l ¼ 1
ZL� l

0

⋮
Z1

1

⋮
Z1

r

2
6666666666666666666664

3
7777777777777777777775

≔
A0

A1

" #

where A0 ¼∏L�1
l ¼ 0Z

L� l
0 . Thanks to UEP, the following equation

holds

ATA¼AT
0A0þAT

1A1 ¼ I :

With matrix A, the frame transformation process can be easily
described. Let f be a vector, the frame coefficient vector u is
given by

u¼Af :

Since A0 denotes the low pass filter, A0f are the approximation
coefficients at a given approximation level L. A1 denotes the band-
pass and high pass filters, thus A1f are the detail coefficients.
Besides, the frame reconstruction process can be expressed as,

f ¼ATu:

Finally, it should be noted, in this paper, that we use the same
decomposition and reconstruction algorithms as [35]. And we
work in the bivariate case for our pan-sharpening task. This
corresponding transform matrix, still denoted as A, can be easily
obtained by using the Kronecker product of the matrix corre-
sponding to the univariate frame transform.

As an example, Fig. 1 shows a result of one level framelet
decomposition, in which the original image presented in (a) is
acquired from QuickBird satellite [38]. Fig. 1(b) performs the framelet
coefficients. Particularly, the approximation coefficients are shown in

Fig. 1. An example of frame decomposition (with one level): (a) the input image (RGB bands, 512�512, acquired from QuickBird satellite); and (b) the result of
decomposition.
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the top left corner of Fig. 1(b), and the detail coefficients are shown in
the other part of Fig. 1(b). Note that the image size in Fig. 1(b) is nine
times as that in Fig. 1(a).

3. Framelet-based pan-sharpening

In this section, we will introduce our pan-sharpening algorithm
based on the framelet system [31,36]. We refer this method as FP.

First of all, we clarify some useful mathematical formulations
and notations for our task. Let p denote the original PAN image;
m¼ ðm1;…;mNÞ denote the low resolution MS image which has
been upsampled to be the same size as p by nearest neighbor
interpolation, where N is the number of bands of MS image;
f ¼ ðf 1;…; f NÞ denote the desired high resolution MS image; and
A¼ ½A0

A1
� denote the transform matrix with a prescribed level L

which corresponding to the framelet system, where A0 represents
the low-pass filter and A1 represents band-pass and high-pass
filters (see Section 2 for details).

As mentioned in Section 2, a functional (in L2ðR2Þ) can be
decomposed into a set of framelet coefficients, and also it can be
reconstructed from the coefficients using the inverse transform. This
conclusion is also satisfied in a discrete form (for example, an image).

Due to the nature of the framelet transform, while decompos-
ing an image into framelet coefficients, its spectral and spatial
information can be sufficiently reflected in the approximation
coefficients (generated by A0) and the detail coefficients (gener-
ated by A1), respectively. Fig. 1 is a good explanation of this nature.
On the other hand, in the pan-sharpening problem, the MS image
m includes most of the spectral information, while the PAN image
p contains the majority of the spatial information. Therefore, we
can use the approximation coefficients of mn and detail coeffi-
cients of p as the approximation and detail coefficients of the un,
respectively. Here, un represents the framelet coefficients of the
pan-sharpened image f n.

Mathematically, given the framelet coefficients of p;mn which
are defined by

Ap¼
A0p
A1p

" #
; Amn ¼

A0mn

A1mn

" #
:

un can be formalized as

un ¼
A0mn

A1p

" #
: ð1Þ

Then the pan-sharpened image f n can be directly acquired by
f n ¼ATun.

On the whole, the overall procedure of our FP method can be
divided into three steps, and the all steps are performed in Algorithm
1. In order to facilitate understanding, as a supplement, Fig. 2 shows a
visual statement for the entire process of the FP method. Note that
we set the decomposition level L¼2 for simplicity.

With respect to the decomposition level L, in practice, we find it
is promising for balancing the computational complexity and
quality when L¼2. Thus we use 2 level framelet decomposition
in all our implementations.

Algorithm 1. The main process of the FP method.

Input: the low-resolution MS image m and the PAN image p
step 1: decomposition:

Ap¼
A0p
A1p

" #
; Amn ¼

A0mn

A1mn

" #
;

step 2: coefficient choosing:

un ¼
A0mn

A1p

" #
:

step 3: construction:
f n ¼ATun:

Output: the pan-sharpened image f .

4. Variational framelet pan-sharpening

The result of the FP method is promising due to its balancing on
preserving the spectral and spatial information from the original
images. However, its result is unique because there is no adjus-
table parameter. Since some tasks, such as segmentation and
feature extraction, tend to require more high spatial information;
while others, e.g. target recognition and spectrum matching, are
apt to desire more high spectral information; the unique result
may not meet various practical applications. As introduced in
[21–23], the variational method can deal with this drawback due
to its flexibility. To hold the advantage and avoid the disadvantage
of the FP method, in what follows, by combining FP (could be
regarded as a term) and other three assumptions, we will develop
a new variational pan-sharpening method based on the framelet
system, of which the result is adjustable according to the different
requirements. We refer this method as VFP.

Particularly, our proposed energy functional consists of four terms,
where each term is built based on a certain assumption. In what
follows, we will introduce these terms in detail. Note that we adopt
the same notations as Section 3. Besides, we set Ω�R2 as our image
domain, where Ω is an open, bounded domain with the Lipschitz
boundary.

4.1. Geometry information preserving term

As has been stated, the PAN image contains the vast majority
of the spatial information compared to the MS bands. Therefore,
we can assume that a linear combination of the desired pan-
sharpened bands should be approximate to the PAN image in the
spatial information.

The expression form of the spatial information is a foundational
issue. A universal and an effective idea is to express it using the
gradient field [39]. That is, given the PAN image p and the desired
pan-sharpened image f , their spatial information can be expressed
by the gradient fields ∇p and ∇f n respectively. Then the above
assumption can be formalized as

∇ ∑
N

n ¼ 1
αnf n

� �
¼∇p; ð2Þ

where αn is a mixing coefficient.
Fig. 2. Process of the FP method (note that we use the decomposition algorithm
without downsampling, and set the decomposition level L¼2 for simplicity).
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To help impose our assumption into a variational framework,
we present the following energy functional:

EGðf Þ ¼ ∇ ∑
N

n ¼ 1
αnf n

� �
�∇p

����
����2
2
¼ ∑

N

n ¼ 1
αn∇f n�∇p

����
����2
2
: ð3Þ

Choosing αn is a challenging problem. Many related methods
set αn ¼ 1=N or use the experimentally determined coefficients
[10]. Since αn ¼ 1=N is certainly inaccurate, and empirical value
is difficult to acquire, inspired by [10], we obtain αn by another
method.

As introduced in [40], the contrast inversion phenomenon is a
common situation occurring in a remote sensing image. To avoid
this phenomenon, we can add the following constraint when
choosing αn:

αn∇f nr∇p; n¼ 1;…;N:

Then, αn can be obtained by minimizing the following energy:

min
αn

HðαnÞ ¼ ∑
N

n ¼ 1
αn∇f n�∇p

����
����2
2
þ‖αn∇f n�∇p‖22; ð4Þ

where the first term is used to keep the linear relationship and the
second term is used to avoid the contrast inversion phenomenon.

The first variation of (4) is

δE
δαn

¼∇f n ∑
N

i ¼ 1
αi∇f i�∇p

 !
þ∇f nðαn∇f n�∇pÞ:

Thus we can obtain αn by the gradient descent method:

αjþ1
n ¼ αj

n�dtn
δE
δαn

;

where dt is a time variable. We let αn ¼ αjþ1
n when ðαjþ1

n �αj
nÞ=

αjþ1
n o10�6 arrived.

4.2. Spectral information preserving term

Observing on the upsampled low resolution MS image m, one
may find that it appears blurry and ambiguous. While we aim to
obtain a high spectral quality result f , which is clear and distinct
and contain the same spectral information as m, it is safe to treat
m as a degradation of f in each band. That is, mn can be acquired
by f n with a low-pass filter (kernel) kn. Mathematically, we have

mn ¼ knnf n; n¼ 1;…;N; ð5Þ
where ‘n’ denotes the convolution operation.

Note that a similar assumption is also introduced in [24], in
which (5) is also adopted with a prescribed kernel kn. Compared to
[24], we assume that the kernels differ from image to image, i.e.,
kn is an unknown kernel.

While both f n and kn are unknown, (5) is an under-constraint
problem. To effectively solve this problem, we need to add some
constraints to reduce the uncertainty. As mentioned in many
literatures such as [35], a kernel can be regarded as a special type
of image which is sparse in the framelet domain. We use this
sparsity property as a regularization term to constrain (5). Then, to
impose this regularization term and (5) into a variational frame-
work, we present the following energy functional:

ESðf n;knÞ ¼ η‖knnf n�mn‖22þ‖Akn‖1; n¼ 1;…;N ð6Þ
where η is a balancing parameter. Here ‖Akn‖1, namely the
analysis sparsity regularization term [41], is used to control
framelet coefficients from too large. That is, ‖Akn‖1 can decrease
the number of large discontinuities pixels in kn.

4.3. Sparsity prior

As introduced in [35,42], the images usually have sparse
representations or approximations in the framelet domain. To
examine whether the theory is applicable to the remote sensing
image, we first acquire an example remote sensing image from
QuickBird satellite (size: 4096�4096, band: 4, data type: unit16)
whose thumbnail is shown in Fig. 3(a), then decompose it into
framelet coefficients and calculate the number of coefficients in
each value. The statistical result is performed in Fig. 3(b) and (c),
where Fig. 3(b) is the histogram value over all 4096�4096�4�9
framelet coefficients, and Fig. 3(c) is the corresponding cumulative
probability distribution. Observing on the figure, we find that most
of the coefficients have zero values (see (b)), about 80% of the
coefficients is less than 10, and almost 90% of the coefficients is
below 50 (see (c)). That is, most of the framelet coefficients are
equal to or very close to 0. Thus the sparse representations in the
framelet domain is also adopted for remote sensing images.

We then formulate the sparse prior into a variational frame-
work

EPðf nÞ ¼ ‖Af n‖1; n¼ 1;…;N: ð7Þ
Here, minimizing EP is to seek a solution with sparse framelet
coefficients. That is, the result tends to be a smooth image. Thus,
min EP is robust to the noise.

4.4. Framelet match term

For more effective pan-sharpening, we add the FP method (see
Section 3) as a match term to our variational formula. To formalize
this idea, we impose (1) into the following energy functional:

EF ðf nÞ ¼ un�
A0mn

A1p

" #�����
�����
2

2
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Fig. 3. Statistics of the framelet coefficients. (a) The thumbnail of an example image (acquired from the Chilka Lake area in India at February 23, 2005, the original image is at
size of 4096� 4096� 4); (b) histogram of the framelet coefficients; and (c) cumulative probability distribution corresponding to (b).
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¼ Af n�
A0mn

A1p

" #�����
�����
2

2

; n¼ 1;…;N: ð8Þ

Since many applications may in favor of the image with high
spectral quality, whereas others tend to have the image with more
spatial information, in order to better meet the practical applica-
tion, we introduce two parameters c0 and c1 to control the
emphasis of the two aspects. In other words, we have the
following modified formula:

E′F ðf nÞ ¼ c0‖A0f n�A0mn‖22þc1‖A1f n�A1p‖22;
n¼ 1;…;N; ð9Þ

The choice of c0 and c1 depends on the practical application: for
high spectral quality we can set a larger value for c0, vice versa we
increase c1 for higher spatial quality.

4.5. The proposed total energy

Taking all the above terms (3), (6), (7) and (9) into account, we
can obtain the total energy functional for our pan-sharpening task

Eðf ;kÞ ¼ ∑
N

n ¼ 1
EPðf nÞþ

λ
2
EGðf Þ

þ1
2

∑
N

n ¼ 1
ESðf n;knÞþ1

2
∑
N

n ¼ 1
E′F ðf nÞ

¼ ∑
N

n ¼ 1
‖Af n‖1þ

λ
2

∑
N

n ¼ 1
αn∇f n�∇p

����
����2
2

þ1
2

∑
N

n ¼ 1
ðη‖knnf n�mn‖22þ‖Akn‖1Þ

þ1
2

∑
N

n ¼ 1
ðc0‖A0f n�A0mn‖22þc1‖A1f n�A1p‖22Þ: ð10Þ

where λ is the nonnegative parameter with the larger value
indicating the more importance of its corresponding term.

Solving our pan-sharpening problem (10) is equivalent to
minimizing the following energy:

ðf n;knÞ ¼ argmin
f n ;kn ARN

Eðf ;kÞ; n¼ 1;…;N: ð11Þ

We note that (11), the so-called analysis-sparsity-based minimiza-
tion [41], is searching for the sparsest solution from the coeffi-
cients which are decomposed from images. Its result tends to have
better performance than the synthesis-sparsity-based minimiza-
tion [42] which is looking for the most sparse solution in all
coefficients space [35]. Besides, since min EPðf nÞ has robustness to
noise, (11) also robust to noise obviously.

Although (10) is not global convex, it is convex with respect to
f n and kn. Therefore, we can use the alternating iteration algo-
rithm to minimize (11). Given kð0Þ ¼ ðkð0Þ

1 ;…;kð0Þ
N Þ and

f ð0Þ ¼ ðf ð0Þ1 ;…; f ð0ÞN Þ as the initial values of k and f . The alternating
iteration algorithm is performed in Algorithm 2.

Algorithm 2. Scheme of the alternative iteration algorithm for
VFP method.

For i¼0, 1, 2, …
For n¼ 0;1;2;…;N

1. Given the kernel kðiÞ and the pan-sharpened image f ðiÞ,

calculate the pan-sharpened image band f ðiþ1Þ
n :

f ðiþ1Þ
n ¼ argmin

f n

‖Af n‖1þRðf nÞ; (12)

where

Rðf nÞ ¼ λ
2‖αn∇f nþ ∑

N

j ¼ 1;jan
αj∇f

ðiÞ
j �∇pk22þη

2‖k
ðiÞ
n nf n�mn‖22

þ1
2
ðc0‖A0f n�A0mn‖22þc1‖A1f n�A1p‖22Þ:

2. Given the pan-sharpened image f ðiþ1Þ, calculate the kernel

image kðiþ1Þ
n :

kðiþ1Þ
n ¼ argmin

kn

1
2‖knnf

ðiþ1Þ
n �mn‖22þ‖Akn‖1

	 

: (13)

end
end

Theoretically, when the initial value is not proper, Algorithm 2
may converge to a local minimum, rather than the global one.
However, as verified in practice, it can converge to a high-quality
result consistently.

4.6. Numerical scheme

In this subsection, we will detail the numerical algorithm for
VFP method schemed in Algorithm 2. Generally, both steps in
Algorithm 2 can be solved using the gradient descent flow.
However, because of the non-differentiability of the l1-norm, one
needs to add a small regular value to avoid it, yet this may lead to
an inexact result. In what follows, we will use a more effective
solver, named the split Bregman iteration [43], to solve the VFP
method.

Based on the Bregman divergence, [43] introduced the split
Bregman iteration which can solve the L1 norm minimization
problems more effectively. The split Bregman iteration extends the
utility of the Bregman iteration and the linear Bregman iteration.
As has been verified in many literatures such as [43], the split
Bregman iteration is a promising method which can significantly
reduce the time and space overhead.

In step 1 of Algorithm 2, we need to solve (12) for our purpose.
The main idea of the split Bregman algorithm is that we should
split the l1 and l2 portions. Thus (12) can be rewritten as

min
f n ;d1

‖d1‖1þRðf nÞ s:t: d1 ¼Af n: ð14Þ

To solve it, we should transform it into an unconstrained optimi-
zation problem:

ðf ðiþ1;lþ1Þ
n ;dðiþ1;lþ1Þ

1 Þ ¼ argmin
f n ;dn

‖d1‖1

þRðf nÞþ
β
2
Jd1�Af n�bðiþ1;lÞ

1 J ; ð15Þ

bðiþ1;lþ1Þ
1 ¼ bðiþ1;lÞ

1 þðAf ðiþ1;lþ1Þ
n �dðiþ1;lþ1Þ

1 Þ; ð16Þ

8>>>>><
>>>>>:
where β is a prescribed constant and b1 is a proper vector. We can
solve (15) efficiently by alternately iterating f n and d1 separately
[44]. The two steps are as follows:

f ðiþ1;lþ1Þ
n ¼ argmin

f n

Rðf nÞ

þβ
2
Jdðiþ1;lÞ

1 �Af n�bðiþ1;lÞ
1 J ; ð17Þ

dðiþ1;lþ1Þ
1 ¼ argmin

d1

‖d1‖1

þβ
2
Jd1�Af ðiþ1;lþ1Þ

n �bðiþ1;lÞ
1 J : ð18Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

Since the subproblem (17) is differentiable, the optimality
conditions of f ðiþ1;lþ1Þ

n are easily obtained by calculating its first
variations, i.e.,

Kf ðiþ1;lþ1Þ
n ¼ rhsðdðiþ1;lÞ

1 ;bðiþ1;lÞ
1 Þ;
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where

K ¼ �λα2
nΔþη½kðiÞ

n �T ½kðiÞ
n �

þc0AT
0A0þc1AT

1A1þβ;

rhsðdðiþ1;lÞ
1 ;bðiþ1;lÞ

1 Þ

¼ λαn ∑
N

j ¼ 1;jan
αjΔf ðiÞj �Δp

 !

þη½kðiÞ
n �Tmnþc0AT

0A0mn

þc1AT
1A1pnþβAT ðdðiþ1;lÞ

1 �bðiþ1;lÞ
1 Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
½�� denotes the matrix form of the convolution operator, i.e.,
kðiÞ
n nf n ¼ ½kðiÞ

n � � f n, and Δ denotes the Laplacian operator. We
further convert the above problem to an equivalent form:

F ðKÞF ðf ðiþ1;lþ1Þ
n Þ ¼F ðrhsðdðiþ1;lÞ

1 ;bðiþ1;lÞ
1 ÞÞ;

where F denotes the Fast Fourier Transform (FFT). As solving the
above equation for F ðf ðiþ1;lþ1Þ

n Þ, we take the inverse FFT, denoted
as F �1, to obtain the closed form solution of f ðiþ1;lþ1Þ

n , i.e.,

f ðiþ1;lþ1Þ
n ¼F �1 F ðrhsðdðiþ1;lÞ

1 ;bðiþ1;lÞ
1 ÞÞ

F ðKÞ

 !
: ð19Þ

Meanwhile, the subproblem (18) can be solved by the following
soft-thresholding formula directly

dðiþ1;lþ1Þ
1 ¼ shrink Af ðiþ1;lþ1Þ

n þbðiþ1;lÞ
1 ;

1
β

� �
; ð20Þ

where

shrinkðϕ;βÞ ¼ ϕ
jϕj �maxð ϕ �β;0Þ:

����
Therefore, the iterative numerical algorithm for (12) is summar-
ized as follows:

f ðiþ1;lþ1Þ
n ¼F �1 F ðrhsðdðiþ1;lÞ

1 ;bðiþ1;lÞ
1 ÞÞ

F ðKÞ

 !

dðiþ1;lþ1Þ
1 ¼ shrink Af ðiþ1;lþ1Þ

n þbðiþ1;lÞ
1 ;

1
β

� �
bðiþ1;lþ1Þ
1 ¼ bðiþ1;lÞ

1 þðAf ðiþ1;lþ1Þ
n �dðiþ1;lþ1Þ

1 Þ;

8>>>>>>><
>>>>>>>:

ð21Þ

where f ðiþ1;0Þ
n ¼ f ðiÞn , dðiþ1;0Þ

1 ¼ dðiÞ
1 and bðiþ1;0Þ

1 ¼ bðiÞ
1 .

Theorem 1. Assume that λ;η; c0; c140, we assert that (12) has at
least one minimizer f ðiþ1;⋆Þ

n , and the iteration (21) satisfies

lim
l-1

‖Af ðiþ1;lÞ
n ‖1þRðf ðiþ1;lÞ

n Þ

¼ ‖Af ðiþ1;⋆Þ
n ‖1þRðf ðiþ1;⋆Þ

n Þ:

Furthermore, the following formula holds if (12) has a unique
solution:

lim
l-1

‖f ðiþ1;lÞ
n � f ðiþ1;nÞ

n ‖2 ¼ 0:

Proof. First, since A is a tight frame, and Rðf nÞ is a convex
functional, by the definition of (12), the existence of a minimizer
f ðiþ1;⋆Þ
n can be directly obtained. Then, applying Theorem 3.2 in
[41], Theorem 1 is proved. □

Similarly, subproblem (13) can also be solved using the split
Bregman iteration. By making a few modifications from (21), we

can obtain the iterative numerical algorithm for (13), i.e.,

kðiþ1;lþ1Þ
n ¼F �1 F ð½f ðiþ1Þ

n �TmnþγAT ðdðiþ1;lÞ
2 �bðiþ1;lÞ

2 ÞÞ
F ð½f ðiþ1Þ

n �T ½f ðiþ1Þ
n �þγÞ

 !

dðiþ1;lþ1Þ
2 ¼ shrinkðAkðiþ1;lþ1Þ

n þbðiþ1;lÞ
2 ;

1
γ
Þ

bðiþ1;lþ1Þ
2 ¼ bðiþ1;lÞ

2 þðAkðiþ1;lþ1Þ
n �dðiþ1;lþ1Þ

2 Þ;

8>>>>>>><
>>>>>>>:

ð22Þ

where γ denotes a parameter similar to β, kðiþ1;0Þ
n ¼ kðiÞ

n ,
dðiþ1;0Þ
2 ¼ dðiÞ

2 and bðiþ1;0Þ
2 ¼ bðiÞ

2 .
Theoretically, at every iteration i, we should choose the exact

result of the two subproblems (12) and (13), i.e., f ðiþ1Þ
n ¼ f ðiþ1;þ1Þ

n
and kðiþ1Þ

n ¼ kðiþ1;þ1Þ
n . However, because f ðiÞn and kðiÞ

n are not
precise, this leads to the inaccuracy of f ðiþ1Þ

n and kðiþ1Þ
n . Thus, the

infinite loop will be waste of time. In practice, for effectively
dealing with our problem, we only need to choose f ðiþ1Þ

n ¼ f ðiþ1;1Þ
n

and kðiþ1Þ
n ¼ kðiþ1;1Þ

n . Besides, since the result of FP method (named
f FP) is relative reasonable, to improve the convergence speed, we
can initialize f ð0Þn as f FPn .

Next, we define the stopping criteria for our algorithm. When
the relative error between two iterations is less than a given
parameter ε for all n¼ 1;…;N, our algorithm can be considered to
reach a steady state. That is, our stopping criterion is

max
J f ðiþ1Þ

n � f ðiÞn J

J f ðiþ1Þ
n J

 !
n ¼ 1;…;N

oε:

A large number of experiments we have done show that ε¼10�3

is reasonable.
On the whole, taking all the above analyses into account, we

can obtain the overall numerical algorithm of the VFP method. The
detailed description is shown in Algorithm 3.

Algorithm 3. The overall numerical scheme for VFP method.

Input: MS image m, PAN image p.
Initialization:

bð0Þ
1 ¼ bð0Þ

2 ¼ 0, dð0Þ
1 ¼ dð0Þ

2 ¼ 0, kð0Þ
n ¼ 0, f ð0Þn ¼ f FPn .

While max J f ðiþ 1Þ
n � f ðiÞn J
J f ðiþ 1Þ

n J

� �
n ¼ 1;…;N

Zε

For n¼ 1;…;N

f ðiþ1Þ
n ¼F �1 F ðrhsðdðiÞ

1 ;bðiÞ
1 ÞÞ

F ðKÞ

 !

dðiþ1Þ
1 ¼ shrink Af ðiþ1Þ

n þbðiÞ
1 ;

1
β

� �
bðiþ1Þ
1 ¼ bðiÞ

1 þðAf ðiþ1Þ
n �dðiþ1Þ

1 Þ
dðiþ1;0Þ
2 ¼ dðiÞ

2 ;bðiþ1;0Þ
2 ¼ bðiÞ

2

kðiþ1Þ
n ¼F �1 F ð½f ðiþ1Þ

n �TmnþγAT ðdðiÞ
2 �bðiÞ

2 ÞÞ
F ð½f ðiþ1Þ

n �T ½f ðiþ1Þ
n �þγÞ

 !

dðiþ1Þ
2 ¼ shrinkðAkðiþ1Þ

n þbðiÞ
2 ; 1γÞ

bðiþ1Þ
2 ¼ bðiÞ

2 þðAkðiþ1Þ
n �dðiþ1Þ

2 Þ:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:
end

end
Output: The pan-sharpened image f .

5. Experimental results and comparison

In this section, to verify the effectiveness of our methods, i.e., FP
and VFP, we describe and analyze them on the QuickBird and
IKONOS satellites data provided by the University of Maryland (see
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http://glcf.umiacs.umd.edu/data/). Since the MS image of Quick-
Bird and IKONOS have four bands, N¼4.

All of our experiments are executed by Matlab 7.12 and run on a
windows personal computer with an Intel(R) 2.33 GHz CPU and
4-GB RAM. For an image with a size of 256�256, the execution
time of FP and VFP methods is about 0.5 and 4 s respectively.
Besides, the parameters of split Bregman are selected according to
the analysis of [43], i.e., β¼103 and γ¼102.

5.1. Evaluation methods for assessing pan-sharpening

Evaluation of fusion is a challenging task. Up to now, many
evaluation methods have been performed [45–47]. These methods
can be roughly divided into two types, i.e., qualitative methods
and quantitative methods [48]. Qualitative methods evaluate pan-
sharpened results via the human visual system (HVS) directly,
while quantitative methods assess the fused images by some
evaluation criteria. Since the HVS is not instable and an acknowl-
edged criterion is nonexistent, it might not be very accurate
by only using a single type of metrics. For this reason, in our
experiments, we take both types of metrics into account to do
more reasonable evaluation.

In aspect of the quantitative methods, many criteria have been
presented [45,46,49]. The methods can generally be divided into
two classes: spectral and spatial quality measures. Spectral quality

measures are used to evaluate the degree of spectral information
preservation from MS to pan-sharpened image; while spatial
quality measures are used to calculate the degree of spatial
information preservation from PAN to pan-sharpened image. For
a promising pan-sharpening method, the results should be per-
formed well in both the classes.

In what follows, for simplicity, we take the eight representative
criteria, in which the first four metrics measure spectral quality
and the others measure spatial quality, to do our evaluation task.
Note that we have normalized all the images to [0, 1].

1. Q4 index: Q4 index is an effective metric for pan-sharpen-
ing when the MS image has four spectral bands. It is defined as

Table 1
The choice of parameters in Fig. 4.

Parameter Fig.4

(c) (d) (e) (f) (g) (h) (i) (j) (k)

λ 0.5 0.01 0.9 0.5 0.5 0.5 0.5 0.5 0.5
η 0.5 0.5 0.5 0.01 0.9 0.5 0.5 0.5 0.5
c0 0.1 0.1 0.1 0.1 0.1 0.01 0.5 0.1 0.1
c1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.5

Fig. 4. Source images and the fused results using different parameters. (a) The resampled low-resolution MS image (RGB, 256�256 pixels); (b) the high-resolution PAN
images (256�256 pixels); and (c)–(k) the fused RGB bands using different parameters which are shown in the 2nd–10th column of Table 1, respectively. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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[50]

Q4¼ 1
jΩj
Z
Ω

4jsyzj
s2yþs2z

� jyj � jzj
jyj2þjz j2dx;

where the quaternion y¼ f 1ðxÞþ if 2ðxÞþ jf 3ðxÞþkf 4ðxÞ
z¼m1ðxÞþ im2ðxÞþ jm3ðxÞþkm4ðxÞ; sy ¼ Eðjyj2Þ�jyj2; syz ¼

EðyznÞ�yzn; yn ¼ f 1ðxÞ� if 2ðxÞ� jf 3ðxÞ�kf 4ðxÞ, jyj ¼
ffiffiffiffiffiffiffiffi
yyn

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑4
n ¼ 1f

2
nðxÞ

q
, and EðyÞ ¼ y is a mean of y in a D�D neighbor-

hood centered at y. Obviously, Q4 is easily extended to the
case that the MS image has N spectral bands.
The dynamic range of Q4 is [0, 1], and the bigger value
indicates the better fusion result.

Table 2
Quantitative analysis of the images in Fig. 4(c)–(k).

Measure Q4 ERGAS SAM SID FCC QF AG H
Reference 1 0 0 0 1 1

ffiffiffi
2

p 1
Fig. 4(c) 0.7606 5.9008 6.8683 0.1518 0.8955 0.4336 0.0733 7.8276
Fig. 4(d) 0.8340 4.3558 5.2511 0.0663 0.7486 0.2451 0.0532 7.8285
Fig. 4(e) 0.7312 6.6078 7.7021 0.2233 0.9044 0.4751 0.0810 7.7948
Fig. 4(f) 0.7006 6.2637 8.1769 0.1697 0.8878 0.3530 0.0627 7.8591
Fig. 4(g) 0.7405 7.2297 7.8872 0.1567 0.8730 0.4226 0.0792 7.7075
Fig. 4(h) 0.7895 4.4549 5.8170 0.0789 0.5787 0.0920 0.0336 7.8382
Fig. 4(i) 0.6967 7.0127 8.6558 0.2516 0.9232 0.4775 0.0783 7.8064
Fig. 4(j) 0.7812 6.4233 6.7214 0.0888 0.8064 0.3576 0.0674 7.7158
Fig. 4(k) 0.8182 4.6623 5.5613 0.0746 0.7977 0.3003 0.0576 7.8372

Fig. 5. Qualitative comparison: source QuickBird images (a river and road area in Chilka Lake region of India, acquired on February 23, 2005) and the fused results using
different methods. (a) The resampled low-resolution MS image (RGB, 256�256 pixels); (b) the high-resolution PAN images (256�256 pixels); and (c)–(i) the fused RGB
bands by GIHS, PþXS, VWP, AVWP, wavelet, FP and VFP methods, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

F. Fang et al. / Neurocomputing 129 (2014) 362–377370



2. Relative Dimensionless Global Error in Synthesis (ERGAS): ERGAS
is a spectral quality metric. It indicates the ratio between
RMSE and the mean of each band of f . It is sensitive to mean
bias and range change. The ERGAS value is defined as [51]

RDGES¼ 100
h
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

n ¼ 1

RMSEðf n;mnÞ
μðf nÞ

� �s

where h=l is the ratio between the size of original PAN and MS
images, and μðf nÞ is the mean of f n. The closer the ERGAS to
0 is, the more accurate the fusion is.

3. Spectral angle mapper (SAM): As a spectral correlation quality
metric, SAM [20,52] denotes the mean spectral distortion
between m and f . It is calculated by

SAM¼ 1
jΩj
Z
Ω
arccos

〈f ;m〉

‖f ‖2‖m‖2

� �
dx:

The small value of SAM indicates ideal fused image.
4. Spectral information divergence (SID): The SID [53] describes

the degradation degree of spectral correlation information
between f an m. Given a random vector θðxÞ ¼ ðf 1ðxÞ;…;

f NðxÞÞ, by defining its normalized value υf ðxÞ ¼ ðυf1ðxÞ;…;

υfNðxÞÞ ¼ θðxÞ=jθðxÞj, SID is given by

SID¼ 1
jΩj
Z
Ω

∑
N

n ¼ 1
υfnlog

υfn
υmn

þυmn log
υmn
υfn

 !
dx:

The lower the value of SID the better the preservation degree
of the spectral correlation information.

5. Filtered correlation coefficient (FCC): Based on the idea that the
spatial information of PAN image is primarily concentrated in
the high frequency domain, [16] presented the FCC as

FCC ¼ 1
N

∑
N

n ¼ 1
Corðknf n; knpÞ;

where Corð�Þ is the correlation coefficient and k¼
�1 �1 �1
�1 8 �1
�1 �1 �1

0
B@

1
CA.

The biggest value of FCC indicates ideal fused image.

Fig. 6. Qualitative comparison: source QuickBird images (a mountainous area in Chilka Lake region of India, acquired on February 23, 2005) and the fused results using
different methods. (a) The resampled low-resolution MS image (RGB, 2000�2000 pixels); (b) the high-resolution PAN images (2000�2000 pixels); and (c)–(i) the fused
RGB bands by GIHS, PþXS, VWP, AVWP, wavelet, FP and VFP methods, respectively. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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6. Objective image fusion performance measure (QF): The objective
image fusion performance [54] measure reflects the degree of
the ‘edge information preservation’ when the pan-sharpening
processes. Because the edge information is mainly concen-
trated in p, QF can be defined as

QF ¼∑N
n ¼ 1

R
ΩQ

f npðxÞωf n ðxÞ dx
∑N

n ¼ 1

R
Ωωf nðxÞdx

;

where ωf n ðxÞ is a weight and Q f npðxÞA ½0;1� is an edge
information preservation value (see [54] for details). For
0rQFr1, the bigger the QF, the better the fusion result.

7. Average gradient (AG): Obviously, gradient is sensitive to subtle
details of the image. Thus, its average (i.e., average gradient)
can be used to assess the blurring degree of the image. Then,
average gradient can be defined as [55]

AG¼ 1
NjΩj ∑

N

n ¼ 1

Z
Ω

∇f n dx:
����

Obviously, 0rAGr
ffiffiffi
2

p
, and the bigger value of AG indicates

the better fusion result.
8. Entropy (H): As an important statistical index, entropy is used

to measure the information of an image. The definition of

Fig. 7. Qualitative comparison: source IKONOS images (a mountainous area in Sichuan, China, acquired on May 15, 2008) and the fused results using different methods. (a) The
resampled low-resolution MS image (RGB, 256�256 pixels); (b) the high-resolution PAN images (256�256 pixels); and (c)–(i) the fused RGB bands by GIHS, PþXS, VWP, AVWP,
wavelet, FP and VFP methods, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 3
Comparison of the proposed methods with the outstanding methods on QuickBird images shown in Fig. 5.

Measure Q4 ERGAS SAM SID FCC QF AG H
Reference 1 0 0 0 1 1

ffiffiffi
2

p 1

GIHS 0.7881 3.7377 1.9317 0.0168 0.8084 0.4182 0.0549 7.6949
PþXS 0.7707 3.0993 2.9594 0.0079 0.8499 0.4290 0.0460 7.6850
VWP 0.8137 2.7953 1.4520 0.0028 0.8332 0.3372 0.0490 7.7100
AVWP 0.8255 2.6533 1.8105 0.0044 0.7911 0.3617 0.0448 7.7209
Wavelet 0.7352 3.7291 1.8105 0.0210 0.9269 0.3189 0.0567 7.7374

FP 0.8252 3.5017 2.8033 0.0152 0.8900 0.3974 0.0548 7.7404
VFP 0.8462 2.4037 1.4207 0.0125 0.9290 0.4245 0.0568 7.7664
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entropy is [55]

HðxÞ ¼ � ∑
L�1

i ¼ 0
pi log 2pi; ð23Þ

where L is the gray level of the image, for example L¼256;
pi ¼ ni=n, ni is the number of pixels in the ith gray-level, and n
is the total pixel number of the images.

The larger value of entropy indicates better image quality.

5.2. The influence of the parameters

As mentioned in Section 4, the VFP model consists of four
terms, each term has its corresponding parameters. These para-
meters are λ, η, c0 and c1. Many experiments demonstrate that the

reasonable ranges of λ, η and c0; c1 are [0.01, 1] and [0.001, 0.5],
respectively. We now analyze the influence of them.

We first obtain original MS and PAN images from the QuickBird
satellite (see Fig. 4(a) and (b)), then use these images to pan-
sharpen using different parameters as shown in each column of
Table 1. The RGB bands of pan-sharpened results are shown in
Fig. 4(c)–(k). Besides, we also calculate the quantitative value for
each result (see Table 2).

First, we analyze the influence of λ. Fig. 4(c) (d) and (e) shows the
results of different λ, i.e., λ¼0.5, 0.01, 0.9, respectively. Comparing
with Fig. 4(c) and (d), we find that (d) is more blurry in detail while
more vivid in color, this phenomenon is easily verified by comparing
the first two rows of Table 2, in which (d) is better than (c) in Q4,
ERGAS, SAM, SID and H metrics while worse than (c) in FCC, QF and
AG. Similarly, we also find that (e) is clearer than (c) in detail while

Table 4
Comparison of the proposed methods with the outstanding methods on QuickBird images as shown in Fig. 6.

Measure Q4 ERGAS SAM SID FCC QF AG H
Reference 1 0 0 0 1 1

ffiffiffi
2

p 1

GIHS 0.6992 7.3217 6.1171 0.1790 0.7796 0.5187 0.0701 7.6385
PþXS 0.7618 4.7794 5.2545 0.1719 0.8295 0.3770 0.0503 7.6916
VWP 0.7350 5.2009 4.1287 0.1204 0.8388 0.3362 0.0558 7.6829
AVWP 0.7761 4.4990 4.0876 0.1524 0.7503 0.3267 0.0467 7.6674
Wavelet 0.6416 7.3240 8.3008 0.1977 0.9510 0.3442 0.0766 7.6454

FP 0.6993 6.4705 7.4369 0.1780 0.9770 0.4555 0.0688 7.6610
VFP 0.7837 4.4761 4.8780 0.1200 0.9149 0.5340 0.0767 7.7030

Table 5
Comparison of the proposed methods with the outstanding methods on IKONOS images as shown in Fig. 7.

Measure Q4 ERGAS SAM SID FCC QF AG H
Reference 1 0 0 0 1 1

ffiffiffi
2

p 1

GIHS 0.4142 7.2273 3.3316 0.0460 0.9250 0.5872 0.0845 7.7130
PþXS 0.5811 4.1977 3.7007 0.0527 0.8071 0.2981 0.0562 7.8124
VWP 0.5785 5.1789 3.5122 0.0496 0.8724 0.2976 0.0828 7.7263
AVWP 0.5780 4.8613 3.5661 0.0276 0.7606 0.3306 0.0658 7.7517
Wavelet 0.5823 5.2356 3.7576 0.0585 0.9642 0.2594 0.0862 7.7290

FP 0.5749 6.3749 4.9642 0.0245 0.8211 0.3511 0.0754 7.8013
VFP 0.5885 3.9484 3.2676 0.0485 0.9648 0.3343 0.0877 7.8577

Fig. 8. HYDICE image pan-sharpening. (a) The resampled low-resolution MS image (RGB, 400�560 pixels); (b) the high-resolution PAN images (400�560 pixels); and
(c)–(f) the fused results of PþXS,VWP,AVWP and VFP methods (the blue, green and red colors are bands 17, 27 and 60, respectively). (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

F. Fang et al. / Neurocomputing 129 (2014) 362–377 373



worse than (c) in color. In summary, the larger λ will lead to better
spatial resolution and worse spectral quality.

Taking a similar analysis on η (by comparing (c), (f) and (g)), c0
(by comparing (c), (h) and (i)) and c1 (by comparing (c), (j) and
(k)), we can draw a conclusion that larger λ, c1 and smaller η, c0
will result in better spatial resolution and worse spectral quality,
in contrast we will obtain an image with worse spatial resolution
and better spectral quality.

5.3. Comparative studies

5.3.1. Qualitative analysis
In this part, we present our outcomes and compare them with

five state-of-the-art schemes visually. These five schemes contain
the Generalized IHS method (GIHS) [9], the PþXS method [24],
the variational wavelet pan-sharpening method (VWP) [25], the
alternate variational wavelet pan-sharpening method (AVWP)
[25], and the wavelet method [16,26], respectively. The compar-
ison results are shown in Figs. 5–7. Note that all the parameters in
these five schemes are set based on the authors' suggestions,
and ‘sym4’ is selected as the base in wavelet decomposition.
Besides, the balancing parameters in the VFP method are set as
λ¼0.5, η¼0.5, c0 ¼ c1 ¼ 0:1.

In the first two figures, the two original QuickBird data,
presented in (a) and (b), are acquired from the Chilka Lake area
of India on February 23, 2005. All the results obtained by GIHS,
PþXS, VWP, AVWP, Wavelet, FP and VFP are shown in (c), (d), (e),
(f), (g), (h), (i), respectively. For visual impact, we only display the
first three bands in the MS image, i.e., red, blue and green bands.

First, we can find that all of the results have a significant visual
improvement compared with the original images. However,
the results obtained by different methods are distinctly different.
The GIHS results have great performance in the spatial quality
while they suffer some visual degradation. The results of PþXS,
VWP and AVWP methods have very rare spectral distortion, yet
they are relatively lack of definition and details. The wavelet
results have both better spatial and spectral properties, but they
suffer some aliasing effects. Instead, the FP and VFP methods seem
to produce promising both spatial and spectral results without
apparent confusion.

Taking Fig. 5 as an example, first we find that (c)–(i) are clearer
than (a). Especially, the outline of the water flow under the bridge

in the middle of the image (a) is blurry, while this area is distinct
in all (c)–(i). The result of (c) (i.e., GIHS) has sharp outlines,
whereas there are some dentate boundaries and little color
distortion in both sides of the river and the road. (d)–(f) (i.e.,
PþXS, VWP and AVWP) enjoy great conservation in color, but they
look blurry and over-smoothing in some extent. (f) (i.e., wavelet)
seems to be clear both in color and definition, whereas it suffers
some aliasing effects. The FP result in (h) looks more vivid than
(c)–(f), but it is still not distinct compared to (i) which is produced
by VFP. The VFP result seems to have high performance both in
hue and in outline. For instance, the trees beside the river in the
middle-lower part of the image (i) is more vivid than others. The
similar phenomena can also be found in the road and river areas
and Fig. 6.

To verify the stability of our methods, in Fig. 7, we further show
the IKONOS data and its corresponding results. observing on the
results, we can also find that our results outperform other results.
Especially, the results of GIHS, PþXS, VWP, AVWP, Wavelet and FP
contain much noise, while the result of VFP method looks more
vivid and noise-free. This just confirms the aforementioned point
that the VFP method is robust to noise.

Therefore, for the visual performance, the FP and VFP methods,
especially VFP, seem to be better than other schemes on QuickBird
and IKONOS data.

5.3.2. Quantitative analysis
In this part, we quantitatively evaluate our outcomes using

eight measures which are mentioned in Section 5.1, and compare
the evaluation results with those of the five aforementioned
outstanding methods. We still use the results, of which the RGB
bands are shown in Figs. 5–7, to do our comparison. Tables 3–5,
which are related to the three figure data, are presented to report
the quantitative evaluation. It should be noted, in each table, that
the best value of each measure is marked in bold, and each value
in the reference row is the ideal value of corresponding measure;

Observing these tables, we find that GIHS method generally has
good performance in Q4, QF, AG and H measures, while it fails in
other metrics. PþXS, VWP and AVWP methods are better than the
other methods in terms of ERGAS, SAM, SID and FCC measures, but
they lose in the other criteria. Nevertheless, wavelet and FP methods
are quite balanced in all metrics, but they have few outstanding

Fig. 9. AVIRIS image pan-sharpening. (a) The resampled low-resolution MS image (RGB, 400�560 pixels); (b) the high-resolution PAN images (400�560 pixels); and
(c)–(f) the fused results of PþXS,VWP,AVWP and VFP methods (the blue, green and red colors are bands 17, 27 and 60, respectively). (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

F. Fang et al. / Neurocomputing 129 (2014) 362–377374



performance. Since FCC, QF, AG and H criteria measure the spatial
resolution, yet Q4 and SID criteria report the spectral quality. This just
echoes our aforementioned qualitative comparison.

Compared to other schemes, our methods perform well in all
the measures. In terms of the FP method, it is averagely ranked
midway in all seven methods. For example, in Table 3, FP is ranked
2 in H criteria, and ranked 3 in Q4 and FCC criteria. Especially, FP is
better than the wavelet method in five of eight criteria, that is, FP
is generally better than the wavelet method. In the VFP method,
we find that it has the best performance compared to the others.
Taking Table 3 as an example, VFP method ranked first in 7 of
8 criteria, and performed well in both spatial and spectral quality
measures. A similar conclusion can also be found in Table 4 and 5.

Thus, in quantitative aspect, the FP method is generally compar-
able with the other techniques, and the VFP method performs
better than the others. This, to a large extent, has verified our
qualitative comparison.

5.4. Extension to hyperspectral imagery

So far, we have studied the techniques for pan-sharpening MS
(4–6 bands) and its corresponding PAN images. It could be
interesting to pan-sharpen the hyperspectral images. Since the
variational pan-sharpening methods are not limited to the number
of bands, they are easily extended to hyperspectral data. Thus we
study this extension of VFP.

Wework with two datasets: HYDICE image of Washington DCMall
(contain 191 bands) and AVIRIS image of Northwest Tippecanoe
County (contain 220 bands). For detailed information of these two
datasets, one can refer to the website https://engineering.purdue.edu/
�biehl/MultiSpec/hyperspectral.html. Since these datasets have no
PAN images, we extract the same scenes from Google Maps (which
provide high resolution images, see http://ditu.google.cn/) and treat
them as the PAN images.

The pan-sharpening results are shown in Figs. 8 and 9. The
results of other variational methods, i.e., PþXS, VWP, and AVWP,
are also presented for comparison. For simplicity, the images in
these figures are made using bands 17, 27 and 60 for blue, green
and red colors respectively. Besides, we also show the quantitative
results for each figure (see Tables 6 and 7). Note that the image

used for quantitative evaluation has no longer three bands, but
full, i.e., 191 and 220 bands, respectively.

Observing on these figures and tables, we can find that VFP
outperforms the others consistently. For example, in Fig. 8, (f) is
better than (c)–(e) in color and detail. Especially, (c)–(e) contain
much noise, while (f) is noise-free. This phenomenon can be
verified easily from Table 6, in which VFP is better than others in
7 of 8 metrics. Therefore, the VFP method is also remarkable in
hyperspectral imagery.

6. Conclusions

We have proposed two pan-sharpening methods based on the
framelet framework. The first method, named as FP, first decom-
posed the MS and PAN images into framelet coefficients, then
chose the framelet coefficients to compose new coefficients.
Finally, the new coefficients were converted into an image which
is exactly the pan-sharpened result. The result of the FP method is
promising but inflexible. To overcome this drawback, the second
method, termed VFP, was proposed. In VFP method, by combining
FP and the fusion requirements of geometry keeping, spectrum
preserving and the sparsity of image in the framelet domain, a
variational energy functional was presented. To minimize the
energy functional more efficiently, the split Bregman iteration
was detailed, and the result of FP method was set as the initial
value. Furthermore, to verify the effectiveness of our methods, we
tested them on QuickBird and IKONOS data, compared them with
five outstanding techniques qualitatively and quantitatively, ana-
lyzed the influence of parameters of VFP, and extended the VFP to
hyperspectral data as well as comparison study. The experimental
results demonstrate that the FP method is as good as others, and
the VFP method is effective and robust compared with others.

Pan-sharpening is a challenging problem, and there are still
many open questions that should be discussed. Our methods are
effective, but also could be improved in many aspects. For
example, there are several parameters which should be chosen
manually. Further research will be extended to develop some
automatic methods for parameters choosing. Besides, new pan-
sharpening techniques based on the sparsity of the image under

Table 6
Comparison of the VFP method with the other variational methods on HYDICE images as shown in Fig. 8.

Measure Q4 ERGAS SAM SID FCC QF AG H
Reference 1 0 0 0 1 1

ffiffiffi
2

p 1

PþXS 0.3045 2.2208 1.4286 0.0111 0.7399 0.4689 0.0282 7.6540
VWP 0.3390 2.2888 0.4786 0.0104 0.8423 0.4132 0.0307 7.6791
AVWP 0.2792 2.2077 0.5504 0.0100 0.7505 0.4880 0.0294 7.6883
VFP 0.3400 2.1616 1.0462 0.0065 0.9028 0.4943 0.0309 7.7114

Table 7
Comparison of the VFP method with the other variational methods on AVIRIS images as shown in Fig. 9.

Measure Q4 ERGAS SAM SID FCC QF AG H
Reference 1 0 0 0 1 1

ffiffiffi
2

p 1

PþXS 0.5067 3.7320 3.3579 0.2717 0.7133 0.3251 0.0264 7.5687
VWP 0.6413 2.6162 1.6223 0.1921 0.7647 0.2872 0.0238 7.6331
AVWP 0.5013 3.3388 2.3398 0.1658 0.7019 0.3089 0.0264 7.6363
VFP 0.7435 2.3238 3.8151 0.0637 0.8395 0.3330 0.0288 7.3547
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some certain bases have been developed recently. We will com-
bine our variational approach with these techniques in the future.
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