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Abstract

The theory of (¢q,I')-modules is a generalization of Fontaine’s theory of (¢,I')-modules, which classifies
G r-representations on Op-modules and F-vector spaces for any finite extension F' of Qp. In this paper
following Colmez’s method we classify triangulable Op-analytic (@q, ')-modules of rank 2. In this process
we establish two kinds of cohomology theories for Op-analytic (¢q,I")-modules. Using them we show that,
if D is an Op-analytic (4, ')-module such that D¥e=5'=! = 0 je. VE" = 0 where V is the Galois
representation attached to D, then any overconvergent extension of the trivial representation of Gr by V is
Op-analytic. In particular, contrarily to the case of F' = Q,, there are representations of G that are not
overconvergent.
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Introduction

The present paper heavily depends on the theory of (¢, I')-modules for Lubin-Tate extensions, a generalization of
Fontaine’s theory of (¢, I')-modules. The existence of this generalization was more or less implicit in [14, 8]. See
also [15] and [25, Remark 2.3.1]. In [17], Kisin and Ren provided details, where (¢, T')-modules for Lubin-Tate
extensions are called (¢4, ")-modules.

To recall this theory, let F' be a finite extension of Q,, O the ring of integers in F' and 7 a unifomizer
of Op. Fix an algebraic closure of F' denoted by F', and put Gr = Gal(F/F). Let kr be the residue field of
F, ¢ = #kp. Let W = W(kp) be the ring of Witt vectors over kp, Fy = W[1/p]. Then Fp is the maximal
absolutely unramified subfield of F'. Let F be a Lubin-Tate group over F' corresponding to the uniformizer .
Then F is a formal Op-module. Let X be a local coordinate on F. Then the formal Hopf algebra Oz may
be identified with Op[[X]]. For any a € O, let [a]r € Op[[X]] be the power series giving the endomorphism
aof F. If n > 1, let F,, C F be the subfield generated by the 7”-torsion points of F. Write Fo, = U, F),
I' = Gal(Fy/F) and Gr_ = Gal(F/F.). For any integer n > 0, let I',, C " be the subgroup Gal(F.,/F,). Let
TF be the Tate module of F. It is a free Op-module of rank 1. The action of G on T F factors through I' and
induces an isomorphism xr : I' = Ox. For any a € OF we write o := x}l(a). Using the periods of T'F, one
can construct a ring Os with actions of ¢, = 087 and T'. We will recall the construction in Section 1. Kisin
and Ren [17] defined étale (pg, I')-modules over Og and classified G p-representations on Op-modules in terms
of these modules.

In this paper we are interested in triangulable Op-analytic (¢4, I')-modules over a Robba ring %, where L
is a finite extension of F. A triangulable (¢4, I')-module over Z;, means a (¢4, I')-module D that has a filtration
consisting of (p4, I')-submodules 0 = Dy C Dy C --- C Dg = D such that D;/D;_1 is free of rank 1 over Z..

In the spirit of Colmez’s work [9] on the classification of triangulable (¢, I')-modules of rank 2, in the present
paper we will classify triangulable Op-analytic (¢4, I')-modules over Zy, of rank 2. One motivation for doing
this, is that the authors believe that under the hypothetical p-adic local Langlands correspondence these (¢4, T')-
modules should correspond to certain unitary principal series of GLa(F'). Colmez [13] and Liu-Xie-Zhang [21]
respectively determined the spaces of locally analytic vectors of the unitary principal series of GL2(Q,,) based on
this kind of (¢, T')-modules. Our computations of dimensions of Ext} match those of Kohlhaase on extensions of
locally analytic representations [19]. Nakamura [22] gave a generalization of Colmez’s work in another direction.
But we think that Nakamura’s point of view is probably not the best one for applications to the p-adic local
Langlands correspondence.

For our purpose we consider two kinds of cohomology theories for Op-analytic (¢4, ')-modules.

For a (¢g,I')-module D over Z, we define H*(D) by the cohomology of the semigroup ¢} x I' as in [13].
Then the first cohomology group H*(D) is isomorphic to Ext(Z%r, D), the L-vector space of extensions of %,
by D in the category of (¢4, I')-modules.

If D is Op-analytic, we consider the following complex

s o) 0—=D—Lpeptop o,
where f1 : D — D @ D is the map defined as m — ((¢q — 1)m,Vm) and fo : D® D — D is (m,n) —
Vm — (¢4 — 1)n. The operator V is defined in Section 1.3. Put H;qu(D) = Hi(C;qﬁv(D)), i=0,1,2. Each
of these modules admits a T-action. We set H, (D) = H. o(D)".

Theorem 0.1. Let D be an Op-analytic (¢q,T')-module over Zr. Then there is a natural isomorphism
Exton(Z1, D) — HL (D), where Extan (%L, D) is the L-vector space that consists of extensions of %L by D



in the category of Op-analytic (¢q,T)-modules.

The proof is given in Section 4, which is due to the referee and much simpler than that in our original
version.

Theorem 0.2. Let D be an Op-analytic (pq,T')-module over Z1,. Then Extan(Zr, D) is of codimension ([F :
Q] — 1) dimy, D#s=1I=1 4n Ext(%#,, D). In particular, if D?+=1=1 =0, then Extan (%1, D) = Ext(%y, D).

To prove Theorem 0.2, we will construct a (non canonical) projection from Ext(%r, D) onto Extan (%L, D)
whose kernel is of dimension ([F : Q,] — 1) dimj, D¥«=1LI=1,

If V is an overconvergent L-representation of Gp (in the sense of Definition 1.4), A is the (¢4, I')-module
over ngL’r attached to V, and D = Z|, ®£,Lf A, then Ext(Zy, D) measures the set of extensions of the trivial
representation by V' that are overconvergent (cf. Proposition 1.5 and Proposition 1.6). Theorem 0.2 tells us
that, if V&r = D®«=LI'=1 — (0 then any such extension is Op-analytic.

Let Z(L) (resp. Fan(L)) be the set of continuous (resp. locally F-analytic) characters ¢ : F* — L*. Let
Sunr denote the character of F* such that §yu,(7) = ¢~ ! and 5um|0; = 1. Then duy,; is a locally F-analytic
character. If § € #(L), let Z(d) be the (p4,I')-module over %y, of rank 1 that has a basis es; such that
wq(es) = 0(m)es and o4(es) = 0(a)es. If 0 € Fan(L), then Z1(9) is Op-analytic.

For locally F-analytic characters we have the following

Theorem 0.3. For any § € F,,(L), we have

2 ifd=2""ieN orz'dun,i € Zy
1 otherwise,

dimy 13, (71.0) = {

and )
[F:Qp+1 ifdo=a"ieN
dimy, HY(%1(8)) = { 2 if 0 = 2" 6unr,i € Zy
1 otherwise.

For the proof of Theorem 0.3 we follow Colmez’s method. In his paper [9] Colmez used the theory of p-adic
Fourier transform for Z,. For our case we use the p-adic Fourier transform for O developed by Schneider and
Teitelbaum [24] instead. But this transform can not be applied to our situation directly because, except for the
case of ' = Qp, it is defined over C, and can not be defined over any finite extension L of F.. We overcome
this difficulty by applying it to Zc, and then descending certain results to Zr. As a result, we obtain that, if
81 and & are in Z,, (L), then Z1(01)¥=% and %1, (52)¥=" are isomorphic to each other as L[I']-modules. This
is exactly what we need. In fact, we will show that S5 := (%’Leg/%’fe(;)wzo’r:l is 1-dimensional over L for any
§ € Fan(L), and that H) (% (0)) is isomorphic to S5 when v, (6(m)) < 1 — v, (g) and ¢ is not of the form z’.

For characters that are not locally F-analytic we have the following

Theorem 0.4. For any § € 7 (L)\ Ian(I) we have H (%1 (5)) = 0. Consequently every extension of %y, by
R1,(9) splits.

To state our result on the classification, we need some parameter spaces. These parameter spaces are
analogues of Colmez’s parameter spaces [9]. Let . be the analytic variety over %, (L) X .%o, (L) whose fiber over
(61, 02) is isomorphic to Proj(H' (6165 ")), an the analytic variety over Zuy, (L) X Fan (L) whose fiber over (1, d2)
is isomorphic to Proj(H2, (6165 *)). There is a natural inclusion %, < .. Let .7y, 720, 778, Feris st gord
and Yjﬁ‘d be the subsets of . defined in Section 6. We can assign to any s € . (resp. s € Yun) a triangulable
(resp. triangulable and Op-analytic) (¢q, I')-module D(s).

Theorem 0.5. (a) For s € ., D(s) is of slope zero if and only if s is in Sy — .2 D(s) is of slope zero
and the Galois representation attached to D(s) is irreducible if and only if s is in ., — (LU .72,
D(s) is of slope zero and Op-analytic if and only if s is in /" — yfd.

(b) Let s = (61,62,.%) and s" = (6,68,.L") be in Sy — S If 6 = 6}, then D(s) = D(s') if and only if
s=s". If 61 # 01, then D(s) = D(s') if and only if 5,s' € ST U L™ with ) = ) Sy, 8 = 2= )§).



In the case when F' = Q,, this becomes Colmez’s result [9]. The proof of Theorem 0.5 will be given at the
end of Section 6.

We give another application of Theorem 0.3. In the case of F' = Q,, i.e. the cyclotomic extension case,
Cherbonnier and Colmez [6] showed that all representations of G, are overconvergent. But our following result
shows that this is not the case when [F: Q,] > 2.

Theorem 0.6. Suppose that [F : Q] > 2. Then there exist 2-dimensional L-representations of Gg that are
not overconvergent (in the sense of Definition 1.4).

By Kedlaya’s Theorem [16], any (¢q,I')-module of slope zero D(s) in Theorem 0.5 (a) comes from a 2-
dimensional L-representation of G that is overconvergent.

We outline the structure of this paper. We recall Fontaine’s rings, the theory of (¢4, I')-modules and the
relation between (p,,I')-modules and Galois representations in Section 1.1 and Section 1.2, and then define
Op-analytic (¢4, ')-modules over the Robba ring Z;, in Section 1.3. We define v in Section 2.1, and study the
properties of J and Res in Section 2.2. In Section 3.1 we extend 9 to Zc,, in Section 3.2 we define operators m,,
on Zc,, and then in Section 3.3 we study the I-action on %7 (6)¥=° for all § € .%,,(L). The cohomology theories
for Op-analytic (¢4, ')-modules are given in Section 4. In Section 5 we compute H. (%1(5)) and H' (% (5))
for all § € Z,u(L). After providing preliminary lemmas in Section 5.1, we compute HY(§) for all § € #(L)
and H} (9) for § € Fon(L) satisfying v, (6(m)) < 1 — vr(q) respectively in Section 5.2 and Section 5.3. For the
purpose of computing H} (§) for all § € #,,(L), we construct a transition map 9 : H}, (z718) — H], (5), which
is done in Section 5.4. The computation of H} (§) is given in Section 5.5. In section 5.6 we define two maps ¢y
and ¢k an. Applying results in Section 5 we classify triangulable Op-analytic (¢4, I')-modules in Section 6.

1 (¢4 ')-modules and Op-analytic (¢, [')-modules

In this section we recall the theory of (¢q,I')-modules built in [8, 15, 17]. We keep using notations in the
introduction.

1.1 The rings of formal series

Put E* = lim O /p with the transition maps given by Frobenius, and let E be the fractional field of E*. We
pi—
may also identify ET with lim Oz /7 with the transition maps given by the ¢-Frobenius ¢, = ©'°8» 9. Evaluation
pn

of X at m-torsion points induces a map ¢ : TF — Et. Precisely, if v = (v,)n>0 € TF with v, € F[z"](O) and
T+ Upg1 = Up, then o(v) = (v2(X) + 705 )n>0-

Let {-} be the unique lifting map E* — W(ET)p := W(E') ®op, OF such that g {z} = [1]7({z}) (see
[8, Lemma 9.3]). When F is the cyclotomic Lubin-Tate group Gy,, we have {z} = [1 + «] — 1, where [1 + ] is
the Teichmiiller lifting of 1 + . This map respects the action of Gr. If v € T'F is an Op-generator, there is an
embedding Op[[ur]] <= W(E™)p sending ur to {¢(v)} which identifies Op[[ur|] with a G p-stable and ¢,-stable

subring of W(E*)p. The Gp-action on O [[uz]] factors through T'. By [8, Lemma 9.3] we have

pq(ur) = []r(ur), ou(ur)=a]r(ur).

In the case of F = Gy, ur is denoted by T in [9]. Here T is used to denote the Tate module of a Lubin-Tate
group.

Let Og be the m-adic completion of Op[[ur]][1/uzr]. Then O is a complete discrete valuation ring with
uniformizer 7 and residue field kx((ur)). The topology induced by this valuation is called the strong topology.
Usually we consider the weak topology on Og, i.e. the topology with {7'Os + u-Op[lur]] : i,j € N} as a
fundamental system of open neighborhoods of 0. Let & be the field of fractions of Og. Let &% be the subring
F 20, Op[[ur]] of &.



For any 7 € Ry U {400}, let &1°7] be the ring of Laurent series f = ez aiu’y with coefficients in F' that

are convergent on the annulus 0 < vp(ur) < r. For any 0 < s < r we define the valuation v{st on £107] by
ol () = irelg(vp(ai) +is) € RU{+o0}.

We equip &1°7] with the Fréchet topology defined by the family of valuations {v{*} : 0 < s < r}. Then &107]
is complete. We equip the Robba ring Z := U,~o&%"! with the inductive limit topology. The subring of %
consisting of Laurent series of the form .., a;u’ is denoted by Z7.

Put & := {3, a;u’s € Z | a; are bounded when i — +o0}. This is a field contained in both & and Z.
Put &0 = &7 N &7 Let v[%7 be the valuation defined by v[*71(f) = ming<s<, v15}(f). Let Ogw.1 be
the ring of integers in &0 for the valuation v[*7). We equip Og.[1/ur] with the topology induced by the
valuation v{"} and then equip &0 = U,,enm= &7 [1/uz] with the inductive limit topology. The resulting
topology on &7 is called the weak topology [11]. Note that the restriction of the weak topology to the subset
{flur) =3,y aiulr € &0 1 a; = 0if i > 0} coincides with the topology defined by the valuation v} and its
restriction to &% coincides with the weak topology on &%. Then we equip &1 = U,+o& ("] with the inductive
limit topology.

We extend the actions of ¢, and I on Op[[ur]] to &T, Og, &, & and % continuously.

Put t7 = logz(ur), where log is the logarithmic of F. Then tz is in % but not in &f. When F = Gy,
tF coincides with the usual ¢ in [9]. Note that ¢4(tr) = 7ntr and o4(tr) = atr for any a € Op. Put

Q = Qur) = [r|r(ur)/uF.
We have the following analogue of [3, Lemma 1.3.2].

Lemma 1.1. If I is a T-stable principal ideal of %%, then I is generated by an element of the form
. Foo Jn
u’p (@Z(Q(u;)/Q(O))) ™. Purthermore the following hold:

n=0
(a) If #+ - @4(I) C I, then the sequence {j,}n>0 is decreasing.
(b) If Z" - pa(I) D I, then the sequence {jn}n>0 is increasing.

Proof. The argument is similar to the proof of [3, Lemma 1.3.2]. Let f(ux) be a generator of I. For any
p € (0,1) put V,(I) = {z € C, : f(2) = 0,0 < |z] < p}. If I is stable by I', then V,(I) is stable by [a]r
for any a € OF. As V,(I) is finite, for any z € V,(I), there must be some element a € O, a # 1 such that
[a)7(z) = z. Note that [7]#(z) satisfies [a]z([7]#(2)) = [7]#(2) if [a] #(z) = z. But the cardinal number of the
set {z € Cp : [a]lx(2) = z,|2| < p} is finite. Thus for any z € Vj(p) there exists a positive integer m = m(p)
such that [7™]z(z) = 0. Therefore I is generated by an element of the form ujf0 1 (2 (Q(ur)/Q(0)))"+. The

n=0

other two assertions are easy to prove. |

Corollary 1.2. We have

(tr) = (ur [] #3(Quz)/Q)) (1.1)

n>0
in the ring Z7.
Proof. Because the ideal (tr) is I-invariant and 21 - ¢, (tx) = (t7), by Lemma 1.1 there exists j € N such that
(tr) = (ujf II v, (Q(u;)/Q(O))]) From the fact (tx/ur) =1 mod ur#Z*+ we obtain j = 1. O
n>0

If 7' is another Lubin-Tate group over F corresponding to , by the theory of Lubin-Tate groups there
exists a unique continuous ring isomorphism 7z r : (’)}F — O}F/ with

nr,7 (ur) =uz + higher degree terms in Op[[uz]]



such that nr 7 o [a]lr = [a]# o g,z for all a € Op. We extend nr z to isomorphisms
Osr = Os,,, EF 568, 65 5 8p, EE— 8L, Br — %

By abuse of notations these isomorphisms are again denoted by nr 7.
Let £, =logur be a variable over Z[1/tr]. We extend the ¢4, I'-actions to Z[1/tr,{,] by

qu(gu) - qﬂu + log w7 Ua(gu) = fu + log M
ur wr

1.2 Galois representations and (¢,, I')-modules

Let L be a finite extension of F'. Let Rep; G be the category of finite dimensional L-vector spaces V' equipped
with a linear action of Gp.

If Ais any of &, &, &1, Z, we put A, = A®p L. Then we extend the ¢,, T-actions on A to A, by
L-linearity. Let R denote any of &7, a?LT and Zr,. For a (g, ')-module over R, we mean a free R-module D of

finite rank together with continuous semilinear actions of ¢, and I' commuting with each other such that ¢,
sends a basis of D to a basis of D. When R = &, we say that D is étale if D has a ¢g-stable Og, -lattice M

such that the linear map ;M — M is an isomorphism. When R = é"g, we say that D is étale if & @41 D is
L

étale. When R = %, we say that D is étale or of slope 0 if there exists an étale (¢4, I')-module A over co@g such
that D = %y, Rt A. Let Modf}%’rm be the category of étale (¢4, I')-modules over R.

Put B = W(E)p[1/7]. Let B be the completion of the maximal unramified extension of & in B for the
m-adic topology. Both B and B admit actions of ¢, and Gp. We have B¢r= = &.

For any V € Rep;GF, put Dg(V) = (B®p V)EF=. For any D € Modf}f’ét, put V(D) = (B®g D)Pa=1L.

Theorem 1.3. (Kisin-Ren [17, Theorem 1.6]) The functors V and Dg are quasi-inverse equivalences of

I,ét

categories between Modf}; and Rep; GF.

As usual, let Bt be the subring of B consisting of overconvergent elements, and put Bf = BN Bf. Then
(BN Gre = &1,

Definition 1.4. If V is an L-representation of G, we say that V is overconvergent if Dgi (V) := (BT @5 V)%=
contains a basis of Dg (V).

When F = Q,, according to Cherbonnier-Colmez theorem [0], all L-representations are overconvergent.
But in general this is not true. For details see Remark 5.21.

Proposition 1.5. (a) If A is an étale (¢4, I')-module over co@LT, then V(&L ® A) = (Bt @41 A)pa=t,

(b) The functor A — &L @gt A is a fully faithful functor from the category Mod‘;’;{,ét to the category
L L
pq,I',ét
Mod/&

(¢) The functor Dgi is an equivalence of categories between the category of overconvergent L-representations

of Gr and Mod‘;;’zr’ét.

Proof. Without loss of generality we may assume that L = F. Put E@p = W(E)[1/p] and E(Bp = EQP NBf. The
technics of almost étale descent as in Berger-Colmez [1] allows us to show that the functor A — EQp ®]§Z@ A

from the category of étale (¢, Gr)-modules over Eg@p to the category of étale (¢, Gr)-modules over E@p is an
equivalence. For any (¢q, Gr)-module D over Bt (resp. B), we can attach a (¢, Gp)-module D over E&p (resp.
Bg,) to D by letting D = @/ ¢**(D) with the map

@*(D) = @{:N’i*(D) - @f;ol‘%’i*(D) =D

K2



that sends ™ (D) identically to @™ (D) for i = 1,---, f — 1, and sends ¢/*(D) = ¢} (D) to D using ¢,. Here
[ =log,q. Thus the functor o : A B ®p+ A from the category of étale (¢4, Gr)-modules over Bt to the

category of étale (¢4, Gr)-modules over B is an equivalence. Now let A be an étale (¢4, T)-module over &, and
put V.=V(& @gt A). As a(ET @pV)= BorV =B®g A= a(ET ®et A), we have Bt ®p V =Bl @g A.
Thus V is contained in Bt @41t ANB ®g1 A =Bl @g1 A, and V = (BT @41 A)?s=L. This proves (a).

Next we prove (b). Let Ay and Ag be two objects in Modf}}r’ét. What we have to show is that the natural
map

Ho r,ét (Al, AQ) — Hom

Wy rod#e:
/&t

Modjz,r,ét (5 R et Al, & R et Ag)

is an isomorphism. For this we reduce to show that

(Al Qet Az)wq:17F:1 — (éa Ret (Al R gt A2)><pq:1,1“:1

is an isomorphism. Here A; is the &f-module of &T-linear maps from A; to &t, which is equipped with a
natural étale (¢g4, I')-module structure. We have

)gaq:LF:l )S"q:LGF:l

(éa R gt (Al R et Ag) = (B R et (Al R gt Ag)
= V(€ @i (A ®gr Ag))C7=1

- th:LGle
= (BT Rt (A1 Rt A2))

= (A @gt Ag)Pa=bI=1

Finally, (c) follows from (a), (b) and Theorem 1.3. O
Proposition 1.6. The functor A — %1 @4+ A is an equivalence of categories between Mod‘;’(‘;}r’ét and
L L
pq,I',6ét
Mod 1%,

Proof. Let D be an étale (¢q,')-module over #r. By Kedlaya’s slope filtration theorem [16], there exists a

unique ,4-stable gg—submodule A of D that is étale as a p,-module such that D = #, @, A. For any v € T,
L

~(A) also has this property. Thus, by uniqueness of A, we have y(A) = A. This means that A is I'-invariant. [

1.3 Op-analytic (¢, I')-modules
For any r > s > 0, let v[*7) be the valuation defined by v[*")(f) = inf,/c[s o7} (f). Note that vl*"](f) =
inf <Tvp(f(z)).

2€Cp,s<vp(2)<

Lemma 1.7. For any r > s > 0, there exists a sufficiently large integer n = n(s,r) such that, if v € T, then
we have v1*71((1 —~)z) > vl*71(2) +1 for all z € @@io’r],

Proof. Tt suffices to consider z = uﬁ-, keZ. If k>0, then

V(ur) ()
S(l) — b = (L) Al )y
ur Ur

and

(03) —uzt =

Y u — U = U —_ — e .
T T s Tl

As 0187 (y2) > vl571(y) + v[71(2), the lemma follows from the fact that %}{T) —1— 0 when v — 1. O



Let D be an object in Mod“f;éf’ét. We choose a basis {e1,---,eq} of D and write DI7] = @?Zléaio’r] - ej.

Note that our definition of DI} depends on the choice of {ey,---,es}. However, if {e},--- ¢/} is another
basis, then @9, &0 ¢; = @d_ £ . ¢/ for sufficiently small r > 0. When r > 0 is sufficiently small, D101 is
stable under I'. By Lemma 1.7 and the continuity of the I'-action on D!"], the series

logy =Y (v—1(-1)"""/i
=1

converges on D% when v — 1. Tt follows that the map
dl : Liel' = End;D!°", 8 — log(exp )

is well defined for sufficiently small 5, and we extend it to all of Liel' by Z,-linearity. As a result, we obtain
a Zp-linear map dI'p : Liel' — End;D. For any € Liel', d'%, (5) is a derivation of % and dI'p(5) is a
differential operator over dI'g, (8), which means that for any a € #Z1, m € D and 8 € Liel' we have

dl'p(B)(am) = dlg, (8)(a)m + a - dL'p(B)(m). (1.2)

The isomorphism yr : I' — Of induces an Op-linear isomorphism Liel' — Op. We will identify Liel" with
Op via this isomorphism.

We say that D is Op-analytic if the map dI'p is not only Z,-linear, but also Op-linear. If D is Op-analytic,
the operator dT'p(8)/8, 8 € OF, 5 # 0, does not depend on the choice of 5. The resulting operator is denoted
by Vp or just V if there is no confusion. Note that the I'-action on %, is Op-analytic and by [17, Lemma 2.1.4]

oF
V=tr et (ur,0) - d/dug, (1.3)

where Fr(X,Y) is the formal group law of F. Put 0 = %Lyf(uf, 0) - d/duz. From the relation o,(tr) = atr
we obtain Vir = tr and dtx = 1. When F = Gy, V and 0 are already defined in [2]. In this case
Fr(X,Y)=X+Y + XY and so 9 = (1 + ur)d/dur.

We end this section by classification of (¢4, I')-modules over %y, of rank 1.

Let .#(L) be the set of continuous characters § : F'* — L*, Z,(L) the subset of locally F-analytic
characters. If 4 is in %, (L), then li)f;(g;), a € O, which makes sense when log(a) # 0, does not depend on a.
This number, denoted by wg, is called the weight of §. Clearly ws = 0 if and only if § is locally constant; ws is
in Z if and only if § is locally algebraic.

If 6 € #(L), let ZL(5) be the (p4,I')-module over #Z;, (of rank 1) that has a basis es such that ¢,(es) =
d(m)es and o4(es) = 0(a)es. It is easy to check that, if & € F, (L), then Z1(0) is Op-analytic and V5 =
Va,(5) = tr0+ws (more precisely Vs(zes) = (tr0z +wsz)es). If Z1(6) is étale, i.e. vy(d(m)) = 0, we will use
L(9) to denote the Galois representation attached to Zr(9).

Remark 1.8. All of 1-dimensional L-representations of Gr are overconvergent. In fact, such a representation
comes from a character of F* and thus is of the form L(0).

Proposition 1.9. Let D be a (¢4, I')-module over Zy, of rank 1. Then there exists a character 6 € % (L) such
that D is isomorphic to Zr(8). Furthermore D is Op-analytic if and only if § € Fon(L).

Proof. The argument is similar to the proof of [9, Proposition 3.1]. We first reduce to the case that D is étale.

Then by Proposition 1.6 there exists an étale (¢4, I')-module A over do@LT such that D = Z1, ® .+ A. Now the
L

first assertion follows from Proposition 1.5 and Remark 1.8. The second assertion is obvious. O

2 The operators v and 0

2.1 The operator v

We define an operator ¢ and study its properties.



Note that {ul}o<i<q—1 is a basis of &, over pq(&7). So &7 is a field extension of ¢, (&7) of degree g. Put
tr = trgL/@q(gL).

Lemma 2.1.
(a) There is a unique operator 1 : &, — &, such that o, 01 = ¢~ 'tr.
(b) For any a,b € & we have Y (pq(a)b) = arp(b). In particular, 1 o p, = id.
(c) ¥ commutes with T'.

Proof. Assertion (a) follows from the fact that ¢, is injective. Assertion (b) follows from the relation

Pq(Y(pq(a)b)) = tr(pg(a)b)/q = ¢q(a)tr(b)/q = ¢q(a)pq((b)) = wq(ath(b))

and the injectivity of p,. As p, commutes with T, ¢, (&%) is stable under I'. Thus yotroy~! = tr for all v € I'.
This ensures that ¢) commutes with I". Assertion (c) follows. O

We first compute 1 in the case of the special Lubin-Tate group.

Proposition 2.2. Suppose that F is the special Lubin-Tate group.

(a) If £>0, then ¥(uf) = 1D apiuic with ve(ae:) > [0/q] + 1 — i — ve(q)-

(b) If £ <0, then (u) = 1D by juiz with vy (bes) > [€/q] +1 — i — v (q).
Proof. First we prove (a) by induction on ¢. As the minimal polynomial of ur is X? 47X — (u% + wur), by
Newton formula we have

(o if1<i<qg—2,
tr(u)_{(l—q)ﬂ' ifi=q—1.

It follows that ;
iv_J 0 if1<i<qg-—2,
w(“ﬁ_{ (1-—q)n/q ifi=q—1.

Thus the assertion holds when 0 < ¢ < g — 1. Now we assume that ¢ = j > ¢ and the assertion holds when
0<¢<j—1. We have

Yuf) = ((uh+ mup)uz?) = Plru ) = upd(uz ) - mpluE )
(/4] [t /g-1 |
N Ge-gic1Up = D Targi1it,
=1 i=0

Thus ap; = ar—q,i—1 — Tar—g+1,;- By the inductive assumption we have
Ur(ar—gi-1) 2 (€= q)/q) + 1= (i = 1) —vx(q) = [/q) + 1 =i — vz (q)
and
vr(ar—gt1,6) 2 [(E =g+ 1)/q +1—i—vx(q) = [¢/q) =i —vx(q)

It follows that vx(ae:) > [(/q] + 1 — i — v=(q).
Next we prove (b). We have

bluf) = w((”fq(lu;ﬂ/) SRk



[—4(g=1)/q] —¢ [/q) —¢ ‘ ‘
- Z Z[ } aj(g-1)i uR = ZZ{ } ajg-1)i-e - uF

1=£ 7=0

iy _ L [—e] _, .
Here, [ j ] = %. Thus by; = Z [ j ]w ¢ Taj(q—1),i—t- As

Z_jaj(q—l),i—é) > -+ | +1—(—4€)—vx(q))
= [—j/d+1—i—wv(q) > [l/q]+1—i—v(q),

we obtain vr(be;) > [€/q) + 1 —i — v (q). .

Jjlg—1)
q

Let &, be the subset of &7, consisting of elements of the form > aiuif.
i<—1

Corollary 2.3. Suppose that F is the special Lubin-Tate group. Then (& ) C & .
Proof. This follows directly from Proposition 2.2. |
Proposition 2.4. (a) We have (&) = &, z/J(Ogj) C 704+ and ¥(0s,) C Z0s, .

(b) v is continuous for the weak topology on &7,.

C 1S Sta ¢ unae ) an e striction o on I 1S Conitinuou. () wea Opo Ogy 0 L
Cg()[ bl d 7 1/) d th re 157 t 1/) Cg) t S 7 the [& k t l é()
S L ) q - ) ) 1S unaea 1n L € Wea, t()p() Ogy.
(1 1 Cg)( theﬂl the sequence w n n c N )0 d d Cg)( o1 th k l

Proof. Let Fy be the special Lubin-Tate group over F corresponding to 7. Observe that ¢r = 77}()1 FUFNF F-

As 7, Flur,) = urx a unit in Op[lur]], for any r > 0 we have that nz, r (O(gof’gL[l/u}-o]) = g?;i [1/ur]

and that 7z, 7 respects the valuation 097 Thus NFy,F 5}-?)2] — &r OT] is a topological isomorphism. It

follows that 5}07 L= 5;_- ;, and its inverse are continuous for the weak topology. Similarly nzg, 7 : &5, = 67,1
and its inverse are continuous for the weak topology. Hence we only need to consider the case of the special
Lubin-Tate group. Assertions (a) and (b) follow from Proposition 2.2. For (c¢) we only need to show that, for

any 7 > 0 we have w(gL(O’T]) C gL(O’T] and the restriction 1 : gL(O’T] — @“’L(O’T] is continuous. By (b) the restriction
of 1 to & is continuous. By Proposition 2.2 (b) and Corollary 2.3, if f is in &, N co@L(O’T}, then ¢(f) is in &7
and v (¥(f)) > vl (f) + vp(7/q). Thus ¢ : & N @@L(O’T] — &N @@L(O’T] is continuous, which proves (c). As
%d’(og;) C Og+ and oI (Lep(f)) = vl (f) for any f € & N é”L(O’T], (d) follows. O

Next we extend v to Z,.

Proposition 2.5. We can extend tr continuously to Z1,. The resulting operator tr satisfies tr|%(g,h) =gq-id
and tr(ZL) = ©q(Z1).

Proof. Let & ~°° denote the subset of &, consisting of f € &, of the form Do oo nUE. If f € &7, then

w(f)= Y flur+rm).

neker[r]
If n is in ker[n]r, then v,(n) > m
the morphisms ur — ur +xn (n € ker[n]r) keep the annulus {z € C, : p~" < |z| < p~*} stable. So for any
f € &7 we have vl*7I(f(ur +7 1)) = vI¥7(f) and vI*7(tr(f)) > vl*7)(f). Hence there exists a unique
continuous operator Tr : 1, — %y, such that Tr(f) = tr(f) for any f € &~ >°. (For any f € %y, choosing a

1071 " we can find a sequence {fi}i>1 in 7 such that f; — f in &107);

where ep = [F : Fy]. Thus, if r and s € R, satisfy m >1r > s,

positive real number 7 such that f € 5
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then {tr(f;)}:i>1 is a Cauchy sequence in é”L[S’T] for any s satisfying 0 < s < r, and we let Tr(f) be their limit in

&1071: it is easy to show that Tr(f) does not depend on any choice.) From the continuity of Tr we obtain that

Tr|z+ = tr and Tr|, (%,) = ¢ -id. By Lemma 2.6 below, ¢, : Z1, — %y, is strict and thus has a closed image.
L

Since gLT is dense in #;, and Tr(gT) = gpq(@@T) C pq(Z1), we have Tr(%1) C pq(Z1). O

10,7]

Lemma 2.6. If (q:{ >r>s>0and f €&, then we have

o vl7(5(f)) = vo7)(f) for all v €T;
ol g (F)) = 0l f) if r < e

Proof. Since [x7(7)]r(ur) € urOp[[ur]], we have v,([x#(7)]#(2)) = vp(2) for all z € C, such that v,(z) > 0.
By the same reason we have v, ([x# (7" 1)]#(2)) = vp(2) and thus v, ([x#(7)]#(2)) < vp(2). So vp([xr(M]x(2)) =
p(2).

If z € C, satisfies pfm <p "<
z + [n]F7(2) of the annulus {z € C, "<
Conversely, if w € C, is such that p~9" < |w| < p~9°, then v,(w) < m.
polynomial —w + [7] #(uz) shows that this polynomial has ¢ roots of valuation %Up(w). If z € C, is such a root,

z| < p7° < 1, then v,([7]r(2)) = qup(z). Thus, the image by
|z| < p~*°} is inside the annulus {z € C, : p™7" < |z| < p~ ¥},
The Newton polygon of the

- T

we have p~" < |z| < p~*. Thus, the image of the annulus p~" < |z| < p~* is the annulus p~9" < |2z| < p~ . O

We define ¢ : Z1, — Z1, by1/):l @, ' otr.

Lemma 2.7. If (q:{)e >r>s>0and f € é”or] then vI&T1((f)) = v/ /d(f) —v,(q).
Proof. By Lemma 2.6 it suffices to show that

olo 8 (5 (1)) = 1o/ (g (1)) = 0/ (f) — v, (o)
But this follows from Proposition 2.5 and its proof. |

As a consequence, ¥ : Z1, — Z;, is continuous.

Corollary 2.8. (a) {u’:}to<icq_1 is a basis of & over v (&), and tr| o1 = tret . (87)
- L L L

(b) {ul}o<i<q—1 is a basis of Zr, over ¢ (#L).
Proof. Let {bi}o<i<q—1 be the dual basis of {u’r}o<i<q—1 relative to trg, s, (s,)- Let B be the inverse of the
matrix (tr(u’77)); ;. Then B € GLy(&]) and (bo, b1, ,bg—1)" = B(Luz,--- ,ul ")t So by, bi,--- ,by_1 are
in éaLT Then f Ef:_ol ub(b; f) for any f € &, éaLT or Zy,. (For the former two cases, this follows from the
definition of {b; }0<Z<q 1; for the last case, we apply the continuity of ¢.) Thus {u’}o<i<4—1 generate gLT (resp.
A1) over cpq(do@ ) (resp. ¢4(Z%L)). In either case, to prove the independence of {ui}o<i<q—1, we only need to

use the fact ¥ (b;uly) = &;; (i,5 € {0,1,---,q — 1}), where &;; is the Kronecker sign. Finally we note that the
second assertion of (a) follows from the first one. O

We apply the above to (¢4, ')-modules.

Proposition 2.9. If D is a (¢, T')-module over R where R = &}, é”g or Zr,, then there is a unique operator
v : D — D such that

Plagpy(z)) = Y(a)r and ¢(pq(a)r) = ayp(z) (2.1)

for any a € R and x € D. Moreover ¢ commutes with T

Proof. Let {e1,ea,--- ,eq} be abasis of D over R. By the definition of (¢4, I')-modules, {4 (e1), ¢q(e2), -, pq(eq)}
is also a basis of D. For any m € D writing m = aipq(e1) + azpq(e2) + -+ + aapq(eq), we put (m) =
Y(ar)er +(az)ea + -+ -+ 1Y(aq)eq. Then 1) satisfies (2.1). It is easy to prove the uniqueness of ¢). Observe that
for any v € T', vy~ also satisfies (2.1). Thus yy~! = 1 by uniqueness of 1. This means that 1) commutes
with T'. |

11



2.2 The operator 0 and the map Res

Recall that @ = 95 (ur,0) - d/dur. So dtr = G5 (ur,0)dur and $2 = (5 (ur,0)) ",
Lemma 2.10. Ifr > s> 0 and [ € %f,r]; then v>"1 (9 f) = vlsTI(f) — 7.

Proof. Observe that vp(aa};f (2,0)) = 0 for all z in the disk |2| < 1. Thus vI*"l(9f) = vl*7] (%). Write

[ =2 ez anu’r. Then we have

ple] ( df ) inf v, (nap,z"")

dur r>vp(2)=s
nez

2 T>vipr%£)>s (Up(an) + ’m}p(z) - Up(z))
newz

> T>vipr%£)>s (vp(an) + nop(2)) — 7
nez

> ool f) -
as desired. O
Lemma 2.11. We have
0-04=0a0,-0, 0 pg="mpg-0, Doy =7t od.
Proof. From the definition of V we see that V = tx0 commutes with I', ¢, and 1. So the equalities
aa(tr) = atr, ¢q(tr) =mtr, P(tr) =P(r  pe(tr)) =7 'tx

imply the lemma. O

Let res : Zrdur — L be the residue map res(z auldur) = a_1, and let Res : Z;, — L be the map
defined by Res(f) = res(fdtr). “

Proposition 2.12. We have the following evact sequence

0

0 L Zr, R, 2= 0

where L — %y, is the inclusion map.

Proof. The kernel of 0 is just the kernel of d/duz and thus is L. For any a € L we have Res(;% (iﬁf )7 ) =aq,
which implies that Res is surjective. If f = dg, then fdtz = dg and so Res(f) = res(dg) = J. 1t follows that
Resod = 0. Conversely, if f € %y, satisfies Res(f) = 0, then f can be written as f = (&z)~1. Dt a;u's.

dur
Put g =3, 775 “r1 Then f = dg. O

Proposition 2.13.
(a) Resoo, = a 'Res.
(b) Reso g = IRes and Reso 1 = ZRes.

Proof. First we prove (a). Let g be in %, and put f = d¢g. By Lemma 2.11 we have

oa(f) = 0a00(g) = a”'0(aa(g)), ¥(f) =1 0d(g) =md(¥(g)).

12



Thus by Proposition 2.12 we have Reso o, = a 'Res = 0 and Reso 1) = %Res =0 on 0Zy,. From

IR S SR
O'a(l/u_/?)—m = aur mod%L,

we see that Reso Ua(ﬁ) = a_lRes(ﬁ). Assertion (a) follows.

To prove Reso ) = gRes, without loss of generality we suppose that F is the special Lubin-Tate group. In
this case w(%) = 7> and so Res(¢(1/ur)) = 7Res(1/ur). It follows that Res ot = TRes. Finally we have

qur’ q

Res(pq(2)) = £Res(1(pq(2))) = LRes(z) for any z € Zr. In other words, Res o ¢, = ZRes. O
Using Res we can define a pairing {-,-} : Z;, x Z1, — L by {f,g9} = Res(fg).

Proposition 2.14. (a) The pairing {-,-} is perfect and induces a continuous isomorphism from Zy, to its

dual.
(b) We have
(@alfooalo) =a L) (ealDealo) = LUFgh (0D 0@} = TS0}
Proof. Assertion (a) follows from [12, Remark I.1.5]. Assertion (b) follows from Proposition 2.13. O

3 Operators on Zc,

3.1 The operator ¢ on %c,

First we define #Zc,. For any r > 0, let do@(]c(:’r] = (o@]o’r]@FCp be the topological tensor product, i.e. the
Hausdorff completion of the projective tensor product &% @p C, (cf. [23]). Then é”é?)’r] is the ring of Laurent
series f =),y a;u’- with coefficients in C,, that are convergent on the annulus 0 < v,(uz) < r. We also write
%gp for é”([]:z’Jroo]. Then we define Zc, to be the inductive limit }li% do@(]:(im].

The p-adic Fourier theory of Schneider and Teitelbaum [241] shows that %gp is isomorphic to the ring
2(0p,C,) of Cp-valued locally F-analytic distributions on Or. We recall this below.

By [24] there exists a rigid analytic group variety X such that X(L), for any extension L C C, of F, is the
set of L-valued locally F-analytic characters. For A € 2(Op, L), put Fx(x) = A(x), x € X(L). Then F) is in
O(%X/L), and the map 2(Op,L) — O(X/L), A — F}, is an isomorphism of L-Fréchet algebras.

Let F' be the p-divisible group dual to F, TF’ the Tate module of F'. Then TF' is a free Op-module of
rank 1; the Galois action on T'F’ is given by the continuous character 7 := Xcyc ~X}1, where xcyc is the cyclotomic
character. By Cartier duality, we obtain a Galois equivariant pairing ( , ) : F(Cp) ®0, TF" — B1(C,), where
B1(C,) is the multiplicative group {z € C, : |z — 1| < 1}. Fixing a generator ¢’ of TF’, we obtain a map
F(C,) — B1(Cp). As a formal series, this morphism can be written as Sz(X) := exp(Qlogz(X)) for some
Q€ Cp, and it lies in 14 X O¢, [[X]]. Moreover, we have v,(2) = p+1 - m (cf. the appendix of [24] or [7])
and o(Q) = 7(0)Q2 for all 0 € Gp. Using (,-) we obtain an isomorphism of rigid analytic group varieties

k:F(Cp) = X(Cp), 20 k(i) = (t', [i]7(2)) = Br(li] 7 (2)).

Passing to global sections, we obtain the desired isomorphism 2(Op,C,) = O(X/C,) = %{{p.
We extend ¢y, ¢ and the I'-action Cp-linear and continuously to Zc,. By continuity we have 1 (pq(f)g) =
J(g) for any f,g € Zc,. All of these actions keep %gp invariant.
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Lemma 3.1. We have

oa(Bx([i]F)) Br([ai]F),
0q(Br([i]7)) = Br(rilF),

. 0 ifidn0
vBx(lilz) = {ﬁfqz'/w]f) i Or,
IBx([i]7) = QBx([i]F).

Proof. The formulae for o, and ¢, are obvious. The formula for 0 follows from that
dexp(iQlogr(ur)) = exp(ilogr(ur)) - (i x) = iQexp(iQlogr(ur)).
If i € 7Op, then Y(Bx([i]7)) = ¥ o a(Bx([i/7)F)) = Bx([i/n]F). For any i ¢ 7O, we have

Y(Br([i]F)) = 2%}1 ( Y Br(lilr(ur +7 n))) = %w;l (ﬁr([i]f) > Bf([i]f(n))) =0 (31

neker[w] x neker[w]x

because {Bx([i]#(n)) : n € ker[n]r} = {Br(n) : n € ker[r]r} take values in the set of p-th roots of unity and
each of these p-th roots of unity appears ¢/p times. |

The isomorphism %gp = P(0p,C,) transfers the actions of ¢g, ¥ and I" to Z(Op,C,).
Lemma 3.2. For any p € 2(0Op,C,), we have

aa()(f) = n(f(a);  eq()(f) = p(f(m)).

Proof. Note that the action of ¢, and I' on %&Lp comes, by passing to global sections, from the (¢4, I')-action
on F(C,) with ¢, = [r]r and 0, = [a]#. The isomorphism « transfers the action to X(Cp): ¢,4(x)(x) = x(7z)

and o, (x)(z) = x(azx). Passing to global sections yields what we want. O
Lemma 3.3. The family (ﬁ]:([i]]:))i on) is a basis of Zc, over pq(%c,). Moreover, if
i€Ofp/m
f= 22 Br(llF)ee(f),

;GOF/TF

then the terms of the sum do not depend on the choice of the liftings i, and we have

fi= w(ﬁf([—i]F)f) '
Proof. What we need to show is that
f=2 BrlilF) - eqob(Br(~i5)f) (3.2)
i€Op /7

for all f € Zc,. Indeed, (3.2) implies that {87([i]7)}ico, /= generate Zc, over ¢ (%c,). On the other hand,

it f= 35 Br(li]r)ee(fi), using (3.1) we obtain f; = (Bx([—i]#)f), which implies the linear independence
EEOF/TF

of {Bx([i]7)}icor/x Over vq(%c,). As the map f = 3o/ Br([i]F) - pq 0 V(Br([—i]F)f) is vq(Zc,)-linear

and continuous, we only need to prove (3.2) for a subset that topologically generates %c, over ¢,(Z%c,). For

example, {u’r}o<;<4—1 is such a subset. So it is sufficient to prove (3.2) for f € %gp. For any i € Op, let §; be

the Dirac distribution such that §;(f) = f(i). Then £*(9;) = B#([i]7). Indeed, we have

17(0:)(2) = 0i(2) = k2 (i) = Br([i]7(2))-
It is easy to see that (0;)jco,/r 15 a basis of Z(OF,Cp) over ¢ (Z(OF,Cp)). Thus every f € %’gp can be
written uniquely in the form f =375, /. Br([ilr)eq(fi) with f; € %{{p. As is observed above, from (3.1) we
deduce that f; = ¥(87((~i7)/). O
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Next we define operators Resy. These are analogues of the operators defined in [12].
For any f € %c,, i € O and integer m > 0, put

Resi oy (f) = Br((i]7) 2y o 6™) (Br(1-il5)f ).

Lemma 3.3 says that
f= Z Resi-ﬁ-w@F(f)v

i€Op /7

This implies that the operators Res;;.mo, are well defined (i.e. Res;yrmo, does not depend on the choice of
¢ in the ball i + 7™ Op). Applying Lemma 3.3 recursively we get

f= Z Resiyrmop(f)-
€O /mm

Finally, if U is a compact open subset of Op, it is a finite disjoint union of balls iy + 7™*Op. Define
Resy = >, Resi, yrmr0p. The map Resy: Zc, — Zc, does not depend on the choice of these balls, and
we have Resp, =1, Resy = 0 and Resyuu+ + Resynyr = Resy + Resyr.

3.2 The operator m,

Let a: Op — C, be a locally (F-)analytic function. In this subsection, we define an operator mq: #Zc, — Zc,
similar to the one defined in [10, V.2].
Since « is a locally analytic function on Op, there is an integer m > 0 such that

+oo
a(r) = Z ain(x—1)" forallz €i+7"0p,
n=0

with a;, = & ddw—nna(x)‘mzi. Let ¢ > m be an integer. Define
+oo
ma(f)= 3 Br(lil) (wf, o (Z ai,nwfm-"a"> o wf> (87115 £).
i€OFp /7t n=0

(Formally, this definition can be seen as “m, = a(Q2719)”). According to Lemmas 2.6, 2.7 and 2.10, if
r< m then we have
VT (g 0 Q770" 0 ) (g)) = —ng'r —nvy(Q) + v (g) — Lup(a),

and thus Y% an i7" (¢! 0 Q79" 0 1)) (g) converges when ¢ and r satisfy

n=0

l 1 1

n >
er p—1 (¢g—1er  er

If we choose ¢ > m + % — qil and 7 close enough to 0, then this condition is satisfied. Hence, we have indeed

defined a continuous operator mq: #Zc, — %c,,-
Now, let us prove that m,(f) neither depend on the choice of ¢, nor on that of the liftings i for i € Op /7",
By linearity and continuity, we may assume that f = 1,4 mo,(z —4)*. Remark that we have

k :| ﬂ_(k—n)mvk—n'

Aijpmpmoyn = |:7’L
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It suffices to show that,

k
Y B[l <90f; 0 <Z ammv,nw%”an) o wl) (B (=705 - 1)
n=0

7€0fp /mt—™m

and for this it is sufficient to prove that

k
Z ﬂ]:([v]]:) (‘Pgm o (Z aiJrTrmv,nﬂannan) o 1/}Em> (ﬂ}‘([—v]}‘) : f) = kakaZ)kf.

veQFR /mt—m n=0
As
k k k k
ZoaiqLﬂmv,nﬂaninan — ZO |:n:|7_r(kn)mvkn . angfnan _ 7_‘,mk (ﬁ£7m9718 + 1)) ,
n= n=

it suffices to prove that

QFtr = 3 Br(ls) (o (7m0 4 0) 0w ) (Br(1—elr)f )

DEOp /mt—m
Since (7~"Q710 + v)k opft=m = ypf=mo (A9 + v)k and

(@710 +v) (Br(l—ulr)f) = Br((—vl-)0'0f
(which follows from Lemma 3.1), the problem reduces to proving
F= > Bl (¢ et (Br(lulr)f )
TEOR [mt=m
But this can be deduced from Lemma 3.1 and Lemma 3.3.
Lemma 3.4. If o, 3: O — C,, are locally analytic functions, then mq 0 mg = mqg.

Proof. We can choose ¢ sufficiently large, so that the same value can be used to define m, (f) and mg(f). Since
Plo gof; = 1, the equality in the lemma reduces to the expression of the product of two power series. O

Lemma 3.5. We have:
e mp; =id
e IfU is a compact open subset of O, then Resy = mq,, .
o If A€ Cp, then myq = AMmq.
® g0 My = Mgis o, (x)a(r—z) © Pq
e pom, = My sa(rz) © P

7, we have 04 0 My = Marsa(a—1z) © Oa

e For anya € O
o %’gp 1s stable under my,.
Proof. These are easy consequences of the definition of my,. |

Remark 3.6. The notation m, stands for “multiply by o”: for any p € 2(Or, C,) we have mor*(F),) = £*(Fap),
where au is the distribution such that (au)(f) = pu(af) for any locally F-analytic function f.
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The operator m,, has been defined over Z¢ ,, using a period 2 € C, that is transcendental over F'. However,
in some cases, it is possible to construct related operators over %y, for L smaller than C,. This is done using
the following lemma.

Lemma 3.7. Let o be in Gr. Consider the action of o over Zc, given by

) =Y olay i flur) =3 € %,

nez neZ

Then, we have mq(f)7 =mg(f?), for B(z) =0 (a (;r:((go)):v))

Proof. This can be deduced easily from the definition of m, and the action of ¢ on . O

3.3 The L[[']-module Z(§)¥=°

Let 0: F* — L* be a locally F-analytic character. Then the map x — 10; (2)d(x) is locally analytic on Op.
Thus, we have an operator mi s on %’Cp.
F

Lemma 3.8. Let [ be in Zp. If m10x5(f) =Y nez nU'y € Xc,, then the coefficients a,, are all on the same

line of the L-vector space C,. Moreover, this line does not depend on f.

Proof. Let o be in GGr,. From Lemma 3.7 and Lemma 3.5 we see that

mas(f)7 = ( x(0) ) ma_, 5(f);

XG () F

and thus o(a,) =9 ( Xz (2) ) a, for all n.

X6m (7)
Ax-Sen-Tate’s theorem (see e.g. [1] or [18]) says that C§* = L. Hence,

{zecp: a(z)_5<”(”)>zvaeeL}

XG (0)

is an L-vector subspace of C, with dimension 0 or 1, which proves the lemma. O

Since mi_.50my 51 = Resoé =1 — ¢4 09 is not null, there is a unique L-line in C, (which depends
F F
only on ¢) in which all the coefficients of the series mi s(f), for f € Zy, lie. Choose some non-zero as on this
F

line.

As

Pgotomr 5 =M0.1,,8=0
F F
and ¢, is injective, my_, 5(f) is in Z¢ .
F

Lemma 3.9. Define:
Ms: #7=° — 27",
f — aglmlo;(;(f).

(These maps are defined up to homothety, with ratio in L, because of the choice of constants as). Then:
e M is a homothety (with ratio in L*) of %Z’ZO;
o Ms, o Ms, = Ms,5,, up to homothety;

e Ms is a bijection, and its inverse is Ms—1 up to homothety;
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e for all v € T, we have §(y)yo Ms = Mso~;
o (#])¥=" is stable under Ms;.
Proof. This follows from Lemma 3.5 and the fact that Im(ResO;) = Ker(Resr0,) = %’g:o. O

If § is in S (L), we put Z; (0) = Z1(6)/Z] (5). Since Z](0) is ¢q, 1, -stable, Z; (§) also has ¢, 1),

I'-actions.

Lemma 3.10. We have an exact sequence
0 ——=2Z;(6)V=0 ——= % (6)V7" ——= %, (6)V=" ——0.
Proof. This follows from the snake lemma and the surjectivity of the map ¢ : 2} (§) — %} (6). O

Observe that 27 (8)"=" = #y=" - e; and Z} ()V=" = (#})"=" - 5. As ¢ commutes with T, Z,(§)¥=0,
7 (6)Y=% and Z; (§)=° are all I'-invariant.

Proposition 3.11. Let 6, and 02 be two locally F-analytic characters F* — L*. Then as L[T']-modules,
R1,(61)¥=" is isomorphic to Z1(62)¥=C, %} (61)¥=0 is isomorphic to Z] (02)¥=", and %} (61)¥=° is isomorphic
to Z; (62)V=0.

Proof. All of the isomorphisms in question are induced by M PR O

Proposition 3.12. The map 0 induces I'-equivariant isomorphisms (#1,(0))¥=° — (%1 (x6))¥=, (%] (0))¥=° —
(Z1 (20))¥= and (% (9))V=° — (Z (20))¥=°.

Proof. We first show that the maps in question are bijective. For this we only need to consider the case of § = 1.
As Ker(0) = L, 0 is injective on L@gzo. For any z € L@gzo, Res(z) = ZRes(1(z)) = 0. Thus by Proposition
2.12 there exists 2z’ € %y, such that 9z’ = 2. As 9(1(2')) = 2(92') = 0, (2) = c for some ¢ € L. Then

s
2 —ce %fzo and (2" — ¢) = z. This shows that the map L%’ILZ’:O — %fzo is bijective. It is clear that, for any
z € %2/’:0, 0z € #Z; if and only if z € #Z; . Thus the restriction 9 : (%Z;)¥=° — (%#;)¥=° and the induced map
O (#;)V=0 — (%, )¥=" are also bijective.
That these isomorphisms are I'-equivariant follows from Lemma 2.11. O

Put
Ss =Ry (0)F=Hv=0. (3.3)

As before, let Vs be the operator on %zr or Zy, such that (Vsa)es = V(aes), i.e. Vs = tx0 + ws. The set
F}(8)/V s} (8) also admits actions of I, ¢, and 1. Put

Ty = (2} (0)/ V57 (6))T ="
Both Ss and Ts are L-vector spaces and only depend on §| o5

Lemma 3.13. S; = %, (5)¢’:0*V‘5:0’ I'=1"je. S5 coincides with the set of I'-invariant solutions of Vsz =0 in
7y (5)=0.

Proof. In fact, if z € %Z; (6)'=', then Vsz = 0. O
Corollary 3.14. dimy, S5 = dimy, S; and dimy, Ts = dimg T} for all 6 € Fon(L).

Proof. This follows directly from Proposition 3.11. O
Corollary 3.15. The map z — 9"z induces isomorphisms Ss — Syns and Ts — Tyns.

Proof. This follows directly from Proposition 3.12. |
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We determine dimy, S5 and dimy, Ts below.
Lemma 3.16. The map Vs induces an injection Vs :Ss — Ts.

Proof. By Proposition 3.11 we only need to consider the case of § = 1.

Let z be an element of S7. Let Z € %’fzo be a lifting of z. By Lemma 3.13, VZ is in %’Z‘ We show that
the image of VZ in %, /VZ; belongs to Ti. Since ¢(2) = 0, (VZ) = V(¢(2)) = 0. For any ~ € I there exists
a, € %} such that vz = Z + a,. Thus v(VZ) = VZ + Va,. Hence the image of Z in Z; /VZ; (9) is fixed by
I'. Furthermore the image only depends on z. Indeed, if z’ € %’fzo is another lifting of z, then V(2 — 2) is in
V,%’Z'. Therefore we obtain a map V : §; — T1.

We prove that V is injective. Suppose that z € Sy satisfies Vz = 0. Let Z € %’%:O be a lifting of z. Since
Vzisin V,%’Zr, there exists y € %zr such that Vy = VZ. Thus V(2 —y) = 0. Then Z — y is in L, which implies
that z € %2’ or equivalently z = 0. O

Lemma 3.17. dim; T} = 1.

Proof. Note that Ty = (%Z; /%] t7)'=1¥=0. As %] is a Fréchet-Stein algebra, from the decomposition (1.1) of
the ideal (tx) we obtain an isomorphism

221 | tr = 2 (7] F(uz) x [ 21 /(07(Q)). (3.4)

n>1
The operator v induces maps g : %z/([ﬂ]f(Uf)) — %f/%’fu; and v, : e%’zr/(cpg @) — e%’zr/(cpq_l(Q)),
n > 1. Thus j((Z] /% tF)'=1¥=0) is exactly the subset
{(yn)nz0 = vo € (2 /(W F(ur)" vo(yo) = 0, yn € (21 /(£3(Q)", ¥n(yn) = 0 Yn > 1}

of 21 /([n] 7 (ur)) x 1 21/ (£5(Q))-
If n > 1, then %}/ ¢, (Q) is a finite extension of I and the action of T' factors through the whole Galois
group of this extension. Thus (27 /(¢2(Q)))" = F and (2] /(¢2(Q)))" = L. Since ¥, (a) = a for any a € L,

(%7 /(¢ (@))" Nker(y,) = 0 for any n > 1. Similarly (2] /([7]=(ur))" = (2] /(ur))" *x (2 /(@Q)" is
2-dimensional over L. As ty(1) = 1 and the image of ¢, i.e. Z] /% ur, is 1-dimensional over L, the kernel of
¢0|(@g/([ﬂ]F(uF)))p is of dimension 1. It follows that T} = (%} /%] tF)'=1¥=C is of dimension 1. O

Corollary 3.18. dimy S; = 1.
Proof. The map V injects S7 into T7 with image of dimensional 1. O

Remark 3.19. If z € Ty is non-zero, then any lifting Z € %, of z is not in ur#; or equivalently Z|,,—o # 0.
We only need to verify this for the special Lubin-Tate group. In this case, % /([7]7(ur)) = ®_; Luk. We
have (%] /(7] (uzr)))T = L ® Lu%". Tndeed, an element of %} /([7]#(uz)) is fixed by T if and only if it is
fixed by the operators z — o¢(2) with € pg—1; but o¢(ur) = [{]r(ur) = {ur and so o¢(uy) = 'ulx for any

. I'=1,=0 _
i €N. Then (2] /(w7 (ur) """ =L (§ = (1 = q)w/q).

Proposition 3.20. For any § € S, (L), dimg Ss = dimy T5 = 1 and the map Vs is an isomorphism.

Proof. This follows from Corollary 3.14, Lemma 3.16, Lemma 3.17 and Corollary 3.18. O

4 Cohomology theories for (¢,,I')-modules

For a (g4, I')-module D over Zy,, the (¢4, I')-module structure induces an action of the semi-group G* := @}/ xT'
on D. Following [13] we define H*(D) as the cohomology of the semi-group G*. Let C*(G*, D) be the complex

0 —= C°(G*, D) —2> CL(G+, D) 2 ...
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where CO(GT, D) = D, C"(GT, D) for n > 1 is the set of continuous functions from (G*)" to D, and d, 41 is
the differential

n—1
dn+1c(gov U 7gn) =90 C(glv o 7gn) + Z(_l)i+1c(905 5 9i9i41, 0 gn) + (_1)n+1c(905 o 'gnfl)'
=1

Then HY(D) = H(C*(G™, D)).
If Dy and Dy are two (g4, I')-modules over Zr,, we use Ext(D1, D) to denote the set, in fact an L-vector
space, of extensions of Dy by D in the category of (¢4, I')-modules over Zr.

We construct a natural map ©F : Ext(#,, D) — H'(D) for any (¢,,')-module D. Let D be an extension

of Z1, by D. Let e € D be a lifting of 1 € #Z;. Then g — gle) —e, g € GT, is a 1-cocycle, and induces an
element of H'(D) independent of the choice of e. Thus we obtain the desired map

oP : Ext(%r,D) — H'(D).
Proposition 4.1. For any (¢4, T')-module D over Zy,, ©F is an isomorphism.

Proof. Let D be an extension of %, by D in the category of (¢4, I')-modules whose image under ©F is zero.
Let ¢ € D be a lifting of 1 € #,. As the image of g — gle) —e, g € G, in HY(D) is zero, there exists
some d € D such that (g — 1)e = (¢ — 1)d for all g € G*. Then g(e —d) = e —d for all g € G*. Thus
D=D® Z1(e —d) as a (pg, I')-module. This proves the injectivity of ©P. Next we prove the surjectivity of
OP. Given a 1-cocycle g — c(g) € D, correspondingly we can extend the (¢4, I')-module structure on D to the
Z1-module D = D & Zpe such that pq(e) = e+ c(pqg) and y(e) = e+ c(y) for vy € T O

If Dy and Dy are two Op-analytic (¢4, I')-modules over Zp,, we use Exta, (D1, D2) to denote the L-vector
space of extensions of Dy by D in the category of Op-analytic (¢4, ')-modules over #Zr. We will introduce
another cohomology theory H, (—), wherein for any Op-analytic (¢4, I")-module D the first cohomology group
H (D) coincides with Ext.,(ZL, D).

If D is Op-analytic, we consider the following complex

o, v (D) 0—=D—*pap®.-p__ o0,

where f1 : D — D ® D is the map m — ((¢q, — 1)m,Vm) and fo : D@® D — D is (m,n) — Vm — (¢, — 1)n.
As f1 and fs are I'-equivariant, I' acts on the cohomology groups H;qu(D) = Hi(C;qu(D)), 1=0,1,2. Put
H;,\ (D) = H, o(D)".

By a simple calculation we obtain

HO(D) = HY,(D) = DPr=tr=1,

Note that D?+=! is finite dimensional over L, and so is H°(D). If D is étale and if V is the L-linear Galois
representation of G attached to D, then

H°(D)=H? (D)= H(Gp,V)=VCr,
For our convenience we introduce some notations. Put Z} (D) := ker(f2) and B'(D) := im(fy). For any
(m1,mn1) and (me,ng) in Z;qu(D), we write (mi,n1) ~ (ma,nz2) if (m1 — ma,n1 —no) € BY(D). Put
Z4(D) = {(m,n) € 2, 4(D) : (m,n) ~7(m,n) for any 7 € T}.

Then H} (D)= Z%(D)/BY(D).

Let D be an Op-analytic extension of Z by D. Let e € D be a lifting of 1 € Zr. Then ((¢q — 1)e, Ve)
belongs to Z1(D) and induces an element of HZ (D) independent of the choice of e. In this way we obtain a
map

©5, : Extun(Z1, D) — Hy, (D).
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Theorem 4.2. (= Theorem 0.1) For any Op-analytic (¢4, T')-module D over %y, OF

an 1S an isomorphism.

The proof below is due to the referee and much simpler than the proof in our original version.

Proof. First we show that ©F is injective. Let D be an Op-analytic extension of Z;, by D whose image under
OD is zero. Let e € D be a lifting of 1 € #;. As the image of ((pq — l)e,Ve) in H;q_’v(D) is zero, there
exists some d € D such that (¢, —1)e = (¢4 —1)d and Ve = Vzd. Then e —d is in D#:=1.V=0_ The D-action
on D¥a=1.V=0 ig locally constant and thus is semisimple. So 1 € Zp, has a lifting ¢’ € D#a=1.V=0 fived by T
This proves the injectivity of O .

Next we prove the surjectivity of ©F .

Let z be in H}, (D) and let (z,y) represent z, so that Vo = (¢, — 1)y. The invariance of z by T' ensures
the existence of y, € D for each o € I" such that (o — 1)(z,y) = ((¢q — 1)¥Ys, VYo ). As y, is unique up to an
element of D¥a=1V=0_the 2-cocycle Yo,r = Yor — OYr — Yo takes values in D¥«=1LV=0_1f » = 0, then there
exists @ € D such that = (¢4 —1)a and y = Va. We have V(y, — (¢ —1)a) = 0. In other words, we can write
Yo = (0 — 1)a + a, with a, € D¥a=V=0 Then y, , = a,r — 0a, — a, and thus ye e is a coboundary. So we
obtain a map H} (D) — H*(T, D¥«=1,V=0),

We will show that the image of z by this map is zero. Fix a basis {e1, -+ ,eq} of D over Zr. Let r > 0
be sufficiently small such that the matrices of ¢, and o € T relative to {e;}?, are all in GL4(& éo,r])' Put

Dol = EBf-l:lco@iO’r}ei; if s € (0,7] put DI®"l = Eszldo@L[s’r}ei. Then D"l and DI*"] are stable by I'. As the
matrix of ¢, is invertible in Mg(&£1%™), {pq(e:)}9, is also a basis of DI%"]. Shrinking r if necessarily we may

assume that ¢, maps D7l to Dls/47/d; we may also suppose that = and y are in D!"], and that tr € é”%o’r].

By the relation V = tx0 on co@L[S"T], Lemma 2.10 and the fact that V is a differential operator i.e. satisfies a
relation similar to (1.2), we can show that the action of I'" induces a bounded infinitesimal action V on the
Banach space DI*"]. We leave this to the reader. Let us denote £(o) = log(x#(c)). For o close enough to 1
(depending on D and s,r) the series of operators

converges on D7) and also on DI*/@7/d. Note that, for o close enough to 1 we have o = exp(/(¢)V) on
Dls/ar/d4)l Tet TV be an open subgroup of I' such that for o € I the above two facts hold. Then for o € T" we
have

(00 = D(E(0)y) = E(0)(¢y — 1)y = E(0)Va = VE(o)z = (o — ). (4.1)

Note that ¢,(E(0)y) is in DI¥/¢7/d So by (4.1) we have E(o)y € Dls/av/d 0 Dlsl = pls/arl if 5 is chosen
such that s < 7/q. Doing this repeatedly we will obtain E(o)y € D", Taking y, = E(0)y for o € T we will
have y,, = 0 for 0,7 € I". In other words, the restriction to I' of the image of z in H?(I', D¥«=1V=0) 5 (.
Since T'/T” is finite and D¥+=1V=0 is a Q-vector space, the image of z is itself 0. So we can modify y, by an
element of D¥s=1:V=0 5o that v, , is identically 0. But this means that (0 — 1)y, = (7 — 1)y,, so the 1-cocycle
g+ @, 0 — Yy, defines an element of H'(D) hence also an extension of Zr, by D.

We will show that the resulting extension in fact belongs to Extl (%, D). As T is locally constant on
D#a=1LV=0_"shrinking I" if necessary we may assume that I acts trivially on D¥«=%V=0 Then o — y, — E(0)y
is a continuous homomorphism from IV to D¥«=1V=0_ Note that any homomorphism from I’ to D#«=1V=0
can be extended to I'. Thus y, — E(0)y = A(o) for some A € Hom(T', D¥«=1:V=0) and all ¢ € T". If S is a set
of representatives of I'/T in T', the map Tg = ﬁ > ocs 0 is the identity on H} (D) and a projection from

D¥a=1V=0 t5 HY9(D); moreover it commutes with ¢,, V and I'. This means that we can apply Ts to (z,y) and
Yo; then we have y, — E(o)y = \(o) for some A € Hom(T', H%(D)) and all ¢ € I'". As 0 — E(0)y is analytic,
the extension in question is Og-analytic. O

As above, let Hom(I', H(D)) be the set of homomorphisms of groups from I' to H°(D). A homomorphism
h : T — HO(D) is said to be locally analytic if h(exp(aB)) = ah(exp(B)) for all a € Op and B € Liel'. Let
Hom,, (T, H°(D)) be the subset of Hom(T', H(D)) consisting of locally analytic homomorphisms.
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Note that we have natural injections
Hom,, (T, H*(D)) — Ext! (%#1,D) and Hom(T,H°(D))— Ext'(%y,D).

Theorem 4.3. Assume that D is an Op-analytic (pq,')-module over Z1,. Then we have an exact sequence
0 —— Hom,, (T', H*(D)) — Hom(T', H(D)) @ Ext. (%1, D) — Ext' (%, D) — 0.

For the proof we introduce an auxiliary cohomology theory. Let v be an element of I' of infinite order, i.e.
log(x#(7v)) # 0. We consider the complex

ce (D) 0—=D—DeD2~D—>0,
where g1 : D — D@D is the map m — ((¢q—1)m, (y—1)m) and g2 : D®D — D is (m,n) — (y—1)m—(pq—1)n.
As g1 and g9 are T-equivariant, " acts on Hj;,q’,y(D) = Hi(C;qﬁ,y(D)), i=0,1,2. Put H: _(D):=H! _(D)'.

an,y Pary
A simple calculation shows that HY, (D) = HY, (D).

For any v € I' we use () to denote the closed subgroup of I' topologically generated by . If 7 is of infinite
order and if D is an Z#-module together with a semilinear (y)-action, let V. be the operator on D that can be

written as lli){l % formally, where 4’ runs through all elements of w with log x#(7') # 0. (For a precise

5
definition we only need to imitate the definition of V.)

Let D be an Op-analytic extension of Z1, by D. Let e € D be a lifting of 1 € #r.. Then ((¢q—1)e, (y—1)e)
induces an element of H. _(D) independent of the choice of e. This yields a map ©F _ : Ext.,(%.,D) —

an,~y an,?y

H} (D). Given an element of H}

any any (D), we can attach to it an extension D of #;, by D in the category of
free Zr-modules of finite rank together with semilinear actions of ¢, and w Let e € D be a lifting of 1 € Z..
Then ((pq — 1)e, V,e) belongs to Z'(D) and induces an element of H), (D) independent of the choice of e.

This gives a map Y2 _: HL (D) — HL (D). Observe that Y2 _ 0©L = = ©L . By an argument similar to

an,y - “lan,y an,y © Pan,y
the proof of the injectivity of ©F | we can show that both GaDm and Tgw are injective. Hence it follows from

Theorem 4.2 that GaDm and TaDm are isomorphisms.

If ¢ is a 1-cocycle representing an element z of H'(D), then (c(¢,),c(v)) induces an element in H,, (D)
which only depends on z. This yields amap Y2 : H'(D) — H}, . (D). Hence, ©F, _ : Extan (%1, D) — H}
extends to a map Ext(#Zp,D) — H}

(D)
an,y

an~ (D), which will also be denoted by ©F, . We have the following
commutative diagram

Ext(%1,D) -2~ H(D) (4.2)

op
an,y D
\ lrv

Extan(#Z1, D) — HJ}, (D).

an,?y
an,~y

oy D
The composition (O
.

)7 to Tfy’ 0 ©F is a projection from Ext(Z%r, D) to Exta, (%, D), which depends on
Proof of Theorem 4.3. The only nontrivial thing to be proved is the surjectivity of Hom(I', H°(D)) @
Extl, (%1,D) — Ext'(%.,D). Let D be in Ext'(%y, D). Without loss of generality we may assume that
the image of D by the projection (@gw,l)_l o TP 00" is zero. Let e € D be alifting of 1 € Z;,. Then let ¢ be
the 1-cocycle defined by ¢, — (¢, —1)e, 0 — (o —1)e for o € T, so that ¢, the class of ¢ in H!(D), corresponds
to D. So the image of & by the map T? is zero. This means that there exists d € D such that (¢, —1)d = c(¢q)
and (v — 1)d = ¢(7). Replacing e by e — d, we may assume that c(¢q) = ¢(y) = 0. Then for any ¢ € T', we
have (¢, — 1)e(0) = (0 — 1)e(py) = 0 and (y — 1)c(o) = (0 — 1)e(y) = 0. This means that c¢(o) € D¥a=17=1
Note that M := D¥a=17=1 i5 of finite rank over L. We write M = H°(D) @ ®;M; as a I'-module, where each
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of Mj is an irreducible I-module. Write ¢ = ¢’ + 3, ¢; by this decomposition. Observe that ¢’ and ¢; are all
1-cocycles. As M; is irreducible and the I'-action on M is nontrivial, there exists some ; € I' such that v; — 1
is invertible on M;. Then there exists m; € M; such that ¢;(7;) = (7; —1)m;. A simple calculation shows that
¢j(0) = (0 —1)mj for all ¢ € I'. Replacing e by e — >, m;, we may assume that ¢ = ¢. Then ¢(p,) = 0 and
¢|r is a homomorphism from I" to H°(D). O
Corollary 4.4. (=Theorem 0.2) Extan (%1, D) is of codimension ([F : Q,] — 1)dim;, H°(D) in Ext(Z%r, D).
In particular, if H°(D) = 0, then Extan (%, D) = Ext(%ZL, D); in other words, all extensions of Z1, by D are
Or-analytic.

Proof. This follows from Theorem 4.3 and the equalities dim; Hom(I', H°(D)) = [F : Q,]dimy H°(D) and
dimz, Hom,, (T, H°(D)) = dimy, H°(D). O

5 Computation of H. (§) and H'(9)

In the case of F' = Q,, Colmez [9] computed H' for not necessarily étale (p,')-modules of rank 1 over the
Robba ring. In this case, Liu [20] computed H? for this kind of (¢, I')-modules, and used it and Colmez’s
result to build analogues, for not necessarily étale (¢, T')-modules over the Robba ring, of the Euler-Poincaré
characteristic formula and Tate local duality. Later, Chenevier [5] obtained the Euler-Poincaré characteristic
formula for families of trianguline (¢, I')-modules and some related results.

In this section we compute H. (§) = HL (%L(5)) (for § € Fan(L)) and H(8) = HY(ZL(6)) (for 6 € # (L))
following Colmez’s approach. In Sections 5.2 and 5.5 we assume that 0 is in .# (L), and in Sections 5.3, 5.4 and
5.6 we assume that § is in S, (L).

5.1 Preliminary lemmas
Lemma 5.1. (a) If a € L* is not of the form =%, i € N, then apy — 1 : %’Zr — %’Zr s an isomorphism.
(b) If a = m~% with i € N, then the kernel of ap, — 1 : #f — R is L -t, and a € %} is in the image of
oy — 1 if and only if 'aly-—o = 0. Further, aipy — 1 is bijective on the subset {a € Z] : 8'aly—o = 0}.

Proof. The argument is similar to the proof of [9, Lemma A.1]. If & > —v,(«), then — Z;ri%(owq)” is the

continuous inverse of ayp, — 1 on u%%;. The assertions follows from the fact that 2} = ©* 1L - t% & uh-2}

and the formula @, (t%) = w't’=. We just need to remark that &'al,.—o = 0 if and only if a is in @'_{ Lt} &
i1

ut AT O

Lemma 5.2. If o € L satisfies vz(a) < 1 — vr(q), then for any b € gLT there exists ¢ € gLT such that

b =b— (apgy — 1)cis in (do@g)wzo.

Proof. By Proposition 2.4 (d), ¢ = Y./° a~*4*(b) is convergent in é”g It is easy to check that ac—1(c) = 1(b),
which proves the lemma. |

Corollary 5.3. If a € L satisfies vz(a) < 1 — vr(q), then for any b € Xy, there exists ¢ € X such that
W =b— (ap, — 1) is in (&)P=0.

Proof. Let k be an integer > —v,(a). By Lemma 5.1, there exists ¢; € %, such that b — (g — 1)cy is of the
form . . a;u’ and thus is in gLT Then we apply Lemma 5.2. |

Lemma 5.4. If a € L satisfies vr(a) < 1 —v,(q), and if 2 € %y, satisfies Y(2) — az € #}, then 2 € %} .

Proof. Write z in the form ), _, aku’]“_- and put y = >, aku’]“_- € é”g If y # 0, multiplying z by a scalar in
L we may suppose that infy<_1 vp(ag) = 0. Then B

y—a t(y) = a ez —9(2) + Y ar(aT (ul) —ul)

k>0
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belongs to O g1 N %} = Op[[ur]]. But this is a contradiction since y — ™' (y) =y mod 7. Hence y =0. O
L

Corollary 5.5. If a € L satisfies vz() < 1 —vx(q), and if z € Z1, satisfies (wpg — 1)z € %2/’:0, then z is in
pes

Proof. We have ¥(z) — az = (2 — awpq(z)) = 0. Then we apply Lemma 5.4. O

5.2 Computation of H°(§)
Recall that, if § € #,,(L), then HY (§) = H(J).
Proposition 5.6. Let § be in 7 (L).
(a) If & is not of the form x~" with i € N, then H°(§) = 0.
(b) Ifi € N, then H(z™") = Lt%-.

Proof. Observe that Z; (0)¢a=! = (%, )°(W¢a=1.e5 = 0, where %} () = Z1.(6)/ %} (). Thus Z,(5)9a=1I=! =
7 (8)Pa=1I=11f §(r) is not of the form 7~¢ with i € N, by Lemma 5.1 (a) we have %} (§)¥+=! = 0 and so
K7 (8)Pa=1IT=1 = 0. If §(7) = 7%, then

Lt es ifd=a"
0 otherwise,

RO = (1t e = |
as desired. O
Corollary 5.7. If 61 and d are two different characters in # (L), then % (01) is not isomorphic to Zr,(02).
Proof. We only need to show that Z, (5162_1) is not isomorphic to Z. By Proposition 5.6, Zr, (5152_1) is not
generated by H°(016, "), but Zy, is generated by H°(1). Thus %7 (510, ") is not isomorphic to %y, O
5.3 Computation of H. (§) for ¢ € Z,,(L) with v (§(7)) <1 —v.(q)
Until the end of Section 5 we will write %1 () by Zr, with the twisted (¢4, I')-action given by

Pg;6(2) = 0(m)ipg(x),  0ass(x) = d(a)oa(z).
Recall that V5 =t 70 4+ ws. Write 6(o,) = d(a).

Lemma 5.8. Suppose that 6 € S, (L) satisfies vy (d(w)) < 1 —vz(q). For any (a,b) € Z&,qu(é), there exists
(m,n) € Z&,q’v(é) with m € (do@LT)w:O and n € Z; such that (a,b) ~ (m,n).

Proof. Asv.(d(m)) < 1—vx(q), by Corollary 5.3 there exists ¢ € %y, such that m = a—(6(7)p,—1)cis in (G@LT)w:O'
Put n =b— Vsc. Then (m,n) is in Z&,q’v(é) and (m,n) ~ (a,b). As (0(7)py — L)n = Vem = tr0m + wsm is

in ,%’ZZ’ZO, by Corollary 5.5, n is in %2} . O

Lemma 5.9. Suppose that v-(0(m)) < 1 —vx(q) and § is not of the form x=*. Let (m,n) be in Z;qu(é) with
m e (é”g)wzo and n € Z;. Then (m,n) is in BY(8) if and only if

e m € (&)V=° when §(m) is not of the form 7=, i € N;

em € (&)= and 9'm|y,—0 = 0 when §(7) = 7% and ws # —i for some i € N.

em e (&)Y0 and O'm|yr—0 = On|ur—0 = 0 when §(7) = 7% and ws = —i for some i € N.
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Proof. We only prove the assertion for the case that 6(7) = 7~ and ws # —i for some i € N. The arguments
for the other two cases are similar.

If (m,n) is in B*(§), then there exists z € %y, such that (6(m)p, — 1)z = m and Vsz = n. Since m is in
%’%:0, by Corollary 5.5 we have z € %, . It follows that m is in 2] N do@LT = &;. By Lemma 5.1 (b), we have
8im|uF:0 = 0

Now we assume that m is in & and 9'm|,,—o = 0. By Lemma 5.1 (b), there exists z € %, with
0%2|ur—0 = 0 such that (§(m)py — 1)z =m. Then (§(m)p, — 1)(Vsz —n) = Vs(d(m)pg — 1)z — (8(1)py — 1)n =

Vsm — (8(m)¢pq — 1)n = 0. Again by Lemma 5.1 (b), we have Vsz —n = ct’ for some ¢ € L. Put 2/ = 2 — iét;]:-i'
Then (§(7)p, — 1)z’ =m and V52’ = n. Hence (m,n) is in B'(9). O

Recall that S5 = Z; (6)'=1¥=0.
Proposition 5.10. Suppose that v-(5(m)) <1 —vz(q).
(a) If § is not of the form x~¢, then H} () is isomorphic to the L-vector space Ss and is 1-dimensional.

(b) If 6 =z, then H} (8) is 2-dimensional over L and is generated by the images of (t%,0) and (0,t%).
Proof. For (a) we only consider the case that §(7) = 7% and ws = —i for some i € N. The arguments for the
other cases are similar. As § # x~¢, there exists an element v; € I of infinite order such that §(y1) # x#(7) "

We give two useful facts: for any z € %}, 0'z|ur—0 = 0 if and only if 9*(6(y1)y1 — 1)2|ur=0 = 0; if
02|ur—0 = 0, then O*(§(v)y — 1)2|ur—0 = 0 for any v € I". Both of these two facts follow from Lemma 5.1 (b).
We will use them freely below.

Let (m,n) be in Z1(§) with m € (é"g)wzo and n € #Z; . For any v € I, since v(m,n) — (m,n) € B1(8), by
Lemma 5.9, (§(y)y — 1)m is in %] , i.e. the image of m in %; (§) belongs to Ss.

We will show that, for any m € Ss, there exists a lifting m € (do@LT)w:O of m such that 9*(6(y)y—1)m|y,—0 =0
for all v € T. Let m/ € (&)¥=° be an arbitrary lifting of m. Assume that 8 (8(y1)y1 — 1)m/|ur—0 = c.

1.—1!6(71);;(71)_1. Then 9'(6(y1)y1 — 1)m|ur—o = 0 and thus 9'Vsm|,,—o = 0. Hence, by
Lemma 5.1 (b) there exists n € %] with 9'n|,,—o = 0 such that (6(m)¢, — 1)n = Vsm. This means that
(m,n) € Z; (9). Forany v € T, as 0°(0(v1)y1 — D)(0(7)y = Dmluz=o = 9(6(y)y = 1)(6(y1)m — 1)mur=0 = 0,
we have 0'(§(vy)y — 1)m|ur—o0 = 0. In a word, for any v € T, (6(y)y — 1)m is in Z; and 0*(§(v)y — 1)m|ur—o =
' (8(¥)y — 1)n|ur=o = 0. This means that y(m,n) — (m,n) is in B1(§) for any v € I'. In other words, (m,n) is
in Z1(9).

Now let (my,n1) and (mg,n2) be two elements of Z(6) with my, mg € (&])¥=0 and ny,ny € Z;. By
Lemma 5.9,

Put m = m' —

9"(6(v1)m — Dmalur—o = 0" (6(v1)m11 — Dmalur—o = 8" (6(v1)71 — Dnaluy—o = 0 (6(y1)m1 — 1)nafur—o = 0.
Suppose that the image of m; in S5 coincides with that of mso, which implies that m; — mo € & L+ . From
& (6(y)m = 1)(m1 = ma)|ur=o = 8" (8(y1)m — 1)(n1 = n2)|ur=0 = 0

we obtain 9°(my — ma)|u,—0 = 0'(n1 — n2)|ur—o = 0. This means that (m1,n1) ~ (ma,na).

Combining all of the above discussions, we obtain an isomorphism S5 — HJ (§). Then by Proposition
3.20, dimy, H} (§) = dimz, S5 = 1.

Next we prove (b). Again let (m,n) be in Z'(§) with m € (5£)¢:0 and n € #Z;. Then the image of m in
Z; (6), denoted by m, is in Ss. We show that m in fact belongs to (£;)¥=", i.e. m = 0. By Corollary 3.15,
0" : Ss — S1 is an isomorphism. So we only need to prove that the image of 9'm in Sy is zero. By Remark
3.19, it suffices to show that Vd'm|,.—o = 0. But Vdm = 9'Vsm. Since Vsm = (§(7)¢, — 1)n, by Lemma
5.1 (b) we have 9"V sml|y,—o = 0.

Write m = atl= +m’ with a € L and m’ € %] satisfying 9'm’|,,—o = 0. By Lemma 5.1 (b) there
exists z € Z7 such that (§(m)p, — 1)z = m/. Then (m,n) ~ (at’,n — Vsz). Thus we may suppose that
m = at’z. Then (6(m)p, — 1)n = Vs(aty) = 0. So, by Lemma 5.1 (b), we have n = bt for some b € L.
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Suppose (at’, bt is in B'(§). Then there exists z € %, such that (§(m)p, — 1)z = at’ and Vsz = bt’-. So
P(z) = 6(m)z = (1 — 8(m)pq)z) = (—at’) € Z;. By Lemma 5.4 we get 2 € #;. By Lemma 5.1 (b) again
we have a = 0 and z € Lt%. Then bt’> = Vsz = 0. O

5.4 0:H. S(v7'6) — HY o(5) and 9 : HY, (+718) — HL,(6)

Observe that, if (m,n) is in Z,, (x710) (vesp. B'(z7'9)), then (9m,0n) is in Z, o(d) (resp. B'(9)).
Thus we have a map 0 : v( _15) — H; v(6). Further, the map is I'-equivariant and it induces a map
d: HY (x7'0) —>H;n(5). )

Put Z, o(0) :== {(m,n) € Z, (d) : Res(m) = Res(n) = 0} and BY(8) := {(m,n) € BL(J) : Res(m) =
Res(n) = 0}. Then H1 Lv(0) = Z;qu( )/Bi:q,v( ) is a subspace of H v(5)

Lemma 5.11. If §(n) # 7/q or ws # 1, then for any (m,n) € Z, V(6), there exists (my,n1) € Z&,q’v(é) such
that (m,n) ~ (m1,n1), and so H&,qy@) = fl&,qu(é).

Proof. Let (m,n) be in Z;Wv(é). Then Vsm = (6(m)pq — 1)n. If 6(m) # Z, by Proposition 2.13 and the
definition of Res we have

d _
()

Res(m = (0(m)pq — 1)(Res(m)(5(7r)%——1)u}-)) -

Replacing (m,n) by

B B (5:2)"" (§:2)"
(m (0(7)pq 1)(Res(m)—( 5L —T) ).n —
we may assume that Res(m) = 0. Then

(25(71') — 1)Res(n) = Res((d(m)pq — 1)n) = Res(Vsm) = Res(9(trm) + (ws —1)m) = (ws — 1)Res(m) =0,

™

and so Res(n) = 0.

The argument for the case of ws # 1 is similar. O
As Res0d =0, the map 9: Hy, o(z~'6) = H v(5) factors through 0 : H} o(z7'8) — H} (9).
Lemma 5.12. (a) If §(w) # m or ws # 1, then 0 : v( r716) — H; v (0) is surjective.

(b) If §(w) = m and ws = 1, then we have an exact sequence of I'-modules
H; vz r716) 2 . H; v(0) — L(z716) ——=0.

Proof. Let (m,n) be in Z;mv(d). Then there exist m’ and n’ such that Om’ = m and 9n’ = n. Then
Ve-1sm’ — (m718(m)py — 1)n' = cis in L. If () # m, we replace n’ by n’ + T If ws # 1, we

replace m' by m’ — -25. Then (m/,n') is in Z v( x71§). This proves (a). When §(7) = 7 and ws = 1,

Vm' — (g — 1)n does not depend on the choice of m’ and n’. This induces a map H1 ,.v(0) = L whose kernel

is exactly 0H v( ~1§). We show that H; v(0) — L is surjective. Put m’ = log (—q A simple calculation
a» Ur

shows that

tr - ImE(ur) t_f)au; = (1—-¢q) mod ur%;.
(7] 7 (ur) uF

Thus by Lemma 5.1 (b) there exists n’ € urZ; such that (¢, — 1)n/ = Vm' — (1 —q). Put m = dm’ and
n = 090n'. Then (m,n) is in Z&,qu(é) whose image in L is nonzero. The I'-action on H;qu(é) induces an action

on L. From
(8(a)oa(m),8(a)aa(n)) = (A(a™ 6(a)oa(m’)), d(a " é(a)au(n)))

vm' = (

26



and
V(a_lé(a)aa(m')) — (g — 1)(a_15(a)aa(n/)) = a_lé(a)aa(Vm/ — (g — )n') = a_15(a)(1 —¢q) mod u]:g%’zr
we see that the induced action comes from the character z=14. O

Sublemma 5.13. Let a,b be in L. If (a,b) is in Z;Wv(a:*l(;) but not in B (x718), then §(m) = 7 and ws = 1.

Proof. If §(r) # 7, then (a,b) ~ (0,b — _Vais a). So

T—15(m)—1
(x=16(x) — 1)(b — %a) — (18(m)pq — 1)(b— %G) 0.

As §(m) # m, we have b — %a = 0. Similarly, if ws # 1, then (a,b) € Z} Lv(@” 1§) if and only if
(a,b) ~ (0,0). O

Recall that 8y, is the character of F* such that §yn.(7) = ¢~ and 5um|0; =1.
Sublemma 5.14. ( log £ (uf) tfa;”) induces a nonzero element of HL (Sunr)-

Proof. Write (m,n) = ( log ‘p"(uf) tfa;”). Note that m = (dunc(m)q — 1)logur and n = Vlegur. Thus
(m,n) is in Z;qﬁv(éum) For any ~v € I' we have y(m,n) ~ (m,n). Indeed, y(m,n) — (m,n) = ((dun:(7)pq —
1)log 'YS‘;),Vlog 72“;)). So (m,n) is in Z(8unr). We show that (m,n) is not in B (§un,). Otherwise there
exists z € Zr, such that m = (Oun:(m)pg — 1)z and n = Vz. This will implies that V(logur — 2) = 0 or
equivalently logur — z is in L, a contradiction. O

Corollary 5.15. If §(m) = 7/q and ws = 1, then (; log %@;ﬁ, tff%) is in Zy, (x~10) but not in B'(z719).
Lemma 5.16. (a) If §(w) # m,7/q or if ws # 1, then O : v( r716) — H&, v(0) is injective.

(b) If 6(m) =7 and ws = 1, then we have an exact sequence of T'-modules
0——= L(z7%) & L(x7'6) —— Hglj o(z719) N H;q)v(zs).
(c) If If 6(m) = w/q and ws = 1, then we have an exact sequence of T'-modules

0 — Lz 16) —= HL o(o~'6) 2= AL ().
Proof. Let (m,n) be in Z} o(x7'5), and suppose that (9m,dn) € B'(§). Let z be an element of %1, such
that (6(m)¢q — 1)z = Om and Vsz = On. If Res(z) = 0, then there exists 2’ € Zr, such that 0z’ = z. Then
m— (§(m)mrtp, — 1)z and n — V,-152" are in {(a,b) : a,b € L}, i.e. (m,n) is in B*(z~18) @ L(0,1) & L(1,0).
If either 6(m) # 7 or ws # 1, we always have Res(z) = 0. Indeed, this follows from

(5(@% — 1)Res(z) = Res((6(m)pq — 1)2) = Res(dm) = 0

and
(ws — 1)Res(z) = Res(0(trz) + (ws — 1)z) = Res(Vsz) = Res(dn) = 0.

In the case of 6(r) = Z and wy = 1, if 2 € L2, then (m,n) is in L(0,1) & L(1,0) & L(% log £2542) <“f> LrQur )y

) wr
Now our lemma follows from Sublemma 5.13 and Corollary 5.15
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Proposition 5.17. (a) If §(w) # m,7/q or if ws # 1, then O : H;qu(:v_lé) — Héqu(é) is an isomorphism
of I'-modules.

(b) If §(w) = m and ws = 1, then we have an exact sequence of I'-modules

0— L(z10) @ L(z718) — H} o(a'0) > H

o, (0) — L(z716) ——=0.

(¢) If §(m) =7/q and ws = 1, then we have an exact sequence of T'-modules

0——= L(z710) — H;qu(:v_lé) 2 . gl

oo v (0) — L(z716)® L(x716) ——=0.

Proof. Assertions (a) and (b) follow from Lemma 5.11, Lemma 5.12 and Lemma 5.16. Based on these lemmas,
for (¢) we only need to show that, we have an exact sequence of I'-modules

0——=H. o(0) —= HL (6) % L(z~16) & L(z~16) —=0,

where Res is induced by (m,n) — (Res(m), Res(n)) which is I'-equivariant by Proposition 2.13. Here we prove
this under the assumption that ¢ is not a power of 7. We will see in Section 5.6 that it also holds without this
assumption. Put my = 1/uz. Then Vsmy = tx0(1/ur)+1/ur = O(tx/ur) is in %’Z‘ As g is not a power of T,
the map %gpq —1: L@ZF — L@ZF is an isomorphism. Let nq be the unique solution of (%wq — Dng =tx0my +my
in Z;. Then ¢; = (my,n;) is in Zj,q)v((S) and Res(mi,n1) = (1,0) # 0. For any ¢ € N we choose a root & of
Q= gpg—l(Q). For any f(ur) € Z], the value of f at & is an element f(&) in L ®p Fy. By (3.4) there exists
an element z € %] whose value at & is 1®log&. Put mo =17 (¢7 ¢, —1)(logur — z) and na = d(logur — 2).
Then (maz,n2) is in Z;q,v@) and Res(ng) = 1. O

Proposition 5.18. (a) If§ # x, T0unr, then 0 : HL (x710) — HL (8) is an isomorphism.
(b) If 6 =z, then 8 : H} (x718) — HL () is zero, and dimp H} (§) = 1.
(¢) If 6 = 26unr, then O : HL (x716) — H} (9) is zero, and dimy, H}, (6) = 2.
Proof. We apply Proposition 5.17. There is nothing to prove for the case that é(w) # m,7/q or ws # 1.
Combining the assertions in this case and Proposition 5.10 we obtain that dimy H2, (dun;) = 1. This fact is
useful below.
Next we consider the case of §(w) = 7/q and ws = 1. The argument for the case of §(m) = 7 and ws = 1 is

similar.
Let M be the image of 0 : H;qu(x_lé) — H;qu(:v). Then we have two short exact sequences of I'-modules

0 —— L(z~ %)) —— H (x_16)6—>M—>0

¥q,V

and

0—s M —>H!

2, 9(0) —= L(z716) ® L(z~'0) —0.

We will show that, taking ['-invariants yields two exact sequences
0 —— Lz~ 10)' —— H} (z716) 4 Mt ——0

and
0—— M'—— HL () —= Lz ) ® L(z716)F ——0.

If we have that the I'-actions on Hgl,q’v(:v*l&) and H;q)v(é) are semisimple, then there is nothing to prove.
However we will avoid this by an alternative argument. It suffices to prove the surjectivity of H ;mv(x’l(ﬂr —
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MY and that of Héq,v(é)r — L(z716)F @ L(z71)'. The latter follows from the proof of Proposition 5.17. In

fact, if § = £0unr, then (mq,n1) and (ma,ns) constructed there are in Z'(§). Now let ¢ be any element of MT,
then the preimage 9~ '(Lc) is two dimensional over L and I'-invariant. From the definition of H;, , we obtain

that the induced V-action on 9~!(Lc) is zero and thus 9~!(Lc) is a semisimple I'-module, as wanted.

If § = 28unr, then dimy, L(x~16)" = dimy H., (z7*0) = 1, and so M" = 0. Thus 0 : H} (z~18) — HL, (0)
is zero and dimy H. (6) = 2. If § # @6un, then 0 : HL (z7'8) — H] () is an isomorphism since both
Hl (z718) — MY and M" — H} (6) are isomorphisms. O

5.5 Dimension of H'(§) for § € .#(L)
Theorem 5.19. (= Theorem 0.3) Let § be in Fan(L).

(a) If & is not of the form x=% with i € N, or the form z'0un, with i € Z,, then HL (5) and H(5) are
1-dimensional over L.

(b) If § = 2'8yny with i € Z, then HL (8) and H' () are 2-dimensional over L.

(c) If 6 = =% with i € N, then HL (8) is 2-dimensional over L and H(d) is (d + 1)-dimensional over L,
where d = [F : Q).

Proof. The assertions for H__ (d) follow from Proposition 5.10 and Proposition 5.18. By Proposition 5.6 we have

1 if§=2"" withie N,
0 otherwise.

dimy % (5)7=""=" = {

So the assertions for H!(§) come from the assertions for H! (§) and Corollary 4.4. O

When § = 2% with i € N, H}, (d) is generated by the classes of (t,0) and (0,t%). Let p; (i = 1,--- ,d)
be a basis of Hom(I', Lt%:). Then the class of the 1-cocycle ¢y with co(pq) = t% and ¢o|I' = 0, and the classes
of 1-cocycles ¢; with ¢;(p,) = 0 and ¢;|T = p; (i = 1,--- ,d), form a basis of H'(9).

Theorem 5.20. (=Theorem 0.4) If 6 € 7 (L) is not locally F-analytic, then H'(5) = 0.

Proof. As the maps v — 1, v € T, are null on H!(§), by definition of H', so are the maps dl%, (5)(B),

f € Liel', and the differences 87'dl, (5(8) — 8/~ 'dT %, (5 (8'). Note that 87 dT g, 5)(8) — /" dl%, (5)(8)

are Zp-linear on Zp(6). So B'dT g, (5)(8) — B~ dl %, (5)(8) are multiplications by scalars in L, since

Bl %, (5)(B)es — B/~ dl g, (5)(8')es is in Les. If the intersection of their kernels is null, then the cohomology

H'(0) vanishes. Thus, either the intersection of their kernels is 0 and so the cohomology vanishes, or they are all
log 6(8)

null and § is of form x — 2™ for x close to 1 with w = === for f§ close to 1 (i.e. ¢ is locally F-analytic). O

Remark 5.21. Suppose that [F': Q,] > 2. Let § # 1 be a character of F* with §(7) € OF, and let L(J) be
the L-representation of G induced by d. Suppose that § # 228, when [F : Q,] = 2. Combining Theorem
5.19 and the Euler-Poincaré characteristic formula [26] we obtain that, there exist Galois representations in
Ext(L, L(§)) that are not overconvergent. Theorem 5.20 tells us that, if further § is not locally analytic, then
there is no nontrivial overconvergent extension of L by L(4).

5.6 The maps v, : H*(6) — H'(27%6) and 4 ., : HL (8) — HL (z7%9)
Let k£ be a positive integer.
Proposition 5.22. Let § be in Fon(L).
(a) [fws & {1~ k- 0}, then HO, (1(6)/t5%1(5)) = 0.
(b) If ws € {1 —k,---,0}, then HY (1 (5)/t5%1(0)) is a 1-dimensional L-vector space.
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Proof. We have %z/tl}%f = %f/(uﬁ-) e ,%’Zr/(cpq_l(Q))k. As T'-modules, %f/(uﬁ-) = @f;olLti}- and
R (en(Q))F = @f;ol (L®F Fy,)tl. Thus as a -module Z; /t%.%] is isomorphic to @i:ol (%} | %] tFr) @ Lt
Note that the natural map %’Z‘/%gt’} — %’L/%’Lt’} is surjective. Furthermore, two sequences (yn)n>0 and
(zn)nz0 in Z] | R ul < T2 25 /(901 (Q))F have the same image in #r,/Zt%, if and only if there exists
N > 0 such that y,, = z,, when n > N.

Since the action of I on (%} /t %} )t'- twisted by the character 2~ is smooth, (a) follows.

For (b) we only need to consider the case of ws = 0 and k = 1. The operator ¢, induces an injection
Z1 [ (2(Q)) = ZF /(0371 (Q)) which is denoted by ¢@q.,,. The action of ¢, on Zr/ZLtF is given by @q(Yn)n =
(4.0 (Un))n+1. For any n > 0, the T-action on L @p F, factors through I'/T,, and the resulting I'/T,-
module L ®p F, is isomorphic to the regular one. Thus for any discrete character ¢ of T', dimy(L ®p
Fn)F:‘r1 = 1 when n is sufficiently large. Then from the fact that ¢q, (n > 1) are injective, we obtain

dimp, (%L/fﬁ@L)F:FI’%:é(W)A =1. O
Corollary 5.23. Let § be in Fon(L).

(a) Ifws ¢ {1,--- Kk}, then HY,(tz"%1(8)/ 21 (5)) = 0.

(b) Ifws € {1,--- ,k}, then HO (t;"%1(8)/%1(0)) is a 1-dimensional L-vector space.

Note that Zr(x~%6) is canonically isomorphic to t}k%L(d). When & > 1, the inclusion Z,(§) < t}k%L(d)
induces maps (g an @ HL,(0) — HL (v7%6) and t; : H'(6) — H'(z7%§). If v € T is of infinite order, then we
have the following commutative diagram

HY(§) —=> H'(#7%0) (5.1)
lTin,voTi lrzmi%ﬁf:“

H,(6) —= HL (z7%6).

Lemma 5.24. We have the following exact sequence

Lk,an

0 = H(0) = Hoy(x7°0) — Hy, (t57"%1(0)/ L (0)) — Han(6) = Hyy (27"9). (5:2)

Proof. From the short exact sequence 0 — %Zr,(6) — Zr(x7%6) — 1 (x7%8)/%1(5) — 0 we deduce an exact
sequence

0— HY ¢(6) = HY o(z7"0) = H) G(t7"%L(5)/#L(8)) — H} ¢(5) = H} o(z76). (5.3)

Being finite dimensional ng,v(é) and ngﬁv(x_kd) are semisimple T-modules; since ¢ "% (5)/%r(9) is a

semisimple I'-module, so is ngﬁv(t}k%L(é)/%L(é)). Hence, taking I'-invariants of each term in (5.3), we
obtain the desired exact sequence. O

Proposition 5.25. Let ¢ be in San(L), k € Zy. If ws ¢ {1,--- ,k}, then tkan and i are isomorphisms.

Proof. We only prove the assertion for tya.n. The proof of the assertion for ¢ is similar. By Theo-
rem 5.19, dimy H. (§) = dimy H. (z7%6) when ws ¢ {1,---,k}. Combining (5.2) with the facts that
H, (t7°%1,(5)/%1(5)) = 0 and that dimy, H), () = dimy, H}, (z"8), we obtain the assertion. O

We assign to any nonzero ¢ € H} (§) an Z-invariant in P}(L) = L U {co}. In the case of § = 2% with
k €N, put Z((ath,bth)) = a/b. If § = 26unr, then any ¢ € H}, (§) can be written as

c=t7"((g7 oy — D(AG(1,1) + pllogur — 2)),t7d(NG(1,1) + p(logur — 2)))

with A\, p € L. Here G(1,1) is an element of %;, which induces a basis of (%1 /%tr)" and whose value at &,
is1®1 € L®pF, when n is large enough; z is an element of %, whose value at &, is 1 ® log(¢,) € L®p F,
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for any n. We put Z(c) = —# . % In the case of § = 2¥6,y,, with & > 2, for any ¢ € H} (2%0un;), put
ZL(c) = L(tr—1(c)). In the case that § is not of the form =% with k € N or the form *8,,, with k € Z, we

put .Z(c) = .
Proposition 5.26. Let ¢ be in Fon(L), k € Zy.
(a) Ifws € {1,--- ,k} and if 0 # x5, £ 0uny, then tk.an and v, are zero.

(b) If 6 = 2™ 0uny with 1 < ws < k, then tyan and iy, are surjective, and the kernel of iy an is the 1-dimensional
subspace {c € HY,(0) : ¢ =0 or Z(c) = oo}.

(c) If 6 = x5 with 1 < ws < k, then ik an and iy are injective, and the image of ik an is {c € HL (z7%6) 1 c =
0 or Z(c) = co}.

Proof. We will use the exact sequence (5.2) frequently without mentioning it.

First we prove (a). From the fact that dimy, HY, (t2"%1(0)/%1(0)) = dimy, HL,(6) = 1 and HY, (v~%5) = 0,
we obtain the assertion for ¢x an. The assertion for ¢y, follows from this and the commutative diagram (5.1) where
the two vertical maps are isomorphisms.

Next we prove (b). From the fact that

HO (27%6) =0, dimp, HS, (t 7" %1 (6)/%1(5)) =1, dimy H},(5) =2 and dimy, H} (z7%5) =1,

we obtain the surjectivity of tg an. The surjectivity of ¢j follows from this and the commutative diagram (5.1)
where the two vertical maps are isomorphisms. We show that, if c € H. (§) satisfies £ (c) = oo, then ¢y an(c) = 0.
As L(tws—1,an(c)) = 00 and than = Lht1—w;anlws—1,an, We reduce to the case of § = xdy,,. In this case,
c=t7'"M(g Yoy — 1)G(1,1), VG(1,1)) with A € L. Thus t1.an(c) = M(g 1, — 1)G(1,1), VG(1,1)) ~ (0,0).
Hence tj,an(c) = 0 for any integer k > 1.

Finally we prove (c). From the fact that

H? (6) =0 and dimy HY (x7%8) = dim, HO (t7*%1(8) /%1 (5)) = 1,

we obtain the injectivity of g an. The injectivity of ¢x follows from this and the commutative diagram (5.1)
where the vertical map Tgnﬁ o Tév is an isomorphism. For the second assertion, let (m,n) be in Z!(2"s).
Then ty;—1(m,n) = (t%° " 'm,t%"n) € Z'(z). In other words, d(t2m) = V,(t% 'm) = (mp, — 1)t n).
Thus Res(t%~'n) = 0 and there exists z € % such that 0z = t% 'n or equivalently Vz = t%n. It
follows that WV u, «(th " 2) = (V + (ws — k))(t];_fw‘sz) = th7 V2 = thn. Thus tgan(m,n) = (thm, thn) ~
(tkfm — (mws=Fp, — 1)(tkf_w“z),0). So we have (g an(m,n) = (atkf_w“,()). If tk,an(m,n) # 0 or equivalently
a # 0, then Z(tg,an(m,n)) = oco. O

6 Triangulable (¢, I')-modules of rank 2

In his paper [9], Colmez classified 2-dimensional trianguline representations of the Galois group Ggq,. Later
Nakamura [22] classified 2-dimensional trianguline representations of the Galois group of a p-adic local field that
is finite over Q,, generalizing Colmez’s work.

In this section we classify triangulable Op-analytic (¢4, I')-modules of rank 2 following Colmez’s method
[9]. First we recall the definition.

Definition 6.1. A (¢4, T')-module over Zy, is called triangulable if there exists a filtration of D consisting of
(g, ')-submodules 0 = Dy C Dy C --- C Dg = D such that D;/D;_, is free of rank 1 over Z.

Note that, if D is Op-analytic, then so is D;/D;_ for any i.
If 61,09 € Fun(L), then Ext(ZL(52),%1(01)) is isomorphic to Ext(%Zr,Z1(01051)), or H' (6,65, "). The
isomorphism only depends on the choices of es,, e5, and e 5ua; Thus it is unique up to a nonzero multiple and
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induces an isomorphism from Proj(Ext(Zr(2), %1(61))) to Proj(H' (6,65 ")) independent of the choices of es, ,
es, and e; ;1. Similarly there is a natural isomorphism from Proj(Extan (%21 (52), Z1(61))) to Proj(HL, (5165 1)).
Hence the set of triangulable (resp. triangulable and Op-analytic) (¢4, ')-modules D of rank 2 satisfying the
following two properties is classified by Proj(H' (6105 ")) (resp. Proj(H.}, (6165 1))):

o Zr,(01) is a saturated (¢4, I')-submodule of D and Zy,(d2) is the quotient module,

e D is not isomorphic to Zr (1) ® ZL(d2).

Let .72 = 2" (L) be the analytic variety obtained by blowing up (d1,92) € Fan(L) X Fan(L) along the
subvarieties 515;1 = 28y, for i € Z, and the subvarieties 616;1 = 27 for i € N. The fiber over the point
(61,02) is isomorphic to Proj(H., (6105 1)). Similarly let . = .#(L) be the analytic variety over %, (L) x
Fan(L) whose fiber over (61, 02) is isomorphic to Proj(H' (6,6, ')). The inclusions Exto, (%1 (61), Z1(02)) —
Ext(Z1(01), Z1(32)) for §1,02 € Fun(L) induce a natural injective map /" — .. We write points of .7
(resp. .#2*) in the form (81, 8s, ¢) with ¢ € Proj(H (6165 %)) (resp. ¢ € Proj(HL, (6165 1))). If (61,02,¢) € .7 is
in the image of .%,,, for our convenience we use ca, to denote the element in Proj(H}, (6,6, ")) corresponding
to c. For (01,02,¢) € .72 since the .Z-invariant induces an inclusion Proj(H2 (6165 ')) < P'(L), we also use
(01, 02,-Z(c)) to denote (41,02, ¢).

If s € .7, we assign to s the invariant w(s) € L by w(s) = ws, — ws,. Let .74 be the subset of .7 consisting
of elements s € .7 with

0 (61(m)) + va(62(m)) = 0, ve(81(m)) > 0.

If s € 7, , we assign to s the invariant u(s) € Q4 by
u(s) = vr(d1(7)) = —vn(d2(7))-

Put S = {s € S | u(s) = 0} and % = {s € S | u(s) > 0}. Then ¥ is the disjoint union
of S and Z.. For ? € {+,0,%} we put /" = *" N .. We decompose the set FF" as /" =
y?nguy?crisuy?st Hy?ord 'L[(y?ncl7 where

S8 = {se . | w(s)is not an integer > 1},
s — {5 e % | w(s) is an integer > 1,u(s) < w(s), L = oo},
St = {s€.% | w(s)is an integer > 1,u(s) < w(s), £ # oo}
ord = s e.% | w(s) is an integer > 1,u(s) = w(s)},
Ipl = [se .7 | w(s) is an integer > 1,u(s) > w(s)}.

Note that .75™ and 78! are empty.

Let D be an extension of % (02) by #1(61). For any k € N, the preimage of t%%1(52) is a (p4,1)-
submodule of D, which is denoted by D’. Then D’ is an extension of %y, (x*82) by %1(61). If D is Op-analytic,
then so is D'.

Lemma 6.2. (a) The class of D' in H (6,0, 'a™*) coincides with (c) up to a nonzero multiple, where c is
the class of D in H(5105").

(b) If D is Op-analytic, the class of D' in H} (6165 'x™F) coincides with iy an(c) up to a nonzero multiple,
where c is the class of D in HL (6105").

Proof. We only prove (b). The proof of (a) is similar. Let e be a basis of Z(d2) such that ¢q(e) = da(m)e
and o,e = da(a)e. Let € be a lifting of e in D. The class of D, or the same, ¢, coincides with the class of

(82(m) Loy — 1), (V — w52)é) up to a nonzero multiple. Similarly, up to a nonzero multiple, the class of D’

coincides with the class of
(T 82(m) ™ 0g = (D), (V = ws, = B)(#58)) = (Hr(02(m) "0 = 1)é, t(V — wi,)¢)
which is exactly ¢y an(c). O

Proposition 6.3. Put D = D(s) with s = (01,92,¢) € .. Then the following two conditions are equivalent:
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(a) D(s) has a (¢q,T')-submodule M of rank 1 such that M N % (61) = 0;
(b) s is in .S and satisfies w(s) € Ly, 6165 # 2 and £ (can) = 0.

Among all such M there exists a unique one, Mgy, that is saturated; Mgyt is isomorphic to %L(xw(s)ég). For
any M that satisfies Condition (a), there exists some i € N such that M = t% Mg,

Proof. Assume that D(s) satisfies Condition (a). Since the intersection of M and 1 (61) is zero, the image
of M in %1(32) is a nonzero (¢4, I')-submodule of %1, (2), and so must be of the form t5%%y (62) with k € N.
Since D(s) does not split, we have k > 1. The preimage of t%-%(62) in D is exactly M @& %1(61). Since
M &%y, (61) splits, by Lemma 6.2 we have ¢, (c) = 0. By Proposition 5.26 this happens only if w(s) € {1,--- ,k}
and 6,6, ' # 2*(). Note that, when w(s) € {1,---,k} and §;8, ' # 2¥(), D(s) is automatically Op-analytic.
Again by Proposition 5.26 we obtain .Z(cay) = co. This proves (a)<(b).

If (a) holds, then the preimage of t;‘_’-(s)%L (62) splits as Zr,(51)® Mo, where My is isomorphic to 27, (z(*)d5).
We show that M, is saturated. Note that My is not included in tzD(s). Otherwise, the preimage of
t;(s)flt%’L(ég) will split, which contradicts Proposition 5.26. Let ey (resp. ez, €) be a basis of % (d1) (resp.
R1,(02), My) such that Ley (resp. Lea, Le) is stable under ¢, and I'. Let €2 be a lifting of eo. Write e = aeq +bés.
Then a ¢ txZ%r, and b € t;‘_’-(s)%L. Observe that the ideal I generated by a and t;(s) satisfies pq(I) = I and
~(I) =TI for all v € T. Thus by Lemma 1.1, I = %Z. It follows that My is saturated. If M is another
(¢q,T)-submodule of D(s) such that M N % (d1) = 0, then the image of M in %1 (62) is th-%1(2) for some
integer k > w(s). Then M C Zr(61) ® My. Since 6, # d22*®), %1 (1) has no nonzero (¢4, I')-submodule
isomorphic to Z, (l’kég). It follows that M C My and thus M = t;ﬁw(S)Mo. O

Corollary 6.4. Let s = (61,09,¢) be in 7. If s is in .#** and satisfies w(s) € Zy, 616, # x*) and
Z(Can) = 00, then D(s) has exactly two saturated (pq,T')-submodules of D(s) of rank 1, one being %1,(61) and
the other isomorphic to Zr(x"(*)8y). Otherwise, D(s) has exactly one saturated (pg,T')-submodule of rank 1
which is Zr,(61).

Corollary 6.5. Let s = (01,02,¢) and s' = (01, 65,¢) be in S (L).
(a) If 61 = 87, then D(s) =2 D(s') if and only if s = .

(b) If 61 # &, then D(s) = D(s') if and only if s and s are in S* and satisfy w(s) € Z, &) = x*(*)5,,
55 _ x—w(s)é‘l and g(can) :Z(CI ): Q.

an

Proof. Assertion (a) is clear. We prove (b). Since D(s) = D(s'), there exists a (¢4, I')-submodule M of D(s)
such that M = Z1,(6]) and D(s)/M = Z#1,(55). Since both Z1,(d1) and M are saturated (¢q, I')-submodules of
D, #Z1,(6:) N M = 0. By Proposition 6.3 we have w(s) € Z,, 610, # 2°), Z(can) = 00 and §; = z%()§,.
Similarly, 6; = #°()8,. As 6,65 = 8,8}, we have w(s) = w(s'). O

Proposition 6.6. Let s = (01,02,¢) be in .. Then D(s) is of slope zero if and only if s € S —. S D(s) is of
slope zero and the Galois representation attached to D(s) is irreducible if and only if s is in .7, — (24U 0,
D(s) is of slope zero and Op-analytic if and only if s € ./ — L,

Proof. By Kedlaya’s slope filtration theorem, D(s) is of slope zero if and only if v, (81 (7)d2 (7)) = 0 and D(s) has
10 (¢4, I')-submodule of rank 1 that is of slope < 0. In particular, if D(s) is of slope zero, then v, (41 (7)) > 0 and
thus s € 4. Hence we only need to consider the case of s € .%;. Assume that D(s) has a (¢4, I')-submodule of
rank 1, say M, that is of slope < 0. Then the intersection of M and Z,(d1) is zero. By Proposition 6.3 we may
suppose that M is saturated. By Corollary 6.4, this happens if and only if s is in .*® and satisfies w(s) € Z,
61651 # 1) L (can) = 00 and w(s) < u(s). Note that 6,6, ' # 2 and .Z(can) = oo automatically hold
when 0 < w(s) < u(s). The first assertion follows. Similarly, D(s) has a saturated (g4, I')-submodule of rank 1
that is of slope zero, if and only if u(s) = 0 or u(s) = w(s). By Proposition 1.5 (¢) and Remark 1.8, we know
that the Galois representation attached to an étale (¢4, I')-module D over %, of rank 2 is irreducible if and
only if D has no étale (¢4, I")-submodule of rank 1. This shows the second assertion. The third assertion follows
from the first one. O
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Proof of Theorem 0.5. Assertion (a) follows from Proposition 6.6, and (b) follows from Corollary 6.5. O

Remark 6.7. Let s # s’ be as in Theorem 0.5 (b). Then s € . if and only if ' € /7 s € . if and
only if &' € ..

Remark 6.8. By an argument similar to that in [9] one can show that, if s is in .7¢" (resp. .9, .75"), then
D(s) comes from a crystalline (resp. ordinary, semistable but non-crystalline) L-representation twisted by a
character.
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