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. INTRODUCTION

Hyperbolic equations describe the wave phenomena in the nature. They are very significant for
many practical problems, e.g., hydrodynamics, displacement problems in porous media and vibra-
tions of a membrane, acoustic vibrations of a gas, electromagnetic processes in nonconducting
media.

Various numerical methods have been established for solving second-order hyperbolic prob-
lems. Continuous or discrete time Galerkin finite element methods are analyzed for linear or
nonlinear second-order hyperbolic equations in several spaces, see [1-4]. The classical mixed
element methods for the hyperbolic equations have been studied in [5-7]. However, the technique
of the classical mixed method leads to some saddle point problems whose numerical solutions
have been quite difficult because of losing positive definite properties.

The purpose of this article is, using the splitting technique as in [8], to formulate a new mixed
element procedure to solve the second-order hyperbolic equation, in which the coefficient matrix
of the mixed element system is symmetric positive definite.
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2 ZHANG AND YANG

To illustrate our method, we consider our model as the following second-order hyperbolic
problem:

2
c(x,t)sz;(x,t) - V- (A, )Vulx,t)) = f(x,t) (x,1) € 2 x (0,T] (1.1
u(x,t) =0, x €0Q,t > 0.

with initial conditions

{u(x,O) =up(x), xe, (1.2)

u,(x,0) =qo(x), x e,

where  is a bounded domain in R? with boundary 9. c¢(x,¢) > 0 and A = (@ij)axa the
uniformly symmetric positive definite matrix function, i.e., there exists a constant a, > 0 such
that

d d
a Y & <Y ay(x,n&E VEER!, xeQ. (1.3)

i=1 ij=1

The outline of this article is as follows. In Section II we give the continuous-time splitting pos-
itive definite finite element procedure for the model (1.1)—(1.2). Then we shall state and prove the
convergence for this case. In Section III the discrete-time mixed element scheme will be defined
and analyzed. In Section IV some numerical results are presented.

Il. CONTINUOUS-TIME ESTIMATES

Throughout this article, usual definitions, notations, and norms of Sobolev spaces as in [9, 10] are
used. K, with or without subscripts, denote generic positive constant, which may be different at
their occurrences.

A. Formulation of Splitting Positive Definite Mixed Element

Introduce the function space H (div; Q) = {w € [L*(Q)]¢; divw € L*(2)} and the inner products
in L2(Q) or [L*()]¢

d
(u,v) = f uvdx,Yu,v € LX(Q), (0,0) = Z/ oiwdx,Yo,w € [L*(Q)]%
Q i=1 Q

By introducing an unknown o = —AVu. Let 8(x,t) = 1/c(x,t) and A= A", amixed weak
form of (1.1) can be given by

@ (U, v) + B,V -0,v) = (B(x,1) fv) Vv e LX), @
b)) (Ao,w)— u,V-w)=0 Yo € H(div; Q). ’
From (2.1b) we derive
*(Ae) | (az_“ v =0 Yoe H(div;Q) (2.2)
o2 , W PR ‘w | = w € iv; 2). .

Numerical Methods for Partial Differential Equations DOI 10.1002/num



SPLITTING POSITIVE DEFINITE MIXED ELEMENT METHOD 3

By the definition of o, we can define the following initial conditions:
(A0) (x,0) = = Vit (),
a(Aa)

(x,0) = —=Vgqo(x).

Using the above initial conditions, we can easily show that the Eq. (2.2) is equivalent to the Eq.
(2.1b).

Taking v = V - w in (2.1a) for w € H(div; 2) and then substituting it into (2.2), we derive an
equivalent mixed variational form of the system (2.1):

.
(a) %‘ia),w +(BV-0,V-w)=(Bf,V-0) Yo c H(div;Q),
(2.3)
2
(b) (?j—tfv) + (BV -0,v) = (Bf,v) Yv € L3(Q).

Let 7;,, and 7, be two families of quasi-regular partitions of the domain, which may be the
same one or not, such that the elements in the partitions have the diameters bounded by 4, and
h,, respectively. Let M,,, C L*(R2) and Vi, C H(div; 2) be finite element spaces defined on the
partitions 7, and 7, . Now we formulate a new mixed finite element procedure based on (2.3).

SPDME Scheme: Given an initial approximation (u), %(x, 0).0,, = Y (x,0)) € My, x My, x
Viy X Vi, such that

(a) ( ? ) (u()’ vh) Vvh € Mhu,
(b) (Ao, ) = (u, V - @), Yoy € Vi,
< (x, 0) Uh) = (qo, Vi), Vv, € My, 2.4)

@ <B(A0h)( .0), w) =(q0, V- wy), Yo, €V, .

Seek (uy,0,) € My, x Vy, such that

92(A
(a) (M,a)h> +(ﬂV'0'h,V'a)h) = (ﬁf’v'wh)’

012
. VYo, €V, 0<t<T, (2.5)
(b) (# vh) +(BV - an,v) = (Bf, vn),

Yo, e My,, 0<t<T.

It is easily seen that the Eq. (2.5a) is separated from the Eq. (2.5b) so that o}, can be solved
independently from the Eq. (2.5a) and then u,, if required, can be obtained from the Eq. (2.5b)
almost explicitly.

Theorem 2.1.  Assume that (1.3) holds. Then the system (2.5) with initial values defined by (2.4)
has one unique solution.

Proof. Let{w,; }N , and {v;;};_, be basis functions of V,  and M, , respectively, such that for
each o, (x,t) € V,, and u;(x,t) € /\/l,,u there exist linear expressions oa;,(x, 1) = Zi:l a; (t)wp,;

Numerical Methods for Partial Differential Equations DOI 10.1002/num



4 ZHANG AND YANG

and u,(x,t) = Z,N:l b;(t)v,;. Define vector-valued function a(t) = (a;(t),...,an(®))",
b(t) = (bi(0),....bxM)", f1 = (B, V- on)s-- . BV - onn)', frl@) = (B(f —
V-01),051)...,(B(f =V -03),v,x)) ", and matrix functions

B = (A(i)wh,i,wh,j)NxN, C=BV-w,V- wh,j)NxN, D = (v, vh,j)NxN

where A(i) is the ith row-vector of the matrix A.
The system (2.5) may be rewritten as an equivalent matrix form:

@ L (Ba(t) +Ca(t) = f,,

(b) D% = f(a), (2.6)
©  a0) =a,, ‘j,—Z(O) =q,,

(d b(0) = by, 9(0) =q,(q).

It is clear that matrixes B, C, and D are symmetric positive definite. Let a = Ba. The system
(2.6) is rewritten as

d’a -
(a) W:—CB_la—Ffl,
b _ —1z
(b) Pl D~ f,(B a),

di dB 27
(c) a(0) = Bay, Z(O) = Bq, + an’

db
(d  b(0) = by, =7 0 =4.(q0).

The system (2.7) is an initial value problem of a system linear second-order ordinary differen-
tial equations. By virtue of the theory of ordinary differential equations, the system (2.7) has a
unique solution, and so the system (2.5) has one unique solution. The proof of Theorem 2.1 is
complete. ]

It is clear that the matching relation (i.e., LBB-condition ) between the mixed element spaces
V., and M,,, , which is required by the classical mixed element spaces defined in [11-15], now
is not necessary. From the viewpoint of computation, one can chose the usual continuous finite
element spaces as V,, .

In the following part of this section, we will analyze the convergence of the SPDME Scheme
and give the error estimate under the assumption that V), is one of the classical mixed elements
in [11-15].

B. Convergence Analysis and Error Estimate

We assume that finite element spaces V), and M, have the inverse property (see [16]) and
approximate properties (see [11-15]) that there exist some integers r, r|, k > 0, such that, for
1 <g <oocandVYw e H(div; Q) N[WH(Q)]7,

. 1 .
inf [l —wylla@ < Kh* lollywr+1q gy
©p €V,

inf ||V (w—w)lla@ < KAV - ollwiag);

©p €V,

inf o= villom < KB llyioge Yo € LA@NWE@,  (28)
vp€ hy

Numerical Methods for Partial Differential Equations DOI 10.1002/num



SPLITTING POSITIVE DEFINITE MIXED ELEMENT METHOD 5

where r; = r in cases of BDFM elements and BDM elements, or r; = r + 1 in cases of Nedelec
elements and RT elements.

To analyze the convergence of the approximate solution determined by the SPDME scheme,
we introduce some operators. It is well known that, in any one of the classical mixed finite ele-
ment spaces, there exists an operator I1, from H (div; 2) onto V,_, see [11-16], such that, for
l<g=o0,

(a) (V-(o —I0),¢,) =0,
Vo, € diviVy,) ={on =V -y, w €V, )5

29
®) o~ Mol < KR 0] yreraay @9
© V- (o —,0)lla@ < Kho |V - o llwa-
We also define the L2-project operator Py, from L*(2) onto M, such that
— — 2 .
(a) (u — Pyu,v;) =0 VYu e L*(Q),v, € My,; (2.10)

(b) lu — Puull 2 < Khi ull e Yu € H'(Q).
By use of the definitions of the operators I1,, and P,,, we can easily obtain the following lemma.

Lemma 2.1.  Suppose that the solution of system (2.3) has regular properties that 3*u/dt*> €
L>(H*'(Q)), %0 /01> € L>*(H™'(Q)), du/dt € L>(H*'(Q)), 00 /0t € L*(H'"'(RQ)), then
we have the following estimate

(a) |V (0 —T,0)lla@ < Kh |V - 61 llwria),
(b) (o —T1,0) e < Kh:r+l o llwr14q)

©) i@ = o)l < KA 0w lyrsia o, @.11)

(d) 1w — Pyu)ll 2 < Khl;:llnutnykﬂ(sz)»
(e) I — Pyu)ull 2 < Khy™ g || gist g

Set =0, — 0, p =0 —I,0,& =u, — Pyu,and n = u — Pyu. Subtracting (2.3) from
(2.5), we get the residue equations:

32( A0
@ ( gtz),wh)+(ﬁV~0,V~a)h)

2, 7
= (8 ;ﬁp)’wh) + (ﬁV . ,07V . L()h), Va)h (S tha 0 <t S T’ (212)
825 827]
®) (y) +(BY - (04— 0),0y) = (y) ,

Yo, e M,;,, 0<t<T.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



6 ZHANG AND YANG

Theorem 2.2.  Suppose that the finite element space V,,, is one of classical mixed elements in
[11-15], that approximate properties (2.8) hold, that coefficients c, A in system (1.1) have the
first- and second-order continuous derivatives on t, and the solution of system (2.3) has regu-
lar properties that 3*u/9t> € L>(H*'(Q)), %0 /9t*> € L*(H'"(Q)), du/dt € L2 (H*(Q)),
90/t € L2 (H™'(RQ)), u € L*(H**'(Q)) and o € L*(H'*'(Q)). Then we have the estimate

(a) 5
llo — Gh”LOO(LZ(Q)) + 8—(0 —oy)
t LOO(L2(Q))
+ ||V : (a - 011)||LOO(L2(Q)) S Kh;.l,
(b) 3
XN [
ot L®(L2(Q))

where K is a constant independent of h,,, h..

Proof. Take w, = 6, in (2.12a), we have

or? at?

Note that

32(A0)
a2

1
,Qt) - _i(Aef’ 9[) + = (Atet’et) + (‘A’te et)

and
’ ! 2dl‘ ’ 2 ! ’ '

Hence, we have

/ [(@ ) —i—(ﬁVﬂ,V-@,)} dt
0

1

_ —/ i[(fwf,eoﬂﬁve,v~9)1dr+5/ (A.6,.0,)dx
2 0 dT 2 0

t - 1 t
+[ (A..0,6,)dt — E/ (BV -0,V -0)dr
0 0
1
z[nAzet(r)an(m 1BV - 00)1%2,q)]
[||A29:(0)||Lz(m +12V - 002 ]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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SPLITTING POSITIVE DEFINITE MIXED ELEMENT METHOD 7
Integrating (2.14) over t in (0, 7], and using the above estimate, we can obtain
126, (D) 125, + 182 - 9<t>||L2(Q)

t
l
0

t
+K /0 [16: 1220, + IV - 012 g, + 161220 + 1012240,

1022y + l10ee 22, Jd

We know that
IRGEARAT:
0
=/ i(,BV-,O,V~9)dt—/(,8,V~,o,V-0)dt—/(/fBV-,O,,V~9)dt
o dt 0 0
< (BOV-p@),V-0(1) = (BOV - p(0),V-0(0)
+K/ [1V - P20, + IV - 0222, + IV - 01122 Jd.
0

Therefore, we can get

16,0220 + IV - 0D g,
< Ko[16: O[22, + 1V - 0O 220 + IV - 0@ 226, + 1V - 2O)]1225,]

t
+v- p||L2(Q) e a1V - ey + l19re 122 ey 17
SK{h§’1+/ [16:122,0y + IV - 0125 g + 10125 g dT }

Adding ||9||L2(Q)

T [y 116: ||L2(Q)dr, we can obtain

to the above inequality and using the fact that 8(0) = 0, ||6(t)|? e =

<K {hz +/ (161220, + 1V - 01226, + 10122, dT } .
Using Gronwall’s lemma, we can obtain

||9||L°0(L2(Q)) + ||9t||L°O(L2(sz)) +V- 9||L00(L2(sz)) = Kh LB (2.15)

By use of (2.9) and Lemma 2.1, we get the estimate (2.13a).
Now we show that the estimate (2.13b) holds.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



8 ZHANG AND YANG

Taking v, = £ in (2.12b), we have

1d 92
5 gl = —(BY - (0 —0).8) + (8—;75) . (2.16)

Integrating (2.16) over t in (0, 7], we can obtain

1601220, < 160220,

t
+K /0 (1Y - (01 = ) P20, + Iec 22, + €120 1T
By use of Lemma 2.1, (2.13a) and Gronwall’s lemma, we get
I&e oo r2ny = K (R + mY. (2.17)

Using Lemma 2.1 again, we easily get the estimate (2.13b). This ends the proof of Theorem
2.2. n

Ill. DISCRETE-TIME ESTIMATES

A. Formulation of Fully-discrete Scheme

Let J be a positive integer and let t = T'/J denote the time increment. For any function r defined
atthe timesnt,n =0,...,J, denote by r" the function at t = " = nt; We shall use this notation
for functions defined for all time as well as those defined only at t+ = nt. Some other notations
we shall use are

P = )2,
P =0rmt (1= 20)r" +0r",
Bt = (" — "y /1,
= (" =2+ /7
S = (r" — /21, 3.1
The Eq. (2.3) has the following equivalent formulation
@ (37(A0)", @) + (BY -0)"4,V - w)
= ((Bf)"5,V - 0) + (Rl,0) Yo e H(div;Q), (3.2)

(b) (92", v) + (BY - 0)"4,v) = (Bf)"4 + Ri,v) Vv e LX),

201 401
R = (af(,fta)" — %’2‘”) =0 (1:28 é’::a)>,

" 2 n 0%u 234u
Rzzatu —wZO TW .

where

Numerical Methods for Partial Differential Equations DOI 10.1002/num



SPLITTING POSITIVE DEFINITE MIXED ELEMENT METHOD 9
Now we formulate a fully-discrete splitting positive definite mixed element procedure based

on (3.2).
Fully-discrete SPDME Scheme: Given initial value (ug, 0,?) e My, x V,, such that

@ (upvn) = (o, vp), VYo, € My, (3.3)
) (Ax,000), @) = (o, V - @), Yoy, € V-

and (u},0,) € My, X Vy, such that

w, — '
(a) (12—11,%) = (g0, V1), Vv, € My,, 34

) (fl(x, 7)o} ;TA(x, 0)o; ! ’

wh) =1(q0,V-wy), Yo, €V, .

Forn=1,2,3,...,J — 1, seek (u}™", /") € M, x V, such that

. al
@ (A2, o) + (BuV -0, 5V @) = (B4, V@), Yo, €Viy, (3.5

n !
®)  (02ulv) + BV -0, % v) = (B4, 04), Yo, € My,

It is easily seen that the following result holds.

Theorem 3.1.  Assume that (1.3) holds. Then the system (3.5) with initial values defined by (3.4)
and (3.4) has one unique solution.

B. Convergence Analysis and Error Estimate

Similar to Lemma 2.1, we have the following lemma.

Lemma 3.1.  Suppose that the solution of system (2.3) has regular properties that 3*u/dt* €
L?*(H*'(Q)), 0%0 /01> € L*(H™(Q)), du/ot € L2 (H*'(Q)), 0o /0t € L*(H'"'(RQ)), then
we have the following estimate

@ 18,6 = T40) |z a0y < Kh™, (3.6)
®) 119 = Pyto) oo ey < KA,

where for functions y with values at discrete times,
17 zoocry = OIPna<XJ ||Vn+1/2||X- 3.7

Numerical Methods for Partial Differential Equations DOI 10.1002/num



10 ZHANG AND YANG

Theorem 3.2.  Suppose that 3*u/ot* € L*(L*(Q)), 3*a/dt* € L*([L*(Q)]%), 3%u/dt* €
L>(H*'(Q)), %0 /01> € L*(H™(Q)), u € L*°(H**Y(Q)), ando € L*®(H" " (Q)). Let (uy,, 03)
denote the solution of the fully-discrete SPDME scheme given by (3.5). Then there exists a constant
K such that

(a) ”8[((7 - ah)||i00(L2(Q))
+ V(o - Uh)”LOO(LZ(Q)) = K{hf,l + ‘52},
(b) ”at(u - uh)”ZOO(LZ(Q)) = K{h(rfl + hﬁ+1 + ‘L'Z}.

(3.8)

Proof. Set9" =0, — I1,0" and p" = o, — I1,0". Subtracting (3.2a) from (3.5a), we can
easily obtain
(A”agen, CUh) + (/Snv : 9’1’%» V. wh)
= (A3 p" ) + B,V - P,V - wy)
+ (82(Ao)" — A,8%0", ;) — (R}, @)

LBV -0 — (BY -0)" T,V - wy). (3.9)
Taking w;, = 2§,0" in (3.9), we can obtain

(A”(aTGnJr% - atelié), 8[9n+% + ateni%)
1 1 1 '
B0 Vv e v e
= t(A,07p" = R}, 96" +0,6"77)
LB,V - pME, V0 Vg h
+1(03(Ao0)" — A,0%0",0,0""2 +0,0"7)

£2(B,V - 0™ — (BV @)1,V 0™ — V. 9" D). (3.10)
Note that

(A"(at9n+% - 8r9n7%)s at9n+% + 8[9"7%)

2
L2(Q)

SR P LR YO

~1 ~1
= [ 00 gy — 100 [y~ l0AL 00

and

(B(V 0" 1 4+ V0" 1), V. 0" —V.0" 1)
1 1 |
=87V - o ”izm) — |87V 6" Hizm) —1| 3z,3n2,%v o3

2
H L2(Q)"

Numerical Methods for Partial Differential Equations DOI 10.1002/num



SPLITTING POSITIVE DEFINITE MIXED ELEMENT METHOD 11

Substituting these equations into (3.10) and summing from 1 to n, we can obtain

A%a 9n+% 2 %V0n+% 2
” n “LZ(Q) + ”ﬂ” ||L2(Q)

Lo 1 i 12
= ”AO 9,02 ”LZ(Q) + “'BO V.62 HLZ(Q)

! -1 1
+7 Z [” af‘Akz,l 8191{_% ”iz(sz) + Ha,ﬂk{%V : ek_% ”i%m]
k=1

2

+T Y (AdZok — RE, 3,643 4 0,07)

k=1

+2 (B pFEV 0 -V gE )

k=1

+7 ) (07 (Ao) — Aid2c*, 8,6 + 8,6 2)

k=1

+2 ) BV 0" — (BY - 0)4, V5T — v g5 1)

k=1

1 1 5
= |Az8,62 ”im +|piv-62 Hiz@) + Y E. (3.11)

i=1

Now, we estimate the bounds of E;, i = 1,2,...,5.
Firstly, we estimate the bound of E;. We can easily obtain

E <Kty [| 8,02 ”izm) v 9k7%||i2<9)]'
k=1

: : : k2 4y 8% (Ao) |2 :
And then, using the inequality 7 ), || R} ||L2(Q) < Kt 3:40 ||L2(L2(9>> and (2.11c), we can derive

E; = Kx Z (a7 0" HL2<Q> + | Y| LZ(Q))(||af0k+% + 9,052 l22(2)

k=1

n 82pk
= Kv Z |:” or?
k=1

L2(

2
k|2 k2 k=12
+ | R |2y + 1065 2122, + 10,6572 1122 g,
Q)

§ § 1 _1
S K {htzy 2 + f4 + T Z [||8t9k+2 ”iZ(Q) + ”8!9k 2 ”iZ(Q)]} .
k=1

Numerical Methods for Partial Differential Equations DOI 10.1002/num



12 ZHANG AND YANG

For E;, we have the following estimate
Ey=2) (BV-p5, V051 = V.0
k=1

- Z[(ﬂkv ’ pk+%’v : 9k+%) — (B-1V - ,Ok_%,V . 91‘_%)]

k=1
n k+1 k k=1 k=2
+ of — _
k=1 T

= (B,V - "3,V 0"3) — (ByV - p2,V - 67)

k+1 k_ k=1 _ k=2
e -e p ,V~9k£>

n IO
— 7T 4V

l n 7l )
< eV 0" 2 g + K {t Z IV -6 21175 g, + h2 }
k=1

where we have used Lemma 2.1 in the last inequality.
In addition, we know that

Ev=1 Y [(0(Ao) — Adie*,0,67) — (97 (Ao) " — Ai1dfo" ", 0,6"2)]

k=1

—t Y ((07(Ao) — Ad7e*) — (37 (Ao) ™ — Ar1970* ), 3,6"°3)

k=1

1 . 1
< el|8,0" 2 25 + KT :Z 18,60 2117 26, + r“}

k=1

and

Es=2) (BV-o"t — (V- o)1,V .51 — v . k1)
k=1

=2) [(BV - 6"% — (BY - 0)"4,V - 654D
k=1
— (B V-0t — (BV ), V04 2]
—2) BV ot — (BY o) — (B Vot
k=1

—(BV - 0) M),V . 957

n
Lo =12 4
58I|V~6"+2||L2(Q)+Kr E IV -3 + 7
k=1

Numerical Methods for Partial Differential Equations DOI 10.1002/num



SPLITTING POSITIVE DEFINITE MIXED ELEMENT METHOD 13

Therefore, substituting these estimates into (3.10), for sufficiently small ¢, we can obtain the
estimate

10 1o
18,63 12,0 + IV - 07212, )

k=1

. _1 1 _1
< K:rZ[na,ek 222+ 10652125 + IV 647212,

+ ||v.9’<*%||§2(m] + h2n +r4}. (3.12)

Using Gronwall’s lemma, we get the estimate

Hence, by use of (2.9) and Lemma 3.1 again, we can obtain the estimate (3.8a).

Finally, we show that the estimate (3.8b) holds.

Set&" = uj — Pyu" and n" = u" — Pyu”. Subtracting (3.2b) from (3.5b), using the definition
of operator Py, and (2.10a), we have

(026", 0) = —(B,V - (0 — )4 + RI,v) — (BY - 0)"5 — B,V -0"5,v).  (3.14)
Taking v, = 2§,€" in (3.14), we have

1 5 _1 9
10673 20 — 106" H 20

= —T(B,V - (04 — )T + Ry, €™ +0,6"2)
- T((ﬂv ’ o')n& - :an . 0'"’%, ar%-’”r% + aténf%)

n,l 2 n,l n,l 2
< Ke{IV - (1 — 0)"5 |20, + 1BV - 0)"% — B,V - "5 |2,

2
L2(Q)

FU0E 2P + 10E 2 20 ) (3.15)

n
+ H R, ” L2(Q) L2(Q)
Summing from 1 to n, and using the estimate (3.8a), we can get

n

1 1 1
106" 3120 < KT (18672120, + 18,62 220 ] + 21 + r“} . (1)

=1

Using Gronwall’s lemma and Lemma 3.1, we can obtain the estimate (3.8b). Hence we complete
the proof of Theorem 3.2. ]

IV. NUMERICAL EXAMPLE

In this section, we give some numerical results to confirm our theoretical analysis. Consider the
following hyperbolic equation

{8,,M—Au=f, in Qx(0,T], @1

u(x,t) =0, on 09,1t >0.
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TABLEL T =10,h=r.
1 1 1 1

h:E h:% h:m h:% Rates
L>®(L*>) 9.0785e—002 2.4725e—002 6.7232e—003 3.2995e—003 -
L>®(L?) 4.0631e—002 1.0580e—002 2.6749e—003 7.6396e—004 1.9110
L>®(L?) 2.3521e—001 6.3949 ¢—002 1.6368 e—002 4.1383e—003 1.9429
* 2.4321e—000 1.3122e—000 6.8146e—001 3.4722e¢—001 0.9361

Using fully-discrete SPDME scheme, we compute the finite element approximate value o), of the
exact solution 0 = —Vu.

In this experiment, 2 = [0, 1] x [0, 1]. The right-hand side, initial conditions of the system
(4.1) are selected by the exact solution u = e~ sin®( x) sinz(ny) and 0 = —Vu. We choose
the finite element space of piecewise linear polynomials. The following numerical results can be
obtained (see Table 1) where x denote the error ||0; (6 — 04) | oo 120y + IV -N(a =03 700120y

From Table I, we can see that the convergence rates of L*°(L?)-norm and L* (L?)-norm errors
can nearly reach the optional order under the condition # = 7. The numerical results denoted
by “x” suggest that the error convergence order is approximate one, which is coincided with our
theoretical analysis.

The authors would like to express their sincere thanks to the referees for their very helpful
comments and suggestions, which greatly improved the quality of this paper.
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