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Explicit Coherence Enhancing Filter With
Spatial Adaptive Elliptical Kernel

Fang Li, Ling Pi, and Tieyong Zeng

Abstract—The goal of this letter is to provide an elliptical filter
to improve image coherence for the task of image smoothing and
inpainting. The kernel of this filter is adaptively weighted and its
shape is determined by local coherence estimation. The long axis
of its ellipse is the same as the coherence direction and we put
more weight there to enhance coherence. Compared with the re-
lated anisotropic partial differential equations (PDEs) or wavelet
shrinkagemethods, the proposed filter is extremely simple, instinc-
tive and easy to code. Numerical examples and comparisons illus-
trate clearly the good performance of the proposed filter.

Index Terms—Coherence, elliptical kernel, inpainting, structure
tensor.

I. INTRODUCTION

M ANYapplications in image processing and computer vi-
sion involve the concept of image filtering since it can

readily reduce noise or extract image features. The basic idea of
explicit image filter is as follows: Assume that the input two-di-
mensional image is defined on the grid

, and the weight kernel at with respect to its neigh-
boring position is . Then the filtered output at is
given by:

Evidently, the most important issue here is to design some suit-
able weight kernel for different image processing tasks.
In literature, the existing image filters in the space domain can
be roughly classified into three types: linear spatial filter, spa-
tial and range filter, or guided filter. The weight kernel of the
first type is spatially invariant and independent of image con-
tent, typically we have: mean filter, Gaussian filter, Laplacian
filter, Sobel filter etc [15]. And oriented filter, such as the clas-
sical steerable filters [13] and Gabor filter [14], is typical in-
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stance of spatial filter whose weight kernel depends on orienta-
tion. The second type is slightly different as its kernel weight

is related to and . Typical examples are
the Susan filter [17], the popular bilateral filter for edge-pre-
serving smoothing [12], [18], and the nonlocal mean filter which
is useful for texture image denoising [5]. The third type, the
guided filter, is further different as its weight kernel is calcu-
lated according to another guiding image which may be dif-
ferent from the input image [16].
Similar to edges and textures, coherence is another important

image feature. Roughly speaking, coherence measures the
directional flow information in images. The exact definition
of coherence is given by a mathematical formula based on
structure tensor addressed in Section II. Intuitively, edges, lines
and flow like structures have higher coherence than other struc-
tures. So keeping and enhancing the coherence is important in
many image processing tasks. The classical method to enhance
coherence is via anisotropic diffusion proposed by Weickert
[19]–[21]. Besides image smoothing/denosing problems, the
anisotropic diffusion methods are widely studied in image
inpainting problems [2], [8]–[10]. Anisotropic diffusion re-
quires sophisticated numerical methods [11], [21]. The idea of
anisotropic diffusion is generalized to Harr wavelet framework
and applied in image inpainting problems in [6], [7]. Image
inpainting methods based on coherence transport are studied
in [3], [4] where the inpainting pixels need to be serialized
and fast marching technique is involved in the numerical
implementation.
In this letter, we propose an explicit filter for image coher-

ence enhancing. Our basic idea is: in order to design a weight
kernel centered at some pixel with high coherence, more weight
should be placed along the coherence direction and much less
on the perpendicular direction. This motivates us to design an
elliptical kernel whose long axis coincides with the coherence
direction. The proposed filter has a more intuitive explanation
than the related anisotropic diffusion PDE and the anisotropic
wavelet shrinkage. Moreover, the proposed kernel itself is also
new. Experiments in image smoothing and image inpainting
demonstrate the effectiveness of the proposed filter. The letter
is organized as follows. In Section II, we give the definition of
coherence and methods to estimate it. Then we propose the new
filter in Section III. The numerical experiments are displayed in
Section IV. Finally, we conclude the letter in Section V.

II. COHERENCE ESTIMATION

To define the coherence, we need go back to the concept of
nonlinear structure tensor [1], [19], [22] which is used to extract
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local image features. Assume that is the observed
image. Similar to [19], to avoid false detections due to noise,
is convolved with a Gaussian kernel : . Denote:

where and represents the partial derivative
of with respect to , . The structure tensor is then
defined as the matrix (see [19]):

where is convolved with each component of the matrix
. The eigenvalues of the matrix are given

by (see [1]):

where are the elements of . Evidently .
The corresponding eigenvectors are parallel to:

Let us denote the normalized vector of as , i.e.,
the angle of and the positive direction of horizontal axis
is . The vector indicates the orientation maximizing the
gray-value fluctuations, while is vector perpendicular to .
The eigenvalues convey shape information. Indeed, typi-
cally, isotropic structures are characterized by ; linelike
structures imply ; and corners mean
. The coherence is then defined by and the coher-
ence direction is regarded as along (see [1]).
The steerable filters [13] are also extremely useful to ex-

tract the local dominant orientation. The oriented energy using
second order steerable filters there is:

where are given in [13, Table 11]. Define:

(1)

Then the role of the dominant orientation is similar to the
orientation defined by structure tensor, and the length is
similar to .

III. THE PROPOSED FILTER

In this section, we will propose an explicit coherence en-
hancing filter which has a spatial adaptive elliptical kernel. Our
basic idea is that for a weight kernel centered at pixel with
high coherence, more weight should be placed along the coher-
ence direction, comparing with the perpendicular direction. This
motivates us to design an elliptical kernel whose long axis co-
incides with the coherence direction. Meanwhile, in the pixels

without high coherence structure such as flat regions, the kernel
should be similar to a gaussian circular kernel.
Let be the center of a window, and

be a pixel in the window. The notation of struc-
ture tensor and the related quantities follow
Section II. Let us define the weight kernel at with respect to
neighboring position as:

(2)

where

(3)

and

(4)

where is a small positive parameter and is very small positive
number used to avoid dividing by zero.
Let us give some explanation of the above construction of the

kernel . Note that the shape:

(5)

with is a standard ellipse centered
at with horizontal and vertical axis, see the blue kernel in
Fig. 1. By rotation transform in (3), the horizontal axis of the
ellipse is rotated to direction , and the vertical axis is rotated
to the coherence direction , see the red ellipse in Fig. 1. Since
we want more weight along the coherence direction for high
coherence structures, we should choose bigger than and
at the same time increases with coherence. This motivates
the choice of in (4). For isotropic structure, as ,
we have:

which gives isotropic weight kernel. For high coherence struc-
tures such as lines and edges, we have:

since is very small, and increases with the coherence
. This results in anisotropic elliptical weight kernel and

more weight is placed along the coherence direction . By this
we enhance the coherence.
The kernel can be easily generalized to color image case [20].

Assume that is the observed
image. Each component , to 3, is convolved with a
Gaussian kernel and we get . The structure
tensor for color image is a natural generalization of the gray
scale image case:
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Fig. 1. The sketch map of elliptical kernel at . and are as defined
in Section II. The blue ellipse displays a level set of the kernel (5), and the red
ellipse displays the level set of the rotated kernel (2).

Fig. 2. Image smoothing. (a) Noisy fingerprint image; (b) result of anisotropic
PDE diffusion method in [19]; (c) result of the proposed filter with coherence
estimated by steerable filters. (d) result of the proposed filter with coherence
estimated by structure tensor.

Then the coherence information can be extracted as in the gray
image case. Using this structure tensor to define coherence is
better than channel by channel method since the three channels
are combined together.
Interestingly, we can use and in (1) estimated by steer-

able filters to substitute in (3) and in (4) in the above
framework respectively to construct another special filter. Nu-
merically, we observe that our filter with coherence estimated
by structure tensor has better performance for image smoothing
(see Fig. 2 and discussion below).
Indeed, the proposed elliptical filter is adaptive to the task

of image smoothing and inpainting for images with some high
coherence features. The filter can be applied many times be-
fore getting a satisfying result, especially for image inpainting
problems.

IV. NUMERICAL RESULTS

In this section, we report some experiments on gray/color
image smoothing and inpainting with the proposed filter. Note
that for our explicit filter, the filtered output at a pixel is given
by the summation of the image and the weight kernel in a local
window centered at . In all the experiments, the default values
of parameters are:

(This is constant “eps” in MATLAB), the window size
of structure tensor is where is the classical
ceiling function, and the window size of the proposed kernel is
11 11. The central difference scheme is used in calculating all
the gradient in structure tensor. For image inpainting, the initial
value is taken as the input image with mask filled by random
values. In all the experiments, we use structure tensor as the de-
fault method to estimate the coherence due to its simplicity and
effectiveness.
In terms of computational efficiency, the proposed filter takes

about 1 to 1.1 seconds on a 256 256 image when applying

Fig. 3. The shape of the kernels at different pixels. (a) Upper left part of the
fingerprint image in Fig. 2(a) with three redmasks cover pixels (1,1), (30,50) and
(100,100); (b)-(d) kernels at pixels (1,1), (30,50) and (100,100) respectively.

Fig. 4. Gray image inpainting. (a) Image with inpainting region marked by red
color; (b) result of TV inpainitng; (c) result of the proposed Filter 1, filtering
200 times.

once (under Windows 7 and MATLAB v7.4 with Intel Core i5
M450 CPU and 2 GB memory).

A. Coherence Enhancing Smoothing

In Fig. 2, we test a fingerprint image where the flow like struc-
ture is dominant. Fig. 2(a) is the test image. Fig. 2(c) shows
the result of the proposed filter in which the coherence is esti-
mated by steerable filters, while Fig. 2(d) shows the result of the
proposed filter in which the coherence is estimated by structure
tensor. The result Fig. 2(d) seems comparable with the result by
the anisotropic PDE method in [19] shown in Fig. 2(b). The re-
sult Fig. 2(c) seems not so good as Fig. 2(b) and (d).
In Fig. 3, we display the kernels at three representative

pixels in the fingerprint image tested in Fig. 3. The red square
in Fig. 3(a) marked the choosing pixels (1,1), (30,50) and
(100,100). Pixel (1,1) is isotropic structure as displayed in
Fig. 3(b). Pixels (30,50) and (100,100) have line structure
along different coherence directions, see Fig. 3(c)-(d) for the
elliptical shape of kernels.

B. Image Inpainting

The proposed filter can be used in image inpainting by
applying the filter many times. In the following, we compare
our method with some other popular variational inpainting
methods including total variation (TV) inpainting method in
[8] and frame based inpainting method in [6], [7].
In Fig. 4, a bar image is tested. The red mask in Fig. 4(a) in-

dicates the inpainting region where information is lost. The TV
model broken the bar since in that way the TV norm attains its
minimum, see Fig. 4(b). While the proposed filter can complete
the bar in Fig. 4(c).
In Fig. 5, we compare the proposed filter with some other

inpainting methods. Fig. 5(a) is the ground truth image. In
Fig. 5(b) the red masks indicate the inpainting regions. Fig. 5(c)
shows the result of cubic interpolation method by MATLAB
routine “griddata”. Fig. 5(d) shows the result of frame shrinkage
method in [6]. The result of anisotropic harr wavelet shrinkage
[7] is displayed in Fig. 5(e). The last one Fig. 5(f) is the result
of our proposed filter. The peak signal-to-noise ratio (PSNR)
is reported to compare the performance of each method. Our
result is about 2.5 dB higher than the state of the art in Fig. 5(e).
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Fig. 5. Gray image inpainting. (a) The true image; (b) image with mask marked
by red words; (c) cubic interpolation, ; (d) result of the
frame inpainting method in [6], ; (e) result of anisotropic
harr wavelet inpainting method in [7], ; (f) result of the
proposed spatial elliptical filter, filtering 280 times, .

Fig. 6. Color image inpainting. (a) Image with mask marked by red words;
(b) result of TV inpainitng; (c) result of the proposed filter, filtering 80 times,

, window size is 7 7; (d)-(f) zoomed small subregions (indicated by
yellow rectangle in (a)) of the images in (a)-(c) for detail comparison.

It is clear that the edge of the big circle and the horizontal line
below are better recovered. We remark that in this example,
we set which means that , , 2, 3, and
update every 40 filtering iterations beginning
with . The reason of reducing gradually is: in the
proposed filter a smaller favors more coherence, but if we
set too small at the beginning, the error information in the
inpainting domain will lead to wrong estimation of coherence
direction and lead to bad results. Remark that Fig. 5(c)–(e) are
taken from [7].
In Fig. 6, a color image with red word masks indicating the in-

painting regions is tested. Fig. 6(b) and (c) display the inpainting
results of TV model and the proposed filter respectively. To
see the advantage of the proposed method, a small subregion
is zoomed in the second row for detail comparison. It is shown
that the proposed filter can better recover the coherence of the
eave.

V. CONCLUSION

The novelty of the letter is the designing of spatial adaptive
elliptical kernel. We determine the shape of the elliptical kernel
by coherence estimation. The long axis of the corresponding
ellipse coincides with the coherence direction such that more

weight is placed on this direction, and then the coherence can be
enhanced. The proposed filter is extremely simple but effective
for important image processing tasks such as image smoothing
and image inpainting. Following the similar idea in this letter,
one can design other type anisotropic kernel according to some
geometrical cues in images. Mathematically, the proposed filter
should be related to some minimization problem. This will be
our future work.
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