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The numerical methods of total variation (TV) model for image denoising, especially Rudin–Osher–
Fatemi (ROF) model, is widely studied in the literature. However, the Sn�1 constrained counterpart is less
addressed. The classical gradient descent method for the constrained problem is limited in two aspects:
one is the small time step size to ensure stability; the other is that the data must be projected onto Sn�1

during evolution since the unit norm constraint is poorly satisfied. In order to avoid these drawbacks, in
this paper, we propose two alternative numerical methods based on the Lagrangian multipliers and split
Bregman methods. Both algorithms are efficient and easy to implement. A number of experiments
demonstrate that the proposed algorithms are quite effective in denoising of data constrained on S1 or
S2, including general direction data diffusion and chromaticity denoising.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Variational denoising methods have become popular in recent
years, for instance, the well known Rudin–Osher–Fatemi (ROF)
model [26] and its various extensions [11,16,19]. The scalar ROF
model for gray-scale image is:

min
u

Z
X
jrujdxþ k

2

Z
X
ðf � uÞ2dx; ð1Þ

where f is the observed noisy image and k is a positive balance
parameter. Here, the first term is called total variation (TV) which
is widely used as a regularization term in variational image process-
ing approaches [1]. In the past decades, a large amount of fast
numerical schemes instead of the gradient descent methods are pro-
posed to handle the TV based minimization models. For instance, the
Chambolle’s fast dual method [7], the alternating split Bregman
method [17], the operator splitting method [12,20,22], the alternat-
ing direction method of multipliers (ADMM) [15,24], the primal–
dual method [8,13] and some other methods [2,3,25,23,33].

Let us now write down the n-dimensional ROF model con-
strained on Sn�1. Assume X � R2 is an open bounded domain,
and f : X! Sn�1 � Rn is the observed noisy data and u : X! Rn

is a vectorial function. The general problem can be formulated as:

min
u

EðuÞ ¼
Z

X
krukdxþ k

2

Z
X
ju� fj2dx s:t: juj ¼ 1; ð2Þ
ll rights reserved.
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with x ¼ ðx1; x2Þ denotes the coordinates in image domain X,

juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 þ u2
2 þ � � � þ u2

n

q
and

kruk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jru1j2 þ jru2j2 þ � � � þ jrunj2

q
:

In fact,
R

X krukdx is a generalization of color TV [4]. Remark that the
problem is nonconvex since the constraint juj ¼ 1 is not convex.

The above model can be used for direction data diffusion where
the direction data has unit norm. An example in image processing
field is chromaticity denoising. Although most of the variational
denoising models use Right-Green-Blur (RGB) color model, there
are some methods use other color models especially Chromatic-
ity-Brightness (CB) color model. In the CB color model, the chroma-
ticity component u and the brightness component B can be
calculated as follows:

B ¼ juj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 þ u2
2 þ u2

3

q
; C ¼ u

juj :
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Note that the chromaticity C is a vector lives on the unit sphere in
R3 : S2 ¼ fn 2 R3 : jnj ¼ 1g. Therefore chromaticity is belonging to
non-flat image feature differs from other features defined in Euclid-
ean space. The CB model is known to be closer to human perception
which is widely used in color image representation and modeling.
In [9], it is shown that using CB color model gives better color con-
trol and detail recovery for color image denoising compared with
other color models.

In literatures, some methods are introduced to handle the min-
imization problems on Sn�1. Tang et al. in [29,30] proposed to de-
noise chromaticity or general direction data via p-harmonic maps
in liquid crystals. The classical gradient descent method is used
to solve the corresponding Euler–Lagrange equation which is lim-
ited by small time step and converges slowly. Recall that the
gradient descent method for problem (2) is the flow [9]:

@u
@t
¼ div

ru
kruk

� �
� ukruk þ kðf � hf;uiuÞ: ð3Þ

More generally, Tschumperl and Deriche in [31] studied the ortho-
normal vector sets diffusion problem by /-function regularization
[1] and the related negative gradient flow. In [32], Vese and Osher
changed the constrained p-harmonic problem:

min
juj¼1

Z
X
krukpdx;

as an unconstrained one:

min
V

Z
X
r V
jV j

� �����
����

p

dx:

Numerically, the gradient descent method with implicit scheme is
applied to evolve V based on polar coordinates. With similar idea,
Cecil et al. in [6] proposed numerical methods for minimization
problems constrained on S1 and S2 by technique based on the angle
formulation, and numerically gradient descent method is used. In
[10], Chan and Shen used vectorial ROF model to denoise non-flat
data. Numerically, they developed fixed-point iteration. Bresson
and Chan in [5] extended Chambolle’s dual algorithm to vectorial
ROF model, meanwhile, they generalize the algorithm to denoise
the chromaticity component in color image. In [18], Haehnle and
Prohl proposed discrete finite element based algorithms to approx-
imate the L2 gradient flow of the Mumford–Shah–Euler functional
for unit vector fields and applied the algorithms in color image
inpainting. In [34], Goldfarb et al. proposed new gradient descent
algorithms for the p-harmonic flow problem on spheres, which
searches the step along a curve that lies on the sphere and can pre-
serve the pointwise sphere constraints. The method is generalized
by Wenand Yin in [35] to handle the general orthogonal constraints.

In this paper, we consider two alternative numerical algorithms
to solve problem (2) constrained on Sn�1. Our main idea is to split
the original problem into easier subproblems by introducing auxil-
iary variables. In Algorithm 1, we first use the standard Lagrangian
method to handle the pointwise unit norm constraint, and then re-
lax the energy by adding an auxiliary variable. In Algorithm 2, we
first derive an equivalent problem with two auxiliary variables and
three constraints, and then use the split Bregman method to han-
dle the constraints. In both methods, all the involved subproblems
are easy to solve.

The outline of this paper is as follows. In Section 2, we propose
our Algorithm 1 based on Lagrangian multipliers method. In Sec-
tion 3, we develop our Algorithm 2 based on the so called split
Bregman method. The numerical results including direction data
diffusion on S1 and chromaticity denoising on S2 are reported in
Section 4. Finally, we conclude the paper in Section 5.
2. Algorithm 1 – Lagrangian multipliers method

In this section, we propose the Algorithm 1 to solve problem (2).
Since the pointwise constraint uðxÞ ¼ 1 is equivalent to
juðxÞj2 � 1 ¼ 0, by using Lagrange multipliers method on the con-
straints we get an equivalent unconstrained problem:

min
u;l

E1ðu;lÞ ¼
R

X krukdxþ k
2

R
X ju� fj2dx

þ 1
2

R
X lðxÞðjuðxÞj2 � 1Þdx

( )
; ð4Þ

where lðxÞ is the Lagrange multiplier at point x 2 X. The problem is
not easy to solve since TV term is nonsmooth. In order to find an
efficient algorithm, we consider an approximate problem by adding
new variables such that the new problem is easy to solve. We add a
new variable v to approximate u and obtain an approximate
problem:

min
u;v;l

E2ðu;v;lÞ ¼
R

X krvkdxþ 1
2h

R
X jv � uj2dx

þ k
2

R
X ju� fj2dxþ 1

2

R
X lðxÞðjuj2 � 1Þdx

( )
; ð5Þ

where h is small enough to ensure that u almost equals v. In the fol-
lowing subsections, we will derive the formulas for updating u; l
and v in problem (5), respectively with alternating minimization
method.

2.1. Solving u

Fixing l and u, the subproblem for u is:

min
u

1
2h

R
X jv � uj2dx

þ k
2

R
X ju� fj2dxþ 1

2

R
X lðxÞðjuj2 � 1Þdx

( )
: ð6Þ

The corresponding Euler–Lagrange equation about u is:

1
h
ðu� vÞ þ kðu� fÞ þ lu ¼ 0: ð7Þ

Then we derive the closed-form solution of u:

u ¼ v þ khf
1þ khþ lh

: ð8Þ
2.2. Solving the Lagrange multipliers l

Taking derivative of E2 with respect to l and setting it to zero,
we get:

juj2 ¼ hu;ui ¼ 1; ð9Þ

for each x 2 X, where h�i denotes the inner product in R3. Taking the
inner product of (7) with u and using (9), we obtain the closed-form
solution of l:

l ¼ 1
h
hu;vi þ khu; fi � 1

h
� k: ð10Þ

Remark that the above formula (10) was also derived in [21] and
successfully used in colorization problems.

2.3. Solving auxiliary variable v

Fixing u, the subproblem for v is:

min
v

Z
X
krvkdxþ 1

2h

Z
X
jv � uj2dx; ð11Þ

which is a standard vectorial ROF model. Recall that many fast
numerical algorithm have been designed to solve the scalar ROF
model, see Section 1. These fast algorithms can be directly used to
solve vectorial ROF model when a channel by channel TV is used.
That is because in every channel the problem becomes a scalar
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ROF model. However, in color TV model the channels are combined
together, and only Chambolle’s algorithm has been generalized [5].
Here we generalize the operator splitting method used in [20] to
solve problem (11) which is easy to understand.

Let L ¼ r; f ¼ k � k1 be the L1 norm of matrix vector module,
then f ðrvÞ ¼

R
X krvkdx, and L� ¼ rT is the adjoint operator of

r. Using these notations, (11) can be rewritten as:

min
u

f ðLðvÞÞ þ 1
2h

Z
X
jv � uj2dx:

The corresponding Euler–Lagrange equation is:

0 2 @ðf � LÞðvÞ þ 1
h
ðv � uÞ: ð12Þ

By property of subgradient, @ðf � LÞðvÞ ¼ L�@f ðLvÞ. Define
L�y 2 L�@f ðLvÞ where y is a n� 2 matrix data, then y 2 @f ðLvÞ which
is equivalent to Lv 2 @f �ðyÞ. Hence v satisfies (12) if and only if
there exists an auxiliary variable y, such that:

0 2 L�y þ 1
h
ðv � uÞ; ð13Þ

0 2 @f �ðyÞ � Lv: ð14Þ

We can now apply the operator splitting method with scalar s > 0
to (14) and obtain two equations:

0 2 s@f �ðyÞ þ y � t; ð15Þ
t ¼ y þ sLv: ð16Þ

Note that (15) is also equivalent to:

0 2 sy þ @f ðy � tÞ;

which is the optimality condition of:
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Fig. 1. S1 data diffusion with Dirichlet boundary condition. (a) the initial data 1; (b) resul
(c) result by Algorithm 2, computational time = 1.05 s with FFT to solve u, 0.68 s with GS
of result by Algorithm 1 and (f) angle of result by Algorithm 2.
min
y

s
2

Z
X
kyk2dxþ f ðy � tÞ: ð17Þ

Problem (18) has closed-form solution:

y ¼min ktk;1
s

� �
t
ktk : ð18Þ

Sum up (13), (16) and (18), the minimization problem (11) can be
solved by the following alternating iteration:

v ¼ u� hrT y; ð19Þ

y ¼min
1
s
; ky þ srvk

� �
y þ srv
ky þ srvk : ð20Þ

We summarize the above steps in the following as Algorithm 1:

Algorithm 1:

� Initialization: u0 ¼ f; v0 ¼ f; y0 ¼ 0.
� For k ¼ 0;1;2; . . . , repeat until a stopping criterion is

reached
15

t by Algori
iteration (p
lkþ1 ¼ 1
h
huk;vki þ khuk; fi � 1

h
� k;

ukþ1 ¼ vk þ khf
1þ khþ lkh

;

vkþ1 ¼ uk � hrT yk;

ykþ1 ¼ min
1
s ; ky

k þ srvkk
� �

yk þ srvk

kyk þ srvkk :
� Output: ukþ1.
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thm 1, computational time = 0.49 s (parameters: k ¼ 0; h ¼ 1=30; s ¼ 1);
arameters: k ¼ 0; d1 ¼ 1; d2 ¼ 20); (d) angle of initial data and (e) angle
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Fig. 2. The results of gradient descent method and method in [32] on initial data 1, k ¼ 0, time step = 0.001. The first two rows are results of gradient descent method: (a)
iteration = 10,000; (b) iteration = 40,000; (c) iteration = 50,000, computational time = 13.62 s and (d)–(f) angles corresponding to (a)–(c). The last two rows are results of
method in [32]: (g) iteration = 1000; (h) iteration = 3000; (i) iteration = 5000, computational time = 0.74 s and (j)–(l) angles corresponding to (g)–(i).
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3. Algorithm 2 – split Bregman method
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Fig. 3. Energy and number of pixels on S1 versus iteration applied on initial data 1.
The proposed Algorithms 1, 2, the gradient descent method with renormalization
and the algorithm in [32] are compared.
In this section, we propose another algorithm to solve the con-
strained problem (2) based on split Bregman method. Firstly we
give a brief introduction on split Bregman method. Assume Hð�Þ
and jUð�Þj are convex functionals and jUð�Þj is differentiable. Let
us consider the problem:

min
u;d
fjdj þ HðuÞg s:t: UðuÞ ¼ d:

The split Bregman method for this problem is given by:

ðukþ1; dkþ1Þ ¼min
u;d

jdj þ HðuÞ þ d
2

bk þUðuÞ � d
��� ���2

2

� �
;

bkþ1 ¼ bk þUðukþ1Þ � dkþ1
:

For convex problem, it has been proved that the split Bregman algo-
rithm converges [27]. Recently, split Bregman method is also used
in nonconvex problems to build efficient algorithm by splitting
the original problem into easy subproblems [14,28]. Remark that
the pointwise unit norm constraint is considered in both [14,28].
Here we follow the similar idea.

To implement the split Bregman method on problem (2), we
first add two auxiliary variables v; w and rewrite the problem
(2) as:

min
u;v;w

Z
X
kvkdxþ k

2

Z
X
ju� fj2dx

� �

s:t: ru ¼ v; u ¼ w; jwj ¼ 1:

Then using the above split Bregman technique on both of the first
two constraints, we get the iteration scheme:

ðukþ1;vkþ1;wkþ1Þ ¼ min
jwj¼1;u;v

E3ðu;v;wÞ; ð21Þ

bkþ1
1 ¼ bk

1 þrukþ1 � vkþ1; ð22Þ
bkþ1

2 ¼ bk
2 þ ukþ1 �wkþ1; ð23Þ

with

E3ðu;v;wÞ ¼
R

X kvkdxþ k
2

R
X ju� fj2dxþ

d1
2

R
X kb

k
1 þru� vk2dxþ d2

2

R
X jb

k
2 þ u�wj2dx

( )
;

ð24Þ

where d1 > 0; d2 > 0 are parameters. In the following subsections,
we derive the solutions for u; v and w, respectively from (21)
and (24) with alternating minimization method.

3.1. Solving u

Fixing v and w, the subproblem for u is:

min
u

k
2

Z
X
ju� fj2dxþ d1

2

Z
X
kbk

1 þru� vk2dx
�

þ d2

2

Z
X
jbk

2 þ u�wj2dx
�
:

The corresponding Euler–Lagrangian equation about u is:

kðu� fÞ þ d1rTðbk
1 þru� vÞ þ d2ðbk

2 þ u�wÞ ¼ 0;

i.e.,

ðkþ d1rTrþ d2Þu ¼ kf þ d1rTðv � bk
1Þ þ d2ðw� bk

2Þ: ð25Þ

Then we have:

u ¼ kþ d1rTrþ d2

� 	�1
kf þ d1rTðv � bk

1Þ þ d2ðw� bk
2Þ

� 	
ð26Þ

F. Li et al. / J. Vis. Commun.
Numerically u can be computed efficiently by fast fourier transform
(FFT):

u ¼ F�1
F kf þ d1rTðv � bk

1Þ þ d2ðw� bk
2Þ

� 	
F kþ d1rTrþ d2

� 	
0
@

1
A: ð27Þ

Remark that another way to calculate u is via Gauss–Seidel (GS)
iteration. Let

rhs ¼ kf þ d1rT v � bk
1

� 	
þ d2 w� bk

2

� 	
:

Then the Eq. (25) can be discreted as:

kþ d2ð Þukþ1
i;j þ d1 4ukþ1

i;j � uk
iþ1;j � uk

i�1;j � uk
i;jþ1 � uk

i;j�1

� 	
¼ rhsk

i;j:

where i; j denote the grid. Then the Gauss–Seidel solution can be
written component-wisely as:

ukþ1
i;j ¼

d1

kþ 4d1 þ d2
uk

iþ1;j þ uk
i�1;j þ uk

i;jþ1 þ uk
i;j�1 þ rhsk

i;j

� 	
: ð28Þ



	
;
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3.2. Solving v

Fixing u and w, the subproblem for v is:

min
v

Z
X
kvkdxþ d1

2

Z
X
kbk

1 þru� vk2dx
� �

:

Let us give a simple calculation of the solution.
If v – 0, the Euler–Lagrange equation about v is given by:

v
kvk þ d1ðv � bk

1 �ruÞ ¼ 0: ð29Þ

It is equivalent to:

1
kvk þ d1

� �
v ¼ d1 bk

1 þru
� 	

: ð30Þ

Then:

1
kvk þ d1

� �
kvk ¼ d1kbk

1 þruk;

and hence,

kvk ¼ kbk
1 þrukþ1k � 1=d1: ð31Þ

Since kvk > 0, we can deduce that:

kbk
1 þrukþ1k > 1=d1: ð32Þ

By Eq. (30), the direction of v is parallel to bk
1 þru, together with

(31), we get:

v ¼ kbk
1 þrukþ1k � 1=d1

� 	 bk
1 þrukþ1

kbk
1 þrukþ1k

; ð33Þ

under the condition (32). If the condition (32) is not satisfied, from
the above deduction, we must have v ¼ 0. As a conclusion, the
closed-form solution for v is:
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Fig. 4. S1 data diffusion with Dirichlet boundary condition. (a) the initial data 2; (b) res
(parameters: k ¼ 0; d1 ¼ 1; d2 ¼ 20); (d) angle of initial data; (e) angle of result by Algo
v ¼max kbk
1 þrukþ1k � 1=d1;0

n o bk
1 þrukþ1

kbk
1 þrukþ1k

: ð34Þ
3.3. Solving w

Fixing u and v, the subproblem for w is:

min
jwj¼1

Z
X
jbk

2 þ u�wj2dx
� �

:

It is easy to get that the solution is the projection onto Sn�1:

w ¼ bk
2 þ u

kbk
2 þ uk

: ð35Þ

Finally, we summarize Algorithm 2 as follows:

Algorithm 2:

� Initialization: u0 ¼ f;b0
1 ¼ 0;b0

2 ¼ 0;v0 ¼ rf;w0 ¼ f.
� For k ¼ 0;1;2; . . ., repeat until a stopping criterion is

reached
15

ult by Alg
rithm 1 an
ukþ1 ¼ ðk� lDþ lÞ�1 kf þ lrTðvk � bk
1Þ þ lðwk � bk

2ÞÞ
�

vkþ1 ¼max kbk
1 þrukþ1k � 1=d1;0

n o bk
1 þrukþ1

kbk
1 þrukþ1k

;

wkþ1 ¼ bk
2 þ ukþ1

kbk
2 þ ukþ1k

;

bkþ1
1 ¼ bk

1 þrukþ1 � vkþ1;

bkþ1
2 ¼ bk

2 þ ukþ1 �wkþ1:
� Output: wkþ1.
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orithm 1 (parameters: k ¼ 0; h ¼ 1=30; s ¼ 1); (c) result by Algorithm 2
d (f) angle of result by Algorithm 2.
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4. Numerical results
In this section, we present numerical experiments in the S1 and
S2 case. In the S1 case, we will consider Dirichlet boundary condi-
tions and Neumann boundary conditions. We compare our algo-
rithms with the gradient descent method and the algorithm in
[32]. In the S2 case, we will apply our algorithms on chromaticity
denoising and color image denoising problems and compare with
the algorithm in [34]. Remark that in both Algorithms 1 and 2, no
renormalization step is needed. The parameters are given in the fig-
ure captions. We use FFT to solve u in Algorithm 2 if not specified. In
all the tests, the involved algorithms are stopped when max itera-
tion is attained. In theS1 case, the max iteration is chosen by observ-
ing that the algorithm is converged. While in the S2 case, the max
iteration is chosen by considering the quality of the restored image.

4.1. Results on S1 data

In the S1 case, we set the iteration to be 2000 in all figures when
our algorithms are applied. The iteration is set to be large enough
such that the relative error between the successive iterate of the
restored image should satisfy the following inequality:

kukþ1 � ukk2

kukþ1k2
< 10�6: ð36Þ

We consider the Dirichlet problem with boundary condition
UðxÞ ¼ x�x0

jx�x0 j
on @X, with x0 ¼ ð0:5;0:5Þ and X ¼ ð0;1Þ2. Following

[32], we consider two initial conditions. The first initial data 1 is gi-
ven in Fig. 1(a) which is a noisy version of U. The random noise is
added on each component of U and then renormalized to be unit

F. Li et al. / J. Vis. Commun.
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Fig. 5. S1 data diffusion with Neumann boundary condition. (a) the initial data 3; (b) res
(parameters: k ¼ 0:5; d1 ¼ 1; d2 ¼ 20); (d) angle of initial data and (e) angle of result b
vectors. Algorithms 1 and 2 give similar results in Fig. 1(b) and (c).
The second row of Fig. 1 displays the angle a ¼ tan�1ðu2

u1
Þ correspond-

ing to initial data, the result of Algorithms 1 and 2, respectively.
In Fig. 2, we compare our algorithms with the gradient descent

method and the method in [32]. For gradient descent method, we
evolve Eq. (3) with explicit difference scheme and renormalize the
vector in each iteration. The results of gradient descent method are
shown in the first two rows in Fig. 2. The vector fields and the an-
gles during evolution at iterations 10,000, 40,000 and 50,000 are
displayed. We observe that the gradient descent algorithm con-
verges slowly. In the last two rows in Fig. 2, we show the results
of method in [32]. The algorithm converges at about 5000 itera-
tions. Observing the twelfth row of the vector field in Fig. 2(c),
we find that the result is different from results of other algorithms.
We remark that based on our experiments, we find that the algo-
rithm in [32] is more sensitive to initialization than our proposed
algorithms. Meanwhile, the unit norm constraints are not exactly
satisfied by V ¼ ðv1;v2Þ.

In terms of computational time, Algorithm 1 converges at 2000
iterations consuming 0.49 s. Algorithm 2 converges at 2000 itera-
tions consuming 1.05 s when FFT is used to solve u, while it con-
sumes 0.68 s when Gauss–Seidel iteration is used. Algorithm in
[32] converges at 5000 iterations consuming 0.74 s. Gradient des-
cent method takes 13.62 s. This comparison shows that the pro-
posed algorithms are quite efficient.

In Fig. 3, we give the comparison of energy versus iteration in
Fig. 3(a) which shows that the convergence speed of the proposed
algorithms are the fastest, and the gradient descent method with
renormalization is the slowest. It seems that the four algorithms
converge to similar energy. Despite of the energy, we should
15 20 0 5 10 15 20
0

5

10

15

20

ult by Algorithm 1 (parameters: k ¼ 0:5; h ¼ 1=20; s ¼ 1); (c) result by Algorithm 2
y Algorithm 1 and (f) angle of result by Algorithm 2.
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consider that how many pixels are staying on S1 during evolution.
For this, we calculate the norm of output vector, and find the num-
ber of vectors whose norm has an error with 1 less than 10�4.
Fig. 3(b) shows the number of pixels satisfy constraint versus iter-
ation. Algorithm 2 and gradient descent method with renormaliza-
tion satisfy all the constraints during iteration. Algorithm 1 can not
preserve all the constraints. However, in Algorithm 1, about half of
the pixels satisfy constraints which is better than algorithm in [32].

The second initial data on S1 is constructed like this: for
ðx1; x2Þ 2 X, find ðxb

1; x
b
2Þ 2 @X as closest point to the boundary @X

from ðx1; x2Þ. Then let f ðx1; x2Þ ¼ Uðxb
1; x

b
2Þ. This initial data is shown

in Fig. 4(a). Algorithms 1 and 2 give similar results in Fig. 4(b) and
Fig. 4(c). In the second row of Fig. 4, the angle a ¼ tan�1ðu2

u1
Þ corre-

sponding to initial data, the results by Algorithms 1 and 2, respec-
tively are displayed.
Fig. 7. S2 data denoising – with Salt and Pepper noise on the chromaticity. (a) the clean
recovered image by Algorithm 2; (e) the clean chromaticity of the clean image; (f) the n
Algorithm 1, iteration = 30 (parameters: k ¼ 0:2; s ¼ 3; h ¼ 1=16) and (g) the denoised

Fig. 6. S2 data denoising – with Gaussian noise on the chromaticity. (a) the clean color
time = 2.9 s, iteration = 30 (parameters: k ¼ 0:1; s ¼ 6; h ¼ 1=16); (d) the recovered
k ¼ 1; d1 ¼ d2 ¼ 3); (e) the recovered image by method in [34], computational time =
chromaticity with Gaussian noise of standard deviation 0.2, (h) the denoised chromaticit
hromaticity by method in [34].
Remark that for initial data 1 and 2 on S1, for all the algorithms
we set k ¼ 0 which means that we consider problem (2) without
fidelity.

Finally we test initial data 3 with Neumann boundary condi-
tion, see Fig. 5(a). The results of Algorithms 1 and 2 are shown in
Fig. 5(b) and (c). The angle corresponding to initial data, the
results of Algorithms 1 and 2 are displayed in the second row of
Fig. 5. The noisy vectors are effectively smoothed by both
algorithms.
4.2. Results on S2 data

In the S2 case, we test three color images with different noise.
The results in the following show that our proposed Algorithms 1
and 2 are efficient and effective in color image restoration.
color image; (b) the noisy image; (c) the recovered image by Algorithm 1; (d) the
oisy chromaticity with 20% Salt and Pepper noise; (g) the denoised chromaticity by
chromaticity by Algorithm 2, iteration = 10 (parameters: k ¼ 2:5; d1 ¼ d2 ¼ 3Þ.

image; (b) the noisy image; (c) the recovered image by Algorithm 1, computational
image by Algorithm 2, computational time = 2.1 s, iteration = 10, (parameters:
3.4 s, iteration = 30; (f) the clean chromaticity of the clean image; (g) the noisy

y by Algorithm 1, (i) the denoised chromaticity by Algorithm 2 and (j) the denoised
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In Fig. 6, we add Gaussian noise with standard deviation r ¼ 0:2
on the chromaticity component, meanwhile the brightness compo-
nent remains unpolluted by noise. The noisy image and noisy chro-
maticity are displayed in Fig. 6(b) and (g), respectively. The
restored images are got by multiplying the recovered chromaticity
with brightness. Fig. 6(c) and (d) show the recovered images by
Algorithms 1 and 2. Fig. 6(e) show the result by the curvilinear
search method in [34]. The code of [34] is downloaded from
<http://math.sjtu.edu.cn/faculty/zw2109/pub.html>. Fig. 6(h)–(j)
show the denoised chromaticity component of Algorithms 1, 2
and method in [34], respectively. The results seems quite similar.
The mean PSNR of the three methods are also similar as
31:5	 0:2dB. In terms of computational time, to get the displayed
results, Algorithm 1 takes 2.9 s in 30 iterations, Algorithm 2 takes
2.1 s in 10 iterations, and algorithm in [34] takes 3.4 s in 30 itera-
tions. The proposed algorithms are quite effective.

In Fig. 7, twenty percent Salt and Pepper noise is added on the chro-
maticity component in Fig. 7(f), meanwhile, brightness component
Fig. 8. S2 data denoising–with Gaussian noise on the color image. (a) the clean color
recovered image by Algorithm 1; (d) the recovered image by Algorithm 2; (e) the cle
chromaticity by Algorithm 1, iteration = 50 (parameters: k ¼ 0:5; s ¼ 3; h ¼ 1=16)
k ¼ 2; d1 ¼ d2 ¼ 3); (i) the clean brightness of the clean image; (j) the noisy brightness
in [20], iteration = 20 (parameters: s ¼ 0:007; h ¼ 0:25); (l) the denoised brightness b
k ¼ 0:03; d ¼ 0:05).
remains unpolluted. The results in Fig. 7(c) by Algorithm 1 and
Fig. 7(d) by Algorithm 2 show that our algorithms are effective to re-
move Salt and Pepper noise. Fig. 7(g) and (h) show the denoised chro-
maticity by Algorithms 1 and 2, respectively.

In Fig. 8, we add Gaussian noise on the color image, as shown in
Fig. 8(b). After transformed into CB color model, both the chroma-
ticity and the brightness components are polluted by noise, see
Fig. 8(f) and (j). We use the proposed algorithms to denoise the
chromaticity. For consistency, we choose the algorithm in [20] of
the scalar ROF model when using Algorithm 1 on chromaticity.
Meanwhile, we choose the split Bregman algorithm [17] for scalar
ROF model to denoise brightness when applying Algorithm 2 on
chromaticity. The recovered image is got by multiplying these
two denoised components. The third column of Fig. 8 shows the re-
sults of Algorithm 1. Fig. 8(c), (g) and (k) are the recovered image,
the denoised chromaticity, the denoised brightness component,
respectively. The fourth column of Fig. 8 gives the results of Algo-
rithm 2. The recovered image, the denoised chromaticity and the
image; (b) the noisy image with Gaussian noise of standard deviation 0.2; (c) the
an chromaticity of the clean image; (f) the noisy chromaticity; (g) the denoised

; (h) the denoised chromaticity by Algorithm 2, iteration = 10 (parameters:
; (k) the denoised brightness by operator splitting algorithm of scalar ROF model
y split Bregman algorithm of scalar ROF model [17], iteration = 20 (parameters:

http://math.sjtu.edu.cn/faculty/zw2109/pub.html
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denoised brightness are displayed in Fig. 8(d), (h) and (l),
respectively.

5. Conclusion

We propose two algorithms based on Lagrangian multipliers
method and split Bregman method to solve ROF model constrained
on Sn�1. The main idea is to split the original problem into several
easier subproblems by introducing auxiliary variables. The
difference of the two algorithms are: Algorithm 1 satisfies the con-
straints approximately during iteration, while Algorithm 2 satisfies
the constraints strictly. Both algorithms are easy to implement. Var-
ious experiments show that the proposed algorithms are rather
effective in denoising of data constrained on S1 or S2, including gen-
eral direction data diffusion and chromaticity denoising. Remark
that the split Bregman algorithm is proved to be converge for convex
problems. However, in this paper, we use the split Bregman algo-
rithm on a nonconvex problem, such that the theoretical conver-
gence is open. This will be our future work.
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