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Abstract

This paper presents a new variational formulation for detecting interior and exterior boundaries of desired object(s) in color images.
The classical level set methods can handle changes in topology, but can not detect interior boundaries. The Chan–Vese model can detect
the interior and exterior boundaries of all objects, but cannot detect the boundaries of desired object(s) only. Our method combines the
advantages of both methods. In our algorithm, a discrimination function on whether a pixel belongs to the desired object(s) is given. We
define a modified Chan–Vese functional and give the corresponding evolution equation. Our method also improves the classical level set
method by adding a penalizing term in the energy functional so that the calculation of the signed distance function and re-initialization
can be avoided. The initial curve and the stopping function are constructed based on that discrimination function. The initial curve
locates near the boundaries of the desired object(s), and converges to the boundaries efficiently. In addition, our algorithm can be imple-
mented by using only simple central difference scheme, and no upwind scheme is needed. This algorithm has been applied to real images
with a fast and accurate result. The existence of the minimizer to the energy functional is proved in the Appendix A.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Image segmentation is one of the fundamental problems
in image processing and computer vision. Among the
image segmentation techniques, active contour methods
grow significantly [3–5,9,11,19]. The basic idea in active
contour methods is to evolve a curve, subject to a stopping
function depending on the gradient of a gray image or the
intensity of a color image. The active contour method can
segment all objects in the image if the initial contour
shrinks from the image boundary. However, it can only
detect the exterior boundaries during the shrinkage.
0262-8856/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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To overcome this problem, Chan and Vese proposed the
method of active contours without edges (CV model)
[6,7]. In the functional of CV model there are terms used
to detect the boundary. These terms are based on Mum-
ford–Shah segmentation techniques [14] and do not include
a stopping function like active contour methods. The merit
of the CV model is that it can detect both interior and exte-
rior boundaries simultaneously wherever the initial curve
starts. Furthermore, the boundaries detected by the CV
model are not necessarily defined by the gradient. Based
on these works, Kimmel [12] presented a unified framework
of active contours. The energy functional combines the
geodesic active contour model for regularization, the fitting
energy from the CV model, and a term called the alignment
as part of other driving forces from an active contour. The
alignment means that the curves attain the boundaries
when their normal best align with the image gradient.
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Kimmel’s framework performs better than classical geode-
sic active contours when directional information about the
edge location is provided.

All these methods are very efficient to segment all
objects from a gray or color image. However, in some
cases, only certain object(s) is/are the desired object(s) we
wish to segment. In order to segment desired object(s)
and regardless of other objects, many new models have
been proposed recently [8,17,21]. They use a prior informa-
tion such as shape or texture to distinguish the desired
object(s) from others.

In this paper, we also focus on the segmentation of
desired object(s) in color images, but we mainly make use
of the color information, i.e. the Red, Green and Blue
(RGB) information, of the desired object(s). Using the gra-
dient information as well as the color information, we pro-
pose a variational formulation that can detect the interior
and exterior boundaries of the desired object(s). The color
information is used to construct a discrimination function
that determines whether an image pixel belongs to the
desired object(s) or not. The discrimination function is
included in the energy functional and the corresponding
evolution equation. With this discrimination function, the
evolving curve will stop near the objects to be detected.

Our method also improves the classical level set method
by avoiding the calculation of the signed distance function
and re-initialization, inspired by the idea of Li et al. [13].
Computing signed distance function and re-initialization
is an important step in classical let set method. To imple-
ment the classical level set method, we first define an initial
curve, then set an initial level set function which is a signed
distance to the initial curve [15]. A curve with simple shape,
e.g. a circle or a rectangle, is often chosen to be the initial
curve for the easy calculation of the distance function. Re-
initialization is a remedy to keep the evolving level set
function close to a signed distance function during the evo-
lution [15,18]. However, it is hard to determine when and
how the re-initialization should be applied. Thus, many
proposed re-initialization schemes have an undesirable
effect of moving the zero level set away from their original
locations. We simplify the procedure of computing distance
function and re-initialization by adding a penalizing term
into the energy functional. Using our method, the initial
curve is no longer necessarily restricted to be a curve with
simple shape and is close to the boundaries of the desired
object(s); and our initial level set function may not be a
signed distance function, but a piecewise constant function.
In order to force the level set function close to a signed dis-
tance function and avoid re-initialization, an internal energy
term is added to the proposed variational formulation.

This paper is organized as follows. In Section 2, we
review the classical geodesic active contour methods and
the CV model. Section 3 describes our variational formula-
tion based on the color information. The statistical meth-
ods of constructing the discrimination function are
presented. Section 4 outlines the numerical method of the
model. Experimental results are given in Section 5. Section
6 concludes the paper. The existence of the minimizer to
the energy functional is proved in the Appendix A.
2. Classical geodesic active contour method and CV model

2.1. Geodesic active contours

Let X be a bounded open subset of R2, with oX its
boundary. Let I : X! R be a given gray level image, and
~CðpÞ ¼ ðxðpÞ; yðpÞÞ; ðp 2 ½0; 1�Þ be a differentiable parame-
terized curve in X. The geodesic active contour method is
formulated by minimizing the energy functional:

EðC
*

Þ ¼
Z 1

0

gðjrIð~CðpÞÞjÞj~C0ðpÞjdp

where g(j$Ij) is called the stopping function. A typical
stopping function can be chosen as

gðjrI jÞ ¼ 1

1þ KjrðGr � IÞj2
;

where K > 0 is a contract factor, Gr*I is the convolution
of the image I with the Gaussian Grðx; yÞ ¼
r�1=2 expð�jx2 þ y2j=4rÞ, and r is a parameter.

The stopping function g(j$Ij) should be strictly positive
in homogeneous regions and close to zero on the edges
[4,5].

This stopping function should be modified in color
images. For a color image ~I ¼ ðI1; I2; I3Þ ¼ ðIR; IG; IBÞ, a
new stopping function g(x,y) is proposed in [9]:

gðx; yÞ ¼ 1

1þ KK2
; ð1Þ

where K is the largest eigenvalue of the structure tensor
metric (gij) in the spatial–spectral space, and

ðgijÞ ¼
1þ R2

x þ G2
x þ B2

x RxRy þ GxGy þ BxBy

RxRy þ GxGy þ BxBy 1þ R2
y þ G2

y þ B2
y

 !
;

ð2Þ

where R, G and B represent the pixel values of Red, Green
and Blue after Gaussian convolution, respectively, i.e.
R = Gr*I1, G = Gr*I2, B = Gr*I3 and Rx = oxR etc.
2.2. Active contours without edges

The model of active contours without edges (CV model)
[7] is to segment all objects in a given image based on the
Mumford–Shah model. Given a gray image, let the evolv-
ing curve ~C be the boundary of an open subset - of X
(i.e. - � X and ~C ¼ o-), inside(~C) denotes the region -,
and outside(~C) denotes the region X n �-. Then, the energy
functional is defined by:
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Eðcþ; c�; ~CÞ ¼ l � Lengthð~CÞ þ m �Areaðinsideð~CÞÞ þ kþ

�
Z

insideð~CÞ
jIðx; yÞ � cþj2 dxdy þ k�

�
Z

outsideð~CÞ
jIðx; yÞ � c�j2 dxdy;

where l P 0, m P 0, k+, k� > 0 are fixed parameters, and
c+, c� are two constants to be determined. In almost all
cases, m is set to be zero. The first two terms are called reg-
ularizing terms, and the last two terms are called ‘‘fitting
energy’’. Then, the minimization of this energy becomes:

min
cþ ;c� ;~C

Eðcþ; c�; ~CÞ:

CV model can be generalized to vector-valued images [6].
Let Ii be the i-th channel of an image on X, i = 1, � � � , N.
The energy functional for the vector case is

Eð~cþ;~c�; ~CÞ ¼ l � Lengthð~CÞ þ
Z

insideð~CÞ

1

N

XN

i¼1

kþi jI iðx; yÞ

� cþi j
2 dxdy þ

Z
outsideð~CÞ

1

N

XN

i¼1

k�i jI iðx; yÞ

� c�i j
2 dxdy;

where kþi > 0 and k�i > 0 are parameters for each channel,
and ~cþ ¼ ðcþ1 ; � � � ; cþN Þ and ~c� ¼ ðc�1 ; � � � ; c�N Þ are two con-
stant vectors to be determined.

3. Description of our model

Inspired by the advantages of both classical level set
method and the CV model, we now present our variational
approach for the detection of desired object(s) using color
information.

3.1. Variational level set formulation for active contours

Let ~I ¼ ðI1; I2; I3Þ ¼ ðIR; IG; IBÞ be the Red, Green and
Blue channels of a color image on X, and ~C the evolving
curve. Let ~cþ ¼ ðcþ1 ; cþ2 ; cþ3 Þ and ~c� ¼ ðc�1 ; c�2 ; c�3 Þ be two
constant vectors to be determined. We first propose our
energy functional as:

Eð~cþ;~c�; ~CÞ ¼l
Z 1

0

gðC
*

ðpÞÞj~C0ðpÞjdp þ m
Z

X
gðC

*

ðpÞÞdA

þ 1

3

Z
insideð~CÞ

ðGr � aÞ

�
X3

i¼1

kþi jI iðx; yÞ � cþi j
2 dxdy

þ 1

3

Z
outsideð~CÞ

ðGr � aÞ

�
X3

i¼1

k�i jI iðx; yÞ � c�i j
2 dxdy;

ð3Þ
where kþi > 0, k�i > 0, l P 0, m P 0 and K are defined as
before, g ¼ 1

1þðGr�aÞK2 is the stopping function, and a is a dis-

crimination function which will be defined later in this pa-
per. Similar to the CV model, the first two terms are the
regularizing terms, and the last two terms are the modified
‘‘fitting energy’’ used to locate the interior and exterior
boundaries of the desired object(s). Then, the minimization
problem is

min
~cþ ;~c�;~C

Eð~cþ;~c�; ~CÞ: ð4Þ

We now re-write (3) so that numerical implementation of
(4) can be conducted.

(3) can be formulated and solved using the level set
method [16]. In the level set method, ~C is represented by
the zero level set of a Lipschitz function /: R2 fi R, such
that

~C ¼ fðx; yÞ 2 R2 : /ðx; yÞ ¼ 0g;

insideð~CÞ ¼ fðx; yÞ 2 R2 : /ðx; yÞ > 0g;

outsideð~CÞ ¼ fðx; yÞ 2 R2 : /ðx; yÞ < 0g:

8>><
>>:
Using the Heaviside function HðzÞ ¼ 1; if z P 0

0; if z < 0

�
and

the one-dimensional Dirac measure d0ðzÞ ¼ d
dz HðzÞ (in the

sense of distributions) [22], (3) can be re-written as

Eð~cþ;~c�;/Þ ¼ l
Z

X
gjDHð/ðx; yÞÞj þ m

Z
X

gHð/ðx; yÞÞdxdy

þ 1

3

Z
X
ðGr � aÞ

X3

i¼1

kþi jI i � cþi j
2

� Hð/ðx; yÞÞdxdy

þ 1

3

Z
X
ðGr � aÞ

X3

i¼1

k�i jI i � c�i j
2

� ð1� Hð/ðx; yÞÞÞdxdy;

ð5Þ

where
R

X gjDHð/ðx; yÞÞj is defined in Definition A.3 of the
Appendix A.

Keeping / fixed and minimizing (5) with respect to cþi
and c�i , (i = 1,2,3), we obtain:

cþi ¼
R

XðGr � aÞI iðx; yÞHð/ðx; yÞÞdxdyR
XðGr � aÞHð/ðx; yÞÞdxdy

ðaverage ðI iÞ on / P 0Þ;

c�i ¼
R

XðGr � aÞI iðx; yÞð1� Hð/ðx; yÞÞÞdxdyR
XðGr � aÞð1� Hð/ðx; yÞÞÞdxdy

ðaverage ðI iÞ on / < 0Þ:

Fixing cþi and c�i , without loss of generality, we can
denote Eð~cþ;~c�;/Þ as E(/). We need to calculate the
first variation of E(/) with respect to /. To do so, we
consider the slightly regularized versions of the functions
H and d0. Let He be any C2ðXÞ regularization of H,
and de ¼ H 0e as e fi 0. Here, we choose H eðzÞ ¼
1
2

1þ 2
p arctanðzeÞ

� �
.
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The associated regularized functional Ee is defined by:

Eeð~cþ;~c�;/Þ ¼ l
Z

X
gðx; yÞjrH eð/ðx; yÞÞjdxdy

þ m
Z

X
gðx; yÞH eð/ðx; yÞÞdxdy

þ 1

3

Z
X
ðGr � aÞ

X3

i¼1

kþi jI i � cþi j
2

� H eð/ðx; yÞÞdxdy

þ 1

3

Z
X
ðGr � aÞ

X3

i¼1

k�i jI i � c�i j
2

� ð1� H eð/ðx; yÞÞÞdxdy:

ð6Þ

Similarly, when cþi and c�i are fixed, we can denote
Eeð~cþ;~c�;/Þ as Ee(/). Minimizing (6) with respect to /,
we deduce the first variation of (6) for /. Using the gradi-
ent method, the evolution equation (with the initial con-
tour /(0,x,y) = /0(x,y)) is

o/
ot ¼ deð/Þ l � div g r/

jr/j

� �
� m � g

h
� Gr�a

3

P3
i¼1

kþi ðI i � cþi Þ
2

þ Gr�a
3

P3
i¼1

k�i ðI i � c�i Þ
2

�
in ð0;1Þ � X;

deð/Þ
jr/j

o/
o~n ¼ 0 on oX;

8>>>>>>>>>>>><
>>>>>>>>>>>>:
where ~n denotes the exterior normal to the boundary oX.

Finally, we define the discrimination function a
appeared in (3). The purpose of constructing such a dis-
crimination function is to derive the characteristics of
desired object(s) so that the characteristics of desired
object(s) can be shown in the energy functional. This is
done by analyzing n sample pixels chosen from the desired
object(s). The Principal Components Analysis (PCA) and
interval estimation are used in the analysis [1]. Using
PCA, a new set of variables, called principal components
[1], is obtained. Each principal component is a linear
combination of the original variables. In our problem, at
most the first two principal components are used. Using
the interval estimation [1], we can define an interval that
almost covers all samples for each principal component.
Without loss of generality, we assume that only the first
principal component is used. An interval [a,b] for this
principal component can be constructed by the interval
estimation. When every pixel (x,y) of the color image is
projected from its RGB values to the first principal compo-
nent axis, we get a new value ~uðx; yÞ. If the value is within
the interval, the pixel is probabilistically regarded as a pixel
in the desired object(s). The discrimination function a(x,y)
based on the color information is constructed as:

aðx; yÞ ¼
1 a 6 ~uðx; yÞ 6 b;

0 others:

�

3.2. General variational level set formulation with penalizing

energy

In order to keep the evolving level set function as an
approximate signed distance function, we add a penalizing
term Pð/Þ ¼ 1

2

R
Xðjr/j � 1Þ2 dxdy into (5). Thus, our final

energy functional becomes:

F ð/Þ ¼ g � P ð/Þ þ Eð/Þ; ð7Þ
where g > 0 is a parameter controlling the effect of penaliz-
ing term, and E(/) is defined in (5). P(/) describes the devi-
ation of level set function / from the signed distance
function. Thus, the evolving level set function for (7) keeps
as an approximate signed distance function during the evo-
lution [2]. The existence of the minimizer to the energy
functional (7) is proved in Appendix A.

In practical computing, the following energy functional
is used:

F eð/Þ ¼ g � P ð/Þ þ Eeð/Þ:
The gradient method is used to compute the minimizer of
Fe(/). The new evolution equation is:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

cþi ð/Þ ¼
R

XðGr � aÞI iðx; yÞH eð/ðx; yÞÞdxdyR
XðGr � aÞH eð/ðx; yÞÞdxdy

; ð8aÞ

c�i ð/Þ ¼
R

XðGr � aÞI iðx; yÞð1� H eð/ðx; yÞÞÞdxdyR
XðGr � aÞð1� H eð/ðx; yÞÞÞdxdy

; ð8bÞ

o/
ot
¼ g � div 1� 1

jr/j

� 	
r/


 �

þ deð/Þ
h
l � div g

r/
jr/j

� 	

� m � g � Gr � a
3

X3

i¼1

kþi ðI i � cþi Þ
2

þ Gr � a
3

X3

i¼1

k�i ðI i � c�i Þ
2
i

in ð0;1Þ � X; ð8cÞ

/ð0; x; yÞ ¼ /0ðx; yÞ in X; ð8dÞ

deð/Þ
jr/j

o/
o~n
¼ 0 on oX: ð8eÞ
4. Numerical approximation of the model

The discrete algorithm for (8a)–(8e) is: knowing /n, we
first compute cþi ð/

nÞ and c�i ð/
nÞ (i = 1,2,3). All the spatial

partial derivatives o/
ox and o/

oy can be approximated by the
central differences, since the upwind scheme [20] in the clas-
sical level set methods is no longer needed due to the diffu-
sion properties of the penalizing energy. Then, /n+1 is
given by the following discrete scheme:

/nþ1
i;j ¼ /n

i;j þ s � Lð/n
i;jÞ; ð9Þ

where Lð/n
i;jÞ is the approximation of the right-hand side in

(8c).
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Here, the initial function /0 is defined as:

/0ðx; yÞ ¼ q � Gr � aðx; yÞ � 1

2

� 	
; ð10Þ

where q > 0 is a constant. We suggest that q is set to be
larger than 2e, where e is the width in H eðzÞ ¼
1
2

1þ 2
p arctanðzeÞ

� �
. The initial curve /0(x,y) = 0 is close

to the boundaries of the desired object(s), guaranteed by
the definition of the discrimination function.

The main steps of the algorithm can be summarized as:

1. choose sample pixels in the desired object(s);
2. construct the discrimination function a by the PCA and

interval estimation;
3. initialize /n(n = 0) by (10);
4. compute cþi ð/

nÞ and c�i ð/
nÞ ði ¼ 1; 2; 3Þ using (8a) and

(8b);
5. compute /n+1 by (9);
6. check whether the solution is stationary. If not,

n = n + 1 and repeat from 4.

5. Experimental results

The proposed variational formulation has been applied
to real color images and the experimental results are accu-
rate. Here, three examples are demonstrated. The algo-
rithm is implemented by Matlab on a Pentium 1.86 GHz
computer with 512 M memory. The processing time
referred later in the paper starts after choosing the sample
pixels. In each experiment, the level set function is initial-
ized by the function /0 defined in (10) with q = 4, and
the width e in He is e = 1.
Fig. 1. Result for the detection of the blue bag. s = 5
We first consider a simple case. Fig. 1(a) shows a
364 · 400-pixel image of two different bags with complicat-
ed textured background. Our desired object is the blue bag.
The classical geodesic active contour method for color
images fails since some noises are mis-detected as the
boundaries of objects. The CV model can segment all the
objects since it is noise resistant, but the result contains
both bags and not the blue bag that we desire. Nine sample
pixels are chosen from the blue bag. By the initial level set
function /0, the initial curve is very close to the boundaries
of the desired object. The curve evolution only takes 10
iterations to reach the interior and exterior boundaries of
the blue bag (see Fig. 1(b)). The processing time is
6.67 s.

The second example shows the ability of our algorithm
to a real case. Fig. 2(a) shows a 472 · 268-pixel nature col-
or image. This image is a part of a maidenhair tree. Our
purpose is to segment the leaves, ignoring both the trunk
and the background. Nine sample pixels are chosen from
the leaves. Fig. 2(b) shows the location of the initial curve.
The curve evolution takes 75 iterations (see Fig. 2(c)). The
processing time is 27.41 s.

The third example is used to demonstrate the robustness
of our method when the object boundaries are complicated.
Fig. 3(a) shows a 350 · 262-pixel nature color image. Seven
sample pixels are chosen from the yellow leaves. It takes
five iterations to reach the desired object (see Fig. 3(b)).
The processing time is 5.64 s.
6. Conclusions

In this paper, we have presented a new variational formu-
lation for active contours. This method is a generalization of
, r = 0.6, l = 1, k+ = (0.5,0.5,0.5), k� = (1,1,1).



Fig. 2. Result for the detection of maidenhair leaves. s = 5, and g = 0.00001, r = 0.5, l = 1, m = 0.5, k+ = (0.35,0.35,0.35), k� = (1,1,1).

Fig. 3. Result for the detection of the complicated object boundaries. s = 5, and r = 0.8, g = 0.00001, l = 0.01, k+ = (0.3,0.3,0.3), k� = (1,1,1).
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the classical geodesic active contour method and the CV
model. It can simultaneously detect the interior and exteri-
or boundaries of desired object(s) in color images, regard-
less of other objects. Moreover, in the implementation of
the level set method, we have applied Li’s method [13] to
our case which is detecting desired object(s) only. The cal-
culation of the signed distance function and re-initializa-
tion are avoided by adding a penalizing term into the
energy functional. The initial level set function is set auto-
matically and is close enough to the boundaries of the
desired object(s). The penalizing term forces the evolving
level set functions to be close to signed distance functions
during the evolution. In addition, our algorithm can be
implemented by using only simple central difference
schemes and is more computationally efficient than the
classical level set methods.
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Appendix A. Existence of the minimizer

In this Appendix A, we shall prove the existence of the
solution to the minimization in (7). As a preparation, we
first prove the existence of the solution to the minimization
in (3).

Because cþi and c�i ði ¼ 1; 2; 3Þ have explicit representa-
tions as functions of /, we can consider the energy in /
only: Eð/;~cþð/Þ;~c�ð/ÞÞ. In this case, Eð/;~cþð/Þ;~c�ð/ÞÞ
is expressed as a function of H(/) only, where H(/) is a
characteristic function. Let K = {(x,y) 2 Xj/(x,y) P 0},
and vK be the characteristic function of K, so vK = H(/).
Therefore, as suggested in [7], (3) can be rewritten in the
form:

min
vK

EðvKÞ ¼min
vK

n
l
Z

X
gjDvK j þ m

Z
X

gvK dxdy

þ 1

3

Z
X

b
X3

i¼1

kþi ðI i � cþi ðvKÞÞ
2vK dxdy

þ 1

3

Z
X

b
X3

i¼1

k�i ðI i � c�i ðvKÞÞ
2ð1� vKÞdxdy

o
;

ðA1Þ
where b = Gr*a is a smooth bounded function, 0 6 b 6 1,
g is also smooth. This minimization is over all the charac-
teristic functions of K in BV(X) (note that the set K varies
as / evolves).

In order to study the existence for the problem (A1), it is
necessary to introduce the concept of weighted total varia-
tion norms for functions of bounded variation. We first
recall some definitions about the functions with bounded
variation [10,23].

Definition A.1. Let X � RN be an open, bounded and
connected set, and u 2 L1(X). Define

Z Z �� �

X

Duj j ¼ sup
f X

u divf dx f 2 C1
cðX; RNÞ; fj j 6 1� :

1
Definition A.2. A function u 2 L (X) is said to have
bounded variation in X, if

R
X jDuj <1. We denote it by

u 2 BV(X). The norm of u in this Banach space is given
by

uk k ¼ uk k 1 þ
Z

Duj j:
BV ðXÞ L ðXÞ
X

Next we define the norm of weighted total variation with
the weight function c(x).
Definition A.3. Let X � RN be an open, bounded and
connected set, and u 2 L1(X). Let c(x) be a nonnegative
continuous and bounded function on X. The weighted total
variation norm of u with the weight function c(x), denoted
by
R

X cðxÞjDuj, is defined by
Z
X

cðxÞ Duj j ¼ sup
f

Z
X

u divf dx f 2 C1
cðX; RN Þ; fj j 6 cðxÞ

��� �
:

Lemma A.4. Assume that the perimeter of a subset K in X is

defined by perXðKÞ ¼
R

X jDvK j, then K has finite perimeter if

and only if the characteristic function vK 2 BV(X).

It is well known that if u 2 BV(X), then for any t 2 R, the

level set Kt = {x 2 X — u(x) > t} has finite perimeter, i.e.

vKt
2 BV ðXÞ.

Lemma A.5. [10] Let X � RN be an open set with a Lipschitz

boundary. Suppose that {un} is a bounded sequence in

BV(X). Then, there is a subsequence funjg converging strong-

ly in Lp(X) to u 2 BV(X) for any 1 6 p < n
n�1

.

Main Theorem. Let X � R2. If Ii 2 L1(X), (i = 1,2,3), then

the minimization problem (A1) has a solution vK 2 BV(X).
Proof. Let fvKn
g; n P 1 be a minimizing sequence of (A1),

i.e.
min
vK

EðvKÞ ¼ lim
n!1

EðvKn
Þ:

In our case, g ¼ 1
1þðGr�aÞK2, where K is the largest eigenvalue

of (2), and the structure tensor metric (2) is symmetric po-
sitive. Thus,

K 6 traceðgijÞ

¼ 2þ R2
x þ R2

y þ G2
x þ G2

y þ B2
x þ B2

y

¼ 2þ jrðGr � I1Þj2 þ jrðGr � I2Þj2 þ jrðGr � I3Þj2

¼ 2þ jrGr � I1j2 þ jrGr � I2j2 þ jrGr � I3j2

6 2þ C1jjI1jj2L1ðXÞ þ C2jjI2jj2L1ðXÞ þ C3jjI3jj2L1ðXÞ;

where Ci = Ci(r) > 0, (i = 1,2,3). Since Ii 2 L1(X),
(i = 1,2,3), there exists a constant C(r, I1, I2, I3) > 0 such
that 1

1þC 6 gðx; yÞ 6 1. So g(x,y) has a positive lower
bound. Then from the first term of the right hand of
(A1), there is a constant M > 0 such that

R
X jDvKn

j 6 M ,
for all n P 1. Therefore, vKn

is a bounded sequence in
BV(X). By Lemma A.5, there exist a subsequence fvKnj

g
of fvKn

g and u 2 BV(X) such that vKnj
! u strongly in

L1(X) and vKnj
! u a.e. on X. u is either 0 or 1 a.e. on X

since vKn
is either 0 or 1. Thus, u can be viewed as the char-

acteristic function vK of a set K which has finite perimeter
in X.

Define Fg ¼ ff 2 C1
cðX; R2Þ j jf ðx; yÞj 6 gðx; yÞ on Xg.

It is clear that
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Z
X

vKnj
divf dxdy 6 sup

f2Fg

Z
X

vKnj
divf dxdy

¼
Z

X
gjDvKnj

j: ðA2Þ

Furthermore, since vKnj
! u a.e. on X, by dominated con-

vergence theorem, we haveZ
X

vKdivf dxdy ¼ lim
nj!1

Z
X

vKnj
divf dxdy:

By (A2), we take the inferior limit to getZ
X

vKdivf dxdy ¼ lim inf
nj!1

Z
X

vKnj
divf dxdy

6 lim inf
nj!1

Z
X

gjDvKnj
j:

Therefore,

sup
f2Fg

Z
X

vKdivf dxdy 6 lim inf
nj!1

Z
X

gjDvKnj
j:

Using Definition A.3, we haveZ
X

gjDvK j 6 lim inf
nj!1

Z
X

gjDvKnj
j:

The continuity or lower semi-continuity in L1(X) of the fit-
ting energy and

R
X g � vK dxdy can be obtained since b is

smooth and bounded, Ii 2 L1(X), (i = 1,2,3), and vKnj
is

either 0 or 1.
In summary, by the lower semi-continuity of the total

variation and the strong convergence in L1(X) of the other
terms, we have:

EðvKÞ 6 lim inf
nj!1

EðvKnj
Þ:

Then vK is a minimizer of E among the characteristic func-
tions of subsets with finite perimeter in X. h

Now, we shall prove the existence of the minimizer
of the total energy (7): F(/) = g Æ P(/) + E(/). Let
oK = {(x,y) 2 Xj/(x,y) = 0}, where K = {(x,y) 2 Xj/
(x,y) P 0}. Since any function / on X can be characterized
by the set {K, /+(x,y), /�(x,y)}, where K is the zero set of
function /, positive function /+(x,y) is defined on K and
negative function /�(x,y) is defined on XnK. By the previ-
ous discussion, E(/) = E(vK). Thus, E(/) is only dependent
on the choice of set K. In general, min

/
F ð/ÞP min

/
Eð/Þ.

However, P(/) = 0 can be reached. As shown in [20], if K

is fixed, we can choose a /+ on K as a positive distance
function to oK, and a /� on XnK as a negative distance
function to oK, thus j$/j = 1 on the whole domain X
and P(/) = 0. So the infimum of the total energy (7) is
the same as the infimum of the energy (3). Therefore, we
have proved the existence of the minimizer of (7) when
the existence of the minimizer of (3) is proved.
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