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Abstract— Pan-sharpening is a process of acquiring a high res-
olution multispectral (MS) image by combining a low resolution
MS image with a corresponding high resolution panchromatic
(PAN) image. In this paper, we propose a new variational pan-
sharpening method based on three basic assumptions: 1) the
gradient of PAN image could be a linear combination of those of
the pan-sharpened image bands; 2) the upsampled low resolution
MS image could be a degraded form of the pan-sharpened image;
and 3) the gradient in the spectrum direction of pan-sharpened
image should be approximated to those of the upsampled low
resolution MS image. An energy functional, whose minimizer
is related to the best pan-sharpened result, is built based on
these assumptions. We discuss the existence of minimizer of
our energy and describe the numerical procedure based on
the split Bregman algorithm. To verify the effectiveness of our
method, we qualitatively and quantitatively compare it with
some state-of-the-art schemes using QuickBird and IKONOS
data. Particularly, we classify the existing quantitative measures
into four categories and choose two representatives in each
category for more reasonable quantitative evaluation. The results
demonstrate the effectiveness and stability of our method in terms
of the related evaluation benchmarks. Besides, the computation
efficiency comparison with other variational methods also shows
that our method is remarkable.

Index Terms— Multi-spectral image (MS), panchromatic image
(PAN), variational method, pan-sharpening, split Bregman,
quantitative measures.

I. INTRODUCTION

THE IMAGE data about the Earth acquired by satellites are
very valuable in many areas, such as military intelligence,

medical aid and disaster monitoring. However, satellites are
expensive both in building and maintenance. This requires
that we should do utmost to use the data obtained from
the existing satellites. Many fine-resolution satellites, such as
QuickBird and IKONOS, provide both multi-spectral (MS)
and panchromatic (PAN) images, where MS image contains
all spectral information of a region but has little spatial data,
while PAN image only has high resolution spatial information.
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As an example, the IKONOS satellite provides four bands
MS images with 4-m resolution and single band PAN images
with 1-m resolution [1]. In order to use these data more
effectively, the two types of images should be merged into
a single image which contains more information, this merging
process is called pan-sharpening or fusion.

The goal of pan-sharpening is to acquire a high resolution
MS image by combining a low resolution MS image with a
high resolution PAN image. The pan-sharpened result should
be good enough to aid in various types of applications. As is
well known, some tasks, such as contour extraction and pattern
classification, require the high spatial data; others, e.g. target
recognition and spectrum matching, desire the high spectral
information. Therefore, the pan-sharpened image should have
both high spectral and spatial qualities.

During the past few decades, various types of pan-
sharpening methods have been presented [2], [3]. Many of
them, such as the Intensity-Hue-Saturation (IHS) [4]–[6],
Brovey [2], [7], Principal Component Analysis (PCA) [2],
[4], Wavelet [8], [9] and Gram-Schmidt (GS) [10] methods,
can be classified as component substitution methods (CS),
where these methods are processed according to the following
steps: up-sampling, alignment, forward transform, intensity
matching, component substitution and reverse transform [11].
The common feature of the CS methods is that the fusion
process is a tradeoff between the precise spectral quality
and high spatial information. The pan-sharpened image is
subjected to the spectral degradation while it has access to the
high spatial quality. To acquire an image with both high spatial
and spectral qualities, many advanced methods are presented
recently (see [12], [13] for more details).

As a promising realm, variational method emerges recently.
The main idea of the variational method is to build an energy
functional based on some properties, and the minimum of the
energy corresponds to the final result. Compared with other
methods, the variational methods have many advantages in
both theory and implementation [14]. More information about
the variational method can be found in [14]–[16]. In 2006,
based on the main assumption that the geometry of the MS
bands should be contained in the topographic map of the PAN
image, Ballester et al. [17] present the first variational pan-
sharpening method named P+XS. The result of P+XS method
is remarkable, but it suffers form some blurry. By combining
the Wavelet and P+XS methods, Moeller et al. proposed a
variational wavelet pan-sharpening method (VWP) [18], in
which, they produce precise spectral information by using the
wavelet term, and obtain clear spatial data through minimizing
an energy term in P+XS. VWP can preserve spectral quality
better while acquiring high spatial information. However, its
result is still some room for improvement, and its time com-
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plexity is much higher than those of many other algorithms.
To reduce the complexity, the authors developed an alternate
VWP (AVWP). Compared to VWP, AVWP requires less time,
but it suffers more degradation in image quality.

Till now, due to the complexity of pan-sharpening, all of the
existing methods are more or less deficient. Especially, in the
variational pan-sharpening methods the assumptions might not
be very perfect. This naturally leads us to consider some new
assumptions from new perspectives, and to built a new model
from them to obtain pan-sharpened images more accurately
and effectively.

The key issue for pan-sharpening is to produce a pan-
sharpened image which contains both high spectral and spatial
qualities. In this paper, based on three basic assumptions, a
new variational method is proposed to achieve this goal. Our
main contributions are listed as follows:

• We propose three new assumptions, upon which an
energy function is built.

• We discuss the existence of the minimizer of the proposed
energy functional.

• We describe the numerical procedure for our energy based
on the split Bregman framework.

• We divide the existing quantitative metrics into four
categories, compare our method with others qualitatively
and quantitatively, and discuss the efficiency of proposed
method.

The rest of the paper is organized as follows. Section II
presents three new assumptions and the corresponding energy
functional for pan-sharpening. Section III analyzes the exis-
tence of the minimizer of the proposed energy. Section IV
describes the numerical scheme to tackle the energy functional.
Section V divides the existing quantitative metrics into four
categories, and illustrates the experiments as well as the com-
parison studies. Finally, the paper is concluded in Section VI.

II. PROPOSED METHOD

In this section, we firstly present three new assumptions
and the corresponding energy functional terms, then build the
proposed total energy functional.

First of all, we introduce some notations that will be used
later. Let P : Ω → R be a PAN image, M = (M1, . . . , MN ) :
Ω → R

N be an upsampled low-resolution MS image
which has been upsampled to be the same size as P , and
u = (u1, . . . , uN) : Ω → R

N be a high-resolution MS image
(i.e., pan-sharpened image), where Ω ⊂ R

2 represents an
open, bounded domain with Lipschitz boundary, and N is the
number of bands of M . For a random pixel x ∈ Ω, un(x) is
the intensity of un at x, where n ∈ {1, . . . , N}.

As aforementioned, we aim to obtain a pan-sharpened
image from PAN and MS images. The pan-sharpened image
should has both high spectral and spatial qualities to meet the
requirements of various applications. Due to the nature of pan-
sharpening, we can present three new assumptions as follows.

A. Assumption I: Spatial Information Preserving

As introduced in [19], spatial information of an image can
be generally expressed by the measure of the gradient field.

That is, given a PAN image P and a desired pan-sharpened
band un, the spatial information can be represented by ∇P
and ∇un.

Since in pan-sharpening, P contains most of the spatial
information compared to M , we shall assume that the linear
combination among all bands of u could be close to P in
spatial information. Mathematically

N∑

n=1

γn∇un = ∇P, (1)

where γn represents the mixing coefficient which is
nonnegative.

Some existing pan-sharpening methods, such as IHS [4]–[6]
and P+XS [17], assume that

N∑

n=1

γnun = P. (2)

It is easy to find that (1) can be deduced from (2), but not
vice versa. That is, our assumption (1) can be regarded as a
generalization of assumption (2).

To impose our assumption into a variational framework, we
present the following energy functional:

EG(u) =
∫

Ω

∣∣∣∣∣

N∑

n=1

γn∇un −∇P

∣∣∣∣∣ dx. (3)

B. Assumption II: Spectral Information Preserving

Generally, the pan-sharpened image u should appear clear
and informative, while upsampled low-resolution MS image
M is blurred and degraded. For this reason, M can be
regarded as a degraded form of u. That is, we can obtain
u by enhancing M .

Based on above analysis, we assume a local linear model
between u and M for excellent enhance task, i.e., M is
assumed as a linear transform of u in a size fixed neighbor-
hood ωx centered at the pixel x:

Mn(y) = an(x)un(y) + bn(x) ∀y ∈ ωx, x ∈ Ω,

n = 1, . . . , N, (4)

where an and bn are the linear coefficients which are con-
stants in ωx. This assumption have been proved reasonable
in many areas such as image matting [20], dehazing [21],
filter [22] and super resolution [23]. This local linear model
ensures that u keeps the edge information of M since
∇Mn(y) = an(x)∇un(y), and enhances the boundary when
|an| is small.

To show the validity of this local linear model in remotely
sensed images, we firstly acquire a sub-scene image from
QuickBird satellite (size: 512×512, band: 4, data type: uint16,
resolution: 2.8-m), then spatially degrade the image with low-
pass filter and decimation operator by four to yield a 11.2-m
resolution image. The 2.8-m and 11.2-m resolution images
can be regarded as the pan-sharpened image u (see Fig. 1(a))
and low resolution MS image M (see Fig. 1(b)) respectively.
This view is reasonable and has been used successfully in
many literatures such as [24]. Obviously, an arbitrary local
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Fig. 1. Source QuickBird images and their points clusters. (a) The high-
resolution MS images (RGB, 512 × 512 pixels). (b) The upsampled low-
resolution MS image (RGB, 512 × 512 pixels). (c) Cluster of flatting area
ωx1 (RGB, 17 × 17 pixels): (1) top left: a flatting local area acquired from
(a), (2) left bottom: the same local area acquired from (b), (3) right: the point
cluster {(Mn(y), un(y)), y ∈ ωx1} for n ∈ 1, . . . , N ; blue, green, red, and
black points are Clusters of 1, 2, 3, and 4 bands, respectively. (d) Cluster of
smoothing area ωx2 (RGB, 17 × 17 pixels), the meaning is similar to (c).
(e) Cluster of jumping area ωx3 (RGB, 17×17 pixels), the meaning is similar
to (c).

area of an image can be classified as one of the three
typical areas: flatting, smoothing and jumping areas. We thus
select three typical areas, which are denoted by ωx1 (flatting
area), ωx2 (smoothing area) and ωx3 (jumping area), from the

pan-sharpened image, and obtain the same areas in upsampled
MS image. Then we construct point clusters {(Mn(y), un(y)),
y ∈ ωxr} for all n ∈ 1, . . . , N and r = 1, 2, 3. The results are
shown in Fig. 1(c)–(e) respectively. Observing on the figure,
we find that although these clusters are not straight lines, their
skeletons are roughly linear. That is, the local linear model is
also valid in remotely sensed images.

Then, to impose this assumption into a variational frame-
work, we present the following sums of the integral term:

ES(u, a, b) =
N∑

n=1

∫

Ω

{∫

ωx

(an(x)un(y) + bn(x)

−Mn(y))2 dy + τa2
n(x)
}

dx (5)

where a = {a1, . . . , aN}, b = {b1, . . . , bN}, and τ is a
controlling parameter keeping an away from been too large.

For the sake of computing convenience, we will rewrite
formula (5). Firstly, we define a kernel,

k(x − y) =

{
1

|ωx| , y ∈ ωx

0, otherwise
(6)

where |ωx| is a constant. Obviously,
∫
Ω

k(x − y)dx = 1.
Then we may rewrite (5) in form as

E′
S(u, a, b) = τ

N∑

n=1

∫

Ω

a2
n(x) dx +

N∑

n=1

∫

Ω

∫

Ω

k(x − y)

× (an(x)un(y) + bn(x) − Mn(y)
)2

dy dx. (7)

Note that (5) and (7) differ by a constant multiple. We ignore
it because it does not affect the energy.

C. Assumption III: Spectral Correction Preserving

The spectral signature of a MS image is important in
many applications such as spectrum matching. Hence it is
significant for preserving the spectral correlation information
from the original low resolution MS image. To achieve this
aim, we assume that the gradient in the spectrum direction of
pan-sharpened image should be approximate to those of the
original MS image, i.e.,

∇su = ∇sM (8)

where ∇s· denotes the gradient in the spectrum direction.
Since an MS image only has N discrete bands, i.e., MS

image is discrete in spectrum direction, the gradient ∇su can
be expressed as the following difference scheme,

∇su = {un − un+1, n = 1, . . . , N − 1}.
Therefore, (8) can be rewritten as:

un − un+1 = Mn − Mn+1, n = 1, . . . , N − 1.

Obviously, the above equation is equivalent to

un − ui = Mn − Mi, i = n + 1, . . . , N, n = 1, . . . , N − 1.

Then we can impose this assumption into an energy form

EC(u) =
N−1∑

n=1

N∑

i=n+1

∫

Ω

|un − ui − Mn + Mi|2 dx. (9)
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D. Energy Functional

Before building our energy functional, we need to
define a functional space in which we search for
a minimizer for u. As introduced in [25]–[27], the
space of functionals of bounded variation BV (Ω), i.e.,
BV (Ω) =

{
un ∈ L1(Ω);

∫
Ω |Dun| < ∞}, contains the set

of piecewise smooth functions. It is a suitable space for images
and has been frequently used in many image processing
problems. Therefore, we choose BV (Ω) as our search space
for un. Besides, we can select the space L2(Ω) for an and bn

respectively.
Theoretically, in BV (Ω), ∇un may be undefined in some

cases, whereas the distributional gradient Dun is well-
defined [16]. For this reason, we use Dun instead of ∇un

in what follows.
To fix our ideas, we propose obtaining the high-resolution

MS image u by minimizing the total energy functional which
is a combination of (3), (7) and (9), i.e.,

E(u, a, b) = EG(u) +
λ

2
E′

S(u, a, b) +
ν

2
EC(u)

=
∫

Ω

∣∣∣∣∣

N∑

n=1

γnDun − DP

∣∣∣∣∣+
λτ

2

N∑

n=1

∫

Ω

a2
n(x) dx

+
λ

2

N∑

n=1

∫

Ω

∫

Ω

k(x − y)
(
an(x)un(y)

+bn(x) − Mn(y)
)2

dy dx

+
ν

2

N−1∑

n=1

N∑

i=n+1

∫

Ω

|un − ui − Mn + Mi|2 dx (10)

where λ, ν are balancing factors adjusting the relations
between EG, E′

S and EC , and the larger value indicates
greater contribution of the corresponding term.

Let BV (Ω) = BV (Ω) × BV (Ω) × · · ×BV (Ω)︸ ︷︷ ︸
N

, and the

similar definition for L2(Ω). The total space Λ of our energy
functional can be defined as

Λ = {(u, a, b)|(u, a, b) ∈ BV × L2(Ω) × L2(Ω)}. (11)

After chosen the functional space, the minimum problem of
our total energy functional (10) can be considered as the
following regular form

min
(u,a,b)∈Λ

E(u, a, b). (12)

III. EXISTENCE OF A MINIMIZER

In this section, the existence of a minimum for our energy
will be proved based on the fundamental theorem of optimiza-
tion. Firstly, we have to assume some assumptions on a, b,
u.

Assumption 1. |an(x)| ≥ ε, |bn(x)| ≤ M, where ε,M
denote universal strictly positive constants, and n = 1, . . . , N .

Remark 1. As mentioned in Section II-B, un and Mn are
linear related in a local area of x, where an(x) and bn(x)
are linear coefficients. Since Mn and un describe the same
scene, they are highly related. Thus, we reasonably let an(x)

be larger than a certain but small value to prevent the degrada-
tion of linear relationship. For the same reason, |bn(x)| ≤ M
is justified. Based on above analysis, Assumption 1 makes
sense.

Assumption 2. un ∈ BV (Ω) meets:
∫
Ω

∣∣ N∑
i=1

γiDui

∣∣ ≥
c
∫
Ω
|Dun| for some proper positive constant c.

Remark 2. From Assumption I in subsection II-A, we
have

∑N
n=1 γn∇un = ∇P . Since P contains more abundant

spatial information than un, we have
∫

Ω

|∇un| ≤
∫

Ω

|∇P | =
∫

Ω

∣∣∣∣∣

N∑

i=1

γi∇ui

∣∣∣∣∣ .

Then Assumption 1 makes sense for some proper positive
constant c.

Lemma 1. The kernel k defined in (6) is bounded in L2(Ω).
Proof. Using the definition of k, the correctness of the

lemma 1 can be easily verified by following reasoning,

||k||2 =
∫

Ω

1
|ωx|2 dx =

1
|ωx|2

∫

Ω

dx =
1

|ωx| < M.

Considering the energy functional (12), we have the follow-
ing theorem.

Theorem 1. If P ∈ BV (Ω) and M ∈ L2(Ω) are constants,
under the assumptions 1 and 2, the minimization problem (12)
admits a solution (u∗, a∗, b∗) ∈ Λ.

Proof. See Appendix.

IV. NUMERICAL SCHEMES

In this section, the numerical procedure of the proposed
energy (12) will be implemented. Since Dun is usually treated
as ∇un in difference scheme, we use ∇un instead of Dun in
the following numerical schemes.

As is well known, minimizing the energy (12) is equivalent
to solving the Euler-Lagrange equation of (10). We thus
calculate the first variations of functional (10) as

δE

δan
= λ(τan + ank ∗ u2

n + bnk ∗ un − k ∗ (Mnun)) = 0

(13)
δE

δbn
= λ(bn + ank ∗ un − k ∗ Mn) = 0 (14)

δE

δun
= −γndiv

( ∑N
i=1 γi∇ui −∇P

|∑N
i=1 γi∇ui −∇P |

)

+λ(unk ∗ a2
n + k ∗ (anbn) − Mnk ∗ an)

+ν

N∑

i=n+1

(un − ui − Mn + Mi) = 0 (15)

where ‘*’ denotes the convolution operation.
Given un, we can obtain the closed form solution of an and

bn from (13) and (14), which are shown as follows

an =
k ∗ [Mnun] − k ∗ Mn · k ∗ un

k ∗ u2
n − [k ∗ un]2 + τ

(16)

bn = k ∗ Mn − ank ∗ un. (17)

Obviously, the solution of un can not be found directly. A
classic method solving this problem is the gradient descent
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method (GDM). However, because of the non-differentiability
of the L1 norm, a small positive parameter is added in GDM,
which may lead to the inexact result. To overcome this draw-
back, many techniques, such as Chambolle’s algorithm [28],
augmented Lagrangian method [29] and split Bregman itera-
tion [30], have been developed. Here we use the split Bregman
iteration to solve our model.

A. Numerical Algorithm Based on Split Bregman Framework

We will now apply the split Bregman framework [30] to
implement our minimization problem (12). As the closed form
solution of an and bn are given in (16) and (17), we only
consider the sub-problem with respect to un.

As introduced in [30], the split Bregman iteration extends
the utility of the Bregman iteration and linear Bregman itera-
tion. It is a promising method which can solve the L1 norm
minimization problems effectively and can reduce the time and
space overhead significantly.

The main idea of the split Bregman iteration is that it will
separate the l1 and l2 components. Rather than considering
(12), we present the following equivalent constrained problem

min
un,d

∫
|d| dx +

λ

2
E′

S(u, a, b) +
ν

2
EC(u),

s. t. d =
N∑

i=1

γi∇ui −∇P.

To solve this problem, we firstly convert it to an unconstrained
problem using the efficient Bregman iteration approach [30]

(uj+1
n , dj+1) = arg min

un,d

∫

Ω

|d|

+
μ

2
|d −

N∑

i=1

γi∇ui + ∇P − ej |2 dx

+
λ

2
E′

S(u, a, b) +
ν

2
EC(u) (18)

ej+1 = ej − dj+1 +
N∑

i=1

γi∇uj+1
i −∇P. (19)

In order to solve (18), we shall perform this minimization
efficiently by alternate iteration with un and d separately. The
two steps are performed as

uj+1
n = arg min

un

μ

2

∫

Ω

∣∣∣∣∣d
j −

N∑

i=1

γi∇ui + ∇P − ej

∣∣∣∣∣

2

dx

+
λ

2
E′

S(u, a, b) +
ν

2
EC(u) (20)

dj+1 = arg min
d

∫

Ω

|d|

+
μ

2

∣∣∣∣∣d −
N∑

i=1

γi∇uj+1
i + ∇P − ej

∣∣∣∣∣

2

dx. (21)

Because the subproblem (20) is differentiable, optimality
conditions for uj+1

n are easily obtained. By differentiating with
respect to un, we can derive that

Kuj+1
n = rhs (22)

where

K = −μγ2
nΔ + λk ∗ (aj

n)2 + ν(N − n),

rhs = −μγndiv

⎛

⎝dj −
N∑

i=1,i�=n

γi∇uj
i + ∇P − ej

⎞

⎠

− λ(k ∗ (aj
nbj

n) − Mnk ∗ aj
n) + ν

N∑

i=n+1

(ui + Mn − Mi)

and Δ denotes the Laplacian operator.
Obviously, (22) is equivalent to

F(K)F(uj+1
n ) = F(rhs) (23)

where F denotes the Fast Fourier Transform (FFT).
As solving the above equation for F(uj+1

n ), we take F−1,
the inverse FFT, to obtain the closed form solution of ui+1

n ,
i.e.,

uj+1
n = F−1

(F(rhs)
F(K)

)
. (24)

The solution of subproblem (21) can be given directly by
the following the soft-thresholding formula

dj+1 = shrink

(
N∑

i=1

γi∇uj+1
i −∇P + ej ,

1
μ

)
, (25)

where

shrink(x, ς) =
x

|x| · max(|x| − ς, 0). (26)

Taking all above into account, the iteration with respect to
subproblem un is summarized as follows:

⎧
⎪⎨

⎪⎩

uj+1
n = F−1

(
F(rhs)
F(K)

)

dj+1 = shrink(
∑N

n=1 γn∇uj+1
n −∇P + ej, 1

μ )
ej+1 = ej − dj+1 +

∑N
n=1 γn∇uj+1

n −∇P.

(27)

The steady state of the iteration is reached when the
relative error between two iterates is less than 10−3 for all
bands, i.e.,

max
n=1,...,N

(
||uj+1

n − uj
n||

||uj
n||

)
< 10−3.

Using above solvers, and taking the assumptions 1 and 2
into account, the overall procedure of proposed method can
be shown in Algorithm 1.

In Algorithm 1, it should be noted that the constraints of
an and bn (provided by the Assumption 1) are shown in the
first two equations, while the constraint of un (provided by
the Assumption 2) is given in the last equation. Extensive
experiments based on real data demonstrate that, provided
that the positive constants c, ε are sufficiently small and M
is adequately large, i.e., c, ε ≤ 10−16 and M ≥ 1016, the
perturbation of an caused by the constraint is negligible small,
and bn and un meet the constraints all the time.



FANG et al.: VARIATIONAL APPROACH FOR PAN-SHARPENING 2827

Algorithm 1 The Overall Procedure for Proposed Model

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, in order to examine the effectiveness of
proposed fusion method, we describe and analyze the exper-
imental results on the QuikBird-2 and IKONOS-2 satellites
data. The QuickBird-2 is a fine resolution satellite which
provides MS images at 2.44-2.88 m resolution and PAN
images at 0.61–0.72 m resolution [31], while the IKONOS-2
satellite captures 4-m MS images and 1-m PAN images [32].
The MS image of the both satellites contain four bands
(N = 4), i.e., blue, green, red and near-infrared bands. Par-
ticularly, a detailed introduction of the satellite images can be
found in [1].

We note that all the following experiments are implemented
in MATLAB 7.12 and run on an Intel(R) 2.33 GHz machine
with 4 GB RAM. Unless otherwise specified, we set γn = 0.25
in the following experiments, and one may choose a different
value based on the different applications (see [33]). The radius
of the ωx (denote as R) and τ are set according to the
analysis of [22], i.e., R = 16 and τ = 0.082. We have
found that our algorithm is insensitive to λ, ν and μ due
to its stability [30], and λ, ν ∈ [0.01 0.5], μ ∈ [0.2 1] are
acceptable.

A. Evaluation Metrics for Image Fusion

To evaluate different fusion methods, we need to consider
the all-sided property of fusion tasks. However, the evaluation
of image fusion is a foundational and challenging work so
far [40]. The existing evaluation techniques can be roughly
divided into two categories: qualitative analysis methods and
quantitative analysis methods [41], where qualitative methods
analyze the pan-sharpened result using human visual system
(HVS) directly, while quantitative methods assess the fused
image by using some quantitative metrics. Obviously, qual-
itative methods are relatively straightforward but difficult to
implement due to the instability of the HVS. Quantitative
methods are more objective and stable, but it requires an
universal recognized criteria. Since no universal standard has
been performed, quantitative methods can not be used as the
only trustworthy method for evaluation. As this reason, the

qualitative and quantitative analysis are both considered in this
paper.

Many techniques have been proposed for quantitative analy-
sis [7], [35], [36], [42]. Based on the different aspects
they tend to, we may divided their methods into four
categories:

• Spectral quality metrics Spectral quality metrics eval-
uate the quality of the fusion result by the preserving
degree of the spectral informations, i.e., the level of
change from M to u. A smaller change indicates a better
fusion work. This metrics include root mean squared
error (RMSE) [7], [34], relative dimensionless global
error in synthesis (RDGES) [33], relative average spectral
error (RASE) [43] and objective quality fusion measure
(QW ) [19], [44]–[46], etc.

• Spectral correlation quality metrics
Their metrics indicate the preserving degree of the spec-
tral correlation information through the fusion process.
For an outstanding fusion task, the correlation value
between bands of u should be close to that of M . There
are many methods belong to spectral correlation quality
metrics, such as correlation coefficient (CC) [35], [36],
universal image quality index (UIQI) [18], [47], spectral
angle mapper (SAM) [12], [24] and spectral information
divergence (SID) [48].

• Spatial quality metrics
Spatial quality metrics record the distortion degree of
the spatial information. Since the spatial information is
mainly contained in P , we only need to compare the
fused image u with P . The spatial information of u
should be equivalent to that of P in an ideal fusion
work. Filtered correlation coefficient (FCC) [8], [18] and
objective image fusion performance measure (QF ) [37]
are two examples of this metrics.

• Image quality metrics
Image quality metrics evaluate the fusion by using the
fused image u only. Its main idea is that a better fusion
task should produce an image that has more details and
informations. This metrics contain many methods, for
example average gradient (AG) [39], spatial frequency
(SF) [38] and entropy (H) [39].

Since each category of metrics has its own focus, and is
not all-sided, a basic idea is that we take all categories of
the metrics into account for a comprehensive evaluation. Due
to space limitations, in this paper, we consider two typical
evaluation methods for each category. These metrics are shown
in Table I.

B. Qualitative Visual Analysis

Large number of fusion methods have been performed,
and many of them have achieved promising results. We now
visually compare our method with six popular pan-sharpening
methods, namely, the standard IHS method (SIHS) [4], the
adaptive IHS method (AIHS) [5], the wavelet method [8],
[49], the P+XS method [17], the variational wavelet pan-
sharpening method (VWP) [18] and the alternate VWP
method (AVWP) [18]. We note that all parameters of



2828 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

TABLE I

EIGHT METRICS AND THESE DEFINITIONS

Category Metric Definition References
Value

Meaning

Spectral
quality
metrics

RMSE [7], [34] RMSE =
�

1
N|Ω|

�N
n=1

�
Ω
(un − Mn)2 dx. 0

The smaller
the better.

RDGES [33] RDGES = 100r

�
1
N

�N
n=1

�
RMSE(un,Mn)

un

�
, where r is the

ratio between the size of P and Mn, and un is the mean of un.

0

Spectral
correlation

quality
metrics

CC [35], [36] CC = 2
N(N−1)

N�
n=1

n�
m=1

|Cor(Mn, Mm) − Cor(un, um)| where

Cor(Mn, Mm) =
�
Ω(Mn−Mn)(Mm−Mm) dx√�

Ω(Mn−Mn)2 dx
�
Ω(Mm−Mm)2 dx

0

SAM [12], [24] SAM = 1
|Ω|
�
Ω

arccos
�

<u,M >
||u||2||M ||2

�
dx. 0

Spatial
quality
metrics

FCC [8], [18] FCC = 1
N

N�
n=1

Cor(h ∗ un, h ∗ P ), where h =
�−1 −1 −1
−1 8 −1
−1 −1 −1

�
. 1

the bigger
the better.

QF [37] QF =

N�

n=1

�
Ω QunP (x)ωun (x) dx

N�

n=1

�
Ω ωun(x) dx

, where ωun(x) is a weight and

QunP (x) ∈ [0, 1] is an edge information preservation value.

1

Image
quality
metrics

SF [38] SF = 1
N

�N
n=1

�
1

|Ω|
�
Ω
|∇un|2 dx.

√
2

H [39] H = −
L−1�
i=0

pi log2 pi, where L is the gray level of the image,

pi = ni/n, ni is the probability of the number of pixels in ith
gray-level, and n is the total number of pixels of the image.

∞

Fig. 2. Qualitative comparison: source QuickBird images (village) and
the fused results using different methods. (a) The Resampled low-resolution
MS image (RGB,256 × 256 pixels). (b) The High-resolution PAN images
(256 × 256 pixels). (c)–(i) The Fused RGB bands by SIHS, AIHS, Wavelet,
P+XS, VWP, AVWP, and proposed methods.

the above algorithms are set according to the authors’
recommendations.

Figs. 2(a) and (b) and Figs. 4(a) and (b) show two QuickBird
source images of one region of the Chilka Lake areas, India,
acquired on February 23, 2005 12:00. Figs. 2(c)–(i) and
Figs. 4(c)–(i) illustrate the results of SIHS, AIHS, Wavelet,
P+XS, VWP, AVWP and proposed methods, respectively.
For visual convenience, we only show the first three bands
(i.e., blue, green, red bands) of each MS image.

Fig. 3. Close-ups from Fig. 2. (a) The RGB band of the MS image.
(b)–(h) The Fused RGB bands by SIHS, AIHS, Wavelet, P+XS, VWP, AVWP,
and proposed methods, respectively.

By visually comparing the fused images, we can see that all
these methods can fuse the original data effectively. However,
the result images produced by other methods are relatively lack
of definition and details, while the proposed results not only
preserves spatial details well, but also provides high quality
spectral information. To see the difference more clearly, the
close-ups of an example area of Fig. 2 (in the red box) are
show in Fig. 3. From Fig. 3, we can see that all images in
(b)–(h) and clearer than that of (a). However, the edge of the
pond is much clear in (h), while there are some staircase effects
in that of (b)–(c), and blurry edges in that of (d)–(g). The
similar phenomenon can also be found in the roof, roads and
woods areas in Fig. 2. As another example, we can easily
observe that the river in Fig. 4(i) is much clearer than that in
Figs. 4(c)–(h).

Fig. 5(a) and Fig. 6(a) give two IKONOS MS source images
of one mountainous area in Sichuan, China, acquired on May
15, 2008, 12:00, three days after the Wenchuan May 12
earthquake. Fig. 5(b) and Fig. 6(b) show the corresponding
PAN images. The same as the QuickBird case, Figs. 5(c)–(j)
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Fig. 4. Qualitative comparison: source QuickBird images(river) and the fused
results using different methods. (a) The Resampled low-resolution MS image
(RGB,256 × 256 pixels). (b) The High-resolution PAN images (256 × 256
pixels). (c)–(i) The Fused RGB bands by SIHS, AIHS, Wavelet, P+XS, VWP,
AVWP, and proposed methods.

and Figs. 6(c)–(j) display the results of some outstanding and
proposed methods, respectively. In addition, we only show the
red, green, blue bands of MS images for better visual effect.

Compared with other methods, we found that our method
can produce more vivid and informative results. Taking Fig. 5
as an example, the boundary of river is much clearer in (i),
while in (c)–(h), they are either blurred or jagged in some
degree. Besides, the sharpness of the entire image of (i) is
significantly better than the others. The similar conclusion
can be drawn in Fig. 6. Therefore, if we have the data that
describe the same area before the Wenchuan May 12, 2008
earthquake, we can fuse it using our method and compare the
fused image with that after the earthquake to get the difference
more accurately. Then we can provide more accurate on-site
rescue with the difference information.

Based on the above observation, we can conclude, for the
visual performance, that the proposed fusion method performs
better than other methods on QuickBird and IKONOS data.

C. Quantitative Analysis

In this subsection, Tables II, III, IV and V, which respec-
tively related to Figs. 2, 4, 5 and 6, are performed to report
the quantitative evaluation for seven fusion schemes including
SIHS, AIHS, Wavelet, P+XS, VWP, AVWP and proposed
methods. The aforementioned eight measures of four metrics
categories (see Table I) are used as the quantitative criteria.
Note that the best value for each quality measure are labeled

Fig. 5. Qualitative comparison: source IKONOS images (river) and the fused
results using different methods. (a) The Resampled low-resolution MS image
(RGB,256 × 256 pixels). (b) The High-resolution PAN images (256 × 256
pixels). (c)–(i) The Fused RGB bands by SIHS, AIHS, Wavelet, P+XS, VWP,
AVWP, and proposed methods.

in bold, and the value in the first row of each table are
the reference value which related to the ideal perfect fusion
result.

Observing all the tables, we can find that the proposed
method is obviously better than other methods in FCC, QF , SF
and H measures. This is justified for the following reason: As
mentioned in Section V-A, FCC, QF are belong to the spatial
quality metrics and SF, H are subject to the image quality
metrics. Spatial quality metrics focus on the spatial sharpness
and image quality metrics specialises in information. Since
our result images are more visually clear and informative than
that of the other methods obviously (have been detailed in
Section V-B), to confirm our visual observations, the value of
the FCC, QF , SF and H measures should also be higher than
other methods.

In aspect of the first four measures, our method is always
better than others in SAM measure, and generally dominant in
RMSE, RDGES and CC measures. For example, the RDGES
value of proposed method is the best one in Table II. Although
the RMSE and CC values of proposed method in Table II
are not the best, RMSE is only sightly larger than that of the
P+XS and AVWP methods, and lower than that of all the other
methods. In CC measure, the proposed method is ranked 2 in
7 methods, while SIHS method performs best. Meanwhile,
we can see that the SIHS method loses all other measures,
yet proposed method keeps. Thus, the proposed method is
better than SIHS method. The similar results can be found in
Tables III, IV and V.
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TABLE II

COMPARISON OF THE PROPOSED METHOD WITH THE OUTSTANDING METHODS ON QUICKBIRD IMAGES SHOWN IN FIG. 2

RMSE RDGES CC SAM FCC QF SF H
Reference 0 0 0 0 1 1

√
2 ∞

SIHS 0.0889 5.6717 0.0284 2.7302 0.7787 0.4232 0.0871 7.4598
AIHS 0.1101 7.0100 0.0783 3.2710 0.8015 0.4330 0.1216 7.5807
Wavelet 0.1031 6.6192 0.1446 4.8612 0.9064 0.3431 0.1294 7.6150
P+XS 0.0730 4.7783 0.0886 4.1034 0.8080 0.3716 0.0820 7.4755
VWP 0.0957 6.1523 0.1279 3.2490 0.8881 0.4010 0.1194 7.5756
AVWP 0.0777 5.0528 0.0797 3.2667 0.8047 0.3753 0.0894 7.5124
Proposed 0.0878 4.1220 0.0718 2.1399 0.9466 0.4436 0.1656 7.6562

TABLE III

COMPARISON OF THE PROPOSED METHOD WITH THE OUTSTANDING METHODS ON QUICKBIRD IMAGES SHOWN IN FIG. 4

RMSE RDGES CC SAM FCC QF SF H
Reference 0 0 0 0 1 1

√
2 ∞

SIHS 0.0724 3.4543 0.0048 1.5391 0.7889 0.4702 0.0797 7.6942
AIHS 0.0954 4.5461 0.0379 1.9591 0.8006 0.4788 0.1084 7.7376
Wavelet 0.0863 4.1526 0.0760 3.2363 0.9080 0.3373 0.1060 7.7322
P+XS 0.0672 3.2487 0.0943 2.9111 0.8386 0.4421 0.0762 7.6629
VWP 0.0839 3.9923 0.0823 2.1105 0.8816 0.4064 0.1073 7.7085
AVWP 0.0754 3.5768 0.0860 2.1719 0.8208 0.4345 0.0901 7.6828
Proposed 0.0662 3.3019 0.0940 1.3580 0.9094 0.4849 0.1394 7.7737

TABLE IV

COMPARISON OF THE PROPOSED METHOD WITH THE OUTSTANDING METHODS ON IKONOS IMAGES SHOWN IN FIG. 5

RMSE RDGES CC SAM FCC QF SF H
Reference 0 0 0 0 1 1

√
2 ∞

SIHS 0.1186 5.3366 0.0148 2.4448 0.7338 0.4741 0.0840 7.5642
AIHS 0.1368 6.1477 0.0619 2.8057 0.7349 0.4818 0.1093 7.5540
Wavelet 0.0839 3.8188 0.0504 3.2661 0.8223 0.2179 0.1008 7.6770
P+XS 0.0822 3.7643 0.0475 3.3815 0.7797 0.2888 0.0857 7.6605
VWP 0.0882 4.0041 0.0556 2.4703 0.7672 0.2541 0.1111 7.6510
AVWP 0.1057 4.7610 0.0835 2.3945 0.6778 0.3047 0.1213 7.6371
Proposed 0.1002 3.4999 0.0678 2.3740 0.8422 0.4828 0.1309 7.7058

TABLE V

COMPARISON OF THE PROPOSED METHOD WITH THE OUTSTANDING METHODS ON IKONOS IMAGES SHOWN IN FIG. 6

RMSE RDGES CC SAM FCC QF SF H
Reference 0 0 0 0 1 1

√
2 ∞

SIHS 0.1776 8.3105 0.0092 3.4840 0.9252 0.5823 0.1652 7.7547
AIHS 0.1596 7.4860 0.0132 3.0370 0.8935 0.5432 0.1541 7.7459
Wavelet 0.1372 6.4038 0.0641 4.9070 0.9311 0.3080 0.1862 7.7695
P+XS 0.1133 4.3306 0.0318 3.6236 0.8164 0.2541 0.1170 7.7663
VWP 0.1291 5.9606 0.0380 2.4471 0.8804 0.3071 0.1733 7.7194
AVWP 0.1155 5.3099 0.0113 2.3923 0.7583 0.2716 0.1400 7.7070
Proposed 0.1032 4.2022 0.0557 2.2965 0.9406 0.5859 0.2410 7.7785

On the whole, the proposed method is better than other
schemes, such as SIHS, AIHS, Wavelet, P+XS, VWP and
AVWP methods, with respect to the related quantitative cri-
teria, especially in spatial quality metrics and image quality
metrics. This, to a large extent, has verified our qualitative
analysis.

D. Computational Efficiency Analysis

To evaluate the computational efficiency, the proposed
method is further compared with other variational methods,
i.e., the P+XS, VWP and AVWP methods, in terms of time
cost and convergence speed.

TABLE VI

TIME COMPARISON WITH OTHER VARIATIONAL METHODS (SECOND)

P+XS VWP AVWP Proposed
Fig. 2 64.0384 67.2559 23.8096 20.7002
Fig. 4 64.0384 63.4729 23.6926 21.3184
Fig. 5 63.1609 64.7209 24.5311 19.5400
Fig. 6 61.7764 63.8044 23.7706 20.6315

Firstly, with respect to time cost, we test all of the vari-
ational methods on the images in Figs. 2, 4, 5 and 6. The
running time are performed in Table VI, and the best value of
each figure is labeled in bold. From Table VI, we can see
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Fig. 6. Qualitative comparison: source IKONOS images(river) and the fused
results using different methods. (a) The Resampled low-resolution MS image
(RGB,256 × 256 pixels). (b) The High-resolution PAN images (256 × 256
pixels). (c)–(i) The Fused RGB bands by SIHS, AIHS, Wavelet, P+XS, VWP,
AVWP, and proposed methods.
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Fig. 7. Error versus iterations for the proposed method and the other
variational schemes. Convergence result is for the images in Fig. 2.

that the value of the proposed method are the lowest one
in all figures, which demonstrate that our method is more
efficient than the other methods. The main reason is that the
proposed method has no time consuming component, and we
use the split Bregman iteration, which has remarkable advan-
tages in time overhead and RAM usage, to implement our
algorithm.

The convergence speed of proposed method is also pre-
sented in Fig. 7, where we have plotted the error vs. iteration

line for the images in Fig. 2. As a comparison, we also
draw the convergence curve for the P+XS, VWP and AVWP
methods. Observing at the results, we can find the proposed
method converges faster than the others. Additionally, the
proposed method has reached promising results after the
first 100 iterations, while to achieve the same effect, the
P+XS and VWP methods need 120 iterations, and the AVWP
method need 150 iterations (see the black dashed line in
figure).

Therefore, we can draw a conclusion that the proposed
method is much better than the other variational methods in
computational efficiency aspect.

VI. CONCLUSION

We have introduced a variational pan-sharpening method
based on three assumptions. The proposed method first per-
formed the three assumptions, and used these assumptions
to construct an energy functional. The existence of solution
of energy is then discussed. For tackling functional more
efficiently, we used the split Bregman algorithm to obtain
the minimizing solution. In order to prove the effectiveness
of the proposed method, the proposed method was applied
to the Quickbird and IKONOS dataset and compared with
six state-of-the-art pan-sharpening methods qualitatively and
quantitatively. The results demonstrated that our method is
generally better than the compared methods with respect to
the related evaluations criteria. particularly, we divided the
existing quantitative measures into four categories for better
evaluation. Furthermore, the comparison in efficiency with
other variational methods also showed the effectiveness of the
proposed method. Therefore, we can conclude that the pro-
posed method can effectively construct a high-resolution MS
image which can preserve both spectral and spatial information
of source images well.

Pan-sharpening is still a developing problem, and there are
many open questions that should be studied. Our method is
effective, but it also can be improved. For example, there are
several parameters which should be chosen manually. Further
research will be extended to develop some automatic methods
for parameters choosing. Recently, the sparsity of the image
under some certain bases have been proven efficient in many
realms. We will combine our variational approach with these
techniques for more excellent pan-sharpening in future.

APPENDIX

PROOF OF THEOREM III

Firstly, when u, a, b are constants, the energy is bounded.
Thus, inf

(u,a,b)∈Λ
E �≡ +∞. Moreover, E � 0. Therefore, the

energy (12) is well defined.
Let {(uj , aj, bj)} ∈ Λ be a minimizing sequence such that

lim
j→∞

E(uj , aj, bj) → inf
(u,a,b)∈Λ

E. Thus, there exists a constant

M such that

E(uj , aj, bj)=
∫

Ω

∣∣∣∣∣

N∑

n=1

γnDuj
n−DP

∣∣∣∣∣+
λτ

2

N∑

n=1

∫

Ω

(aj
n)2(x)dx
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+
λ

2

N∑

n=1

∫

Ω

∫

Ω

k(x − y)
(
aj

n(x)uj
n(y)

+bj
n(x) − Mn(y)

)2
dy dx

+
ν

2

N−1∑

n=1

N∑

i=n+1

∫

Ω

|uj
n − uj

i − Mn + Mi|2 dx

≤ M. (28)

Firstly, we have

λτ

2

∫

Ω

(aj
n)2(x) dx ≤ M,

that is, {aj
n} is uniformly bounded in L2(Ω). Thus, There

exists a subsequence (also denoted by {aj
n}) and a∗

n in L2

such that
aj

n ⇀
L2(Ω)

a∗
n. (29)

By Assumption 1, {bj
n}, where the index j corresponds

to above formula, satisfies
∫
Ω(bj

n)2(x) dx ≤ M, i.e., {bj
n}

is uniformly bounded in L2(Ω). Therefore, there exists a
subsequence (also denoted by {bj

n}) and b∗n such that

bj
n ⇀

L2(Ω)
b∗n. (30)

Meanwhile, by formula (28), the sequence {uj
n}, with the

index j corresponds to (30), meets

∫

Ω

∣∣∣∣∣

N∑

n=1

γnDuj
n − DP

∣∣∣∣∣ ≤ M, (31)

and
∫

Ω

∫

Ω

k(x− y)
(
aj

n(x)uj
n(y) + bj

n(x)−Mn(y)
)2

dy dx ≤ M.

(32)
Thanks to Assumption 2, from (31) we have,

M ≥
∫

Ω

|
N∑

i=1

γiDuj
i | −
∫

Ω

|DP |

≥ c

∫

Ω

|Duj
n| −

∫

Ω

|DP |.

So we get the boundedness of |uj
n|BV .

Equation (32) is equivalent to:

M ≥
∫

Ω

∫

Ω

k(x − y)
(
(aj

n(y)uj
n(x))2 + 2aj

n(y)uj
n(x)

×[bj
n(y) − Mn(x)] + [bj

n(y) − Mn(x)]2
)

dy dx

≥
∫

Ω

∫

Ω

k(x − y)(aj
n)2(y) dy (uj

n)2(x)) dx

+2
∫

Ω

∫

Ω

k(x − y)aj
n(y)[bj

n(y) − Mn(x)] dy uj
n(x) dx

≥
∫

Ω

∫

Ω

k(x − y)(aj
n)2(y) dy (uj

n)2(x)) dx

−2
∣∣∣∣
∫

Ω

∫

Ω

k(x − y)aj
n(y)[bj

n(y) − Mn(x)] dy uj
n(x) dx

∣∣∣∣

≥
∫

Ω

∫

Ω

k(x − y)(aj
n)2(y) dy (uj

n)2(x)) dx

−2
∫

Ω

∣∣∣∣
∫

Ω

k(x − y)aj
n(y)[bj

n(y) − Mn(x)] dy

·uj
n(x)
∣∣∣∣ dx

≥
∫

Ω

∫

Ω

k(x − y)(aj
n)2(y) dy (uj

n)2(x)) dx − 2B

·|uj
n|L2(Ω), (33)

where

B =

√∫

Ω

|
∫

Ω

k(x − y)aj
n(y)[bj

n(y) − Mn(x)] dy|2 dx.

By |an(x)| > ε in Assumption 1, we obtain
∫

Ω

k(x − y)[aj
n(y)]2 dy ≥

∫

Ω

k(x − y)ε2 dy

= ε2

∫

Ω

k(x − y) dy = ε2.

Because the uniformly boundness of aj
n, k ∈ L2(Ω) and

|bj
n| < M, we have

B ≤
√∫

Ω

(∫

Ω

|k(x − y)aj
n(y)||bj

n(y) − Mn(x)| dy

)2

dx

≤
√∫

Ω

(∫

Ω

|k(x − y)aj
n(y)|M dy

)2

dx

≤
√∫

Ω

M(‖k‖2‖aj
n‖2)2 dx ≤ M.

By the above two inequalities, formula (33) can be rewritten
as

M ≥ ε2

∫

Ω

(uj
n)2(x)) dx − 2M||uj

n||2.

Hence, the L2 norm of uj
n is bounded by

||uj
n||2 ≤ M +

√M2 + Mε2

ε2
. (34)

Then, the boundedness of ||uj
n||1 is automatically obtained by

||uj
n||1 ≤ |Ω| 12 ||uj

n||2. (35)

By the above analysis, we can conclude that {uj
n} is

bounded in BV (Ω). Thus, there exists a subsequence (also
denotes {uj

n}) and u∗
n ∈ BV (Ω) such that

uj
n −→

L1(Ω)
u∗

n, uj
n ⇀

L2(Ω)
u∗

n and uj
n ⇀

BV −w∗
u∗

n. (36)

Therefore, up to a subsequence, there exists {(uj , aj, bj)}
satisfying (29), (30) and (36).

Because the weak lower semicontinuity (w.l.s.c) of L2

norm, we have,

lim inf
k→∞

ε

∫

Ω

(aj
n)2(x) dx ≥ ε

∫

Ω

(a∗
n)2(x) dx

and

lim inf
k→∞

ν

2

N−1∑

n=1

N∑

i=n+1

∫

Ω

|uj
n − uj

i − Mn + Mi|2 dx
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≥ ν

2

N−1∑

n=1

N∑

i=n+1

∫

Ω

|u∗
n − u∗

i − Mn + Mi|2 dx.

Thanks to Fatou lemma, we obtain that

N∑

n=1

∫

Ω

∫

Ω

k(x − y)
(
a∗

n(x)u∗
n(y) + b∗n(x) − Mn(y)

)2
dy dx

=
N∑

n=1

∫

Ω

∫

ωx

1
|ωx|
(
a∗

n(x)u∗
n(y) + b∗n(x) − Mn(y)

)2
dy dx

≤
N∑

n=1

∫

Ω

∫

ωx

lim inf
k→∞

1
|ωx|
(
a∗

n(x)uj
n(y)

+b∗n(x) − Mn(y)
)2

dy

≤
N∑

n=1

∫

Ω

lim inf
k→∞

∫

ωx

1
|ωx|
(
a∗

n(x)uj
n(y) + b∗n(x)

−Mn(y)
)2

dy dx

≤
N∑

n=1

∫

Ω

lim inf
k→∞

[∫

ωx

1
|ωx|
(
aj

n(x)uj
n(y) + bj

n(x)

−Mn(y)
)2

dy

]
dx

≤ lim inf
k→∞

N∑

n=1

∫

Ω

∫

ωx

1
|ωx|
(
aj

n(x)uj
n(y) + bj

n(x)

−Mn(y)
)2

dy dx

= lim inf
k→∞

N∑

n=1

∫

Ω

∫

Ω

k(x − y)
(
aj

n(x)uj
n(y) + bj

n(x)

−Mn(y)
)2

dy dx.

Finally, for
N∑

n=1
γnuj

n−P ⇀
BV (Ω)

N∑
n=1

γnu∗
n−P and the w.l.s.c

of BV space,

lim inf
k→∞

∫

Ω

∣∣∣∣∣

N∑

n=1

γnDuj
n − DP

∣∣∣∣∣ ≥
∫

Ω

∣∣∣∣∣

N∑

n=1

γnDu∗
n − DP

∣∣∣∣∣ .

Therefore, we can conclude that

min
(u,a,b)∈Λ

E(u, a, b) = lim inf
j→∞

E(uj, aj , bj) ≥ E(u∗, a∗, b∗)

i.e., (u∗, a∗, b∗) is a minimum point of E(u, a, b).
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