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Abstract. Partial fraction methods play an important rule in the study of multiple zeta values. One
class of such fractions is related to the integral representations of MZVs. We show that this class
of fractions has a natural structure of shuffle algebra. This finding conceptualizes the connections
among the various methods of stuffle, shuffle and partial fractions in the study of MZVs. This
approach also gives an explicit product formula of the fractions.

1. Introduction

Let k be a positive integer. For positive integers si and variables ui, 1 6 i 6 k, define

(1) f
( s1,··· ,sk

u1,··· ,uk

)
:=

1
(u1 + · · · + uk)s1(u2 + · · · + uk)s2 · · · usk

k

.

In the spacial case when si = 1, 1 6 i 6 k, such fractions appeared in connection with differential
geometry [3, 4] and polylogarithms [6] where their products were shown to satisfy the shuffle
relation. For example,

1
u1

1
(v1 + v2)v2

=
1

(u1 + v1 + v2)(v1 + v2)v2
+

1
(u1 + v1 + v2)(u1 + v2)v2

+
1

(u1 + v1 + v2)(u1 + v2)v2
.(2)

In general, such fractions occur naturally from multiple zeta values which, since their introduction
in the early 1990s, have attracted much attention from a wide range of areas in mathematics and
mathematical physics [1, 2, 5, 7, 9, 10, 11, 12, 13, 16]. Multiple zeta values (MZVs) are special
values of the multi-variable complex functions

ζ(s1, · · · , sk) =
∑

n1>···ns>0

1
ns1

1 · · · nsk
k

at positive integers si, 1 6 i 6 k with s1 > 2. With the change of variable ni = ui+· · ·+uk, 1 6 i 6 k,
we have the well-known rational fraction representation of multiple zeta values:

(3) ζ(s1, · · · , sk) =
∑

u1,··· ,uk>1

f
( s1,··· ,sk

u1,··· ,uk

)
.

For this reason, we will call these fractions f
( s1,··· ,sk

u1,··· ,uk

)
the MZV fractions. Thus any relation

among MZV fractions gives a corresponding relation among MZVs after summing over the in-
dices ui’s. Indeed, many relations among multiple zeta values are obtained by studying relations
among MZV fractions. The method can be traced back to Euler in the case when k = 2 and
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remains one of the most effective methods until today [5, 14]. For example [5], from the fraction
formula

(4)
1
mi

1
n j =

∑

r+s=i+ j

((
r−1

i−1

) 1
(m + n)rns +

(
r−1

j−1

) 1
(m + n)rms

)
,

we obtain the well-known Euler’s decomposition formula

ζ(i)ζ( j) =
∑

r+s=i+ j

((
r−1

i−1

)
ζ(r, s) +

(
r−1

j−1

)
ζ(r, s)

)
, i, j > 2.

This formula of Euler has been generalized recently by the authors [8] to a product formula of
any two MZVs.

The study of these fractions are interesting on their own right because of their applications
outside of MZVs and that they make sense even if s1 = 1 when ζ(s1, · · · , sk) is no longer defined.
For example when si = 1 for all 1 6 i 6 k, these fractions are shown to multiply according to
the shuffle product rule [3, 6] as mentioned above. However, a product formula for two MZV
fractions is known only in this case and in the case of Eq. (4). In this paper we will provide a
product formula for any two MZV fractions making use of the general double shuffle framework
introduced in our previous work [8] which is obtained with motivation from the shuffle relation
and quasi-shuffle (stuffle) relation of MZVs. We are able to apply this general framework by
showing that the MZV fractions in Eq. (1) have canonical integral representations, in the spirit
of the integral representations of MZVs by Konsevich [12]. By the standard summation process
for MZVs, we recover the above mentioned generalization of Euler’s decomposition formula of
MZVs.

As an example of our product formula, we have

1
ur1

1

1
(v1 + v2)s1vs2

2
=

∑

t1, t2, t3 > 1
t1 + t2 = r1 + s1

(
t1−1

r1−1

) 1
(u1 + v1 + v2)t1(v1 + v2)t2vs2

2

+
∑

t1, t2, t3 > 1
t1 + t2 + t3
= r1 + s1 + s2

[(
t1−1

s1−1

)(
t2−1

s2−t3

) 1
(u1 + v1 + v2)t1(u1 + v2)t2vt3

2

(5)

+

(
t1−1

s1−1

)(
t2−1

s2−1

) 1
(u1 + v1 + v2)t1(v2 + u1)t2ut3

1

]
.

When r1 = s1 = s2 = 1, we get Eq. (2). See Theorem 3.2 for the general formula and see
Section 3.2 for other examples.

In Section 2, we recall our general framework of double shuffle algebras and show that it en-
codes the shuffle product of MZV fractions (Theorem 2.1) through their integral representations.
The explicit product formula of MZV fractions is given in Section 3 where we also give some
examples.

2. The algebra of MZV fractions

In this section, we recall the general double shuffle framework in [8] and apply it to give the
shuffle product of MZV fractions.
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2.1. Shuffle product of MZV fractions. Let U be a set. Define the set of symbols

Û := {[ r

u

] | r ∈ Z>1, u ∈ U}.

Let M(Û) be the free monoid generated by Û. Define the free abelian group

(6) H(Û) := ZM(Û).

We will define a product on H(Û) by transporting the shuffle product on another algebra.
Define the set of symbols

U = {x0} t {xu | u ∈ U}
and let M(U) be the free monoid on U. As usual [8, 15], define the shuffle algebra on U to be the
vector space

HX (U) := ZM(U)

equipped with the shuffle product X , namely

(α1~α
′) X (γ1~γ

′) = α1(~α′ X (γ1~γ
′)) + γ1((α1~α

′) X~γ′), α1, β1 ∈ U, ~α′, ~β′ ∈ M(U),

with the initial condition 1 X ~α = ~α = ~α X 1.
Define the subalgebra

HX
1(U) = Z ⊕ (⊕u∈UHX (U)xu).

Define a linear bijection

(7) ρ : HX
1(U)→ H(Û), xr1−1

0 xu1 · · · xrk−1
0 xuk 7→

[ r1,··· ,rk

u1,··· ,uk

]
.

We then transport the shuffle product X on HX (U) to a product Xρ on H(Û) via ρ, namely

(8) α Xρ β = ρ(ρ−1(α) X ρ−1(β)).

Let HXρ (Û) denote the resulting algebra (H(Û), Xρ ).
Now let U be a set of variables and let Z(U) be the field of rational functions in U. In other

words, Z(U) is the field of fractions of Z[U]. Consider the Z-submodule

(9) PF(U) := Z{f( s1,··· ,sk

u1,··· ,uk

) | si > 1, ui ∈ U, 1 6 i 6 k, k > 0},

where f
( s1,··· ,sk

u1,··· ,uk

)
is defined in Eq. (1). The main result of this section is the following

Theorem 2.1. If U be a set of variables, then the Z-linear map

F : H(Û)→ Z(U), F
[ ~s

~u

]
= f

( ~s

~u

)
, F(1) = 1

is a Z-algebra homomorphism. In particular, the Z-submodule PF(U) of Z(U), as the image of
F, is a Z-subalgebra of Z(U).

The proof of this theorem will be given in Section 2.2. We first give a consequence of the
theorem.
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Corollary 2.2. The multiplication of two MZV fractions in PF(U) satisfies the shuffle relation:

(10) f
( ~r

~u

)
f
( ~s

~v

)
= f

(( ~r

~u

)
Xρ

( ~s

~v

))
.

Here Xρ is as defined in Eq. (8).

2.2. Integral representations of MZV fractions. In Section 2.2.1 we give integral representa-
tions of MZV fractions. We then use this integral representation to prove Theorem 2.1.

2.2.1. Integral representation of MZV fractions. In preparation of our proof of Theorem 2.1, we
present an integral representation of MZV fractions which is essentially the same as the well-
known integral representation of MZVs by Konsevich [12]. For the sake of being self-contained
and for later reference, we provide the notations and some details.

Define

(11) A := R{ebt | b > 0}, A+ = R{ebt | b > 0}.
Then A and A+ are closed under function multiplication and A = R ⊕ A+. We define the operator

I0 : A+ → A, f (t) 7→
∫ t

−∞
f (t1)dt1.

For any λ > 0 we define the operator

Iλ : A→ A, f (t) 7→
∫ t

−∞
f (t1)eλt1dt1.

Then we have the equations:

(12) I0(ebt) =
1
b

ebt, b > 0,

(13) Iλ(ebt) =
1

b + λ
e(b+λ)t, b > 0, λ > 0.

So I0(A+) ⊆ A+ and Iλ(A) ⊆ A+ for λ > 0. By a direct computation using Eq. (12) and (13) we
obtain

(14) Iλ1(h1)Iλ2(h2) = Iλ1(h1Iλ2(h2)) + Iλ2(Iλ1(h1)h2),

where λ1, λ2 ∈ R>0, h1 is in the domain of Iλ1 and h2 is in the domain of Iλ2 ,

Proposition 2.3. For any f
( s1,··· ,sk

b1,··· ,bk

) ∈ R, we have the integral representation

(15) f
( s1,··· ,sk

b1,··· ,bk

)
e(b1+···+bk)t = (I◦(s1−1)

0 ◦ Ib1 ◦ · · · ◦ I◦(sk−1)
0 ◦ Ibk)(1),

where 1 : R→ R is the constant function. In particular,

(16) f
( s1,··· ,sk

b1,··· ,bk

)
= (I◦(s1−1)

0 ◦ Ib1 ◦ · · · ◦ I◦(sk−1)
0 ◦ Ibk)(1)

∣∣∣
t=0
.
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Proof. We only need to prove Eq. (15) for which we use the induction on |~s| = s1 + · · · + sk. If
|~s| = 1, then k = 1 and s1 = 1. By Eq. (13) the right hand side of Eq. (15) is Ib1(1) = eb1 t

u1
, which

is equal to the left hand side. Let n be a positive integer > 2. Assume that Eq. (15) holds for any
~s with |~s| < n. Now assume that |~s| = n. If s1 = 1, then k > 2. In this case by the induction
hypothesis and Eq. (13) the right hand side of Eq. (15) is equal to

Ib1(f
( s2,··· ,sk

b2,··· ,bk

)
e(b2+···+bk)t) = f

( s2,··· ,sk

b2,··· ,bk

)
Ib1(e

(b2+···+bk)t) =
1

b1 + · · · + bk
f
( s2,··· ,sk

b2,··· ,bk

)
e(b1+···+bk)t

which coincides with the left hand side. The argument for s1 > 1 is similar by using Eq. (12)
instead of Eq. (13). �

2.2.2. The proof of Theorem 2.1. We now take U = R+ in Section 2.1 and define the set R̂+ and
the algebra H(R̂+).

Proposition 2.4. The R-linear map

Θ : R ⊗Z H(R̂+)→ A,
[ s1,··· ,sk

b1,··· ,bk

] 7→ f
( s1,··· ,sk

b1,··· ,bk

)
e(b1+···+bk)t, 1 7→ 1

is an R-algebra homomorphism.

Proof. Define

P0 :H+(R̂+)→ H(R̂+), P0(
[ s1,s2,··· ,sk

b1,b2,··· ,bk

]
) =

[ s1+1,s2,··· ,sk

b1,b2,··· ,bk

]
,

Pb :H(R̂+)→ H(R̂+), Pb(
[ s1,··· ,sk

b1,··· ,bk

]
) =

[ 1,s1,··· ,sk

b,b1,··· ,bk

]
, Pb(1) =

[ 1

b

]

and take their scalar extensions to R. We show that

(17) Θ ◦ Pb = Ib ◦ Θ, b > 0.

For b = 0 we have

Θ ◦ P0(
[ s1,s2··· ,sk

b1,b2··· ,bk

]
) = Θ(

[ s1+1,s2,··· ,sk

b1,b2,··· ,bk

]
) = f

( s1+1,s2,··· ,sk

b1,b2,··· ,bk

)
e(1+s1+···+sk)t

= I0

(
(I◦s1−1

0 ◦ Ib1 ◦ · · · ◦ I◦(sk−1)
0 ◦ Ibk)(1)

)
= I0(Θ(

[ s1,s2··· ,sk

b1,b2··· ,bk

]
)),

where we have used Eq. (15) in the last two equations. The argument for b > 0 is similar.
From [8, Proposition 4.3] we obtain

(18) Pa(ξ1) Xρ Pb(ξ2) = Pa(ξ1 Xρ Pb(ξ2)) + Pb(Pa(ξ1) Xρ ξ2),

where ξ1 is in the domain of Pa and ξ2 is in the domain of Pb. Now we prove that

Θ(ξ1 Xρ ξ2) = Θ(ξ1)Θ(ξ2)

for ξ1, ξ2 in the free monoid M(R̂+) generated by R̂+. This is done by induction on |ξ1|+ |ξ2|. Here

|ξ1| =


1 if ξ1 = 1,

r1 + · · · + r`, if ξ1 =
[ r1,··· ,r`

a1,··· ,a`
]
.
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If |ξ1| = 0 or |ξ2| = 0, then there is nothing to prove. So we assume that |ξ1| > 1 and |ξ2| > 1. Then
we can write ξ1 = Pa(ξ′1) for some a ∈ R>0 and ξ′1 ∈ M(R̂+). Similarly we can write ξ2 = Pb(ξ′2)
for some b ∈ R>0 and ξ′2 ∈ M(R̂+). Then

Θ(ξ1 Xρ ξ2) = Θ(Pa(ξ′1) Xρ Pb(ξ′2))
= Θ(Pa(ξ′1 Xρ Pb(ξ′2))) + Θ(Pb(Pa(ξ′1) Xρ ξ

′
2)) (by Eq. (18)

= Ia(Θ(ξ′1 Xρ Pb(ξ′2))) + Ib(Θ(Pa(ξ′1) Xρ ξ
′
2)) (by Eq. (17))

= Ia(Θ(ξ′1)Θ(Pb(ξ′2))) + Ib(Θ(Pa(ξ′1))Θ(ξ′2)) (by induction assumption)
= Ia(Θ(ξ′1)Ib(Θ(ξ′2))) + Ib(Ia(Θ(ξ′1))Θ(ξ′2)) (by Eq. (17))
= Ia(Θ(ξ′1))Ib(Θ(ξ′2)) (by Eq. (14))
= Θ(Pa(ξ′1))Θ(Pb(ξ′2)) (by Eq. (17)).

This completes the induction. �

Taking t = 0 in Proposition 2.4, we obtain

Corollary 2.5. The R-linear map

Θ : H(R̂+)→ R,
[ s1,··· ,sk

b1,··· ,bk

] 7→ f
( s1,··· ,sk

b1,··· ,bk

)
, 1 7→ 1

is an R-algebra homomorphism.

Based on this corollary we can now prove Theorem 2.1.

Proof of Theorem 2.1. Let
[ ~r

~v

] ∈ Ûk and
[ ~s

~u

] ∈ Û`. We have to prove the equation

(19) F(
[ ~r

~v

]
)F(

[ ~s

~u

]
) = F(

[ ~r

~v

]
Xρ

[ ~s

~u

]
).

Both sides of this equation are rational functions in U. Since the zero set of a nonzero rational
function does not contain any non-empty open subset in Rk+` while, by Corollary 2.5, the above
equation holds when the variables ~u and ~v take values in R+, the equation has been proved. �

3. Product formula of MZV fractions

We now apply Theorem 2.1 and the explicit shuffle product formula obtained in [8] to give an
explicit product formula of MZV fractions. We will also give some examples.

3.1. The product formula. We need to recall some notations to give this formula. For positive
integers k and `, denote [k] = {1, · · · , k} and [k + 1, k + `] = {k + 1, · · · , k + `}. Define

(20) Ik,` =

{
(ϕ, ψ)

∣∣∣∣ ϕ : [k]→ [k + `], ψ : [`]→ [k + `] are order preserving
injective maps and im(ϕ) ∪ im(ψ) = [k + `]

}

Let ~u ∈ Uk, ~v ∈ U` and (ϕ, ψ) ∈ Ik,`. We define ~u X (ϕ,ψ)~v to be the vector whose ith component is

(21) (~u X (ϕ,ψ)~v)i :=
{

u j if i = ϕ( j),
v j if i = ψ( j), 1 6 i 6 k + `.
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Let ~r = (r1, · · · , rk) ∈ Zk
>1, ~s = (s1, · · · , s`) ∈ Z`>1 and ~t = (t1, · · · , tk+`) ∈ Zk+`

>1 with |~r| + |~s| = |~t|.
Here |~r| = r1+· · ·+rk and similarly for |~s| and |~t|. Denote Ri = r1+· · ·+ri for i ∈ [k], S i = s1+· · ·+si

for i ∈ [`] and Ti = t1 + · · · + ti for i ∈ [k + `]. For i ∈ [k + `], define

(22) h(ϕ,ψ),i = h(ϕ,ψ),(~r,~s),i =

{
r j if i = ϕ( j)
s j if i = ψ( j) = rϕ−1(i)sψ−1(i),

with the convention that r∅ = s∅ = 1.
With these notations, we define

(23) c~t,(ϕ,ψ)
~r,~s (i) =



(
ti−1

h(ϕ,ψ),i−1

)
if i = 1 or if i − 1, i ∈ im(ϕ) or if i − 1, i ∈ im(ψ),

(
ti−1

Ti−R|ϕ−1([i])|−S |ψ−1([i])|

)

=

( ti−1
i∑

j=1
t j−

i∑
j=1

h(ϕ,ψ), j

) otherwise.

The following theorem is proved in [8].

Theorem 3.1. ([8, Theorem 2.1] Let U be a countably infinite set and let HXρ (Û) = (H(Û), Xρ )

be as defined by Eq. (8). Then for
[ ~r

~u

] ∈ Ûk and
[ ~s

~v

] ∈ Û` in HXρ (Û), we have

(24)
[ ~r

~u

]
Xρ

[ ~s

~v

]
=

∑

(ϕ, ψ) ∈ Ik,`
~t ∈ Zk+`

>1 , |~t| = |~r| + |~s|

( k+∏̀

i=1

c~t,(ϕ,ψ)
~r,~s (i)

)[ ~t

~u X (ϕ,ψ)~v

]
,

where c~t,(ϕ,ψ)
~r,~s (i) is given in Eq. (23) and ~u X (ϕ,ψ)~v is given in Eq. (21).

Then by Corollary 2.2, we have

Theorem 3.2. With notations as in Theorem 3.1, we have

(25) f
( ~r

~u

)
f
[ ~s

~v

]
) =

∑

(ϕ, ψ) ∈ Ik,`
~t ∈ Zk+`

>1 , |~t| = |~r| + |~s|

( k+∏̀

i=1

c~t,(ϕ,ψ)
~r,~s (i)

)
f
( ~t

~u X (ϕ,ψ)~v

)
.

Assume r1, s1 > 2. Taking the sum
∑

u1,··· ,uk>1

∑
v1,··· ,v`>1

on both sides of Eq. (25), we obtain the

generalization of Euler’s decomposition formula of two MZVs in [8, Corollary 2.5].

3.2. Special cases. We sketch the computations for some low dimensional cases of Theorem 3.2
and refer the reader to [8, Section 2.4] for further details on the notations.

3.2.1. The case when k = ` = 1. Then ~r = r1 and ~s = s1 are positive integers, and ~u = u1 and
~v = v1 are variables. Let ~t = (t1, t2) ∈ Z2

>1 with t1 + t2 = r1 + s1. If (ϕ, ψ) ∈ I1,1, then either ϕ(1) = 1
and ψ(1) = 2, or ψ(1) = 1 and ϕ(1) = 2. If ϕ(1) = 1 and ψ(1) = 2, then as in [8, Section 2.4], we
obtain

c~t,(ϕ,ψ)
r1,s1

= c~t,(ϕ,ψ)
r1,s1

(1) c~t,(ϕ,ψ)
r1,s1

(2) =

(
t1−1

r1−1

)
.
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By Eq. (21), we have
~u X (ϕ,ψ)~v = (u1, v1).

If ψ(1) = 1 and ϕ(1) = 2, then we similarly obtain

c~t,(ϕ,ψ)
r1,s1

= c~t,(ϕ,ψ)
r1,s1

(1) c~t,(ϕ,ψ)
r1,s1

(2) =

(
t1−1

s1−1

)
.

By Eq. (21), we have ~u X (ϕ,ψ)~v = (v1, u1). Therefore,

f
( r1

u1

)
f
( s1

v1

)
=

∑

t1,t2>1,t1+t2=r1+s1

(
t1−1

r1−1

)
f
( t1,t2

u1,v1

)
+

∑

t1,t2>1,t1+t2=r1+s1

(
t1−1

s1−1

)
f
( t1,t2

v1,u1

)
.

That is,
1

ur1
1

1
vs1

1
=

∑

t1,t2>1,t1+t2=r1+s1

(
t1−1

r1−1

) 1
(u1 + v1)t1vt2

1

+
∑

t1,t2>1,t1+t2=r1+s1

(
t1−1

s1−1

) 1
(u1 + v1)t1ut2

1

.

This agrees with the well-known partial fraction formula [5, Eq. (19)] recalled in Eq. (4).

3.2.2. The case of r = 1, s = 2. In this case
[ ~r

~w

]
=

[ r1

w1

]
and

[ ~s

~z

]
=

[ s1,s2

z1,z2

]
. Let ~t = (t1, t2, t3) ∈

Z3
>1 with t1 + t2 + t3 = r1 + s1 + s2. There are 3 pairs (ϕ, ψ) in I1,2 and corresponding coefficients

c~t,(ϕ,ψ)
r1,~s

are computed in [8].
When ϕ(1) = 1, ψ(1) = 2 and ψ(2) = 3, by Eq. (23), we have

c~t,(ϕ,ψ)
r1,~s

(1) =

(
t1−1

r1−1

)
, c~t,(ϕ,ψ)

r1,~s
(2) =

(
t2−1

t1+t2−r1−s1

)
, c~t,(ϕ,ψ)

r1,~s
(3) =

(
t3−1

s2−1

)
.

When the second and the third terms are nonzero, we have t1 + t2 > r1 + s2 and t3 > s2. Then the
inequalities must be equalities and we have c~t,(ϕ,ψ)

r1,~s
(2) = c~t,(ϕ,ψ)

r1,~s
(3) = 1. By Eq. (21) we have

~u X (ϕ,ψ)~v = (u1, v1, v2).

When ϕ(1) = 2, ψ(1) = 1 and ψ(2) = 3, we have

c~t,(ϕ,ψ)
r1,~s

=

(
t1−1

s1−1

)(
t2−1

s2−t3

)
, ~u X (ϕ,ψ)~v = (v1, u1, v2),

and when ϕ(1) = 3, ψ(1) = 1 and ψ(2) = 2, we have

c~t,(ϕ,ψ)
r1,~s

=

(
t1−1

s1−1

)(
t2−1

s2−1

)
, ~u X (ϕ,ψ)~v = (v1, v2, u1).

Thus from Theorem 3.2 we have

f
[ r1

u1

]
f
[ s1,s2

v1,v2

]
=

∑

t1, t2, t3 > 1
t1 + t2 = r1 + s1

(
t1−1

r1−1

)
f
[ t1,t2,s2

u1,v1,v2

]

+
∑

t1, t2, t3 > 1
t1 + t2 + t3
= r1 + s1 + s2

[(
t1−1

s1−1

)(
t2−1

s2−t3

)
f
[ t1,t2,t3

v1,u1,v2

]

+

(
t1−1

s1−1

)(
t2−1

s2−1

)
f
[ t1,t2,t3

v1,v2,u1

]]
.



SHUFFLE RELATION OF FRACTIONS 9

This is Eq. (5).

3.2.3. The case of r = s = 2. In this case
[ ~r

~w

]
=

[ r1,r2

w1,w2

]
and

[ ~s

~z

]
=

[ s1,s2

z1,z2

]
. Let ~t =

(t1, t2, t3, t4) ∈ Z4
>1 with t1 + t2 + t3 + t4 = r1 + r2 + s1 + s2. Then there are

(
4

2

)
= 6 choices

of (ϕ, ψ) ∈ I2,2.
If ϕ(1) = 1, ϕ(2) = 2, ψ(1) = 3 and ψ(2) = 4, by Eq. (23), we have [8]

c~t,(ϕ,ψ)
~r,~s =



(
t1−1

r1−1

)(
t2−1

r2−1

)
, if t4 = s2,

0, otherwise.

By Eq. (21), we have
~u X (ϕ,ψ)~v = (u1, u2, v1, v2).

Similarly, if ϕ(1) = 3, ϕ(2) = 4, ψ(1) = 1 and ψ(2) = 2, then

c~t,(ϕ,ψ)
~r,~s =



(
t1−1

s1−1

)(
t2−1

s2−1

)
, if t4 = r2

0, otherwise

and
~u X (ϕ,ψ)~v = (v1, v2, u1, u2).

If ϕ(1) = 1, ϕ(2) = 3, ψ(1) = 2 and ψ(2) = 4, then

c~t,(ϕ,ψ)
~r,~s =

(
t1−1

r1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−t4

)
, ~u X (ϕ,ψ)~v = (u1, v1, u2, v2).

If ϕ(1) = 2, ϕ(2) = 4, ψ(1) = 1 and ψ(2) = 3, then

c~t,(ϕ,ψ)
~r,~s =

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−t4

)
, ~u X (ϕ,ψ)~v = (v1, u1, v2, u2).

If ϕ(1) = 1, ϕ(2) = 4, ψ(1) = 2 and ψ(2) = 3, then

c~t,(ϕ,ψ)
~r,~s =

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−1

)
, ~u X (ϕ,ψ)~v = (u1, v1, v2, u2).

If ϕ(1) = 2, ϕ(2) = 3, ψ(1) = 1 and ψ(2) = 4, then

c~t,(ϕ,ψ)
~r,~s =

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−1

)
, ~u X (ϕ,ψ)~v = (v1, u1, u2, v2).

Then from Theorem 3.2, we obtain

f
[ r1,r2

u1,u2

]
f
[ s1,s2

v1,v2

]

=
∑

t1 > 2, t2, t3 > 1
t1 + t2 + t3 = r1 + r2 + s1

(
t1−1

r1−1

)(
t2−1

r2−1

)
f
[ t1,t2,t3,s2

u1,u2,v1,v2

]
+

∑

t1 > 2, t2, t3 > 1
t1 + t2 + t3 = r1 + s1 + s2

(
t1−1

s1−1

)(
t2−1

s2−1

)
f
[ t1,t2,t3,r2

v1,v2,u1,u2

]

+
∑

t1 > 2, t2, t3, t4 > 1
t1 + t2 + t3 + t4 =

r1 + r2 + s1 + s2

[(
t1−1

r1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−t4

)
f
[ t1,t2,t3,t4

u1,v1,u2,v2

]
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+

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−t4

)
f
[ t1,t2,t3,t4

v1,u1,v2,u2

]

+

(
t1−1

r1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−1

)
f
[ t1,t2,t3,t4

u1,v1,v2,u2

]
+

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−1

)
f
[ t1,t2,t3,t4

v1,u1,u2,v2

]]
.
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