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Abstract

The theory of (ϕq,Γ)-modules is a generalization of Fontaine’s theory of (ϕ,Γ)-modules, which classifies
GF -representations on OF -modules and F -vector spaces for any finite extension F of Qp. In this paper
following Colmez’s method we classify triangulable OF -analytic (ϕq,Γ)-modules of rank 2. In this process
we establish two kinds of cohomology theories for OF -analytic (ϕq,Γ)-modules. Using them we show that,
if D is an OF -analytic (ϕq ,Γ)-module such that Dϕq=1,Γ=1 = 0 i.e. V GF = 0 where V is the Galois
representation attached to D, then any overconvergent extension of the trivial representation of GF by V is
OF -analytic. In particular, contrarily to the case of F = Qp, there are representations of GF that are not
overconvergent.
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Introduction

The present paper heavily depends on the theory of (ϕ,Γ)-modules for Lubin-Tate extensions, a generalization of
Fontaine’s theory of (ϕ,Γ)-modules. The existence of this generalization was more or less implicit in [14, 8]. See
also [15] and [25, Remark 2.3.1]. In [17], Kisin and Ren provided details, where (ϕ,Γ)-modules for Lubin-Tate
extensions are called (ϕq,Γ)-modules.

To recall this theory, let F be a finite extension of Qp, OF the ring of integers in F and π a unifomizer
of OF . Fix an algebraic closure of F denoted by F̄ , and put GF = Gal(F̄ /F ). Let kF be the residue field of
F , q = #kF . Let W = W(kF ) be the ring of Witt vectors over kF , F0 = W[1/p]. Then F0 is the maximal
absolutely unramified subfield of F . Let F be a Lubin-Tate group over F corresponding to the uniformizer π.
Then F is a formal OF -module. Let X be a local coordinate on F . Then the formal Hopf algebra OF may
be identified with OF [[X ]]. For any a ∈ OF , let [a]F ∈ OF [[X ]] be the power series giving the endomorphism
a of F . If n ≥ 1, let Fn ⊂ F̄ be the subfield generated by the πn-torsion points of F . Write F∞ = ∪nFn,
Γ = Gal(F∞/F ) and GF∞

= Gal(F̄ /F∞). For any integer n ≥ 0, let Γn ⊂ Γ be the subgroup Gal(F∞/Fn). Let
TF be the Tate module of F . It is a free OF -module of rank 1. The action of GF on TF factors through Γ and
induces an isomorphism χF : Γ → O×F . For any a ∈ O×F we write σa := χ−1F (a). Using the periods of TF , one
can construct a ring OE with actions of ϕq = ϕlogp q and Γ. We will recall the construction in Section 1. Kisin
and Ren [17] defined étale (ϕq,Γ)-modules over OE and classified GF -representations on OF -modules in terms
of these modules.

In this paper we are interested in triangulable OF -analytic (ϕq,Γ)-modules over a Robba ring RL, where L
is a finite extension of F . A triangulable (ϕq,Γ)-module over RL means a (ϕq,Γ)-module D that has a filtration
consisting of (ϕq ,Γ)-submodules 0 = D0 ⊂ D1 ⊂ · · · ⊂ Dd = D such that Di/Di−1 is free of rank 1 over RL.

In the spirit of Colmez’s work [9] on the classification of triangulable (ϕ,Γ)-modules of rank 2, in the present
paper we will classify triangulable OF -analytic (ϕq,Γ)-modules over RL of rank 2. One motivation for doing
this, is that the authors believe that under the hypothetical p-adic local Langlands correspondence these (ϕq,Γ)-
modules should correspond to certain unitary principal series of GL2(F ). Colmez [13] and Liu–Xie–Zhang [21]
respectively determined the spaces of locally analytic vectors of the unitary principal series of GL2(Qp) based on
this kind of (ϕ,Γ)-modules. Our computations of dimensions of Ext1an match those of Kohlhaase on extensions of
locally analytic representations [19]. Nakamura [22] gave a generalization of Colmez’s work in another direction.
But we think that Nakamura’s point of view is probably not the best one for applications to the p-adic local
Langlands correspondence.

For our purpose we consider two kinds of cohomology theories for OF -analytic (ϕq,Γ)-modules.
For a (ϕq,Γ)-module D over RL, we define H•(D) by the cohomology of the semigroup ϕN

q × Γ as in [13].
Then the first cohomology group H1(D) is isomorphic to Ext(RL, D), the L-vector space of extensions of RL

by D in the category of (ϕq,Γ)-modules.
If D is OF -analytic, we consider the following complex

C•ϕq,∇(D) : 0 // D
f1 // D ⊕D

f2 // D // 0 ,

where f1 : D → D ⊕ D is the map defined as m 7→ ((ϕq − 1)m,∇m) and f2 : D ⊕ D → D is (m,n) 7→
∇m− (ϕq − 1)n. The operator ∇ is defined in Section 1.3. Put Hi

ϕq,∇
(D) := Hi(C•ϕq ,∇

(D)), i = 0, 1, 2. Each

of these modules admits a Γ-action. We set Hi
an(D) = Hi

ϕq,∇
(D)Γ.

Theorem 0.1. Let D be an OF -analytic (ϕq,Γ)-module over RL. Then there is a natural isomorphism
Extan(RL, D) → H1

an(D), where Extan(RL, D) is the L-vector space that consists of extensions of RL by D
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in the category of OF -analytic (ϕq,Γ)-modules.

The proof is given in Section 4, which is due to the referee and much simpler than that in our original
version.

Theorem 0.2. Let D be an OF -analytic (ϕq,Γ)-module over RL. Then Extan(RL, D) is of codimension ([F :
Qp]− 1) dimLD

ϕq=1,Γ=1 in Ext(RL, D). In particular, if Dϕq=1,Γ=1 = 0, then Extan(RL, D) = Ext(RL, D).

To prove Theorem 0.2, we will construct a (non canonical) projection from Ext(RL, D) onto Extan(RL, D)
whose kernel is of dimension ([F : Qp]− 1) dimLD

ϕq=1,Γ=1.
If V is an overconvergent L-representation of GF (in the sense of Definition 1.4), ∆ is the (ϕq,Γ)-module

over E
†
L attached to V , and D = RL ⊗

E
†

L
∆, then Ext(RL, D) measures the set of extensions of the trivial

representation by V that are overconvergent (cf. Proposition 1.5 and Proposition 1.6). Theorem 0.2 tells us
that, if V GF = Dϕq=1,Γ=1 = 0, then any such extension is OF -analytic.

Let I (L) (resp. Ian(L)) be the set of continuous (resp. locally F -analytic) characters δ : F× → L×. Let
δunr denote the character of F× such that δunr(π) = q−1 and δunr|O×

F
= 1. Then δunr is a locally F -analytic

character. If δ ∈ I (L), let RL(δ) be the (ϕq ,Γ)-module over RL of rank 1 that has a basis eδ such that
ϕq(eδ) = δ(π)eδ and σa(eδ) = δ(a)eδ. If δ ∈ Ian(L), then RL(δ) is OF -analytic.

For locally F -analytic characters we have the following

Theorem 0.3. For any δ ∈ Ian(L), we have

dimLH
1
an(RL(δ)) =

{
2 if δ = x−i, i ∈ N or xiδunr, i ∈ Z+

1 otherwise,

and

dimLH
1(RL(δ)) =





[F : Qp] + 1 if δ = x−i, i ∈ N

2 if δ = xiδunr, i ∈ Z+

1 otherwise.

For the proof of Theorem 0.3 we follow Colmez’s method. In his paper [9] Colmez used the theory of p-adic
Fourier transform for Zp. For our case we use the p-adic Fourier transform for OF developed by Schneider and
Teitelbaum [24] instead. But this transform can not be applied to our situation directly because, except for the
case of F = Qp, it is defined over Cp and can not be defined over any finite extension L of F . We overcome
this difficulty by applying it to RCp and then descending certain results to RL. As a result, we obtain that, if
δ1 and δ2 are in Ian(L), then RL(δ1)

ψ=0 and RL(δ2)
ψ=0 are isomorphic to each other as L[Γ]-modules. This

is exactly what we need. In fact, we will show that Sδ := (RLeδ/R
+
L eδ)

ψ=0,Γ=1 is 1-dimensional over L for any
δ ∈ Ian(L), and that H1

an(RL(δ)) is isomorphic to Sδ when vπ(δ(π)) < 1− vπ(q) and δ is not of the form xi.
For characters that are not locally F -analytic we have the following

Theorem 0.4. For any δ ∈ I (L)\Ian(I) we have H1(RL(δ)) = 0. Consequently every extension of RL by
RL(δ) splits.

To state our result on the classification, we need some parameter spaces. These parameter spaces are
analogues of Colmez’s parameter spaces [9]. Let S be the analytic variety over Ian(L)×Ian(L) whose fiber over
(δ1, δ2) is isomorphic to Proj(H1(δ1δ

−1
2 )), San the analytic variety over Ian(L)×Ian(L) whose fiber over (δ1, δ2)

is isomorphic to Proj(H1
an(δ1δ

−1
2 )). There is a natural inclusion San →֒ S . Let S+,S

an
+ ,S ng

+ ,S cris
+ ,S st

+ ,S
ord
+

and S ncl
+ be the subsets of S defined in Section 6. We can assign to any s ∈ S (resp. s ∈ San) a triangulable

(resp. triangulable and OF -analytic) (ϕq,Γ)-module D(s).

Theorem 0.5. (a) For s ∈ S , D(s) is of slope zero if and only if s is in S+ − S ncl
+ ; D(s) is of slope zero

and the Galois representation attached to D(s) is irreducible if and only if s is in S∗ − (S ord
∗ ∪ S ncl

∗ );
D(s) is of slope zero and OF -analytic if and only if s is in S an

+ − S ncl
+ .

(b) Let s = (δ1, δ2,L ) and s′ = (δ′1, δ
′
2,L

′) be in S+ − S ncl
+ . If δ1 = δ′1, then D(s) ∼= D(s′) if and only if

s = s′. If δ1 6= δ′1, then D(s) ∼= D(s′) if and only if s, s′ ∈ S cris
+ ∪ S ord

+ with δ′1 = xw(s)δ2, δ
′
2 = x−w(s)δ1.
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In the case when F = Qp, this becomes Colmez’s result [9]. The proof of Theorem 0.5 will be given at the
end of Section 6.

We give another application of Theorem 0.3. In the case of F = Qp, i.e. the cyclotomic extension case,
Cherbonnier and Colmez [6] showed that all representations of GQp are overconvergent. But our following result
shows that this is not the case when [F : Qp] ≥ 2.

Theorem 0.6. Suppose that [F : Qp] ≥ 2. Then there exist 2-dimensional L-representations of GF that are
not overconvergent (in the sense of Definition 1.4).

By Kedlaya’s Theorem [16], any (ϕq,Γ)-module of slope zero D(s) in Theorem 0.5 (a) comes from a 2-
dimensional L-representation of GF that is overconvergent.

We outline the structure of this paper. We recall Fontaine’s rings, the theory of (ϕq,Γ)-modules and the
relation between (ϕq,Γ)-modules and Galois representations in Section 1.1 and Section 1.2, and then define
OF -analytic (ϕq,Γ)-modules over the Robba ring RL in Section 1.3. We define ψ in Section 2.1, and study the
properties of ∂ and Res in Section 2.2. In Section 3.1 we extend ψ to RCp , in Section 3.2 we define operatorsmα

on RCp , and then in Section 3.3 we study the Γ-action on RL(δ)
ψ=0 for all δ ∈ Ian(L). The cohomology theories

for OF -analytic (ϕq,Γ)-modules are given in Section 4. In Section 5 we compute H1
an(RL(δ)) and H1(RL(δ))

for all δ ∈ Ian(L). After providing preliminary lemmas in Section 5.1, we compute H0(δ) for all δ ∈ I (L)
and H1

an(δ) for δ ∈ Ian(L) satisfying vπ(δ(π)) < 1− vπ(q) respectively in Section 5.2 and Section 5.3. For the
purpose of computing H1

an(δ) for all δ ∈ Ian(L), we construct a transition map ∂ : H1
an(x

−1δ) → H1
an(δ), which

is done in Section 5.4. The computation of H1
an(δ) is given in Section 5.5. In section 5.6 we define two maps ιk

and ιk,an. Applying results in Section 5 we classify triangulable OF -analytic (ϕq,Γ)-modules in Section 6.

1 (ϕq,Γ)-modules and OF -analytic (ϕq,Γ)-modules

In this section we recall the theory of (ϕq,Γ)-modules built in [8, 15, 17]. We keep using notations in the
introduction.

1.1 The rings of formal series

Put Ẽ+ = lim
←−−

OF̄ /p with the transition maps given by Frobenius, and let Ẽ be the fractional field of Ẽ+. We

may also identify Ẽ+ with lim
←−−

OF̄ /π with the transition maps given by the q-Frobenius ϕq = ϕlogp q. Evaluation

of X at π-torsion points induces a map ι : TF → Ẽ+. Precisely, if v = (vn)n≥0 ∈ TF with vn ∈ F [πn](OF̄ ) and
π · vn+1 = vn, then ι(v) = (v∗n(X) + πOF̄ )n≥0.

Let {·} be the unique lifting map Ẽ+ → W(Ẽ+)F := W(Ẽ+) ⊗OF0
OF such that ϕq{x} = [π]F ({x}) (see

[8, Lemma 9.3]). When F is the cyclotomic Lubin-Tate group Gm, we have {x} = [1 + x] − 1, where [1 + x] is
the Teichmüller lifting of 1 + x. This map respects the action of GF . If v ∈ TF is an OF -generator, there is an
embedding OF [[uF ]] →֒ W(Ẽ+)F sending uF to {ι(v)} which identifies OF [[uF ]] with a GF -stable and ϕq-stable

subring of W(Ẽ+)F . The GF -action on OF [[uF ]] factors through Γ. By [8, Lemma 9.3] we have

ϕq(uF ) = [π]F (uF), σa(uF) = [a]F (uF).

In the case of F = Gm, uF is denoted by T in [9]. Here T is used to denote the Tate module of a Lubin-Tate
group.

Let OE be the π-adic completion of OF [[uF ]][1/uF ]. Then OE is a complete discrete valuation ring with
uniformizer π and residue field kF ((uF )). The topology induced by this valuation is called the strong topology.
Usually we consider the weak topology on OE , i.e. the topology with {πiOE + ujFOF [[uF ]] : i, j ∈ N} as a
fundamental system of open neighborhoods of 0. Let E be the field of fractions of OE . Let E + be the subring
F ⊗OF OF [[uF ]] of E .

4



For any r ∈ R+ ∪ {+∞}, let E ]0,r] be the ring of Laurent series f =
∑

i∈Z aiu
i
F with coefficients in F that

are convergent on the annulus 0 < vp(uF ) ≤ r. For any 0 < s ≤ r we define the valuation v{s} on E ]0,r] by

v{s}(f) = inf
i∈Z

(vp(ai) + is) ∈ R ∪ {±∞}.

We equip E ]0,r] with the Fréchet topology defined by the family of valuations {v{s} : 0 < s ≤ r}. Then E ]0,r]

is complete. We equip the Robba ring R := ∪r>0E
]0,r] with the inductive limit topology. The subring of R

consisting of Laurent series of the form
∑

i≥0 aiu
i
F is denoted by R+.

Put E † := {
∑
i∈Z aiu

i
F ∈ R | ai are bounded when i → +∞}. This is a field contained in both E and R.

Put E (0,r] = E † ∩ E ]0,r]. Let v[0,r] be the valuation defined by v[0,r](f) = min0≤s≤r v
{s}(f). Let OE (0,r] be

the ring of integers in E (0,r] for the valuation v[0,r]. We equip OE (0,r] [1/uF ] with the topology induced by the
valuation v{r} and then equip E (0,r] = ∪m∈Nπ

−mE (0,r][1/uF ] with the inductive limit topology. The resulting
topology on E (0,r] is called the weak topology [11]. Note that the restriction of the weak topology to the subset
{f(uF) =

∑
i∈Z aiu

i
F ∈ E (0,r] : ai = 0 if i ≥ 0} coincides with the topology defined by the valuation v{r} and its

restriction to E + coincides with the weak topology on E +. Then we equip E † = ∪r>0E
(0,r] with the inductive

limit topology.
We extend the actions of ϕq and Γ on OF [[uF ]] to E +, OE , E , E † and R continuously.
Put tF = logF(uF ), where logF is the logarithmic of F . Then tF is in R but not in E †. When F = Gm,

tF coincides with the usual t in [9]. Note that ϕq(tF ) = πtF and σa(tF ) = atF for any a ∈ O×F . Put
Q = Q(uF) = [π]F (uF )/uF .

We have the following analogue of [3, Lemma I.3.2].

Lemma 1.1. If I is a Γ-stable principal ideal of R+, then I is generated by an element of the form

uj0F

+∞∏
n=0

(
ϕnq (Q(uF )/Q(0))

)jn+1

. Furthermore the following hold:

(a) If R+ · ϕq(I) ⊆ I, then the sequence {jn}n≥0 is decreasing.

(b) If R+ · ϕq(I) ⊇ I, then the sequence {jn}n≥0 is increasing.

Proof. The argument is similar to the proof of [3, Lemma I.3.2]. Let f(uF) be a generator of I. For any
ρ ∈ (0, 1) put Vρ(I) = {z ∈ Cp : f(z) = 0, 0 ≤ |z| ≤ ρ}. If I is stable by Γ, then Vρ(I) is stable by [a]F
for any a ∈ O×F . As Vρ(I) is finite, for any z ∈ Vρ(I), there must be some element a ∈ O×F , a 6= 1 such that
[a]F (z) = z. Note that [π]F (z) satisfies [a]F ([π]F (z)) = [π]F (z) if [a]F (z) = z. But the cardinal number of the
set {z ∈ Cp : [a]F(z) = z, |z| ≤ ρ} is finite. Thus for any z ∈ VI(ρ) there exists a positive integer m = m(ρ)

such that [πm]F(z) = 0. Therefore I is generated by an element of the form uj0F

+∞∏
n=0

(ϕnq (Q(uF )/Q(0)))jn+1 . The

other two assertions are easy to prove.

Corollary 1.2. We have

(tF ) =
(
uF
∏

n≥0

ϕnq (Q(uF)/Q(0))
)

(1.1)

in the ring R+.

Proof. Because the ideal (tF ) is Γ-invariant and R+ ·ϕq(tF ) = (tF ), by Lemma 1.1 there exists j ∈ N such that

(tF ) =
(
ujF

∏
n≥0

ϕnq
(
Q(uF)/Q(0)

)j)
. From the fact (tF/uF) ≡ 1 mod uFR+ we obtain j = 1.

If F ′ is another Lubin-Tate group over F corresponding to π, by the theory of Lubin-Tate groups there
exists a unique continuous ring isomorphism ηF ,F ′ : O+

EF
→ O+

EF′
with

ηF ,F ′(uF) = uF ′ + higher degree terms in OF [[uF ′]]

5



such that ηF ,F ′ ◦ [a]F = [a]F ′ ◦ ηF ,F ′ for all a ∈ OF . We extend ηF ,F ′ to isomorphisms

OEF

∼
−→ OEF′ , E

+
F
∼
−→ E

+
F ′, EF

∼
−→ EF ′, E

†
F → E

†
F ′ , RF → RF ′ .

By abuse of notations these isomorphisms are again denoted by ηF ,F ′.
Let ℓu = log uF be a variable over R[1/tF ]. We extend the ϕq,Γ-actions to R[1/tF , ℓu] by

ϕq(ℓu) = qℓu + log
[π]F (uF)

uqF
, σa(ℓu) = ℓu + log

[a]F(uF )

uF
.

1.2 Galois representations and (ϕq,Γ)-modules

Let L be a finite extension of F . Let RepLGF be the category of finite dimensional L-vector spaces V equipped
with a linear action of GF .

If A is any of E +, E , E †, R, we put AL = A ⊗F L. Then we extend the ϕq, Γ-actions on A to AL by

L-linearity. Let R denote any of EL, E
†
L and RL. For a (ϕq,Γ)-module over R, we mean a free R-module D of

finite rank together with continuous semilinear actions of ϕq and Γ commuting with each other such that ϕq
sends a basis of D to a basis of D. When R = EL, we say that D is étale if D has a ϕq-stable OEL -lattice M

such that the linear map ϕ∗qM → M is an isomorphism. When R = E
†
L, we say that D is étale if EL ⊗

E
†

L
D is

étale. When R = RL, we say that D is étale or of slope 0 if there exists an étale (ϕq,Γ)-module ∆ over E
†
L such

that D = RL ⊗
E

†
L
∆. Let Mod

ϕq,Γ,ét

/R be the category of étale (ϕq ,Γ)-modules over R.

Put B̃ = W(Ẽ)F [1/π]. Let B be the completion of the maximal unramified extension of E in B̃ for the

π-adic topology. Both B̃ and B admit actions of ϕq and GF . We have BGF∞ = E .

For any V ∈ RepLGF , put DE (V ) = (B⊗F V )GF∞ . For any D ∈ Mod
ϕq,Γ,ét

/EL
, put V(D) = (B⊗E D)ϕq=1.

Theorem 1.3. (Kisin-Ren [17, Theorem 1.6]) The functors V and DE are quasi-inverse equivalences of

categories between Mod
ϕq,Γ,ét

/EL
and RepLGF .

As usual, let B̃† be the subring of B̃ consisting of overconvergent elements, and put B† = B ∩ B̃†. Then
(B†)GF∞ = E †.

Definition 1.4. If V is an L-representation of GF , we say that V is overconvergent if DE †(V ) := (B†⊗F V )GF∞

contains a basis of DE (V ).

When F = Qp, according to Cherbonnier-Colmez theorem [6], all L-representations are overconvergent.
But in general this is not true. For details see Remark 5.21.

Proposition 1.5. (a) If ∆ is an étale (ϕq,Γ)-module over E
†
L, then V(EL ⊗

E
†

L
∆) = (B† ⊗E † ∆)ϕq=1.

(b) The functor ∆ 7→ EL ⊗
E

†

L
∆ is a fully faithful functor from the category Mod

ϕq,Γ,ét

/E †
L

to the category

Mod
ϕq,Γ,ét

/EL
.

(c) The functor DE † is an equivalence of categories between the category of overconvergent L-representations

of GF and Mod
ϕq,Γ,ét

/E †
L

.

Proof. Without loss of generality we may assume that L = F . Put B̃Qp = W(Ẽ)[1/p] and B̃†Qp
= B̃Qp ∩ B̃†. The

technics of almost étale descent as in Berger-Colmez [4] allows us to show that the functor ∆ 7→ B̃Qp ⊗B̃†

Qp

∆

from the category of étale (ϕ,GF )-modules over B̃†Qp
to the category of étale (ϕ,GF )-modules over B̃Qp is an

equivalence. For any (ϕq, GF )-module D over B̃† (resp. B̃), we can attach a (ϕ,GF )-module D̄ over B̃†Qp
(resp.

B̃Qp) to D by letting D̄ = ⊕f−1i=0 ϕ
i∗(D) with the map

ϕ∗(D̄) = ⊕fi=1ϕ
i∗(D) → ⊕f−1i=0 ϕ

i∗(D) = D̄
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that sends ϕi∗(D) identically to ϕi∗(D) for i = 1, · · · , f − 1, and sends ϕf∗(D) = ϕ∗q(D) to D using ϕq. Here

f = logp q. Thus the functor α : ∆ 7→ B̃ ⊗B̃† ∆ from the category of étale (ϕq , GF )-modules over B̃† to the

category of étale (ϕq , GF )-modules over B̃ is an equivalence. Now let ∆ be an étale (ϕq,Γ)-module over E †, and

put V = V(E ⊗E † ∆). As α(B̃† ⊗F V ) = B̃ ⊗F V = B̃ ⊗E † ∆ = α(B̃† ⊗E † ∆), we have B̃† ⊗F V = B̃† ⊗E † ∆.

Thus V is contained in B̃† ⊗E † ∆ ∩ B⊗E † ∆ = B† ⊗E † ∆, and V = (B† ⊗E † ∆)ϕq=1. This proves (a).

Next we prove (b). Let ∆1 and ∆2 be two objects in Mod
ϕq,Γ,ét

/E † . What we have to show is that the natural
map

Hom
Mod

ϕq,Γ,ét

/E†

(∆1,∆2) → Hom
Mod

ϕq,Γ,ét

/E

(E ⊗E † ∆1, E ⊗E † ∆2)

is an isomorphism. For this we reduce to show that

(
∆̌1 ⊗E † ∆2

)ϕq=1,Γ=1

→
(
E ⊗E † (∆̌1 ⊗E † ∆2)

)ϕq=1,Γ=1

is an isomorphism. Here ∆̌1 is the E †-module of E †-linear maps from ∆1 to E †, which is equipped with a
natural étale (ϕq,Γ)-module structure. We have

(
E ⊗E † (∆̌1 ⊗E † ∆2)

)ϕq=1,Γ=1

=
(
B⊗E † (∆̌1 ⊗E † ∆2)

)ϕq=1,GF=1

= V(E ⊗E † (∆̌1 ⊗E † ∆2))
GF=1

=
(
B† ⊗E † (∆̌1 ⊗E † ∆2)

)ϕq=1,GF=1

= (∆̌1 ⊗E † ∆2)
ϕq=1,Γ=1.

Finally, (c) follows from (a), (b) and Theorem 1.3.

Proposition 1.6. The functor ∆ 7→ RL ⊗
E

†

L
∆ is an equivalence of categories between Mod

ϕq,Γ,ét

/E †

L

and

Mod
ϕq,Γ,ét

/RL
.

Proof. Let D be an étale (ϕq ,Γ)-module over RL. By Kedlaya’s slope filtration theorem [16], there exists a

unique ϕq-stable E
†
L-submodule ∆ of D that is étale as a ϕq-module such that D = RL ⊗

E
†

L
∆. For any γ ∈ Γ,

γ(∆) also has this property. Thus, by uniqueness of ∆, we have γ(∆) = ∆. This means that ∆ is Γ-invariant.

1.3 OF -analytic (ϕq,Γ)-modules

For any r ≥ s > 0, let v[s,r] be the valuation defined by v[s,r](f) = infr′∈[s,r] v
{r′}(f). Note that v[s,r](f) =

inf
z∈Cp,s≤vp(z)≤r

vp(f(z)).

Lemma 1.7. For any r > s > 0, there exists a sufficiently large integer n = n(s, r) such that, if γ ∈ Γn, then

we have v[s,r]((1− γ)z) ≥ v[s,r](z) + 1 for all z ∈ E
]0,r]
L .

Proof. It suffices to consider z = ukF , k ∈ Z. If k ≥ 0, then

γ(ukF)− ukF = ukF(
γ(uF)

uF
− 1)(

γ(uk−1F )

uk−1F
+ · · ·+ 1)

and

γ(u−kF )− u−kF = u−kF (
uF

γ(uF)
− 1)(

uk−1F
γ(uk−1F )

+ · · ·+ 1).

As v[s,r](yz) ≥ v[s,r](y) + v[s,r](z), the lemma follows from the fact that γ(uF )
uF

− 1 → 0 when γ → 1.
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Let D be an object in Mod
ϕq,Γ,ét

/RL
. We choose a basis {e1, · · · , ed} of D and write D]0,r] = ⊕di=1E

]0,r]
L · ei.

Note that our definition of D]0,r] depends on the choice of {e1, · · · , ed}. However, if {e′1, · · · , e
′
d} is another

basis, then ⊕di=1E
]0,r]
L · ei = ⊕di=1E

]0,r]
L · e′i for sufficiently small r > 0. When r > 0 is sufficiently small, D]0,r] is

stable under Γ. By Lemma 1.7 and the continuity of the Γ-action on D]0,r], the series

log γ =

∞∑

i=1

(γ − 1)i(−1)i−1/i

converges on D]0,r] when γ → 1. It follows that the map

dΓ : LieΓ → EndLD
]0,r], β 7→ log(expβ)

is well defined for sufficiently small β, and we extend it to all of LieΓ by Zp-linearity. As a result, we obtain
a Zp-linear map dΓD : LieΓ → EndLD. For any β ∈ LieΓ, dΓRL(β) is a derivation of RL and dΓD(β) is a
differential operator over dΓRL(β), which means that for any a ∈ RL, m ∈ D and β ∈ LieΓ we have

dΓD(β)(am) = dΓRL(β)(a)m+ a · dΓD(β)(m). (1.2)

The isomorphism χF : Γ → O×F induces an OF -linear isomorphism LieΓ → OF . We will identify LieΓ with
OF via this isomorphism.

We say that D is OF -analytic if the map dΓD is not only Zp-linear, but also OF -linear. If D is OF -analytic,
the operator dΓD(β)/β, β ∈ OF , β 6= 0, does not depend on the choice of β. The resulting operator is denoted
by ∇D or just ∇ if there is no confusion. Note that the Γ-action on RL is OF -analytic and by [17, Lemma 2.1.4]

∇ = tF ·
∂FF
∂Y

(uF , 0) · d/duF , (1.3)

where FF (X,Y ) is the formal group law of F . Put ∂ = ∂FF

∂Y (uF , 0) · d/duF . From the relation σa(tF ) = atF
we obtain ∇tF = tF and ∂ tF = 1. When F = Gm, ∇ and ∂ are already defined in [2]. In this case
FF (X,Y ) = X + Y +XY and so ∂ = (1 + uF)d/duF .

We end this section by classification of (ϕq,Γ)-modules over RL of rank 1.
Let I (L) be the set of continuous characters δ : F× → L×, Ian(L) the subset of locally F -analytic

characters. If δ is in Ian(L), then
log δ(a)
log(a) , a ∈ O×F , which makes sense when log(a) 6= 0, does not depend on a.

This number, denoted by wδ, is called the weight of δ. Clearly wδ = 0 if and only if δ is locally constant; wδ is
in Z if and only if δ is locally algebraic.

If δ ∈ I (L), let RL(δ) be the (ϕq ,Γ)-module over RL (of rank 1) that has a basis eδ such that ϕq(eδ) =
δ(π)eδ and σa(eδ) = δ(a)eδ. It is easy to check that, if δ ∈ Ian(L), then RL(δ) is OF -analytic and ∇δ =
∇RL(δ) = tF∂ +wδ (more precisely ∇δ(zeδ) = (tF∂z +wδz)eδ). If RL(δ) is étale, i.e. vp(δ(π)) = 0, we will use
L(δ) to denote the Galois representation attached to RL(δ).

Remark 1.8. All of 1-dimensional L-representations of GF are overconvergent. In fact, such a representation
comes from a character of F× and thus is of the form L(δ).

Proposition 1.9. Let D be a (ϕq,Γ)-module over RL of rank 1. Then there exists a character δ ∈ I (L) such
that D is isomorphic to RL(δ). Furthermore D is OF -analytic if and only if δ ∈ Ian(L).

Proof. The argument is similar to the proof of [9, Proposition 3.1]. We first reduce to the case that D is étale.

Then by Proposition 1.6 there exists an étale (ϕq,Γ)-module ∆ over E
†
L such that D = RL ⊗

E
†

L
∆. Now the

first assertion follows from Proposition 1.5 and Remark 1.8. The second assertion is obvious.

2 The operators ψ and ∂

2.1 The operator ψ

We define an operator ψ and study its properties.
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Note that {uiF}0≤i≤q−1 is a basis of EL over ϕq(EL). So EL is a field extension of ϕq(EL) of degree q. Put
tr = trEL/ϕq(EL).

Lemma 2.1.

(a) There is a unique operator ψ : EL → EL such that ϕq ◦ ψ = q−1tr.

(b) For any a, b ∈ EL we have ψ(ϕq(a)b) = aψ(b). In particular, ψ ◦ ϕq = id.

(c) ψ commutes with Γ.

Proof. Assertion (a) follows from the fact that ϕq is injective. Assertion (b) follows from the relation

ϕq(ψ(ϕq(a)b)) = tr(ϕq(a)b)/q = ϕq(a)tr(b)/q = ϕq(a)ϕq(ψ(b)) = ϕq(aψ(b))

and the injectivity of ϕq. As ϕq commutes with Γ, ϕq(EL) is stable under Γ. Thus γ ◦ tr ◦γ
−1 = tr for all γ ∈ Γ.

This ensures that ψ commutes with Γ. Assertion (c) follows.

We first compute ψ in the case of the special Lubin-Tate group.

Proposition 2.2. Suppose that F is the special Lubin-Tate group.

(a) If ℓ ≥ 0, then ψ(uℓF ) =
∑[ℓ/q]
i=0 aℓ,iu

i
F with vπ(aℓ,i) ≥ [ℓ/q] + 1− i− vπ(q).

(b) If ℓ < 0, then ψ(uℓF ) =
∑[ℓ/q]
i=ℓ bℓ,iu

i
F with vπ(bℓ,i) ≥ [ℓ/q] + 1− i− vπ(q).

Proof. First we prove (a) by induction on ℓ. As the minimal polynomial of uF is Xq + πX − (uqF + πuF ), by
Newton formula we have

tr(uiF ) =

{
0 if 1 ≤ i ≤ q − 2,
(1− q)π if i = q − 1.

It follows that

ψ(uiF) =

{
0 if 1 ≤ i ≤ q − 2,
(1− q)π/q if i = q − 1.

Thus the assertion holds when 0 ≤ ℓ ≤ q − 1. Now we assume that ℓ = j ≥ q and the assertion holds when
0 ≤ ℓ ≤ j − 1. We have

ψ(uℓF ) = ψ((uqF + πuF)u
ℓ−q
F )− ψ(πuℓ−q+1

F ) = uFψ(u
ℓ−q
F )− πψ(uℓ−q+1

F )

=

[ℓ/q]∑

i=1

aℓ−q,i−1u
i
F −

[(ℓ+1)/q]−1∑

i=0

πaℓ−q+1,iu
i
F .

Thus aℓ,i = aℓ−q,i−1 − πaℓ−q+1,i. By the inductive assumption we have

vπ(aℓ−q,i−1) ≥ [(ℓ− q)/q] + 1− (i − 1)− vπ(q) = [ℓ/q] + 1− i− vπ(q)

and

vπ(aℓ−q+1,i) ≥ [(ℓ− q + 1)/q] + 1− i− vπ(q) ≥ [ℓ/q]− i− vπ(q)

It follows that vπ(aℓ,i) ≥ [ℓ/q] + 1− i− vπ(q).
Next we prove (b). We have

ψ(uℓF) = ψ
( (uq−1F + π)−ℓ

ϕq(uF)−ℓ

)
=

ψ
(∑−ℓ

j=0

[
−ℓ
j

]
u
j(q−1)
F π−ℓ−j

)

u−ℓF
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=

[−ℓ(q−1)/q]∑

i=0

−ℓ∑

j=0

[
−ℓ
j

]
π−ℓ−jaj(q−1),i · u

i+ℓ
F =

[ℓ/q]∑

i=ℓ

−ℓ∑

j=0

[
−ℓ
j

]
π−ℓ−jaj(q−1),i−ℓ · u

i
F

Here,

[
−ℓ
j

]
= (−ℓ)!

j!(−ℓ−j)! . Thus bℓ,i =
−ℓ∑
j=0

[
−ℓ
j

]
π−ℓ−jaj(q−1),i−ℓ. As

vπ(π
−ℓ−jaj(q−1),i−ℓ) ≥ −ℓ− j + ([

j(q − 1)

q
] + 1− (i− ℓ)− vπ(q))

= [−j/q] + 1− i− vπ(q) ≥ [ℓ/q] + 1− i− vπ(q),

we obtain vπ(bℓ,i) ≥ [ℓ/q] + 1− i− vπ(q).

Let E
−
L be the subset of EL consisting of elements of the form

∑
i≤−1

aiu
i
F .

Corollary 2.3. Suppose that F is the special Lubin-Tate group. Then ψ(E−L ) ⊂ E
−
L .

Proof. This follows directly from Proposition 2.2.

Proposition 2.4. (a) We have ψ(E +
L ) = E

+
L , ψ(O

E
+
L
) ⊂ π

qOE
+
L

and ψ(OEL) ⊂
π
qOEL .

(b) ψ is continuous for the weak topology on EL.

(c) E
†
L is stable under ψ, and the restriction of ψ on E

†
L is continuous for the weak topology of E

†
L.

(d) If f ∈ E
(0,r]
L , then the sequence ( qπψ)

n(f), n ∈ N, is bounded in E
(0,r]
L for the weak topology.

Proof. Let F0 be the special Lubin-Tate group over F corresponding to π. Observe that ψF = η−1F0,F
ψF0ηF0,F .

As ηF0,F(uF0) = uF× a unit in OF [[uF ]], for any r > 0 we have that ηF0,F (O
(0,r]
EF0,L

[1/uF0]) = O
(0,r]
EF,L

[1/uF ]

and that ηF0,F respects the valuation v[0,r]. Thus ηF0,F : E
(0,r]
F0,L

→ E
(0,r]
F ,L is a topological isomorphism. It

follows that E
†
F0,L

→ E
†
F ,L and its inverse are continuous for the weak topology. Similarly ηF0,F : EF0,L → EF ,L

and its inverse are continuous for the weak topology. Hence we only need to consider the case of the special
Lubin-Tate group. Assertions (a) and (b) follow from Proposition 2.2. For (c) we only need to show that, for

any r > 0 we have ψ(E
(0,r]
L ) ⊂ E

(0,r]
L and the restriction ψ : E

(0,r]
L → E

(0,r]
L is continuous. By (b) the restriction

of ψ to E
+
L is continuous. By Proposition 2.2 (b) and Corollary 2.3, if f is in E

−
L ∩ E

(0,r]
L , then ψ(f) is in E

−
L

and v{r}(ψ(f)) ≥ v{r}(f) + vp(π/q). Thus ψ : E
−
L ∩ E

(0,r]
L → E

−
L ∩ E

(0,r]
L is continuous, which proves (c). As

q
πψ(OE

+
L
) ⊂ O

E
+
L

and v{r}( qπψ(f)) ≥ v{r}(f) for any f ∈ E
−
L ∩ E

(0,r]
L , (d) follows.

Next we extend ψ to RL.

Proposition 2.5. We can extend tr continuously to RL. The resulting operator tr satisfies tr|ϕq(RL) = q · id
and tr(RL) = ϕq(RL).

Proof. Let E
≫−∞
L denote the subset of EL consisting of f ∈ EL of the form

∑
n≫−∞ anu

n
F . If f ∈ E

≫−∞
L , then

tr(f) =
∑

η∈ker[π]F

f(uF +F η).

If η is in ker[π]F , then vp(η) ≥
1

(q−1)eF
where eF = [F : F0]. Thus, if r and s ∈ R+ satisfy 1

(q−1)eF
> r ≥ s,

the morphisms uF 7→ uF +F η (η ∈ ker[π]F ) keep the annulus {z ∈ Cp : p−r ≤ |z| ≤ p−s} stable. So for any
f ∈ E

≫−∞
L we have v[s,r](f(uF +F η)) = v[s,r](f) and v[s,r](tr(f)) ≥ v[s,r](f). Hence there exists a unique

continuous operator Tr : RL → RL such that Tr(f) = tr(f) for any f ∈ E
≫−∞
L . (For any f ∈ RL, choosing a

positive real number r such that f ∈ E
]0,r]
L , we can find a sequence {fi}i≥1 in E

≫−∞
L such that fi → f in E ]0,r];
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then {tr(fi)}i≥1 is a Cauchy sequence in E
[s,r]
L for any s satisfying 0 < s ≤ r, and we let Tr(f) be their limit in

E ]0,r]; it is easy to show that Tr(f) does not depend on any choice.) From the continuity of Tr we obtain that
Tr|

E
†

L
= tr and Tr|ϕq(RL) = q · id. By Lemma 2.6 below, ϕq : RL → RL is strict and thus has a closed image.

Since E
†
L is dense in RL and Tr(E †L) = ϕq(E

†
L) ⊂ ϕq(RL), we have Tr(RL) ⊆ ϕq(RL).

Lemma 2.6. If q
(q−1)eF

> r ≥ s > 0 and f ∈ E
]0,r]
L , then we have

• v[s,r](γ(f)) = v[s,r](f) for all γ ∈ Γ;

• v[s,r](ϕq(f)) = v[qs,qr](f) if r < 1
(q−1)eF

.

Proof. Since [χF(γ)]F (uF) ∈ uFOF [[uF ]], we have vp([χF (γ)]F (z)) > vp(z) for all z ∈ Cp such that vp(z) > 0.
By the same reason we have vp([χF (γ

−1)]F (z)) > vp(z) and thus vp([χF(γ)]F (z)) 6 vp(z). So vp([χF(γ)]F (z)) =
vp(z).

If z ∈ Cp satisfies p
− 1

(q−1)eF < p−r 6 |z| 6 p−s < 1, then vp([π]F (z)) = qvp(z). Thus, the image by
z 7→ [π]F (z) of the annulus {z ∈ Cp : p−r 6 |z| 6 p−s} is inside the annulus {z ∈ Cp : p−qr 6 |z| 6 p−qs}.
Conversely, if w ∈ Cp is such that p−qr 6 |w| 6 p−qs, then vp(w) <

q
(q−1)eF

. The Newton polygon of the

polynomial −w+[π]F (uF) shows that this polynomial has q roots of valuation 1
q vp(w). If z ∈ Cp is such a root,

we have p−r 6 |z| 6 p−s. Thus, the image of the annulus p−r 6 |z| 6 p−s is the annulus p−qr 6 |z| 6 p−qs.

We define ψ : RL → RL by ψ = 1
q ϕ
−1
q ◦ tr.

Lemma 2.7. If q
(q−1)eF

> r ≥ s > 0 and f ∈ E
]0,r]
L , then v[s,r](ψ(f)) > v[s/q,r/q](f)− vp(q).

Proof. By Lemma 2.6 it suffices to show that

v[s/q,r/q](ϕq(ψ(f))) = v[s/q,r/q](q−1tr(f)) ≥ v[s/q,r/q](f)− vp(q).

But this follows from Proposition 2.5 and its proof.

As a consequence, ψ : RL → RL is continuous.

Corollary 2.8. (a) {uiF}0≤i≤q−1 is a basis of E
†
L over ϕq(E

†
L), and tr|

E
†

L
= tr

E
†

L/ϕq(E
†

L).

(b) {uiF}0≤i≤q−1 is a basis of RL over ϕq(RL).

Proof. Let {bi}0≤i≤q−1 be the dual basis of {uiF}0≤i≤q−1 relative to trEL/ϕq(EL). Let B be the inverse of the

matrix (tr(ui+jF ))i,j . Then B ∈ GLq(E
†
L) and (b0, b1, · · · , bq−1)

t = B(1, uF , · · · , u
q−1
F )t. So b0, b1, · · · , bq−1 are

in E
†
L. Then f =

∑q−1
i=0 u

i
Fψ(bif) for any f ∈ EL, E

†
L or RL. (For the former two cases, this follows from the

definition of {bi}0≤i≤q−1; for the last case, we apply the continuity of ψ.) Thus {uiF}0≤i≤q−1 generate E
†
L (resp.

RL) over ϕq(E
†
L) (resp. ϕq(RL)). In either case, to prove the independence of {uiF}0≤i≤q−1, we only need to

use the fact ψ(biu
j
F) = δij (i, j ∈ {0, 1, · · · , q − 1}), where δij is the Kronecker sign. Finally we note that the

second assertion of (a) follows from the first one.

We apply the above to (ϕq,Γ)-modules.

Proposition 2.9. If D is a (ϕq,Γ)-module over R where R = EL, E
†
L or RL, then there is a unique operator

ψ : D → D such that
ψ(aϕq(x)) = ψ(a)x and ψ(ϕq(a)x) = aψ(x) (2.1)

for any a ∈ R and x ∈ D. Moreover ψ commutes with Γ.

Proof. Let {e1, e2, · · · , ed} be a basis ofD overR. By the definition of (ϕq,Γ)-modules, {ϕq(e1), ϕq(e2), · · · , ϕq(ed)}
is also a basis of D. For any m ∈ D writing m = a1ϕq(e1) + a2ϕq(e2) + · · · + adϕq(ed), we put ψ(m) =
ψ(a1)e1 +ψ(a2)e2 + · · ·+ψ(ad)ed. Then ψ satisfies (2.1). It is easy to prove the uniqueness of ψ. Observe that
for any γ ∈ Γ, γψγ−1 also satisfies (2.1). Thus γψγ−1 = ψ by uniqueness of ψ. This means that ψ commutes
with Γ.
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2.2 The operator ∂ and the map Res

Recall that ∂ = ∂FF

∂Y (uF , 0) · d/duF . So dtF = ∂FF

∂Y (uF , 0)duF and dtF
duF

= (∂FF

∂Y (uF , 0))
−1.

Lemma 2.10. If r ≥ s > 0 and f ∈ R
]0,r]
L , then v[s,r](∂f) > v[s,r](f)− r.

Proof. Observe that vp(
∂FF

∂Y (z, 0)) = 0 for all z in the disk |z| < 1. Thus v[s,r](∂f) = v[s,r]
(

df
duF

)
. Write

f =
∑

n∈Z anu
n
F . Then we have

v[s,r]
(

df

duF

)
= inf
r>vp(z)>s

n∈Z

vp
(
nanz

n−1
)

> inf
r>vp(z)>s

n∈Z

(vp(an) + nvp(z)− vp(z))

> inf
r>vp(z)>s

n∈Z

(vp(an) + nvp(z))− r

> v[s,r](f)− r,

as desired.

Lemma 2.11. We have

∂ · σa = aσa · ∂, ∂ · ϕq = πϕq · ∂, ∂ ◦ ψ = π−1ψ ◦ ∂.

Proof. From the definition of ∇ we see that ∇ = tF∂ commutes with Γ, ϕq and ψ. So the equalities

σa(tF ) = atF , ϕq(tF ) = πtF , ψ(tF ) = ψ(π−1ϕq(tF )) = π−1tF

imply the lemma.

Let res : RLduF → L be the residue map res(
∑
i∈Z

aiu
i
FduF) = a−1, and let Res : RL → L be the map

defined by Res(f) = res(fdtF ).

Proposition 2.12. We have the following exact sequence

0 // L // RL
∂ // RL

Res // L // 0

where L→ RL is the inclusion map.

Proof. The kernel of ∂ is just the kernel of d/duF and thus is L. For any a ∈ L we have Res( a
uF

· ( dtF
duF

)−1) = a,
which implies that Res is surjective. If f = ∂g, then fdtF = dg and so Res(f) = res(dg) = 0. It follows that
Res ◦ ∂ = 0. Conversely, if f ∈ RL satisfies Res(f) = 0, then f can be written as f = ( dtF

duF
)−1 ·

∑
i6=−1 aiu

i
F .

Put g =
∑
i6=−1

ai
i+1u

i+1
F . Then f = ∂g.

Proposition 2.13.

(a) Res ◦ σa = a−1Res.

(b) Res ◦ ϕq =
q
πRes and Res ◦ ψ = π

qRes.

Proof. First we prove (a). Let g be in RL and put f = ∂g. By Lemma 2.11 we have

σa(f) = σa ◦ ∂(g) = a−1∂(σa(g)), ψ(f) = ψ ◦ ∂(g) = π∂(ψ(g)).
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Thus by Proposition 2.12 we have Res ◦ σa = a−1Res = 0 and Res ◦ ψ = π
qRes = 0 on ∂RL. From

σa(1/uF) =
1

[a]F (uF)
≡

1

auF
mod R

+
L ,

we see that Res ◦ σa(
1
uF

) = a−1Res( 1
uF

). Assertion (a) follows.
To prove Res ◦ψ = π

qRes, without loss of generality we suppose that F is the special Lubin-Tate group. In

this case ψ( 1
uF

) = π
quF

, and so Res(ψ(1/uF)) =
π
qRes(1/uF). It follows that Res ◦ ψ = π

qRes. Finally we have

Res(ϕq(z)) =
q
πRes(ψ(ϕq(z))) =

q
πRes(z) for any z ∈ RL. In other words, Res ◦ ϕq =

q
πRes.

Using Res we can define a pairing {·, ·} : RL × RL → L by {f, g} = Res(fg).

Proposition 2.14. (a) The pairing {·, ·} is perfect and induces a continuous isomorphism from RL to its
dual.

(b) We have

{σa(f), σa(g)} = a−1{f, g}, {ϕq(f), ϕq(g)} =
q

π
{f, g}, {ψ(f), ψ(g)} =

π

q
{f, g}.

Proof. Assertion (a) follows from [12, Remark I.1.5]. Assertion (b) follows from Proposition 2.13.

3 Operators on RCp

3.1 The operator ψ on RCp

First we define RCp . For any r ≥ 0, let E
]0,r]
Cp

:= E ]0,r]⊗̂FCp be the topological tensor product, i.e. the

Hausdorff completion of the projective tensor product E ]0,r] ⊗F Cp (cf. [23]). Then E
]0,r]
Cp

is the ring of Laurent

series f =
∑
i∈Z aiu

i
F with coefficients in Cp that are convergent on the annulus 0 < vp(uF ) ≤ r. We also write

R
+
Cp

for E
]0,+∞]
Cp

. Then we define RCp to be the inductive limit lim
r→0

E
]0,r]
Cp

.

The p-adic Fourier theory of Schneider and Teitelbaum [24] shows that R
+
Cp

is isomorphic to the ring

D(OF ,Cp) of Cp-valued locally F -analytic distributions on OF . We recall this below.
By [24] there exists a rigid analytic group variety X such that X(L), for any extension L ⊆ Cp of F , is the

set of L-valued locally F -analytic characters. For λ ∈ D(OF , L), put Fλ(χ) = λ(χ), χ ∈ X(L). Then Fλ is in
O(X/L), and the map D(OF , L) → O(X/L), λ 7→ Fλ, is an isomorphism of L-Fréchet algebras.

Let F ′ be the p-divisible group dual to F , TF ′ the Tate module of F ′. Then TF ′ is a free OF -module of
rank 1; the Galois action on TF ′ is given by the continuous character τ := χcyc ·χ

−1
F , where χcyc is the cyclotomic

character. By Cartier duality, we obtain a Galois equivariant pairing 〈 , 〉 : F(Cp) ⊗OF TF
′ → B1(Cp), where

B1(Cp) is the multiplicative group {z ∈ Cp : |z − 1| < 1}. Fixing a generator t′ of TF ′, we obtain a map
F(Cp) → B1(Cp). As a formal series, this morphism can be written as βF(X) := exp(Ω logF (X)) for some
Ω ∈ Cp, and it lies in 1+XOCp [[X ]]. Moreover, we have vp(Ω) =

1
p−1 −

1
(q−1)eF

(cf. the appendix of [24] or [7])

and σ(Ω) = τ(σ)Ω for all σ ∈ GF . Using 〈·, ·〉 we obtain an isomorphism of rigid analytic group varieties

κ : F(Cp)
∼
−→ X(Cp), z 7→ κz(i) := 〈t′, [i]F (z)〉 = βF([i]F (z)).

Passing to global sections, we obtain the desired isomorphism D(OF ,Cp) ∼= O(X/Cp) ∼= R
+
Cp
.

We extend ϕq, ψ and the Γ-action Cp-linear and continuously to RCp . By continuity we have ψ(ϕq(f)g) =

fψ(g) for any f, g ∈ RCp . All of these actions keep R
+
Cp

invariant.
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Lemma 3.1. We have

σa(βF ([i]F)) = βF([ai]F ),

ϕq(βF ([i]F)) = βF([πi]F ),

ψ(βF ([i]F)) =

{
0 if i /∈ πOF

βF ([i/π]F) if i ∈ πOF ,

∂(βF ([i]F)) = iΩβF([i]F).

Proof. The formulae for σa and ϕq are obvious. The formula for ∂ follows from that

∂ exp(iΩ logF(uF)) = exp(iΩ logF (uF)) · ∂(iΩtF) = iΩexp(iΩ logF (uF)).

If i ∈ πOF , then ψ(βF([i]F )) = ψ ◦ ϕq(βF ([i/π]F)) = βF ([i/π]F). For any i /∈ πOF , we have

ψ(βF([i]F )) =
1

q
ϕ−1q




∑

η∈ker[π]F

βF ([i]F(uF +F η))


 =

1

q
ϕ−1q


βF ([i]F)

∑

η∈ker[π]F

βF([i]F (η))


 = 0 (3.1)

because {βF([i]F(η)) : η ∈ ker[π]F} = {βF(η) : η ∈ ker[π]F} take values in the set of p-th roots of unity and
each of these p-th roots of unity appears q/p times.

The isomorphism R
+
Cp

∼= D(OF ,Cp) transfers the actions of ϕq, ψ and Γ to D(OF ,Cp).

Lemma 3.2. For any µ ∈ D(OF ,Cp), we have

σa(µ)(f) = µ(f(a·)), ϕq(µ)(f) = µ(f(π·)).

Proof. Note that the action of ϕq and Γ on R
+
Cp

comes, by passing to global sections, from the (ϕq,Γ)-action

on F(Cp) with ϕq = [π]F and σa = [a]F . The isomorphism κ transfers the action to X(Cp): ϕq(χ)(x) = χ(πx)
and σa(χ)(x) = χ(ax). Passing to global sections yields what we want.

Lemma 3.3. The family
(
βF ([i]F)

)
i∈OF /π

is a basis of RCp over ϕq(RCp). Moreover, if

f =
∑

i∈OF /π

βF ([i]F )ϕq(fi),

then the terms of the sum do not depend on the choice of the liftings i, and we have

fi = ψ
(
βF([−i]F)f

)
.

Proof. What we need to show is that

f =
∑

ī∈OF /π

βF([i]F ) · ϕq ◦ ψ(βF ([−i]F)f) (3.2)

for all f ∈ RCp . Indeed, (3.2) implies that {βF([i]F )}ī∈OF /π generate RCp over ϕq(RCp). On the other hand,
if f =

∑
ī∈OF /π

βF ([i]F)ϕq(fi), using (3.1) we obtain fi = ψ(βF ([−i]F)f), which implies the linear independence

of {βF([i]F )}ī∈OF /π over ϕq(RCp). As the map f 7→
∑

ī∈OF /π
βF([i]F ) · ϕq ◦ ψ(βF([−i]F )f) is ϕq(RCp)-linear

and continuous, we only need to prove (3.2) for a subset that topologically generates RCp over ϕq(RCp). For

example, {uiF}0≤i≤q−1 is such a subset. So it is sufficient to prove (3.2) for f ∈ R
+
Cp
. For any i ∈ OF , let δi be

the Dirac distribution such that δi(f) = f(i). Then κ∗(δi) = βF([i]F ). Indeed, we have

κ∗(δi)(z) = δi(z) = κz(i) = βF([i]F (z)).

It is easy to see that (δi)̄i∈OF/π is a basis of D(OF ,Cp) over ϕq(D(OF ,Cp)). Thus every f ∈ R
+
Cp

can be

written uniquely in the form f =
∑

ī∈OF /π
βF ([i]F)ϕq(fi) with fi ∈ R

+
Cp
. As is observed above, from (3.1) we

deduce that fi = ψ(βF([−i]F )f).
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Next we define operators ResU . These are analogues of the operators defined in [12].
For any f ∈ RCp , i ∈ OF and integer m > 0, put

Resi+πmOF (f) = βF ([i]F)(ϕ
m
q ◦ ψm)

(
βF([−i]F)f

)
.

Lemma 3.3 says that

f =
∑

i∈OF /π

Resi+πOF (f),

This implies that the operators Resi+πmOF are well defined (i.e. Resi+πmOF does not depend on the choice of
i in the ball i+ πmOF ). Applying Lemma 3.3 recursively we get

f =
∑

i∈OF /πm

Resi+πmOF (f).

Finally, if U is a compact open subset of OF , it is a finite disjoint union of balls ik + πmkOF . Define
ResU =

∑
k Resik+πmkOF . The map ResU : RCp → RCp does not depend on the choice of these balls, and

we have ResOF = 1, Res∅ = 0 and ResU∪U ′ +ResU∩U ′ = ResU +ResU ′ .

3.2 The operator mα

Let α : OF → Cp be a locally (F -)analytic function. In this subsection, we define an operator mα : RCp → RCp

similar to the one defined in [10, V.2].
Since α is a locally analytic function on OF , there is an integer m > 0 such that

α(x) =

+∞∑

n=0

ai,n(x − i)n for all x ∈ i+ πmOF ,

with ai,n = 1
n!

dn

dxnα(x)
∣∣
x=i

. Let ℓ > m be an integer. Define

mα(f) =
∑

i∈OF /πℓ

βF([i]F )

(
ϕℓq ◦

(
+∞∑

n=0

ai,nπ
ℓnΩ−n∂n

)
◦ ψℓ

)(
βF ([−i]F) · f

)
.

(Formally, this definition can be seen as “mα = α(Ω−1∂)”). According to Lemmas 2.6, 2.7 and 2.10, if
r < 1

qℓ−1(q−1)eF
then we have

v[s,r]
(
(ϕℓq ◦ Ω

−n∂n ◦ ψℓ)(g)
)
> −nqℓr − nvp(Ω) + v[s,r](g)− ℓvp(q),

and thus
∑+∞

n=0 an,iπ
ℓn(ϕℓq ◦ Ω

−n∂n ◦ ψℓ)(g) converges when ℓ and r satisfy

ℓ

eF
− qℓr −

1

p− 1
+

1

(q − 1)eF
>
m

eF
.

If we choose ℓ > m+ eF
p−1 −

1
q−1 and r close enough to 0, then this condition is satisfied. Hence, we have indeed

defined a continuous operator mα : RCp → RCp .

Now, let us prove that mα(f) neither depend on the choice of ℓ, nor on that of the liftings i for i ∈ OF /π
ℓ.

By linearity and continuity, we may assume that f = 1i+πmOF (x− i)k. Remark that we have

ai+πmv,n =

[
k
n

]
π(k−n)mvk−n.
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It suffices to show that,

∑

v∈OF /πℓ−m

βF ([π
mv]F )

(
ϕℓq ◦

(
k∑

n=0

ai+πmv,nπ
ℓnΩ−n∂n

)
◦ ψℓ

)(
βF ([−π

mv]F ) · f
)

=
(
ϕmq ◦

(
πmkΩ−k∂k

)
◦ ψm

)
f.

and for this it is sufficient to prove that

∑

v∈OF /πℓ−m

βF([v]F )

(
ϕℓ−mq ◦

(
k∑

n=0

ai+πmv,nπ
ℓnΩ−n∂n

)
◦ ψℓ−m

)(
βF ([−v]F ) · f

)
= πmkΩ−k∂kf.

As
k∑

n=0

ai+πmv,nπ
ℓnΩ−n∂n =

k∑

n=0

[
k
n

]
π(k−n)mvk−n · πℓnΩ−n∂n = πmk

(
πℓ−mΩ−1∂ + v

)k
,

it suffices to prove that

Ω−k∂kf =
∑

v∈OF /πℓ−m

βF ([v]F )
(
ϕℓ−mq ◦

(
πℓ−mΩ−1∂ + v

)k
◦ ψℓ−m

)(
βF ([−v]F)f

)
.

Since
(
πℓ−mΩ−1∂ + v

)k
◦ ψℓ−m = ψℓ−m ◦

(
Ω−1∂ + v

)k
and

(
Ω−1∂ + v

) (
βF([−v]F )f

)
= βF ([−v]F )Ω

−1∂f

(which follows from Lemma 3.1), the problem reduces to proving

f =
∑

v∈OF /πℓ−m

βF ([v]F )
(
ϕℓ−m ◦ ψℓ−m

) (
βF([−v]F )f

)
.

But this can be deduced from Lemma 3.1 and Lemma 3.3.

Lemma 3.4. If α, β : OF → Cp are locally analytic functions, then mα ◦mβ = mαβ.

Proof. We can choose ℓ sufficiently large, so that the same value can be used to define mα(f) and mβ(f). Since
ψℓ ◦ ϕℓq = 1, the equality in the lemma reduces to the expression of the product of two power series.

Lemma 3.5. We have:

• m1 = id

• If U is a compact open subset of OF , then ResU = m1U .

• If λ ∈ Cp, then mλα = λmα.

• ϕq ◦mα = mx 7→1πOF
(x)α(π−1x) ◦ ϕq

• ψ ◦mα = mx 7→α(πx) ◦ ψ

• For any a ∈ O×F , we have σa ◦mα = mx 7→α(a−1x) ◦ σa

• R
+
Cp

is stable under mα.

Proof. These are easy consequences of the definition of mα.

Remark 3.6. The notationmα stands for “multiply by α”: for any µ ∈ D(OF ,Cp) we havemακ
∗(Fµ) = κ∗(Fαµ),

where αµ is the distribution such that (αµ)(f) = µ(αf) for any locally F -analytic function f .
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The operatormα has been defined over RCp , using a period Ω ∈ Cp that is transcendental over F . However,
in some cases, it is possible to construct related operators over RL, for L smaller than Cp. This is done using
the following lemma.

Lemma 3.7. Let σ be in GL. Consider the action of σ over RCp given by

fσ(uF) =
∑

n∈Z

σ(an)u
n
F if f(uF) =

∑

n∈Z

anu
n
F ∈ RCp .

Then, we have mα(f)
σ = mβ(f

σ), for β(x) = σ
(
α
(
χF (σ)
χGm

(σ)x
))

.

Proof. This can be deduced easily from the definition of mα and the action of σ on Ω.

3.3 The L[Γ]-module RL(δ)
ψ=0

Let δ : F× → L× be a locally F -analytic character. Then the map x 7→ 1O×
F
(x)δ(x) is locally analytic on OF .

Thus, we have an operator m1
O

×
F
δ on RCp .

Lemma 3.8. Let f be in RL. If m1
O

×
F

δ(f) =
∑

n∈Z anu
n
F ∈ RCp , then the coefficients an are all on the same

line of the L-vector space Cp. Moreover, this line does not depend on f .

Proof. Let σ be in GL. From Lemma 3.7 and Lemma 3.5 we see that

m1
O

×
F

δ(f)
σ = δ

(
χF(σ)

χGm(σ)

)
m1

O
×
F

δ(f),

and thus σ(an) = δ
(
χF (σ)
χGm (σ)

)
an for all n.

Ax-Sen-Tate’s theorem (see e.g. [1] or [18]) says that CGL
p = L. Hence,

{
z ∈ Cp : σ(z) = δ

(
χF (σ)

χGm(σ)

)
z ∀ σ ∈ GL

}

is an L-vector subspace of Cp with dimension 0 or 1, which proves the lemma.

Since m1
O

×
F
δ ◦m1

O
×
F
δ−1 = ResO×

F
= 1 − ϕq ◦ ψ is not null, there is a unique L-line in Cp (which depends

only on δ) in which all the coefficients of the series m1
O

×
F
δ(f), for f ∈ RL, lie. Choose some non-zero aδ on this

line.
As

ϕq ◦ ψ ◦m1
O

×
F
δ = m1πOF

1
O

×
F
δ = 0

and ϕq is injective, m1
O

×
F

δ(f) is in R
ψ=0
Cp

.

Lemma 3.9. Define:
Mδ : R

ψ=0
L −→ R

ψ=0
L ,

f 7−→ a−1δ m1
O

×
F
δ(f).

(These maps are defined up to homothety, with ratio in L, because of the choice of constants aδ). Then:

• M1 is a homothety (with ratio in L×) of R
ψ=0
L ;

• Mδ1 ◦Mδ2 =Mδ1δ2 , up to homothety;

• Mδ is a bijection, and its inverse is Mδ−1 up to homothety;
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• for all γ ∈ Γ, we have δ(γ)γ ◦Mδ =Mδ ◦ γ;

• (R+
L )

ψ=0 is stable under Mδ.

Proof. This follows from Lemma 3.5 and the fact that Im(ResO×
F
) = Ker(ResπOF ) = R

ψ=0
Cp

.

If δ is in Ian(L), we put R
−
L (δ) = RL(δ)/R

+
L (δ). Since R

+
L (δ) is ϕq, ψ,Γ-stable, R

−
L (δ) also has ϕq, ψ,

Γ-actions.

Lemma 3.10. We have an exact sequence

0 // R+
L (δ)

ψ=0 // RL(δ)
ψ=0 // R−L (δ)

ψ=0 // 0.

Proof. This follows from the snake lemma and the surjectivity of the map ψ : R
+
L (δ) → R

+
L (δ).

Observe that RL(δ)
ψ=0 = R

ψ=0
L · eδ and R

+
L (δ)

ψ=0 = (R+
L )

ψ=0 · eδ. As ψ commutes with Γ, RL(δ)
ψ=0,

R
+
L (δ)

ψ=0 and R
−
L (δ)

ψ=0 are all Γ-invariant.

Proposition 3.11. Let δ1 and δ2 be two locally F -analytic characters F× → L×. Then as L[Γ]-modules,
RL(δ1)

ψ=0 is isomorphic to RL(δ2)
ψ=0, R

+
L (δ1)

ψ=0 is isomorphic to R
+
L (δ2)

ψ=0, and R
−
L (δ1)

ψ=0 is isomorphic
to R

−
L (δ2)

ψ=0.

Proof. All of the isomorphisms in question are induced by Mδ−1
1 δ2

.

Proposition 3.12. The map ∂ induces Γ-equivariant isomorphisms (RL(δ))
ψ=0 → (RL(xδ))

ψ=0, (R+
L (δ))

ψ=0 →
(R+

L (xδ))
ψ=0 and (R−L (δ))

ψ=0 → (R−L (xδ))
ψ=0.

Proof. We first show that the maps in question are bijective. For this we only need to consider the case of δ = 1.
As Ker(∂) = L, ∂ is injective on R

ψ=0
L . For any z ∈ R

ψ=0
L , Res(z) = q

πRes(ψ(z)) = 0. Thus by Proposition
2.12 there exists z′ ∈ RL such that ∂z′ = z. As ∂(ψ(z′)) = 1

πψ(∂z
′) = 0, ψ(z) = c for some c ∈ L. Then

z′ − c ∈ R
ψ=0
L and ∂(z′ − c) = z. This shows that the map R

ψ=0
L → R

ψ=0
L is bijective. It is clear that, for any

z ∈ R
ψ=0
L , ∂z ∈ R

+
L if and only if z ∈ R

+
L . Thus the restriction ∂ : (R+

L )
ψ=0 → (R+

L )
ψ=0 and the induced map

∂ : (R−L )
ψ=0 → (R−L )

ψ=0 are also bijective.
That these isomorphisms are Γ-equivariant follows from Lemma 2.11.

Put
Sδ := R

−
L (δ)

Γ=1,ψ=0. (3.3)

As before, let ∇δ be the operator on R
+
L or RL such that (∇δa)eδ = ∇(aeδ), i.e. ∇δ = tF∂ + wδ. The set

R
+
L (δ)/∇δR

+
L (δ) also admits actions of Γ, ϕq and ψ. Put

Tδ := (R+
L (δ)/∇δR

+
L (δ))

Γ=1,ψ=0.

Both Sδ and Tδ are L-vector spaces and only depend on δ|O×
F
.

Lemma 3.13. Sδ = R
−
L (δ)

ψ=0,∇δ=0, Γ=1, i.e. Sδ coincides with the set of Γ-invariant solutions of ∇δz = 0 in
R
−
L (δ)

ψ=0.

Proof. In fact, if z ∈ R
−
L (δ)

Γ=1, then ∇δz = 0.

Corollary 3.14. dimL Sδ = dimL S1 and dimL Tδ = dimL T1 for all δ ∈ Ian(L).

Proof. This follows directly from Proposition 3.11.

Corollary 3.15. The map z 7→ ∂nz induces isomorphisms Sδ → Sxnδ and Tδ → Txnδ.

Proof. This follows directly from Proposition 3.12.
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We determine dimL Sδ and dimL Tδ below.

Lemma 3.16. The map ∇δ induces an injection ∇̄δ : Sδ → Tδ.

Proof. By Proposition 3.11 we only need to consider the case of δ = 1.
Let z be an element of S1. Let z̃ ∈ R

ψ=0
L be a lifting of z. By Lemma 3.13, ∇z̃ is in R

+
L . We show that

the image of ∇z̃ in R
+
L /∇R

+
L belongs to T1. Since ψ(z̃) = 0, ψ(∇z̃) = ∇(ψ(z̃)) = 0. For any γ ∈ Γ there exists

aγ ∈ R
+
L such that γz̃ = z̃ + aγ . Thus γ(∇z̃) = ∇z̃ +∇aγ . Hence the image of z̃ in R

+
L /∇R

+
L (δ) is fixed by

Γ. Furthermore the image only depends on z. Indeed, if z̃′ ∈ R
ψ=0
L is another lifting of z, then ∇(z̃′ − z̃) is in

∇R
+
L . Therefore we obtain a map ∇̄ : S1 → T1.

We prove that ∇̄ is injective. Suppose that z ∈ S1 satisfies ∇̄z = 0. Let z̃ ∈ R
ψ=0
L be a lifting of z. Since

∇z̃ is in ∇R
+
L , there exists y ∈ R

+
L such that ∇y = ∇z̃. Thus ∇(z̃ − y) = 0. Then z̃ − y is in L, which implies

that z̃ ∈ R
+
L or equivalently z = 0.

Lemma 3.17. dimL T1 = 1.

Proof. Note that T1 = (R+
L /R

+
L tF )

Γ=1,ψ=0. As R
+
L is a Fréchet-Stein algebra, from the decomposition (1.1) of

the ideal (tF ) we obtain an isomorphism

 : R
+
L /R

+
L tF

∼
−→ R

+
L /([π]F (uF ))×

∏

n≥1

R
+
L /(ϕ

n
q (Q)). (3.4)

The operator ψ induces maps ψ0 : R
+
L /([π]F (uF)) → R

+
L /R

+
LuF and ψn : R

+
L /(ϕ

n
q (Q)) → R

+
L /(ϕ

n−1
q (Q)),

n ≥ 1. Thus ((R+
L /R

+
L tF )

Γ=1,ψ=0) is exactly the subset

{(yn)n≥0 : y0 ∈ (R+
L /([π]F(uF )))

Γ, ψ0(y0) = 0, yn ∈ (R+
L /(ϕ

n
q (Q)))Γ, ψn(yn) = 0 ∀n ≥ 1}

of R
+
L /([π]F (uF ))×

∏
n≥1 R

+
L /(ϕ

n
q (Q)).

If n ≥ 1, then R
+
F /ϕ

n
q (Q) is a finite extension of F and the action of Γ factors through the whole Galois

group of this extension. Thus (R+
F /(ϕ

n
q (Q)))Γ = F and (R+

L /(ϕ
n
q (Q)))Γ = L. Since ψn(a) = a for any a ∈ L,

(R+
F /(ϕ

n
q (Q)))Γ ∩ ker(ψn) = 0 for any n ≥ 1. Similarly (R+

L /([π]F (uF)))
Γ = (R+

L /(uF))
Γ × (R+

L /(Q))Γ is

2-dimensional over L. As ψ0(1) = 1 and the image of ψ0, i.e. R
+
L /R

+
LuF , is 1-dimensional over L, the kernel of

ψ0|(R+
L/([π]F (uF )))Γ is of dimension 1. It follows that T1 = (R+

L /R
+
L tF)

Γ=1,ψ=0 is of dimension 1.

Corollary 3.18. dimL S1 = 1.

Proof. The map ∇ injects S1 into T1 with image of dimensional 1.

Remark 3.19. If z ∈ T1 is non-zero, then any lifting z̃ ∈ R
+
L of z is not in uFR

+
L or equivalently z̃|uF=0 6= 0.

We only need to verify this for the special Lubin-Tate group. In this case, R
+
L /([π]F (uF)) = ⊕q−1i=0Lu

i
F . We

have (R+
L /([π]F(uF )))

Γ = L ⊕ Luq−1F . Indeed, an element of R
+
L /([π]F(uF )) is fixed by Γ if and only if it is

fixed by the operators z 7→ σξ(z) with ξ ∈ µq−1; but σξ(uF) = [ξ]F (uF) = ξuF and so σξ(u
i
F) = ξiuiF for any

i ∈ N. Then
(
R

+
L /([π]F (uF))

)Γ=1,ψ=0
= L · (uq−1F − (1− q)π/q).

Proposition 3.20. For any δ ∈ Ian(L), dimL Sδ = dimL Tδ = 1 and the map ∇̄δ is an isomorphism.

Proof. This follows from Corollary 3.14, Lemma 3.16, Lemma 3.17 and Corollary 3.18.

4 Cohomology theories for (ϕq,Γ)-modules

For a (ϕq,Γ)-module D over RL, the (ϕq,Γ)-module structure induces an action of the semi-group G+ := ϕN
q ×Γ

on D. Following [13] we define H•(D) as the cohomology of the semi-group G+. Let C•(G+, D) be the complex

0 // C0(G+, D)
d1 // C1(G+, D)

d2 // · · · ,
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where C0(G+, D) = D, Cn(G+, D) for n ≥ 1 is the set of continuous functions from (G+)n to D, and dn+1 is
the differential

dn+1c(g0, · · · , gn) = g0 · c(g1, · · · , gn) +

n−1∑

i=1

(−1)i+1c(g0, · · · , gigi+1, · · · gn) + (−1)n+1c(g0, · · · gn−1).

Then Hi(D) = Hi(C•(G+, D)).
If D1 and D2 are two (ϕq,Γ)-modules over RL, we use Ext(D1, D2) to denote the set, in fact an L-vector

space, of extensions of D1 by D2 in the category of (ϕq,Γ)-modules over RL.

We construct a natural map ΘD : Ext(RL, D) → H1(D) for any (ϕq,Γ)-module D. Let D̃ be an extension

of RL by D. Let e ∈ D̃ be a lifting of 1 ∈ RL. Then g 7→ g(e) − e, g ∈ G+, is a 1-cocycle, and induces an
element of H1(D) independent of the choice of e. Thus we obtain the desired map

ΘD : Ext(RL, D) → H1(D).

Proposition 4.1. For any (ϕq ,Γ)-module D over RL, Θ
D is an isomorphism.

Proof. Let D̃ be an extension of RL by D in the category of (ϕq,Γ)-modules whose image under ΘD is zero.

Let e ∈ D̃ be a lifting of 1 ∈ RL. As the image of g 7→ g(e) − e, g ∈ G+, in H1(D) is zero, there exists
some d ∈ D such that (g − 1)e = (g − 1)d for all g ∈ G+. Then g(e − d) = e − d for all g ∈ G+. Thus

D̃ = D ⊕ RL(e − d) as a (ϕq ,Γ)-module. This proves the injectivity of ΘD. Next we prove the surjectivity of
ΘD. Given a 1-cocycle g 7→ c(g) ∈ D, correspondingly we can extend the (ϕq,Γ)-module structure on D to the

RL-module D̃ = D ⊕ RLe such that ϕq(e) = e+ c(ϕq) and γ(e) = e+ c(γ) for γ ∈ Γ.

If D1 and D2 are two OF -analytic (ϕq,Γ)-modules over RL, we use Extan(D1, D2) to denote the L-vector
space of extensions of D1 by D2 in the category of OF -analytic (ϕq,Γ)-modules over RL. We will introduce
another cohomology theory H∗an(−), wherein for any OF -analytic (ϕq,Γ)-module D the first cohomology group
H1

an(D) coincides with Extan(RL, D).
If D is OF -analytic, we consider the following complex

C•ϕq,∇(D) : 0 // D
f1 // D ⊕D

f2 // D // 0 ,

where f1 : D → D ⊕D is the map m 7→ ((ϕq − 1)m,∇m) and f2 : D ⊕D → D is (m,n) 7→ ∇m − (ϕq − 1)n.
As f1 and f2 are Γ-equivariant, Γ acts on the cohomology groups Hi

ϕq,∇
(D) := Hi(C•ϕq ,∇

(D)), i = 0, 1, 2. Put

Hi
an(D) := Hi

ϕq,∇
(D)Γ.

By a simple calculation we obtain

H0(D) = H0
an(D) = Dϕq=1,Γ=1.

Note that Dϕq=1 is finite dimensional over L, and so is H0(D). If D is étale and if V is the L-linear Galois
representation of GF attached to D, then

H0(D) = H0
an(D) = H0(GF , V ) = V GF .

For our convenience we introduce some notations. Put Z1
ϕq,∇

(D) := ker(f2) and B
1(D) := im(f1). For any

(m1, n1) and (m2, n2) in Z
1
ϕq,∇

(D), we write (m1, n1) ∼ (m2, n2) if (m1 −m2, n1 − n2) ∈ B1(D). Put

Z1(D) := {(m,n) ∈ Z1
ϕq,∇(D) : (m,n) ∼ γ(m,n) for any γ ∈ Γ}.

Then H1
an(D) = Z1(D)/B1(D).

Let D̃ be an OF -analytic extension of RL by D. Let e ∈ D̃ be a lifting of 1 ∈ RL. Then ((ϕq − 1)e,∇D̃e)
belongs to Z1(D) and induces an element of H1

an(D) independent of the choice of e. In this way we obtain a
map

ΘDan : Extan(RL, D) → H1
an(D).
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Theorem 4.2. (= Theorem 0.1) For any OF -analytic (ϕq,Γ)-module D over RL, Θ
D
an is an isomorphism.

The proof below is due to the referee and much simpler than the proof in our original version.

Proof. First we show that ΘDan is injective. Let D̃ be an OF -analytic extension of RL by D whose image under

ΘDan is zero. Let e ∈ D̃ be a lifting of 1 ∈ RL. As the image of ((ϕq − 1)e,∇D̃e) in H1
ϕq,∇

(D) is zero, there

exists some d ∈ D such that (ϕq − 1)e = (ϕq − 1)d and ∇D̃e = ∇D̃d. Then e− d is in D̃ϕq=1,∇=0. The Γ-action

on D̃ϕq=1,∇=0 is locally constant and thus is semisimple. So 1 ∈ RL has a lifting e′ ∈ D̃ϕq=1,∇=0 fixed by Γ.
This proves the injectivity of ΘDan.

Next we prove the surjectivity of ΘDan.
Let z be in H1

an(D) and let (x, y) represent z, so that ∇x = (ϕq − 1)y. The invariance of z by Γ ensures
the existence of yσ ∈ D for each σ ∈ Γ such that (σ − 1)(x, y) = ((ϕq − 1)yσ,∇yσ). As yσ is unique up to an
element of Dϕq=1,∇=0, the 2-cocycle yσ,τ = yστ − σyτ − yσ takes values in Dϕq=1,∇=0. If z = 0, then there
exists a ∈ D such that x = (ϕq − 1)a and y = ∇a. We have ∇(yσ − (σ− 1)a) = 0. In other words, we can write
yσ = (σ − 1)a + aσ with aσ ∈ Dϕq=1,∇=0. Then yσ,τ = aστ − σaτ − aσ and thus y•,• is a coboundary. So we
obtain a map H1

an(D) → H2(Γ, Dϕq=1,∇=0).
We will show that the image of z by this map is zero. Fix a basis {e1, · · · , ed} of D over RL. Let r > 0

be sufficiently small such that the matrices of ϕq and σ ∈ Γ relative to {ei}
d
i=1 are all in GLd(E

]0,r]
L ). Put

D]0,r] = ⊕di=1E
]0,r]
L ei; if s ∈ (0, r] put D[s,r] = ⊕di=1E

[s,r]
L ei. Then D]0,r] and D[s,r] are stable by Γ. As the

matrix of ϕq is invertible in Md(E
]0,r]
L ), {ϕq(ei)}

d
i=1 is also a basis of D]0,r]. Shrinking r if necessarily we may

assume that ϕq maps D[s,r] to D[s/q,r/q]; we may also suppose that x and y are in D]0,r], and that tF ∈ E
]0,r]
L .

By the relation ∇ = tF∂ on E
[s,r]
L , Lemma 2.10 and the fact that ∇ is a differential operator i.e. satisfies a

relation similar to (1.2), we can show that the action of Γ induces a bounded infinitesimal action ∇ on the
Banach space D[s,r]. We leave this to the reader. Let us denote ℓ(σ) = log(χF (σ)). For σ close enough to 1
(depending on D and s, r) the series of operators

E(σ) = ℓ(σ) +
ℓ(σ)2

2
∇+

ℓ(σ)3

3!
∇2 + · · ·

converges on D[s,r] and also on D[s/q,r/q]. Note that, for σ close enough to 1 we have σ = exp(ℓ(σ)∇) on
D[s/q,r/q]. Let Γ′ be an open subgroup of Γ such that for σ ∈ Γ′ the above two facts hold. Then for σ ∈ Γ′ we
have

(ϕq − 1)(E(σ)y) = E(σ)(ϕq − 1)y = E(σ)∇x = ∇E(σ)x = (σ − 1)x. (4.1)

Note that ϕq(E(σ)y) is in D[s/q,r/q]. So by (4.1) we have E(σ)y ∈ D[s/q,r/q] ∩ D[s,r] = D[s/q,r] if s is chosen
such that s < r/q. Doing this repeatedly we will obtain E(σ)y ∈ D]0,r]. Taking yσ = E(σ)y for σ ∈ Γ′ we will
have yσ,τ = 0 for σ, τ ∈ Γ′. In other words, the restriction to Γ′ of the image of z in H2(Γ, Dϕq=1,∇=0) is 0.
Since Γ/Γ′ is finite and Dϕq=1,∇=0 is a Q-vector space, the image of z is itself 0. So we can modify yσ by an
element of Dϕq=1,∇=0 so that yσ,τ is identically 0. But this means that (σ − 1)yτ = (τ − 1)yσ, so the 1-cocycle
ϕq 7→ x, σ 7→ yσ defines an element of H1(D) hence also an extension of RL by D.

We will show that the resulting extension in fact belongs to Ext1an(RL, D). As Γ is locally constant on
Dϕq=1,∇=0, shrinking Γ′ if necessary we may assume that Γ′ acts trivially on Dϕq=1,∇=0. Then σ 7→ yσ−E(σ)y
is a continuous homomorphism from Γ′ to Dϕq=1,∇=0. Note that any homomorphism from Γ′ to Dϕq=1,∇=0

can be extended to Γ. Thus yσ − E(σ)y = λ(σ) for some λ ∈ Hom(Γ, Dϕq=1,∇=0) and all σ ∈ Γ′. If S is a set
of representatives of Γ/Γ′ in Γ, the map TS = 1

|Γ:Γ′|

∑
σ∈S σ is the identity on H1

an(D) and a projection from

Dϕq=1,∇=0 to H0(D); moreover it commutes with ϕq, ∇ and Γ. This means that we can apply TS to (x, y) and
yσ; then we have yσ − E(σ)y = λ(σ) for some λ ∈ Hom(Γ, H0(D)) and all σ ∈ Γ′. As σ 7→ E(σ)y is analytic,
the extension in question is OF -analytic.

As above, let Hom(Γ, H0(D)) be the set of homomorphisms of groups from Γ to H0(D). A homomorphism
h : Γ → H0(D) is said to be locally analytic if h(exp(aβ)) = ah(exp(β)) for all a ∈ OF and β ∈ LieΓ. Let
Homan(Γ, H

0(D)) be the subset of Hom(Γ, H0(D)) consisting of locally analytic homomorphisms.
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Note that we have natural injections

Homan(Γ, H
0(D)) → Ext1an(RL, D) and Hom(Γ, H0(D)) → Ext1(RL, D).

Theorem 4.3. Assume that D is an OF -analytic (ϕq,Γ)-module over RL. Then we have an exact sequence

0 // Homan(Γ, H
0(D)) // Hom(Γ, H0(D))⊕ Ext1an(RL, D) // Ext1(RL, D) // 0.

For the proof we introduce an auxiliary cohomology theory. Let γ be an element of Γ of infinite order, i.e.
log(χF (γ)) 6= 0. We consider the complex

C•ϕq,γ(D) : 0 // D
g1 // D ⊕D

g2 // D // 0 ,

where g1 : D → D⊕D is the mapm 7→ ((ϕq−1)m, (γ−1)m) and g2 : D⊕D → D is (m,n) 7→ (γ−1)m−(ϕq−1)n.
As g1 and g2 are Γ-equivariant, Γ acts on Hi

ϕq,γ(D) := Hi(C•ϕq,γ(D)), i = 0, 1, 2. Put Hi
an,γ(D) := Hi

ϕq,γ(D)Γ.

A simple calculation shows that H0
an,γ(D) = H0

an(D).

For any γ ∈ Γ we use 〈γ〉 to denote the closed subgroup of Γ topologically generated by γ. If γ is of infinite
order and if D is an RL-module together with a semilinear 〈γ〉-action, let ∇γ be the operator on D that can be

written as lim
−−→
γ′

log(γ′)
log(χF (γ′)) formally, where γ′ runs through all elements of 〈γ〉 with logχF (γ

′) 6= 0. (For a precise

definition we only need to imitate the definition of ∇.)

Let D̃ be an OF -analytic extension of RL by D. Let e ∈ D̃ be a lifting of 1 ∈ RL. Then ((ϕq−1)e, (γ−1)e)
induces an element of H1

an,γ(D) independent of the choice of e. This yields a map ΘDan,γ : Extan(RL, D) →

H1
an,γ(D). Given an element of H1

an,γ(D), we can attach to it an extension D̃ of RL by D in the category of

free RL-modules of finite rank together with semilinear actions of ϕq and 〈γ〉. Let e ∈ D̃ be a lifting of 1 ∈ RL.
Then

(
(ϕq − 1)e,∇γe

)
belongs to Z1(D) and induces an element of H1

an(D) independent of the choice of e.
This gives a map ΥDan,γ : H1

an,γ(D) → H1
an(D). Observe that ΥDan,γ ◦ ΘDan,γ = ΘDan. By an argument similar to

the proof of the injectivity of ΘDan, we can show that both ΘDan,γ and ΥDan,γ are injective. Hence it follows from

Theorem 4.2 that ΘDan,γ and ΥDan,γ are isomorphisms.
If c is a 1-cocycle representing an element z of H1(D), then (c(ϕq), c(γ)) induces an element in H1

an,γ(D)

which only depends on z. This yields a map ΥDγ : H1(D) → H1
an,γ(D). Hence, ΘDan,γ : Extan(RL, D) → H1

an,γ(D)

extends to a map Ext(RL, D) → H1
an,γ(D), which will also be denoted by ΘDan,γ . We have the following

commutative diagram

Ext(RL, D)
ΘD

∼
//

ΘD
an,γ

''❖❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

H1(D)

ΥD
γ

��
Extan(RL, D)

∼

ΘD
an,γ

//
?�

OO

H1
an,γ(D).

(4.2)

The composition (ΘDan,γ−1)−1 ◦ ΥDγ ◦ ΘD is a projection from Ext(RL, D) to Extan(RL, D), which depends on
γ.

Proof of Theorem 4.3. The only nontrivial thing to be proved is the surjectivity of Hom(Γ, H0(D)) ⊕

Ext1an(RL, D) → Ext1(RL, D). Let D̃ be in Ext1(RL, D). Without loss of generality we may assume that

the image of D̃ by the projection (ΘDan,γ−1)−1 ◦ΥDγ ◦ΘD is zero. Let e ∈ D̃ be a lifting of 1 ∈ RL. Then let c be

the 1-cocycle defined by ϕq 7→ (ϕq − 1)e, σ 7→ (σ− 1)e for σ ∈ Γ, so that c̄, the class of c in H1(D), corresponds

to D̃. So the image of c̄ by the map ΥDγ is zero. This means that there exists d ∈ D such that (ϕq− 1)d = c(ϕq)
and (γ − 1)d = c(γ). Replacing e by e − d, we may assume that c(ϕq) = c(γ) = 0. Then for any σ ∈ Γ, we
have (ϕq − 1)c(σ) = (σ − 1)c(ϕq) = 0 and (γ − 1)c(σ) = (σ − 1)c(γ) = 0. This means that c(σ) ∈ Dϕq=1,γ=1.
Note that M := Dϕq=1,γ=1 is of finite rank over L. We write M = H0(D) ⊕⊕jMj as a Γ-module, where each
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of Mj is an irreducible Γ-module. Write c = c′ +
∑
j cj by this decomposition. Observe that c′ and cj are all

1-cocycles. As Mj is irreducible and the Γ-action on Mj is nontrivial, there exists some γj ∈ Γ such that γj − 1
is invertible on Mj. Then there exists mj ∈Mj such that cj(γj) = (γj − 1)mj . A simple calculation shows that
cj(σ) = (σ − 1)mj for all σ ∈ Γ. Replacing e by e −

∑
jmj , we may assume that c = c′. Then c(ϕq) = 0 and

c|Γ is a homomorphism from Γ to H0(D).

Corollary 4.4. (=Theorem 0.2) Extan(RL, D) is of codimension ([F : Qp] − 1) dimLH
0(D) in Ext(RL, D).

In particular, if H0(D) = 0, then Extan(RL, D) = Ext(RL, D); in other words, all extensions of RL by D are
OF -analytic.

Proof. This follows from Theorem 4.3 and the equalities dimLHom(Γ, H0(D)) = [F : Qp] dimLH
0(D) and

dimLHoman(Γ, H
0(D)) = dimLH

0(D).

5 Computation of H1
an(δ) and H1(δ)

In the case of F = Qp, Colmez [9] computed H1 for not necessarily étale (ϕ,Γ)-modules of rank 1 over the
Robba ring. In this case, Liu [20] computed H2 for this kind of (ϕ,Γ)-modules, and used it and Colmez’s
result to build analogues, for not necessarily étale (ϕ,Γ)-modules over the Robba ring, of the Euler-Poincaré
characteristic formula and Tate local duality. Later, Chenevier [5] obtained the Euler-Poincaré characteristic
formula for families of trianguline (ϕ,Γ)-modules and some related results.

In this section we compute H1
an(δ) = H1

an(RL(δ)) (for δ ∈ Ian(L)) and H
1(δ) = H1(RL(δ)) (for δ ∈ I (L))

following Colmez’s approach. In Sections 5.2 and 5.5 we assume that δ is in I (L), and in Sections 5.3, 5.4 and
5.6 we assume that δ is in Ian(L).

5.1 Preliminary lemmas

Lemma 5.1. (a) If α ∈ L× is not of the form π−i, i ∈ N, then αϕq − 1 : R
+
L → R

+
L is an isomorphism.

(b) If α = π−i with i ∈ N, then the kernel of αϕq − 1 : R
+
L → R

+
L is L · tiF , and a ∈ R

+
L is in the image of

αϕq − 1 if and only if ∂ia|uF=0 = 0. Further, αϕq − 1 is bijective on the subset {a ∈ R
+
L : ∂ia|uF=0 = 0}.

Proof. The argument is similar to the proof of [9, Lemma A.1]. If k > −vπ(α), then −
∑+∞
n=0(αϕq)

n is the

continuous inverse of αϕq − 1 on ukFR
+
L . The assertions follows from the fact that R

+
L = ⊕k−1i=0 L · tiF ⊕ ukFR

+
L

and the formula ϕq(t
i
F ) = πitiF . We just need to remark that ∂ia|uF=0 = 0 if and only if a is in ⊕i−1j=0Lt

j
F ⊕

ui+1
F R

+
L .

Lemma 5.2. If α ∈ L satisfies vπ(α) < 1 − vπ(q), then for any b ∈ E
†
L there exists c ∈ E

†
L such that

b′ = b− (αϕq − 1)c is in (E †L)
ψ=0.

Proof. By Proposition 2.4 (d), c =
∑+∞

k=1 α
−kψk(b) is convergent in E

†
L. It is easy to check that αc−ψ(c) = ψ(b),

which proves the lemma.

Corollary 5.3. If α ∈ L satisfies vπ(α) < 1 − vπ(q), then for any b ∈ RL there exists c ∈ RL such that

b′ = b− (αϕq − 1)c is in (E †L)
ψ=0.

Proof. Let k be an integer > −vπ(α). By Lemma 5.1, there exists c1 ∈ RL such that b − (αϕq − 1)c1 is of the

form
∑

i<k aiu
i
F and thus is in E

†
L. Then we apply Lemma 5.2.

Lemma 5.4. If α ∈ L satisfies vπ(α) < 1− vπ(q), and if z ∈ RL satisfies ψ(z)− αz ∈ R
+
L , then z ∈ R

+
L .

Proof. Write z in the form
∑

k∈Z aku
k
F and put y =

∑
k≤−1 aku

k
F ∈ E

†
L. If y 6= 0, multiplying z by a scalar in

L we may suppose that infk≤−1 vp(ak) = 0. Then

y − α−1ψ(y) = α−1(αz − ψ(z)) +
∑

k≥0

ak(α
−1ψ(ukF )− ukF)
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belongs to O
E

†

L
∩ R

+
L = OL[[uF ]]. But this is a contradiction since y − α−1ψ(y) ≡ y mod π. Hence y = 0.

Corollary 5.5. If α ∈ L satisfies vπ(α) < 1 − vπ(q), and if z ∈ RL satisfies (αϕq − 1)z ∈ R
ψ=0
L , then z is in

R
+
L .

Proof. We have ψ(z)− αz = ψ(z − αϕq(z)) = 0. Then we apply Lemma 5.4.

5.2 Computation of H0(δ)

Recall that, if δ ∈ Ian(L), then H
0
an(δ) = H0(δ).

Proposition 5.6. Let δ be in I (L).

(a) If δ is not of the form x−i with i ∈ N, then H0(δ) = 0.

(b) If i ∈ N, then H0(x−i) = LtiF .

Proof. Observe that R
−
L (δ)

ϕq=1 = (R−L )
δ(π)ϕq=1 ·eδ = 0, where R

−
L (δ) = RL(δ)/R

+
L (δ). Thus RL(δ)

ϕq=1,Γ=1 =
R

+
L (δ)

ϕq=1,Γ=1. If δ(π) is not of the form π−i with i ∈ N, by Lemma 5.1 (a) we have R
+
L (δ)

ϕq=1 = 0 and so
R

+
L (δ)

ϕq=1,Γ=1 = 0. If δ(π) = π−i, then

R
+
L (δ)

ϕq=1,Γ=1 = (LtiF · eδ)
Γ=1 =

{
LtiF · eδ if δ = x−i,
0 otherwise,

as desired.

Corollary 5.7. If δ1 and δ2 are two different characters in I (L), then RL(δ1) is not isomorphic to RL(δ2).

Proof. We only need to show that RL(δ1δ
−1
2 ) is not isomorphic to RL. By Proposition 5.6, RL(δ1δ

−1
2 ) is not

generated by H0(δ1δ
−1
2 ), but RL is generated by H0(1). Thus RL(δ1δ

−1
2 ) is not isomorphic to RL.

5.3 Computation of H1

an
(δ) for δ ∈ Ian(L) with vπ(δ(π)) < 1− vπ(q)

Until the end of Section 5 we will write RL(δ) by RL with the twisted (ϕq ,Γ)-action given by

ϕq;δ(x) = δ(π)ϕq(x), σa;δ(x) = δ(a)σa(x).

Recall that ∇δ = tF∂ + wδ. Write δ(σa) = δ(a).

Lemma 5.8. Suppose that δ ∈ Ian(L) satisfies vπ(δ(π)) < 1 − vπ(q). For any (a, b) ∈ Z1
ϕq,∇

(δ), there exists

(m,n) ∈ Z1
ϕq,∇

(δ) with m ∈ (E †L)
ψ=0 and n ∈ R

+
L such that (a, b) ∼ (m,n).

Proof. As vπ(δ(π)) < 1−vπ(q), by Corollary 5.3 there exists c ∈ RL such thatm = a−(δ(π)ϕq−1)c is in (E †L)
ψ=0.

Put n = b −∇δc. Then (m,n) is in Z1
ϕq,∇

(δ) and (m,n) ∼ (a, b). As (δ(π)ϕq − 1)n = ∇δm = tF∂m+ wδm is

in R
ψ=0
L , by Corollary 5.5, n is in R

+
L .

Lemma 5.9. Suppose that vπ(δ(π)) < 1 − vπ(q) and δ is not of the form x−i. Let (m,n) be in Z1
ϕq,∇

(δ) with

m ∈ (E †L)
ψ=0 and n ∈ R

+
L . Then (m,n) is in B1(δ) if and only if

• m ∈ (E +
L )ψ=0 when δ(π) is not of the form π−i, i ∈ N;

• m ∈ (E +
L )ψ=0 and ∂im|uF=0 = 0 when δ(π) = π−i and wδ 6= −i for some i ∈ N.

• m ∈ (E +
L )ψ=0 and ∂im|uF=0 = ∂in|uF=0 = 0 when δ(π) = π−i and wδ = −i for some i ∈ N.
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Proof. We only prove the assertion for the case that δ(π) = π−i and wδ 6= −i for some i ∈ N. The arguments
for the other two cases are similar.

If (m,n) is in B1(δ), then there exists z ∈ RL such that (δ(π)ϕq − 1)z = m and ∇δz = n. Since m is in

R
ψ=0
L , by Corollary 5.5 we have z ∈ R

+
L . It follows that m is in R

+
L ∩ E

†
L = E

+
L . By Lemma 5.1 (b), we have

∂im|uF=0 = 0.
Now we assume that m is in E

+
L and ∂im|uF=0 = 0. By Lemma 5.1 (b), there exists z ∈ R

+
L with

∂iz|uF=0 = 0 such that (δ(π)ϕq − 1)z = m. Then (δ(π)ϕq − 1)(∇δz − n) = ∇δ(δ(π)ϕq − 1)z − (δ(π)ϕq − 1)n =

∇δm− (δ(π)ϕq− 1)n = 0. Again by Lemma 5.1 (b), we have ∇δz−n = c tiF for some c ∈ L. Put z′ = z−
c tiF
wδ+i

.

Then (δ(π)ϕq − 1)z′ = m and ∇δz
′ = n. Hence (m,n) is in B1(δ).

Recall that Sδ = R
−
L (δ)

Γ=1,ψ=0.

Proposition 5.10. Suppose that vπ(δ(π)) < 1− vπ(q).

(a) If δ is not of the form x−i, then H1
an(δ) is isomorphic to the L-vector space Sδ and is 1-dimensional.

(b) If δ = x−i, then H1
an(δ) is 2-dimensional over L and is generated by the images of (tiF , 0) and (0, tiF ).

Proof. For (a) we only consider the case that δ(π) = π−i and wδ = −i for some i ∈ N. The arguments for the
other cases are similar. As δ 6= x−i, there exists an element γ1 ∈ Γ of infinite order such that δ(γ1) 6= χF (γ1)

−i.
We give two useful facts: for any z ∈ R

+
L , ∂

iz|uF=0 = 0 if and only if ∂i(δ(γ1)γ1 − 1)z|uF=0 = 0; if
∂iz|uF=0 = 0, then ∂i(δ(γ)γ − 1)z|uF=0 = 0 for any γ ∈ Γ. Both of these two facts follow from Lemma 5.1 (b).
We will use them freely below.

Let (m,n) be in Z1(δ) with m ∈ (E †L)
ψ=0 and n ∈ R

+
L . For any γ ∈ Γ, since γ(m,n)− (m,n) ∈ B1(δ), by

Lemma 5.9, (δ(γ)γ − 1)m is in R
+
L , i.e. the image of m in R

−
L (δ) belongs to Sδ.

We will show that, for any m̄ ∈ Sδ, there exists a liftingm ∈ (E †L)
ψ=0 of m̄ such that ∂i(δ(γ)γ−1)m|uF=0 = 0

for all γ ∈ Γ. Let m′ ∈ (E †L)
ψ=0 be an arbitrary lifting of m̄. Assume that ∂i(δ(γ1)γ1 − 1)m′|uF=0 = c.

Put m = m′ − 1
i!

c tiF
δ(γ1)χF (γ1)i−1

. Then ∂i(δ(γ1)γ1 − 1)m|uF=0 = 0 and thus ∂i∇δm|uF=0 = 0. Hence, by

Lemma 5.1 (b) there exists n ∈ R
+
L with ∂in|uF=0 = 0 such that (δ(π)ϕq − 1)n = ∇δm. This means that

(m,n) ∈ Z1
ϕq,∇

(δ). For any γ ∈ Γ, as ∂i(δ(γ1)γ1−1)(δ(γ)γ−1)m|uF=0 = ∂i(δ(γ)γ−1)(δ(γ1)γ1−1)m|uF=0 = 0,

we have ∂i(δ(γ)γ− 1)m|uF=0 = 0. In a word, for any γ ∈ Γ, (δ(γ)γ− 1)m is in R
+
L and ∂i(δ(γ)γ − 1)m|uF=0 =

∂i(δ(γ)γ − 1)n|uF=0 = 0. This means that γ(m,n)− (m,n) is in B1(δ) for any γ ∈ Γ. In other words, (m,n) is
in Z1(δ).

Now let (m1, n1) and (m2, n2) be two elements of Z1(δ) with m1,m2 ∈ (E †L)
ψ=0 and n1, n2 ∈ R

+
L . By

Lemma 5.9,

∂i(δ(γ1)γ1 − 1)m1|uF=0 = ∂i(δ(γ1)γ1 − 1)m2|uF=0 = ∂i(δ(γ1)γ1 − 1)n1|uF=0 = ∂i(δ(γ1)γ1 − 1)n2|uF=0 = 0.

Suppose that the image of m1 in Sδ coincides with that of m2, which implies that m1 −m2 ∈ E
+
L . From

∂i(δ(γ1)γ1 − 1)(m1 −m2)|uF=0 = ∂i(δ(γ1)γ1 − 1)(n1 − n2)|uF=0 = 0

we obtain ∂i(m1 −m2)|uF=0 = ∂i(n1 − n2)|uF=0 = 0. This means that (m1, n1) ∼ (m2, n2).
Combining all of the above discussions, we obtain an isomorphism Sδ

∼
−→ H1

an(δ). Then by Proposition
3.20, dimLH

1
an(δ) = dimL Sδ = 1.

Next we prove (b). Again let (m,n) be in Z1(δ) with m ∈ (E †L)
ψ=0 and n ∈ R

+
L . Then the image of m in

R
−
L (δ), denoted by m̄, is in Sδ. We show that m in fact belongs to (R+

L )
ψ=0, i.e. m̄ = 0. By Corollary 3.15,

∂i : Sδ → S1 is an isomorphism. So we only need to prove that the image of ∂im in S1 is zero. By Remark
3.19, it suffices to show that ∇∂im|uF=0 = 0. But ∇∂im = ∂i∇δm. Since ∇δm = (δ(π)ϕq − 1)n, by Lemma
5.1 (b) we have ∂i∇δm|uF=0 = 0.

Write m = atiF + m′ with a ∈ L and m′ ∈ R
+
L satisfying ∂im′|uF=0 = 0. By Lemma 5.1 (b) there

exists z ∈ R
+
L such that (δ(π)ϕq − 1)z = m′. Then (m,n) ∼ (atiF , n − ∇δz). Thus we may suppose that

m = atiF . Then (δ(π)ϕq − 1)n = ∇δ(at
i
F ) = 0. So, by Lemma 5.1 (b), we have n = btiF for some b ∈ L.
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Suppose (atiF , bt
i
F) is in B1(δ). Then there exists z ∈ RL such that (δ(π)ϕq − 1)z = atiF and ∇δz = btiF . So

ψ(z) − δ(π)z = ψ((1 − δ(π)ϕq)z) = ψ(−atiF) ∈ R
+
L . By Lemma 5.4 we get z ∈ R

+
L . By Lemma 5.1 (b) again

we have a = 0 and z ∈ LtiF . Then bt
i
F = ∇δz = 0.

5.4 ∂ : H1

ϕq,∇
(x−1δ) → H1

ϕq,∇
(δ) and ∂ : H1

an
(x−1δ) → H1

an
(δ)

Observe that, if (m,n) is in Z1
ϕq,∇

(x−1δ) (resp. B1(x−1δ)), then (∂m, ∂n) is in Z1
ϕq,∇

(δ) (resp. B1(δ)).

Thus we have a map ∂ : H1
ϕq,∇

(x−1δ) → H1
ϕq,∇

(δ). Further, the map is Γ-equivariant and it induces a map

∂ : H1
an(x

−1δ) → H1
an(δ).

Put Z̄1
ϕq,∇

(δ) := {(m,n) ∈ Z1
ϕq,∇

(δ) : Res(m) = Res(n) = 0} and B̄1(δ) := {(m,n) ∈ B1(δ) : Res(m) =

Res(n) = 0}. Then H̄1
ϕq,∇

(δ) := Z̄1
ϕq,∇

(δ)/B̄1
ϕq,∇

(δ) is a subspace of H1
ϕq,∇

(δ).

Lemma 5.11. If δ(π) 6= π/q or wδ 6= 1, then for any (m,n) ∈ Z1
ϕq,∇

(δ), there exists (m1, n1) ∈ Z̄1
ϕq,∇

(δ) such

that (m,n) ∼ (m1, n1), and so H1
ϕq,∇

(δ) = H̄1
ϕq,∇

(δ).

Proof. Let (m,n) be in Z1
ϕq,∇

(δ). Then ∇δm = (δ(π)ϕq − 1)n. If δ(π) 6= π
q , by Proposition 2.13 and the

definition of Res we have

Res
(
m− (δ(π)ϕq − 1)

(
Res(m)

( dtF
duF

)−1

(δ(π) qπ − 1)uF

))
= 0.

Replacing (m,n) by

(
m− (δ(π)ϕq − 1)

(
Res(m)

( dtF
duF

)−1

(δ(π) qπ − 1)uF

)
, n−∇δ

(
Res(m)

( dtF
duF

)−1

(δ(π) qπ − 1)uF

))
,

we may assume that Res(m) = 0. Then

(
q

π
δ(π)− 1)Res(n) = Res((δ(π)ϕq − 1)n) = Res(∇δm) = Res(∂(tFm) + (wδ − 1)m) = (wδ − 1)Res(m) = 0,

and so Res(n) = 0.
The argument for the case of wδ 6= 1 is similar.

As Res ◦ ∂ = 0, the map ∂ : H1
ϕq,∇

(x−1δ) → H1
ϕq,∇

(δ) factors through ∂ : H1
ϕq,∇

(x−1δ) → H̄1
ϕq,∇

(δ).

Lemma 5.12. (a) If δ(π) 6= π or wδ 6= 1, then ∂ : H1
ϕq,∇

(x−1δ) → H̄1
ϕq,∇

(δ) is surjective.

(b) If δ(π) = π and wδ = 1, then we have an exact sequence of Γ-modules

H1
ϕq,∇

(x−1δ)
∂ // H̄1

ϕq,∇
(δ) // L(x−1δ) // 0.

Proof. Let (m,n) be in Z̄1
ϕq,∇

(δ). Then there exist m′ and n′ such that ∂m′ = m and ∂n′ = n. Then

∇x−1δm
′ − (π−1δ(π)ϕq − 1)n′ = c is in L. If δ(π) 6= π, we replace n′ by n′ + c

π−1δ(π)−1 . If wδ 6= 1, we

replace m′ by m′ − c
wδ−1

. Then (m′, n′) is in Z1
ϕq,∇

(x−1δ). This proves (a). When δ(π) = π and wδ = 1,

∇m′ − (ϕq − 1)n′ does not depend on the choice of m′ and n′. This induces a map H̄1
ϕq,∇

(δ) → L whose kernel

is exactly ∂H1
ϕq,∇

(x−1δ). We show that H̄1
ϕq,∇

(δ) → L is surjective. Put m′ = log
ϕq(uF )
uq
F

. A simple calculation

shows that

∇m′ = (
tF · [π]′F (uF )

[π]F (uF )
− q

tF
uF

)∂uF ≡ (1− q) mod uFR
+
L .

Thus by Lemma 5.1 (b) there exists n′ ∈ uFR
+
L such that (ϕq − 1)n′ = ∇m′ − (1 − q). Put m = ∂m′ and

n = ∂n′. Then (m,n) is in Z̄1
ϕq,∇

(δ) whose image in L is nonzero. The Γ-action on H̄1
ϕq,∇

(δ) induces an action
on L. From

(δ(a)σa(m), δ(a)σa(n)) = (∂(a−1δ(a)σa(m
′)), ∂(a−1δ(a)σa(n

′)))
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and

∇(a−1δ(a)σa(m
′))− (ϕq − 1)(a−1δ(a)σa(n

′)) = a−1δ(a)σa(∇m
′ − (ϕq − 1)n′) ≡ a−1δ(a)(1 − q) mod uFR

+
L

we see that the induced action comes from the character x−1δ.

Sublemma 5.13. Let a, b be in L. If (a, b) is in Z1
ϕq,∇

(x−1δ) but not in B1(x−1δ), then δ(π) = π and wδ = 1.

Proof. If δ(π) 6= π, then (a, b) ∼ (0, b−
∇x−1δ

π−1δ(π)−1a). So

(π−1δ(π)− 1)(b−
∇x−1δ

π−1δ(π) − 1
a) = (π−1δ(π)ϕq − 1)(b−

∇x−1δ

π−1δ(π)− 1
a) = 0.

As δ(π) 6= π, we have b −
∇x−1δ

π−1δ(π)−1a = 0. Similarly, if wδ 6= 1, then (a, b) ∈ Z1
ϕq,∇

(x−1δ) if and only if

(a, b) ∼ (0, 0).

Recall that δunr is the character of F× such that δunr(π) = q−1 and δunr|O×
F
= 1.

Sublemma 5.14. (1q log
ϕq(uF )
uq
F

, tF∂uF

uF
) induces a nonzero element of H1

an(δunr).

Proof. Write (m,n) = (1q log
ϕq(uF )

uq
F

, tF∂uF

uF
). Note that m = (δunr(π)ϕq − 1) loguF and n = ∇ log uF . Thus

(m,n) is in Z1
ϕq,∇

(δunr). For any γ ∈ Γ we have γ(m,n) ∼ (m,n). Indeed, γ(m,n) − (m,n) = ((δunr(π)ϕq −

1) log γ(uF )
uF

,∇ log γ(uF )
uF

). So (m,n) is in Z1(δunr). We show that (m,n) is not in B1(δunr). Otherwise there
exists z ∈ RL such that m = (δunr(π)ϕq − 1)z and n = ∇z. This will implies that ∇(log uF − z) = 0 or
equivalently log uF − z is in L, a contradiction.

Corollary 5.15. If δ(π) = π/q and wδ = 1, then (1q log
ϕq(uF )

uq
F

, tF∂uF

uF
) is in Z1

ϕq,∇
(x−1δ) but not in B1(x−1δ).

Lemma 5.16. (a) If δ(π) 6= π, π/q or if wδ 6= 1, then ∂ : H1
ϕq,∇

(x−1δ) → H̄1
ϕq,∇

(δ) is injective.

(b) If δ(π) = π and wδ = 1, then we have an exact sequence of Γ-modules

0 // L(x−1δ)⊕ L(x−1δ) // H1
ϕq,∇

(x−1δ)
∂ // H̄1

ϕq,∇
(δ).

(c) If If δ(π) = π/q and wδ = 1, then we have an exact sequence of Γ-modules

0 // L(x−1δ) // H1
ϕq,∇

(x−1δ)
∂ // H̄1

ϕq,∇
(δ).

Proof. Let (m,n) be in Z1
ϕq,∇

(x−1δ), and suppose that (∂m, ∂n) ∈ B̄1(δ). Let z be an element of RL such

that (δ(π)ϕq − 1)z = ∂m and ∇δz = ∂n. If Res(z) = 0, then there exists z′ ∈ RL such that ∂z′ = z. Then
m− (δ(π)π−1ϕq − 1)z′ and n−∇x−1δz

′ are in {(a, b) : a, b ∈ L}, i.e. (m,n) is in B1(x−1δ)⊕ L(0, 1)⊕ L(1, 0).
If either δ(π) 6= π

q or wδ 6= 1, we always have Res(z) = 0. Indeed, this follows from

(δ(π)
q

π
− 1)Res(z) = Res((δ(π)ϕq − 1)z) = Res(∂m) = 0

and
(wδ − 1)Res(z) = Res(∂(tFz) + (wδ − 1)z) = Res(∇δz) = Res(∂n) = 0.

In the case of δ(π) = π
q and wδ = 1, if z ∈ L∂uF

uF
, then (m,n) is in L(0, 1)⊕ L(1, 0) ⊕ L(1q log

ϕq(uF )

uq
F

, tF∂uF

uF
).

Now our lemma follows from Sublemma 5.13 and Corollary 5.15.
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Proposition 5.17. (a) If δ(π) 6= π, π/q or if wδ 6= 1, then ∂ : H1
ϕq,∇

(x−1δ) → H1
ϕq,∇

(δ) is an isomorphism
of Γ-modules.

(b) If δ(π) = π and wδ = 1, then we have an exact sequence of Γ-modules

0 // L(x−1δ)⊕ L(x−1δ) // H1
ϕq,∇

(x−1δ)
∂ // H1

ϕq,∇
(δ) // L(x−1δ) // 0.

(c) If δ(π) = π/q and wδ = 1, then we have an exact sequence of Γ-modules

0 // L(x−1δ) // H1
ϕq,∇

(x−1δ)
∂ // H1

ϕq,∇
(δ) // L(x−1δ)⊕ L(x−1δ) // 0.

Proof. Assertions (a) and (b) follow from Lemma 5.11, Lemma 5.12 and Lemma 5.16. Based on these lemmas,
for (c) we only need to show that, we have an exact sequence of Γ-modules

0 // H̄1
ϕq,∇

(δ) // H1
ϕq,∇

(δ)
Res // L(x−1δ)⊕ L(x−1δ) // 0,

where Res is induced by (m,n) 7→ (Res(m),Res(n)) which is Γ-equivariant by Proposition 2.13. Here we prove
this under the assumption that q is not a power of π. We will see in Section 5.6 that it also holds without this
assumption. Put m1 = 1/uF . Then ∇δm1 = tF∂(1/uF)+1/uF = ∂(tF/uF) is in R

+
L . As q is not a power of π,

the map π
q ϕq − 1 : R

+
L → R

+
L is an isomorphism. Let n1 be the unique solution of (πqϕq − 1)n1 = tF∂m1 +m1

in R
+
L . Then c1 = (m1, n1) is in Z

1
ϕq,∇

(δ) and Res(m1, n1) = (1, 0) 6= 0. For any ℓ ∈ N we choose a root ξℓ of

Qℓ = ϕℓ−1q (Q). For any f(uF) ∈ R
+
L , the value of f at ξℓ is an element f(ξℓ) in L⊗F Fℓ. By (3.4) there exists

an element z ∈ R
+
L whose value at ξℓ is 1⊗ log ξℓ. Put m2 = t−1F (q−1ϕq− 1)(loguF − z) and n2 = ∂(log uF − z).

Then (m2, n2) is in Z
1
ϕq,∇

(δ) and Res(n2) = 1.

Proposition 5.18. (a) If δ 6= x, xδunr, then ∂ : H1
an(x

−1δ) → H1
an(δ) is an isomorphism.

(b) If δ = x, then ∂ : H1
an(x

−1δ) → H1
an(δ) is zero, and dimLH

1
an(δ) = 1.

(c) If δ = xδunr, then ∂ : H1
an(x

−1δ) → H1
an(δ) is zero, and dimLH

1
an(δ) = 2.

Proof. We apply Proposition 5.17. There is nothing to prove for the case that δ(π) 6= π, π/q or wδ 6= 1.
Combining the assertions in this case and Proposition 5.10 we obtain that dimLH

1
an(δunr) = 1. This fact is

useful below.
Next we consider the case of δ(π) = π/q and wδ = 1. The argument for the case of δ(π) = π and wδ = 1 is

similar.
LetM be the image of ∂ : H1

ϕq,∇
(x−1δ) → H1

ϕq,∇
(x). Then we have two short exact sequences of Γ-modules

0 // L(x−1δ) // H1
ϕq,∇

(x−1δ)
∂ // M // 0

and
0 // M // H1

ϕq,∇
(δ) // L(x−1δ)⊕ L(x−1δ) // 0.

We will show that, taking Γ-invariants yields two exact sequences

0 // L(x−1δ)Γ // H1
an(x

−1δ)
∂ // MΓ // 0

and
0 // MΓ // H1

an(δ) // L(x−1δ)Γ ⊕ L(x−1δ)Γ // 0.

If we have that the Γ-actions on H1
ϕq,∇

(x−1δ) and H1
ϕq,∇

(δ) are semisimple, then there is nothing to prove.

However we will avoid this by an alternative argument. It suffices to prove the surjectivity of H1
ϕq,∇

(x−1δ)Γ →
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MΓ and that of H1
ϕq,∇

(δ)Γ → L(x−1δ)Γ ⊕ L(x−1δ)Γ. The latter follows from the proof of Proposition 5.17. In

fact, if δ = xδunr, then (m1, n1) and (m2, n2) constructed there are in Z1(δ). Now let c be any element of MΓ,
then the preimage ∂−1(Lc) is two dimensional over L and Γ-invariant. From the definition of H1

ϕq,∇
, we obtain

that the induced ∇-action on ∂−1(Lc) is zero and thus ∂−1(Lc) is a semisimple Γ-module, as wanted.
If δ = xδunr, then dimL L(x

−1δ)Γ = dimLH
1
an(x

−1δ) = 1, and so MΓ = 0. Thus ∂ : H1
an(x

−1δ) → H1
an(δ)

is zero and dimLH
1
an(δ) = 2. If δ 6= xδunr, then ∂ : H1

an(x
−1δ) → H1

an(δ) is an isomorphism since both
H1

an(x
−1δ) →MΓ and MΓ → H1

an(δ) are isomorphisms.

5.5 Dimension of H1(δ) for δ ∈ I (L)

Theorem 5.19. (= Theorem 0.3) Let δ be in Ian(L).

(a) If δ is not of the form x−i with i ∈ N, or the form xiδunr with i ∈ Z+, then H1
an(δ) and H1(δ) are

1-dimensional over L.

(b) If δ = xiδunr with i ∈ Z+, then H
1
an(δ) and H

1(δ) are 2-dimensional over L.

(c) If δ = x−i with i ∈ N, then H1
an(δ) is 2-dimensional over L and H1(δ) is (d + 1)-dimensional over L,

where d = [F : Qp].

Proof. The assertions for H1
an(δ) follow from Proposition 5.10 and Proposition 5.18. By Proposition 5.6 we have

dimL RL(δ)
ϕq=1,Γ=1 =

{
1 if δ = x−i with i ∈ N,
0 otherwise.

So the assertions for H1(δ) come from the assertions for H1
an(δ) and Corollary 4.4.

When δ = x−i with i ∈ N, H1
an(δ) is generated by the classes of (tiF , 0) and (0, tiF). Let ρi (i = 1, · · · , d)

be a basis of Hom(Γ, LtiF). Then the class of the 1-cocycle c0 with c0(ϕq) = tiF and c0|Γ = 0, and the classes
of 1-cocycles ci with ci(ϕq) = 0 and ci|Γ = ρi (i = 1, · · · , d), form a basis of H1(δ).

Theorem 5.20. (=Theorem 0.4) If δ ∈ I (L) is not locally F -analytic, then H1(δ) = 0.

Proof. As the maps γ − 1, γ ∈ Γ, are null on H1(δ), by definition of H1, so are the maps dΓRL(δ)(β),
β ∈ LieΓ, and the differences β−1dΓRL(δ)(β) − β′−1dΓRL(δ)(β

′). Note that β−1dΓRL(δ)(β) − β′−1dΓRL(δ)(β
′)

are RL-linear on RL(δ). So β−1dΓRL(δ)(β) − β′−1dΓRL(δ)(β
′) are multiplications by scalars in L, since

β−1dΓRL(δ)(β)eδ − β′−1dΓRL(δ)(β
′)eδ is in Leδ. If the intersection of their kernels is null, then the cohomology

H1(δ) vanishes. Thus, either the intersection of their kernels is 0 and so the cohomology vanishes, or they are all

null and δ is of form x 7→ xw for x close to 1 with w = log δ(β)
log β for β close to 1 (i.e. δ is locally F -analytic).

Remark 5.21. Suppose that [F : Qp] ≥ 2. Let δ 6= 1 be a character of F× with δ(π) ∈ O×L , and let L(δ) be
the L-representation of GF induced by δ. Suppose that δ 6= x2δunr when [F : Qp] = 2. Combining Theorem
5.19 and the Euler-Poincaré characteristic formula [26] we obtain that, there exist Galois representations in
Ext(L,L(δ)) that are not overconvergent. Theorem 5.20 tells us that, if further δ is not locally analytic, then
there is no nontrivial overconvergent extension of L by L(δ).

5.6 The maps ιk : H
1(δ) → H1(x−kδ) and ιk,an : H

1

an
(δ) → H1

an
(x−kδ)

Let k be a positive integer.

Proposition 5.22. Let δ be in Ian(L).

(a) If wδ /∈ {1− k, · · · , 0}, then H0
an(RL(δ)/t

k
FRL(δ)) = 0.

(b) If wδ ∈ {1− k, · · · , 0}, then H0
an(RL(δ)/t

k
FRL(δ)) is a 1-dimensional L-vector space.
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Proof. We have R
+
L /t

k
FR

+
L = R

+
L /(u

k
F) ×

∏∞
n=1 R

+
L /(ϕ

n−1
q (Q))k. As Γ-modules, R

+
L /(u

k
F) = ⊕k−1i=0 Lt

i
F and

R
+
L /(ϕ

n
q (Q))k =

⊕k−1
i=0 (L⊗F Fn)t

i
F . Thus as a Γ-module R

+
L /t

k
FR

+
L is isomorphic to

⊕k−1
i=0 (R

+
L /R

+
L tF)⊗LLt

i
F .

Note that the natural map R
+
L /R

+
L t

k
F → RL/RLt

k
F is surjective. Furthermore, two sequences (yn)n≥0 and

(zn)n≥0 in R
+
L /R

+
L u

k
F ×

∏∞
n=1 R

+
L /(ϕ

n−1
q (Q))k have the same image in RL/RLt

k
F , if and only if there exists

N > 0 such that yn = zn when n ≥ N .
Since the action of Γ on (R+

L /tFR
+
L )t

i
F twisted by the character x−i is smooth, (a) follows.

For (b) we only need to consider the case of wδ = 0 and k = 1. The operator ϕq induces an injection
R

+
L /(ϕ

n
q (Q)) → R

+
L /(ϕ

n+1
q (Q)) which is denoted by ϕq,n. The action of ϕq on RL/RLtF is given by ϕq(yn)n =

(ϕq,n(yn))n+1. For any n ≥ 0, the Γ-action on L ⊗F Fn factors through Γ/Γn, and the resulting Γ/Γn-
module L ⊗F Fn is isomorphic to the regular one. Thus for any discrete character δ of Γ, dimL(L ⊗F
Fn)

Γ=δ−1

= 1 when n is sufficiently large. Then from the fact that ϕq,n (n ≥ 1) are injective, we obtain

dimL

(
RL/tFRL

)Γ=δ−1,ϕq=δ(π)
−1

= 1.

Corollary 5.23. Let δ be in Ian(L).

(a) If wδ /∈ {1, · · · , k}, then H0
an(t

−k
F RL(δ)/RL(δ)) = 0.

(b) If wδ ∈ {1, · · · , k}, then H0
an(t

−k
F RL(δ)/RL(δ)) is a 1-dimensional L-vector space.

Note that RL(x
−kδ) is canonically isomorphic to t−kF RL(δ). When k ≥ 1, the inclusion RL(δ) →֒ t−kF RL(δ)

induces maps ιk,an : H1
an(δ) → H1

an(x
−kδ) and ιk : H1(δ) → H1(x−kδ). If γ ∈ Γ is of infinite order, then we

have the following commutative diagram

H1(δ)
ιk //

Υδ
an,γ◦Υ

δ
γ

��

H1(x−kδ)

Υx−kδ
an,γ ◦Υ

x−kδ
γ

��
H1

an(δ)
ιk,an// H1

an(x
−kδ).

(5.1)

Lemma 5.24. We have the following exact sequence

0 → H0
an(δ) → H0

an(x
−kδ) → H0

an(t
−k
F RL(δ)/RL(δ)) → H1

an(δ)
ιk,an
−−−→ H1

an(x
−kδ). (5.2)

Proof. From the short exact sequence 0 → RL(δ) → RL(x
−kδ) → RL(x

−kδ)/RL(δ) → 0 we deduce an exact
sequence

0 → H0
ϕq,∇(δ) → H0

ϕq,∇(x
−kδ) → H0

ϕq,∇(t
−k
F RL(δ)/RL(δ)) → H1

ϕq,∇(δ) → H1
ϕq,∇(x

−kδ). (5.3)

Being finite dimensional H0
ϕq,∇

(δ) and H0
ϕq,∇

(x−kδ) are semisimple Γ-modules; since t−kF RL(δ)/RL(δ) is a

semisimple Γ-module, so is H0
ϕq,∇

(t−kF RL(δ)/RL(δ)). Hence, taking Γ-invariants of each term in (5.3), we
obtain the desired exact sequence.

Proposition 5.25. Let δ be in Ian(L), k ∈ Z+. If wδ /∈ {1, · · · , k}, then ιk,an and ιk are isomorphisms.

Proof. We only prove the assertion for ιk,an. The proof of the assertion for ιk is similar. By Theo-
rem 5.19, dimLH

1
an(δ) = dimLH

1
an(x

−kδ) when wδ /∈ {1, · · · , k}. Combining (5.2) with the facts that
H0

an(t
−k
F RL(δ)/RL(δ)) = 0 and that dimLH

1
an(δ) = dimLH

1
an(x

−kδ), we obtain the assertion.

We assign to any nonzero c ∈ H1
an(δ) an L -invariant in P1(L) = L ∪ {∞}. In the case of δ = x−k with

k ∈ N, put L ((atkF , bt
k
F)) = a/b. If δ = xδunr, then any c ∈ H1

an(δ) can be written as

c = t−1F ((q−1ϕq − 1)(λG(1, 1) + µ(log uF − z)), tF∂(λG(1, 1) + µ(log uF − z)))

with λ, µ ∈ L. Here G(1, 1) is an element of RL which induces a basis of (RL/RLtF )
Γ and whose value at ξn

is 1 ⊗ 1 ∈ L ⊗F Fn when n is large enough; z is an element of RL whose value at ξn is 1⊗ log(ξn) ∈ L⊗F Fn
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for any n. We put L (c) = − eF (q−1)
q · λµ . In the case of δ = xkδunr with k ≥ 2, for any c ∈ H1

an(x
kδunr), put

L (c) = L (ιk−1(c)). In the case that δ is not of the form x−k with k ∈ N or the form xkδunr with k ∈ Z+, we
put L (c) = ∞.

Proposition 5.26. Let δ be in Ian(L), k ∈ Z+.

(a) If wδ ∈ {1, · · · , k} and if δ 6= xwδ , xwδδunr, then ιk,an and ιk are zero.

(b) If δ = xwδδunr with 1 ≤ wδ ≤ k, then ιk,an and ιk are surjective, and the kernel of ιk,an is the 1-dimensional
subspace {c ∈ H1

an(δ) : c = 0 or L (c) = ∞}.

(c) If δ = xwδ with 1 ≤ wδ ≤ k, then ιk,an and ιk are injective, and the image of ιk,an is {c ∈ H1
an(x

−kδ) : c =
0 or L (c) = ∞}.

Proof. We will use the exact sequence (5.2) frequently without mentioning it.
First we prove (a). From the fact that dimLH

0
an(t

−k
F RL(δ)/RL(δ)) = dimLH

1
an(δ) = 1 and H0

an(x
−kδ) = 0,

we obtain the assertion for ιk,an. The assertion for ιk follows from this and the commutative diagram (5.1) where
the two vertical maps are isomorphisms.

Next we prove (b). From the fact that

H0
an(x

−kδ) = 0, dimLH
0
an(t

−k
F RL(δ)/RL(δ)) = 1, dimLH

1
an(δ) = 2 and dimLH

1
an(x

−kδ) = 1,

we obtain the surjectivity of ιk,an. The surjectivity of ιk follows from this and the commutative diagram (5.1)
where the two vertical maps are isomorphisms. We show that, if c ∈ H1

an(δ) satisfies L (c) = ∞, then ιk,an(c) = 0.
As L (ιwδ−1,an(c)) = ∞ and ιk,an = ιk+1−wδ ,anιwδ−1,an, we reduce to the case of δ = xδunr. In this case,
c = t−1F λ((q−1ϕq − 1)G(1, 1),∇G(1, 1)) with λ ∈ L. Thus ι1,an(c) = λ((q−1ϕq − 1)G(1, 1),∇G(1, 1)) ∼ (0, 0).
Hence ιk,an(c) = 0 for any integer k ≥ 1.

Finally we prove (c). From the fact that

H0
an(δ) = 0 and dimLH

0
an(x

−kδ) = dimLH
0
an(t

−k
F RL(δ)/RL(δ)) = 1,

we obtain the injectivity of ιk,an. The injectivity of ιk follows from this and the commutative diagram (5.1)
where the vertical map Υδan,γ ◦ Υδγ is an isomorphism. For the second assertion, let (m,n) be in Z1(xwδ ).

Then ιwδ−1(m,n) = (twδ−1
F m, twδ−1

F n) ∈ Z1(x). In other words, ∂(twδ

F m) = ∇x(t
wδ−1
F m) = (πϕq − 1)(twδ−1

F n).
Thus Res(twδ−1

F n) = 0 and there exists z ∈ RL such that ∂z = twδ−1
F n or equivalently ∇z = twδ

F n. It

follows that ∇xwδ−k(tk−wδ

F z) =
(
∇ + (wδ − k)

)
(tk−wδ

F z) = tk−wδ

F ∇z = tkFn. Thus ιk,an(m,n) = (tkFm, t
k
Fn) ∼(

tkFm − (πwδ−kϕq − 1)(tk−wδ

F z), 0
)
. So we have ιk,an(m,n) = (atk−wδ

F , 0). If ιk,an(m,n) 6= 0 or equivalently

a 6= 0, then L (ιk,an(m,n)) = ∞.

6 Triangulable (ϕq,Γ)-modules of rank 2

In his paper [9], Colmez classified 2-dimensional trianguline representations of the Galois group GQp . Later
Nakamura [22] classified 2-dimensional trianguline representations of the Galois group of a p-adic local field that
is finite over Qp, generalizing Colmez’s work.

In this section we classify triangulable OF -analytic (ϕq ,Γ)-modules of rank 2 following Colmez’s method
[9]. First we recall the definition.

Definition 6.1. A (ϕq ,Γ)-module over RL is called triangulable if there exists a filtration of D consisting of
(ϕq,Γ)-submodules 0 = D0 ⊂ D1 ⊂ · · · ⊂ Dd = D such that Di/Di−1 is free of rank 1 over RL.

Note that, if D is OF -analytic, then so is Di/Di−1 for any i.
If δ1, δ2 ∈ Ian(L), then Ext(RL(δ2),RL(δ1)) is isomorphic to Ext(RL,RL(δ1δ

−1
2 )), or H1(δ1δ

−1
2 ). The

isomorphism only depends on the choices of eδ1 , eδ2 and eδ1δ−1
2

. Thus it is unique up to a nonzero multiple and
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induces an isomorphism from Proj(Ext(RL(δ2),RL(δ1))) to Proj(H1(δ1δ
−1
2 )) independent of the choices of eδ1 ,

eδ2 and eδ1δ−1
2

. Similarly there is a natural isomorphism from Proj(Extan(RL(δ2),RL(δ1))) to Proj(H
1
an(δ1δ

−1
2 )).

Hence the set of triangulable (resp. triangulable and OF -analytic) (ϕq ,Γ)-modules D of rank 2 satisfying the
following two properties is classified by Proj(H1(δ1δ

−1
2 )) (resp. Proj(H1

an(δ1δ
−1
2 ))):

• RL(δ1) is a saturated (ϕq,Γ)-submodule of D and RL(δ2) is the quotient module,
• D is not isomorphic to RL(δ1)⊕ RL(δ2).
Let S an = S an(L) be the analytic variety obtained by blowing up (δ1, δ2) ∈ Ian(L) × Ian(L) along the

subvarieties δ1δ
−1
2 = xiδunr for i ∈ Z+ and the subvarieties δ1δ

−1
2 = x−i for i ∈ N. The fiber over the point

(δ1, δ2) is isomorphic to Proj(H1
an(δ1δ

−1
2 )). Similarly let S = S (L) be the analytic variety over Ian(L) ×

Ian(L) whose fiber over (δ1, δ2) is isomorphic to Proj(H1(δ1δ
−1
2 )). The inclusions Extan(RL(δ1),RL(δ2)) →֒

Ext(RL(δ1),RL(δ2)) for δ1, δ2 ∈ Ian(L) induce a natural injective map S an →֒ S . We write points of S

(resp. S an) in the form (δ1, δ2, c) with c ∈ Proj(H1(δ1δ
−1
2 )) (resp. c ∈ Proj(H1

an(δ1δ
−1
2 ))). If (δ1, δ2, c) ∈ S is

in the image of San, for our convenience we use can to denote the element in Proj(H1
an(δ1δ

−1
2 )) corresponding

to c. For (δ1, δ2, c) ∈ S an, since the L -invariant induces an inclusion Proj(H1
an(δ1δ

−1
2 )) →֒ P1(L), we also use

(δ1, δ2,L (c)) to denote (δ1, δ2, c).
If s ∈ S , we assign to s the invariant w(s) ∈ L by w(s) = wδ1 −wδ2 . Let S+ be the subset of S consisting

of elements s ∈ S with
vπ(δ1(π)) + vπ(δ2(π)) = 0, vπ(δ1(π)) ≥ 0.

If s ∈ S+, we assign to s the invariant u(s) ∈ Q+ by

u(s) = vπ(δ1(π)) = −vπ(δ2(π)).

Put S0 = {s ∈ S+ | u(s) = 0} and S∗ = {s ∈ S+ | u(s) > 0}. Then S+ is the disjoint union
of S0 and S∗. For ? ∈ {+, 0, ∗} we put S an

? = S an ∩ S?. We decompose the set S an
? as S an

? =
S

ng
?

∐
S cris

?

∐
S st

?

∐
S ord

?

∐
S ncl

? , where

S
ng
? = {s ∈ S? | w(s) is not an integer ≥ 1},

S
cris
? = {s ∈ S? | w(s) is an integer ≥ 1, u(s) < w(s),L = ∞},

S
st
? = {s ∈ S? | w(s) is an integer ≥ 1, u(s) < w(s),L 6= ∞}

S
ord
? = {s ∈ S? | w(s) is an integer ≥ 1, u(s) = w(s)},

S
ncl
? = {s ∈ S? | w(s) is an integer ≥ 1, u(s) > w(s)}.

Note that S ord
0 and S ncl

0 are empty.
Let D be an extension of RL(δ2) by RL(δ1). For any k ∈ N, the preimage of tkFRL(δ2) is a (ϕq,Γ)-

submodule of D, which is denoted by D′. Then D′ is an extension of RL(x
kδ2) by RL(δ1). If D is OF -analytic,

then so is D′.

Lemma 6.2. (a) The class of D′ in H1(δ1δ
−1
2 x−k) coincides with ιk(c) up to a nonzero multiple, where c is

the class of D in H1(δ1δ
−1
2 ).

(b) If D is OF -analytic, the class of D′ in H1
an(δ1δ

−1
2 x−k) coincides with ιk,an(c) up to a nonzero multiple,

where c is the class of D in H1
an(δ1δ

−1
2 ).

Proof. We only prove (b). The proof of (a) is similar. Let e be a basis of RL(δ2) such that ϕq(e) = δ2(π)e
and σae = δ2(a)e. Let ẽ be a lifting of e in D. The class of D, or the same, c, coincides with the class of(
(δ2(π)

−1ϕq − 1)ẽ, (∇− wδ2)ẽ
)
up to a nonzero multiple. Similarly, up to a nonzero multiple, the class of D′

coincides with the class of
(
(π−kδ2(π)

−1ϕq − 1)(tkF ẽ), (∇− wδ2 − k)(tkF ẽ)
)
=
(
tkF(δ2(π)

−1ϕq − 1)ẽ, tkF(∇− wδ2)ẽ
)

which is exactly ιk,an(c).

Proposition 6.3. Put D = D(s) with s = (δ1, δ2, c) ∈ S . Then the following two conditions are equivalent:
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(a) D(s) has a (ϕq ,Γ)-submodule M of rank 1 such that M ∩ RL(δ1) = 0;

(b) s is in S an and satisfies w(s) ∈ Z+, δ1δ
−1
2 6= xw(s) and L (can) = ∞.

Among all such M there exists a unique one, Msat, that is saturated; Msat is isomorphic to RL(x
w(s)δ2). For

any M that satisfies Condition (a), there exists some i ∈ N such that M = tiFMsat.

Proof. Assume that D(s) satisfies Condition (a). Since the intersection of M and RL(δ1) is zero, the image
of M in RL(δ2) is a nonzero (ϕq,Γ)-submodule of RL(δ2), and so must be of the form tkFRL(δ2) with k ∈ N.
Since D(s) does not split, we have k ≥ 1. The preimage of tkFRL(δ2) in D is exactly M ⊕ RL(δ1). Since
M ⊕RL(δ1) splits, by Lemma 6.2 we have ιk(c) = 0. By Proposition 5.26 this happens only if w(s) ∈ {1, · · · , k}
and δ1δ

−1
2 6= xw(s). Note that, when w(s) ∈ {1, · · · , k} and δ1δ

−1
2 6= xw(s), D(s) is automatically OF -analytic.

Again by Proposition 5.26 we obtain L (can) = ∞. This proves (a)⇔(b).

If (a) holds, then the preimage of t
w(s)
F RL(δ2) splits as RL(δ1)⊕M0, whereM0 is isomorphic to RL(x

w(s)δ2).
We show that M0 is saturated. Note that M0 is not included in tFD(s). Otherwise, the preimage of

t
w(s)−1
F RL(δ2) will split, which contradicts Proposition 5.26. Let e1 (resp. e2, e) be a basis of RL(δ1) (resp.

RL(δ2),M0) such that Le1 (resp. Le2, Le) is stable under ϕq and Γ. Let ẽ2 be a lifting of e2. Write e = ae1+bẽ2.

Then a /∈ tFRL and b ∈ t
w(s)
F RL. Observe that the ideal I generated by a and t

w(s)
F satisfies ϕq(I) = I and

γ(I) = I for all γ ∈ Γ. Thus by Lemma 1.1, I = RL. It follows that M0 is saturated. If M is another
(ϕq,Γ)-submodule of D(s) such that M ∩ RL(δ1) = 0, then the image of M in RL(δ2) is tkFRL(δ2) for some
integer k ≥ w(s). Then M ⊂ RL(δ1) ⊕M0. Since δ1 6= δ2x

w(s), RL(δ1) has no nonzero (ϕq,Γ)-submodule

isomorphic to RL(x
kδ2). It follows that M ⊂M0 and thus M = t

k−w(s)
F M0.

Corollary 6.4. Let s = (δ1, δ2, c) be in S . If s is in S an and satisfies w(s) ∈ Z+, δ1δ
−1
2 6= xw(s) and

L (can) = ∞, then D(s) has exactly two saturated (ϕq,Γ)-submodules of D(s) of rank 1, one being RL(δ1) and
the other isomorphic to RL(x

w(s)δ2). Otherwise, D(s) has exactly one saturated (ϕq,Γ)-submodule of rank 1
which is RL(δ1).

Corollary 6.5. Let s = (δ1, δ2, c) and s
′ = (δ′1, δ

′
2, c
′) be in S (L).

(a) If δ1 = δ′1, then D(s) ∼= D(s′) if and only if s = s′.

(b) If δ1 6= δ′1, then D(s) ∼= D(s′) if and only if s and s′ are in S an and satisfy w(s) ∈ Z+, δ
′
1 = xw(s)δ2,

δ′2 = x−w(s)δ1 and L (can) = L (c′an) = ∞.

Proof. Assertion (a) is clear. We prove (b). Since D(s) ∼= D(s′), there exists a (ϕq,Γ)-submodule M of D(s)
such that M ∼= RL(δ

′
1) and D(s)/M ∼= RL(δ

′
2). Since both RL(δ1) and M are saturated (ϕq,Γ)-submodules of

D, RL(δ1) ∩M = 0. By Proposition 6.3 we have w(s) ∈ Z+, δ1δ
−1
2 6= xw(s), L (can) = ∞ and δ′1 = xw(s)δ2.

Similarly, δ1 = xw(s′)δ′2. As δ1δ2 = δ′1δ
′
2, we have w(s) = w(s′).

Proposition 6.6. Let s = (δ1, δ2, c) be in S . Then D(s) is of slope zero if and only if s ∈ S+−S ncl
+ ; D(s) is of

slope zero and the Galois representation attached to D(s) is irreducible if and only if s is in S∗− (S ord
∗ ∪S ncl

∗ );
D(s) is of slope zero and OF -analytic if and only if s ∈ S an

+ − S ncl
+ .

Proof. By Kedlaya’s slope filtration theorem, D(s) is of slope zero if and only if vπ(δ1(π)δ2(π)) = 0 and D(s) has
no (ϕq ,Γ)-submodule of rank 1 that is of slope < 0. In particular, if D(s) is of slope zero, then vπ(δ1(π)) ≥ 0 and
thus s ∈ S+. Hence we only need to consider the case of s ∈ S+. Assume that D(s) has a (ϕq,Γ)-submodule of
rank 1, say M , that is of slope < 0. Then the intersection of M and RL(δ1) is zero. By Proposition 6.3 we may
suppose that M is saturated. By Corollary 6.4, this happens if and only if s is in S an and satisfies w(s) ∈ Z+,
δ1δ
−1
2 6= xw(s), L (can) = ∞ and w(s) < u(s). Note that δ1δ

−1
2 6= xw(s) and L (can) = ∞ automatically hold

when 0 < w(s) < u(s). The first assertion follows. Similarly, D(s) has a saturated (ϕq,Γ)-submodule of rank 1
that is of slope zero, if and only if u(s) = 0 or u(s) = w(s). By Proposition 1.5 (c) and Remark 1.8, we know
that the Galois representation attached to an étale (ϕq ,Γ)-module D over RL of rank 2 is irreducible if and
only if D has no étale (ϕq ,Γ)-submodule of rank 1. This shows the second assertion. The third assertion follows
from the first one.
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Proof of Theorem 0.5. Assertion (a) follows from Proposition 6.6, and (b) follows from Corollary 6.5.

Remark 6.7. Let s 6= s′ be as in Theorem 0.5 (b). Then s ∈ S cris
∗ if and only if s′ ∈ S cris

∗ ; s ∈ S ord
+ if and

only if s′ ∈ S cris
0 .

Remark 6.8. By an argument similar to that in [9] one can show that, if s is in S cris
+ (resp. S ord

+ , S st
+ ), then

D(s) comes from a crystalline (resp. ordinary, semistable but non-crystalline) L-representation twisted by a
character.
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