On families of filtered (¢, IV)-modules

Bingyong Xie
Department of Mathematics, East China Normal University,
Shanghai, 200241, P. R. China
byxie@math.ecnu.edu.cn

Abstract

In this article, as a generalization of Berger’s construction, we give a functor from the category of families
of filtered (¢, N)-modules (with certain conditions) to the category of families of (¢, I')-modules. Combining
this with Kedlaya and Liu’s theorem we show the stability of weak admissibility of filtered (¢, N)-modules.

Introduction

In p-adic Hodge theory one considers (¢, T')-modules as the category of linear algebra data describing p-adic
Galois representations, and considers weakly admissible filtered (¢, N)-modules as the category of linear algebra
data describing semistable Galois representations.

Recently mathematicians are interested in families of these modules.

In [3] Berger and Colmez defined a functor from the category of families of p-adic Galois representations
to the category of families of overconvergent étale (¢, I')-modules. But the functor of Berger-Colmez fails to be
an equivalence of categories, in contrast with the classical case.

However Kedlaya and Liu [8] showed that, when the base is an affinoid space, every family of overconvergent
étale (¢,T')-modules can locally be converted into a family of p-adic Galois representations. Moreover they
proved that the étale property is stable.

Theorem 0.1. (/8, Theorem 0.2]) Let L be an affinoid algebra over Qp, and let #y be a family of (p,T)-

modules over L&q, B]rl x n the sense of [§]. If M, is étale for some x € Max(L), then there exists an affinoid
neighborhood Max(B) ofac and a B-linear representation Vg of G whose associated (p,I')-module is isomorphic
to By M. Moreover Vi is unique for this property.

Berger and Colmez [3] also defined a functor from the category of families of semistable Galois representa-
tions to the category of families of weakly admissible filtered (¢, N)-modules, which also fails to be equivalent.

In this paper, we study the stability of weak admissibility of filtered (y, N)-modules. Following an ideal
mentioned in [8], we study this question by generalizing Berger’s construction in [2] to families of filtered
(¢, N)-modules and then applying Theorem [0.1.

Based on Schneider and Teitelbaum’s notions of Fréchet-Stein algebras and coadmissible modules over a
Fréchet-Stein algebra, we introduce a category of coadmissible (¢,T")-modules. As a generalization of Berger’s
functor given in [2], we construct a functor from the category of families of (¢, N)-modules (with certain technical
conditions) to the category of coadmissible (¢, I')-modules.

When the base £ is a reduced affinoid algebra, a coadmissible (¢, I')-module is essentially a family of (p, T')-
modules (in the sense of [3]), so that we can apply Theorem [0.1. As a result, we obtain that, when the base
is an affinoid space, under certain conditions, the property of weakly admissibility is stable and every family of
weakly admissible filtered (p, N)-modules locally comes from some family of semistable Galois representations.

Our main result is the following



Theorem 0.2. Let L be a reduced affinoid algebra and let D be a filtered (i, N)-module over L ®q, Ko which
satisfies (BN) and (Gr). If D, is weakly admissible for some x € Max(L), then there exists an affinoid neigh-
borhood Max(B) of x and a semi-stable B-representation Vg of Gk whose associated filtered (p, N)-module is
isomorphic to Dg. Moreover, Vi is unique for this property.

The conditions (BN) and (Gr) will be introduced in Section 2.

The case of N = 0 is already considered by Hellmann. In [7] Hellmann considered stacks of filtered -
modules over rigid analytic spaces and adic spaces, and showed that the weakly admissible locus in the stack is
an open substack. Hellmann’s approach is based on Rapoport-Zink’s p-adic symmetric spaces. Our approach is
different from Hellmann’s.

We outline the structure of this paper. In Section 1l we recall the rings coming from p-adic Hodge theory. In
Section 2] we recall the notion of families of filtered (¢, N)-modules. In Section [3.1l we recall the notions of free
families and locally free families of (¢, T')-modules, and in Section [3.2/we recall Berger and Colmez’s construction
in [3]. In Section 4 we introduce the category of coadmissible (p, I')-modules and give a functor from the category
of filtered (¢, N)-modules (with certain conditions) to the category of coadmissible (¢,I')-modules. In Section
5l we prove Theorem (0.2l
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1 Rings of p-adic Hodge Theory

Throughout this paper let K be a finite extension of Q,,, Ky the maximal absolutely unramified subfield of K.
Let ¢ be the Qp-automorphism of Ky which reduces to the absolutely Frobenius of the residue field. Let pi,n
be the set of p"-th roots of unity in Q,, gy = Up>o fipn. For a finite extension K of Q,, let K,, = K[u,»] and
Koo = K(pip=) = Uy Kn- Write I' = ' = Gal(Ko /K) and Hg = Gal(Qp/Koo)-

Let C,, be a completed algebraic closure of Q, with valuation subring Oc, and p-adic valuation v, normalized
such that v,(p) = 1.

Let B = {(z®);50 | 2 € Cp, (2@D) = 2 Vi € N}, E* the subset of E such that z(®) e Oc,. If
T,y € E, we define z 4+ y and zy by

(@ +)® = Tim, (20H) DY () = 20y

Then E is a field of characteristic  p. Define a function vg : E — RU {40} by putting vg((z m))) = v, (z).
This is a valuation under which E is complete and E* is the ring of integers in E. If we let € = (6(”)) be an
clement of ET with €® =1 and € # 1, then E is a completed algebraic closure of F,((e — 1)).

Let A* be the ring W(E') of Witt vectors with coefficients in ET, A the ring of Witt vectors W(E) and
B =A[l/p]. Let m = [ — 1 € AT, where [¢] denotes the Teichmiiller lifting of e. Let A be the completion of
the maximal unramified extension of Z((r)) in A, B = A[l/p].

If r, s are two elements in N[1/p] U {+oco}, we put Als] = K“‘{[pq, [ﬁs}} and Blrs! = Alms1[1/p] with the
convention that p/[7+°°] = 1/[7] and [#+°°]/p = 0. If I is an interval of R U {+o0c}, we put B; = Npr, g}CIB[T 8],
If I C J are two closed intervals so that B/ B, we define a valuation v; on B? by demanding v;(z) = 0 if

and only if z € AT — pA’. Then B! is a Banach space for the valuation v; and the completion of B for the
valuation B is identified with BY. Write

Bfr =Bl BLr = BIrtl and Bf, =Bl = B+l

Note that ET’T is a Fréchet space for the valuations vl with s € [r, 400, and BI"" is dense in Bil’g Put
Bf = UT>OBT " and Brlg = UT>0BIlg Equip BT and Eiig with the inductive limit topology. Let B+ = B“g[ﬁx]
and Bf

log = Brig[fx}, where ¢x = log(m).



All of the above rings admit actions of Gx. Write B = Bfx EK = ]§HK, Ef{ = (EI)HK, ﬁ}( = UTZOETI{
and BLg)K = UTZOBL’QK. Put BL" = BL" N B. We equip with B the weak topology (see [3]). Let BI{;K

be the Fréchet completion of By for the topology induced from that on EL; - Put BJ;( = UTZOB}%T and
BL@K = UT.ZOBL’;K. The G-actions on B}( and BL&K factor through I'. For s > 7 let B[IT(’S] be the completion

of BL’; 5 for the valuation vl

All of B, ET, ]A?;Iig, BJ}( and BL&K admit actions of ¢.

There exists a sufficient large r(K) such that, if s > r > r(K), then BE,?S] is isomorphic to the ring consisting
of f = j:ioo a;T?, a; € Ky, convergent on the domain p~1/¢x" < |T| < p~1/exs wwhere ek is the absolute

ramification index. In fact, we may take T' = mx, where 7x is as in [1} §1.1].

If £ is a Banach space over Q, and B is a locally convex space over Q,, let E@)QPB be the completion
of £ ®q, B for the projective tensor product topology [J, §17]. Note that, if £ or B is finite over @Q,, then
AC@QPB =L ®QPB'

Lemma 1.1. If £ is a Banach space over Q, and B is a locally convex spaces over Q, which admits an action
of a group G, then the G-action can be extended L-linearly and continuously to E@QPB n a unique way, and
(L&, B)® = L&qg, BE.

Proof. By [9, Proposition 10.1] there exists a set X such that £ is topologically isomorphic to the Banach space
¢o(X) defined by

co(X) :={f: X — Qp such that for any ¢ > 0 the set {x € X : |f(z)| > €} is finite}.

Therefore £ has a topological basis {e, },cx if we identify £ with ¢q(X) via the above isomorphism. From the
definition of completion topological tensor product, we see that L@@pB consists of )y aze, with a, € B,
such that for any open neighborhood U of 0 in B, the set {x € X : a, ¢ U} is finite. We can extend the
G-action to L&g, B by letting 9D sex @zez) = D ,cx 9(az)es. The uniqueness of such an extension follows
from the continuity. It is clear that g(} .y azez) = > ¢y aze, if and only if a, is in B€. In other words

(L®qg,B)¢ = LB, BC. O

Definition 1.2. A coefficient algebra means a commutative Banach algebra £ over Q,, satisfying the following
conditions:

(a) The norm on L restricts to the norm on Q,;
(b) For each maximal ideal m of £, the residue field Ly, := £/m is finite over Qp;
(¢) The Jacobson radical of L is zero; in particular, £ is reduced.

For example, any reduced affinoid algebra over Q,, is a coefficient algebra. In particular, any finite extension
of Qy, is a coeflicient algebra.

As B! and B! are Fréchet algebras and thus are locally convex, for any coefficient algebra £ we can form
L&g,B! and L&g,B’. Then we define £®@pBiig)K to be Ur20£®QpBI{;,K and equip it the inductive limit
topology. We define E@Qpﬁiig, E@QPET and E@QPBTK similarly. Then we put E@Qpﬁﬁ;g = (E@ngxg)[ﬁx]
and L:@ngirog = (C@@pgiig)[ﬂx]. From the proof of Lemma (1.1l we see that, if B = B!, B, etc, and if ¢ is an
endomorphism on B, 1 ® § : L ®q, B — L ®q, B can be uniquely extended to a continuous endomorphism on

E@QPB . By abuse of notations, we always denote the resulting endomorphism by the same notation &.

Definition 1.3. For £ a coefficient algebra over Q, and I a subinterval of R, let RL be the ring of Laurent
series over £ in the variable T which is convergent if v(T)~! € I. Let v, be the valuation on L.

T
rig,

When r > r(K), LRg,B
to Rg ®Qp Ko.

L’; i 18 isomorphic to R} ®q, Ko via mx +— T, and so E@@pB i is isomorphic



2 Filtered (p, N)-modules

Definition 2.1. Let £ be a coefficient algebra. A filtered (o, N')-module over L&q, Ky is a locally free L&q, Ko-
module D of finite rank together with the following structures:

(a) a @-semilinear automorphism on D which is again denoted by ¢;

(b) a linear endomorphism N on D satisfying Ny = ppN;

(c) a descending, separated and exhaustive Z-filtration Fil* Dg on Dg := K ®k, D by L ®q, K-submodules.
Let FilM?;jz be the category of filtered (¢, N)-modules over £ ®q, Ko. When £ = Q, we write FilM%Z™ for

. N
FllM?}; r

If £’ is another coefficient algebra and there is a continuous map £ — £’, then we have a functor
FiIM%) — FiIMZY,, D Dy =L @, D.

In particular, if m is a maximal ideal of £, then Dy, = Ly, ®, D is a filtered (¢, V)-module over Ly ®q, Ko.
Hence a filtered (¢, N)-module over £ ®q, Ko can be considered as a family of filtered (¢, N)-modules on
Max(L), the maximal spectrum of L.

Lemma 2.2. Suppose that L is a finite extension of Q. If D is an object in FilM?fX, then D is free over
L ®Qp Ko.

Proof. We write L ®q, Ko = I, Li. Put D; = L; ®Leg, Ko D. Then D = @, D;. As ¢ acts transitively
on the set {L;}, it also acts transitively on the set {D;}. This implies that for any two indices i, we have
dimp, D; = dimz; D; which ensures the freeness of D. O

Proposition 2.3. Suppose that L is a reduced affinoid algebra over Q,. Let D be an object in FilM}’}’fZ. Then
for any x € Max(L) there exists a neighborhood Max(B) of x such that D = B®. D is free over B ®q, Ko.

Proof. By Lemma 2.2, D, is free over L, ®q, Ko. Let {v;} be a basis of D, over L, ®q, Ko, and let {e;} be a
basis of Ky over Q,. Then {e;v;}; ; is a basis of D, over L,. For any i let ¢; be a lifting of v; in D. Then there
exists a neighborhood Max(B) of  such that B®, D, as a B-module, is generated by {e;0;}; ;, which implies
that B, D is free over B®q, Ko. O

Let Bgr be Fontaine’s de Rham period ring. Put

LBg, Bl := lim £ ®q, (Bl /t'Bls) and L&g,Bar := Uisot (Lo, Big)-
»—dR — p dR dR p p—dR

Let Gk act continuously on E@QPBdR in the way such that the action on £ is trivial.
Recall that

(L&q, B, [L/10)7% = (L8, B [1/1])°F = L ®q, Ko, (LBg,Bar)" = L ®q, K.

Let V be an L-representation of Gk, which means a finite locally free £-module (of constant rank) together
with a continuous action of G.

Definition 2.4. We say that V is semi-stable (resp. crystalline) if

Dy.c(V) = ((L8g, By, [1/4) © V)Ox

log

(resp. Deris,c(V) = ((ﬁ@@pﬁ+ [1/t]) ®¢ V)GK)

rig



is a locally free £ ®q, Ko-module of rank d = rank,V'. Similarly we say that V' is de Rham if
Dar,c(V) == ((L®g,Bar) ®¢ V)"

is a locally free £ ®g, K-module of rank d. Let Rep™(G k), Rep} (Gx) and Rept?(G k) be the category of
crystalline L-representations of G, the category of semi-stable L-representations and the category of de Rham
representations, respectively.

Now we suppose that £ is a reduced affinoid algebra till the end of this section.
In this case, by a result of Berger and Colmez [3, Corollary 6.3.3], V is crystalline (resp. semi-stable) if
and only if so are Vi, = Ly, ®, V for all m € Max(L£). Furthermore

Dcris,Lm (Vm) =Ln®¢ Dcris,L(V) (fesp Dst,Lm (Vm) =Ln®r Dst,ﬁ(v))~

If V is semi-stable, then Dg; (V') is an object of FllMﬁ- . With D £(V)k =Dar. (V). So Dg  is a functor
from the category Rep} (G ) to the category FilM% K; I

In the case when £ is a finite extension of Q,, the image of the functor Dy » can be determined explicitly.
In this case, an object in FilMﬁ’fZ can also be considered as an object in File{’N by forgetting the £-module
structure. We say that D is weakly admissible if it is so as an object in FilM}‘?N. Let FilM}@fZ’wa be the full
subcategory of FilM% £ consisting of weakly admissible objects.

Proposition 2.5. If L is a finite extension of Qp, then the functor Dy 1 is an equivalence of categories between

the category Repy (G ) and the category FllM“”N V. the quasi-inverse is the functor V.1, defined by

Va.o(D) = (B log[1/t] @K, D)P~N=ONFil°(Byr @ D).

Proof. By Colmez—Fontaine theorem [6], Dg;,q, is an equivalence of categories between Repap (Gk) and File}’;(]é’pwa.
But an object V of Rep' (G k) is equivalent to an object V of Rep (G K ) together with a ring of endomorphisms

of V isomorphic to L, while an object D of FilM7! N Y is equlvalent to an object D of FilMZ Awa ¢ hoether with
a ring of endomorphisms isomorphic to L. O

In the general case, it is difficult to determine the image of the functor Dg; ». In Proposition [5.5 we will
give a property for these D which are in this image.

We consider the following two conditions:

(BN). Locally on L there exists a basis compatible with N. Explicitly, for any @ € Max(L) there exists
a neighborhood Max(B) of z and a B ®q, Ko-base {vi,---,vq} of Dg such that N(vi) = 0 and N(v;) €
L®qg, Ko-v1 @& LR, Ko-viq fori>2.

(Gr). For every i € Z, Gr' D = Fil'Dg /JFil' ™ Dy is locally free over £ ®q, K of constant rank.

The main result of this paper is the following

Theorem 2.6. (= Theorem [0.2) Let L be a reduced affinoid algebra and let D be a filtered (¢, N)-module over
L ®q, Ko which satisfies (BN) and (Gr). If D, is weakly admissible for some x € Max(L), then there exists
an affinoid neighborhood Max(B) of © and a semi-stable B-representation Vi of Gk whose associated filtered
(¢, N)-module is isomorphic to Dg. Moreover, Vg is unique for this property.

The proof of Theorem 2.6/ will be given in Section 5l

3 (¢,I')-modules

3.1 Free and locally free (p,I')-modules



By a (locally) free (¢,T')-module over E@)QPB}( (resp. E@)@pBLg’K) we mean a (locally) free E@@pB}((resp.

C@@p BIig’K)—module D of finite rank equipped with a semilinear (p,I')-action such that the map ¢*D — D is
an isomorphism.

Definition 3.1. We say that a locally free (¢, I')-module D over E@QPB}( is étale if it admits a finite (¢, I')-stable

((’)L(@ZPA}()—submodule N such that *N — N is an isomorphism and the induced map (L(X\)@pB;{) ®0, 8, Al
p VK

N — D is an isomorphism. We say that a locally free (¢, T')-module D over E@QPBLgK is étale if it arise by

base change extension from an étale (o, I')-module over E@@pB}(.

By [8, Proposition 6.5] the natural base change functor from the category of étale (¢,T')-modules over
L’@QPB}( to the category of étale (¢, I')-modules over L’@)QPBL& ¢ 1s fully faithful.

The following property of free (p, I')-modules over L‘@QPBL& K 1s very useful.

Proposition 3.2. Let D be a free p-module over £®Q Brlg - Then there exists 7(D) > r(K) sufficient large

such that for any r > r(D) there exists a unique free £®QPBIi’g’K-submodule D, of D satisfying the following
conditions

(a) D (‘C®Qp rig, K) ®5®Qp Bl x Drj

(b) The L&q, Brlg "y -module (£®QPBI{§TK> ® 13y Bhr  Dr has a base contained in o(D,.).
? P

rig, K

In particular, we have Dy = (D@QPBT >

Y, i) ®rgy, B Dr for any s > r, and if D is a (¢,T')-module, then
b ng,
v(D,) =D, forally€T.

In the case when £ = Qp, this is exactly [2, Theorem I1.3.3].
Let F(T) be a formal series such that F(nx) = p(rx). Write F(T) = o(T) = T? + pf(T).

Lemma 3.3. When r > 1, the map z — F(2) induces a surjection from {z € C, | p~'/P" < |2| < 1} to
{z€C, | p~ V" < |2| < 1}.

Proof. By Weierstrass Preparation Theorem, for any w € C, with |w| < 1, F(z) = w has a solution with |z| < 1.

As |pf(2)| < p~', in the case when |w| > p~!, we have |2P| = |w| and so |z| = |w|'/P. O

Proposition 3.4. Let L be a coefficient algebra. When r > 0, we have
£80,Bl; kN e(LB0,Bli; ) = (LB, BI'R)

Proof. We choose a Qp-base {e1,-- ,eq} of Ky. Then ¢(e1),- cp(ed) is again a Qp-base of Ky. When r > 0,

L&Bq, BL’;K is isomorphic to R} ®q, Ko. Thus, if G is in £®Qp Ne &+ We may write G in the form

Z Z% ) @ e,

where Y, 72" is convergent on the domain p~/¢x" < |2| < 1 for any j € {1,---,7}. Let

H= Z S wie(T)) @ ple;) Z > @i F(T)) @ ¢(e)).
j=1 g

%

If H is again in L&, B! then by Lemma 3.3, ", x;;w is convergent on the domain p~/¢xP" < |w| < 1 for

rlg K>

any j € {1,---,r}, which implies that G is in L@@IJBL;’/}’; O



Proof of Proposition [3.2. The argument is similar to the proof of [2, Theorem 1.3.3]. We give the details for
completion.

Since D is a free £®QpBiig7K—modu1e, it has a £®QPBIig7K—base {e1,--+ ,eq}. As £®QPBL&K =U,r0 £®QPBL’QK,
there exists 7o = r(D) such that the matrix of ¢ with respect to this base is in GLd(BIi’g?K). For any r > rg put
D, = EB?:l(,L'@@pBIi’;’K)eZ-. Obviously D = (£®QpBiig,K)®£®%B;,;KDr. Further D, = <£®QPBI£§TK
D, has a base in ¢(D,.). Indeed, {¢(e;) | i =1---,d} is such a base. This proves the existence of D,..

Let D and D'? be two £<§>QPBL’; -submodules of D satisfying Conditions (&) and (b). We choose bases
for these two submodules. Let P; and P, be respectively the matrices of ¢ with respect to these two bases, so
Py, Py are in GLd(L@QpBI{gTK). Let M € GLd(£<§>QPBLg &) be the transfer matrix from the base of D" to that
of D). Then ¢(M) = P{"' M P,. We show that M is in GLq(L&q, B! ). If M is Ma(L&q, Bl? ) with s > pr,
then (M) = Py 'MP, is also in Md([@AQPBL’;K). By Proposition 3.4, M is in MAE@@I)BL’;Q?). Repeating
this several times we see that M € Mg(L®q, Blf;,K)' By the same reason we have M1 € Md(£®QpBIi’;,K)' So
M is in GLd(/;@QpBI{;K)’ which implies that DY = D@ This proves the uniqueness of D,..

If s > r, the module (£®QpBIf§,K) D, satisfies (@) and (b) with r there replaced by s. Thus by

the uniqueness of D, we have

)®£®QPB“

rig, K

®‘C®@pBIi};‘,K

— N T
Ds = (AC@QPBrigS,K) ®C®QPBL§,K DT.

If D is a (p, I')-module, from the uniqueness of D, we obtain v(D,) = D,. for any v € T O

3.2 Locally free (¢,I')-modules associated to L-linear representations

We recall the functor of Berger and Colmez from the category of L-representations of G to the category of
étale (p, I')-modules over £®QPB}( and the functor of Kedlaya and Liu from the the category of L-representations
of Gk to the category of étale (¢, I')-modules over »C@QPBL&K.

For any finite extension L of K we write Al" = <p*"(ATL’pnT).

Proposition 3.5. ([3, Proposition 4.2.8]) Let L be a coefficient algebra over Q,. Let Ty be a free Op-linear
representation of rank d. Let L be a finite Galois extension of K such that Gy, acts trivially on Ty /12pTc. Then
there exists n(L,Tr) > 0 such that forn > n(L,T,), (’)[;@X\)ZPAT’(?—D/? ®o, Tz has a unique (O[;@ZPATL’%*U/P)_
module Dz;(f_nl)/p(T[,) which is free of rank d, is fixed by Hy, has a basis which is almost invariant under 'y,
(i.e. for any vy € 'y, the matriz of action of v — 1 on this basis has positive valuation) and satisfies

(O£&z,AMP=D/7) g DEGV P (Te) = (0c8o,AMP/7) @0, T

OUQZPAE’(:*I)/P

Theorem 3.6. (/9, Théoreme 4.2.9]) Let L be a coefficient algebra over Q,. Let V be an L-reresentation
admitting a free Galois stable O-lattice T. Then there exists some 7(V) = (p — 1)p"~* such that for any
r > r(V) we may define

r = T n ,(p—1
DY (V) = ((£8,B}") 0,5, aprv @™ (DL, 7(T))"

for some L, n, so that the construction does not depend on the choices of T', L, n, and the following statements
hold.

(a) The (C@QPB}T)—module DL’T(V) is locally free of rank d.

(b) The natural map (L'@)QPET"') D gy, BL DL’T(V) — (E@QpléT””) ®r V is an isomorphism.
0, B

(¢) For any mazimal ideal m of L, writing Vo, := Ly @, V, the natural map Ly, Qr DET(V) — DE:‘ (Vi) is
an isomorphism.



Put
DL(V) = (£8g,Bk) ®,5, pjr DE(V)

and
Diig,ﬂ(v) = (’C’®QpBIig,K) ®5®QPBL DT/:(V)'

Then DL(V) (resp. DLg’c(V)) is an étale (¢, I')-module over [@@pB;{ (resp. C@QPBL&K).

Proposition 3.7. ([8]) We have

p=1

~ = p=1
= ((‘C®QpBIig) Drdq DIig,E(V)) .

}
‘pBrig,K

V= ((ﬁ@’QPET) ®£®QPBTK DI:(V))

4 Coadmissible (p,I')-modules and filtered (p, N)-modules

In this section we introduce a notion of coadmissible (¢, I')-modules and construct a functor, a family version
of Berger’s functor [2], from the category of filtered (¢, N)-modules satisfying certain conditions (GBN) and
(GFF) to the category of coadmissible (¢, T')-modules. In this section we always suppose that £ is noetherian
and satisfies the condition (FL) given in Section 4.1l

4.1 Coadmissible (¢,I')-modules

First we recall the notions of Fréchet-Stein algebras and coadmissible modules defined by Schneider and
Teitelbaum [10} §3].

Definition 4.1. A (commutative) Fréchet-algebra A over K is called a Fréchet-Stein algebra if there is a
sequence q; < --- < g, < --- of continuous algebra seminorms on A which defines the Fréchet topology on A
such that

o A, :=A/{x € A|g,(x) =0} is a noetherian Banach algebra,

o A, isaflat A, ,,-module for any n € N.

dn+1

For (A, (¢,)) as above we have A = lim A, .

Definition 4.2. A coherent sheaf for (A, (¢n)) is a sequence {M, },en, where M, is a finite A,,-module,

together with isomorphisms A,, ®a, M1 — M,.

dn+1

If {M,,} is a coherent sheaf for (A, (¢n)), its A-module of “global sections” is defined by I'({ M, }) := lim M,,.

If {M,} is a coherent sheaf for (A4, (g,)) and if M = I'({M,}), then the natural map A, ®a4 M — M, is
isomorphic for any n € N.

Definition 4.3. An A-module is called coadmissible if it is isomorphic to the module of global sections of some
coherent sheaf for (A, (g,)).

The “global sections” functor I' is an equivalence of categories between the category of coherent sheaves
for (A, (gn)) and the category of coadmissible A-modules.

If M is a coadmissible A-module associated to a coherent sheaf {M, }, equip each M,, its canonical Banach
space topology and then equip M the projective limit topology of these canonical topologies. The resulting
topology on M is called the canonical topology of M.

Let (A’,(q),)) be another Fréchet-Stein algebra and assume that there is a continuous map A — A’. For
a coadmissible A-module M, in general A’ ® 4 M is not a coadmissible A’-module. But {Ag;n ®a M} is a
coherent sheaf. Let (A’ ®4 M)2! denote the corresponding coadmissible A’-module. Then the natural map
A'®a M — (A’ ®4 M) has a dense image.



Throughout this section we assume that the coefficient algebra £ is noetherian and satisfies the following
condition:

(FL) For any two intervals I C I’ of [0, 400, RL is flat over RE.
If £ is a reduced affinoid algebra over Q,, then £ satisfies (FL).

The condition (FL) ensures that R} is a Fréchet-Stein algebra and is isomorphic to the projective limit

@Rg’s] of Banach algebras. When r is sufficiently large, C@Bii’; k is isomorphic to R} ®q, Ko and thus is a
7 ;
Fréchet-Stein algebra.

+

rig, K0 W€ shall mean a direct

Definition 4.4. For a coadmissible ¢-module (resp. (¢,T')-module) M over £<§A§QPB

system {M,},>, with u a positive integer, where M, is a coadmissible E@QPBI{;’K—module for » > u, which
satisfies the following properties:

(a) M3l .= (/.Z@QPBE;’S}) Dy Bl My with 7 < s is locally free over L@@IJBE@’S] of constant rank;
p Prig, K

rig,

~ ’ ad
(b) the natural map M,. — M, induces an isomorphism <(£®QPBT’T ) ® L5, Bl M) = M,;

rig, K rig, K

c) there exists a semilinear map ¢ : M, — M,, such that (L& Bl - p(M,.) is dense in M,, for the
14 P Qp rig, K ¥ p
canonical topology and such that the following diagram

.y
Mp'r‘ —_— Mp,,./

is commutative for any pair r < r’ with » > u, where the horizontal arrows are natural maps.

(d) in the case of (p,T")-module there exist semilinear I'-actions on M,., r > u, which commute with the
natural maps M, — M, (7' > r) and the maps ¢ : M,, — M,,.

Condition (b)) is equivalent to the following condition:
If r <7’ < s’ <s, then the map M, — M, induces an isomorphism
[r',s']

(£®QPBK ) ®£®@ B[T’s] M[T,S] l} M[TI7S/].

K

Condition (€) is equivalent to the following condition:

For any pair » < s with r > u, there exists a semilinear map ¢ : MI"*l — M[P™Ps] such that @(M[T’S])
generates M[W’ps]7 and such that if r < r’ < s’ < s, then the following diagram

M[r,s] [ M[r',s’]
Pl
Mprps] —— \plpr’ps’]

is commutative where the horizontal arrows are natural maps.

Proposition 4.5. A free o-module (resp. (p,T')-module) over E@QPBL&K is a coadmissible p-module (resp.
(¢, T')-module).

Proof. This follows from Proposition 3.2l O



If L — L’ is a continuous map of coefficient algebras, and if M is a coadmissible p-module (resp.
(¢, T)-module) over E@QPBL& > then there exists a unique coadmissible g-module (resp. (¢, I")-module) over

E'@QPBL&K, denoted by M/, such that for any pair » < s as in Definition 4.4}

froey M),

(Mﬁ/)[?",s] = (EIQBQPB[I?S]) ®£’®QPB;?S

To end this subsection, we apply Kedlaya and Liu’s result [§] to coadmissible p-modules and (¢, I')-modules.

Definition 4.6. Let K be a finite extension of Q, and let £ be an affinoid algebra over K. Recall that R,
denotes the ring of Laurent series with coefficients in K in a variable T' convergent on the annulus 0 < v,(T") <
1/r. By a vector bundle over L kR we will mean a coherent locally free sheaf over the product of this annulus
with Max (L) in the category of rigid analytic spaces over K. (In the case when £ is disconnected, we insist that
the rank be constant.) By a vector bundle over LBk R we will mean an object in the direct limit as r — 400
of the categories of vector bundles over L& R,.

When 7 > 0 we have an isomorphism Bl

rig, k= RY,- We thus obtain the notion of a vector bundle

over £®QpBI{;, x dependent on the choice of the isomorphism. However, the notion of a vector bundle over
ﬁ@)@p BLg’K does not depend on any choices.

Definition 4.7. Let K be a finite extension of @, and let £ be an affinoid algebra over Q,. By a family of
p-module (resp. (p,T')-modules) over L@@ijig,K we mean a vector bundle .Z over /.ZGBQPBL&K equipped with
an isomorphism ¢*.# — .4 viewed as a semilinear p-action (and a semilinear I'-action commuting with the
p-action).

Now let (M;{M,},>,) be a coadmissible p-module (resp. (¢, I')-module) over C@QPBL&K. For any r > u
let .#, be the coherent sheaf over Max([@)QPBI{; ) associated to M,. Then ., is a vector bundle over the
affinoid space Max(LQA@@pBIi’;K). Let .# be the direct limit of the system {.#,. | r > u}. Conditions () and
(d) in Definition [4.4! ensure that . is a family of ¢p-modules (resp. (¢, I')-modules) over E@)QPBL&K. In this
way we associate to any coadmissible ¢-module (resp. (¢, I')-module) over E@QPBL& x & family of p-modules
(resp. (¢,I')-modules) over E@QPBL&K.

By Theorem [0.1/i.e. [8, Theorem 0.2] we have the following

Corollary 4.8. Let L be an affinoid algebra over Q,, M a coadmissible (¢, I')-module over 'C@QpBTig,K' IfM,, is

T
étale for some x € Max(L), then there exist an affinoid neighborhood Max(B) of x and a B-linear representation

Vi of Gk whose associated (¢, T')-module is B&,:M. Furthermore, Vi is unique for this property.

4.2 Coadmissible p-modules associated to ¢-compatible sequences

Write r, = (p — 1)p"~ 1. For any r > (p — 1)/p, let n(r) be the smallest integer n such that r,, > r.

For any n > n(r), there exists a natural map ¢~ " : BL’;  — Kp[[t]]. We extend it continuously to an
L-linear map 'C@@,JBE;K — L&q, K, [[t] denoted by ¢,,. This map endows an Ln(,C@QPBL’;K)—mOdule structure
on Kn[[t]]

If D is a free p-module over ﬁ@’(@pBLg,K’ the formula ¢, (A) -z = Az gives an Ln(£®QpBI{;,K)—mOdu16
structure on D,., which is denoted as ¢,,(D,). By abuse of notation, we write

(‘C@)Qp K[[t]]) ®Zé@pBIig,K D, = (‘C@Qp K, [[t]) ®Ln(£‘§>@p BI;;K) tn(Dy).
There is a natural map
on: (L8, Knnr (1) Ocay ki | (LB Kn(0) @25 oy Di]
P~ tn+1
- <£®QpKn+1((t))> ®£®QPBI{;K D,

10



defined by ¢, (f ® (9 @ tn(2))) = fg ® tns1(p(2)).
Definition 4.9. Let D be a free ¢-module over Biig,K, u > (D). Let {Mn},>n() be a sequence, where M, is an

L&q, Kn|[t]]-submodule of (L&q, Kn((t))) ®7.  gtu Du. We say that { My} n>n(u) is p-compatible if
Qp Prig, K -

o (L&, Kni1[[t]]) OL&q, Knlltl] My,) = M.

Let D be a free (¢, I')-module, h a positive integer and w a sufficient large number. Let M,, be a closed flat

C@@p BL’; x-submodule of t~"D,, which satisfies the following conditions:

(a) t"D, C M,, C t7"Dy;

(b) M, is I-invariant;

(¢) ¢(M,) is contained in (E@QPBI{;’?K) - My;

(d) ('C@QPBL’QHK) - (M,,) is dense in (E@@I)BL’S‘K) - M,, for the canonical topology of t~"D,,.
For any n > n(u), put

M, = (£®QpKn[[t”) ®" M,,.

& T
£®Qp Brigu,K

Then { My} >n(u) is p-compatible and satisfies

h(prS in —h(pS in
(L8, Knllt) @75 i Du © My CtM(LEQ, Knll]) ©25 . D

for all n > n(u).
For the converse we have the following theorem.

Theorem 4.10. Let D be a free p-module (resp. (p,T')-module) over E@QPBT

vig, ¢ of rank d, uw > r(D). If

L& Bl

Up “rig, K

(M, | M, C (ﬁe@QpKn((t))) QL Dy} o)

is a p-compatible sequence such that M, is a free LRqg, K, [[t]]-module of rank d and there exists a positive
integer h such that

t"(L&g, K [[1]]) ®Zb®@szgK D, C M, C t (L&q, K, [[t]]) ®LZ®QPB;;;K Do, (4.1)

then there exists a coadmissible p-submodule (resp. (¢, T')-module) M of D[1/t] such that

(£80, Kallt) @15y M= M,
for any n > n(u).
For any r > u, we put
M, = {z € t™"D, | tn(2) € M,, for any n > n(r)}.
Lemma 4.11. M, is a coadmissible E@QPBI{;”K—submodule of t—hD,.

Proof. As the maps t,, n > n(r), are all continuous, M,. is closed in t~"D,.. But a submodule of a coadmissible

E@QPBI{; x-module is itself coadmissible if and only if it is closed. O
Lemma 4.12. We have (L8g, K,[[t]]) ®Z‘® gt My =M, for any n > n(r).
Qp Prig, K
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Proof. Note that L&q, K,[[t]] is isomorphic to (£ ®g, K,)[[t] and thus L&q, K,[[t] is a noetherian ring.
Let ¢ = ¢(m)/m. Then K,[[t]] is the ¢"~!(g)-adic completion of @‘”(BI{;K). It follows that L®g, K, [[t]] =

(L&q, Kn)[[t] is the ¢" ! (¢)-adic completion of Ln(£®QPBIfg7K)~ Thus L&q, K, [[t]] is flat over LTL(EQ%QPBLE,K)'
It follows that the map

(L8, Knll])) @7 oo M, — (LBg, Kullt]]) @2 D,

L"@QpBrig,K LRg BlL”

Qp Prig, K

is injective, and by the definition of M,. the image of this map is contained in M,,.

As (L&q, K, [[1]) ®L£”® gt My and M, are finite over L&Bg, K,[[t], they are complete for the t-adic
Qp Prig, K

topology. So we only need to show that the natural map

2 tn h
(‘C®QpK’ﬂHtH) ®£®QpBIi’;K Mr - Mn/t Mn

is surjective. By (4.1), for any = € M,,, there exists y € t~"D,. such that v, (y) — € t"M,,. By [2, Lemma 1.2.1]

there exists t,, 35 € BL’éK such that t,,(tn3n) = 1 mod 3 K, [[t]] and t,(tn3n) € 3K, [[t] if m > n(r) and

m #n. Put z =1, 3py. Then

tn(2) = tn(y) € *"(LEq, Kn[[t]]) ®Z”’®© BT D, C t"M,
and
in(2) € (Lo, Knllf]) ©12 1. Dy C 1My,
if m # n. Thus z is in M, and the map (,C@Qp K, [[t]) ®Zl® gt My — M, /th M, is surjective. O
Qp Prig, K

Let s > r be two real number > u. If n € Z satisfies n(s) > n > n(r), then the map ¢~ : BL’QK — K, [[t]]

extends to a map ¢~ " : B[IT(’S] — K, [[t]]. We also let ¢,, denote the map

L&, Bl — LBg, Knl[t])-

The maps ¢, with n € [n(r), n(s)] induces inclusions

yrsl E@QPB[IT(’S] - H L0, Knlll]

n(s)>n>n(r)

and
&l £8g, B/ 0) — [ £©q, K

n(s)>n>n(r)
Lemma 4.13. The target of 2™ is faithfully flat over the source.

Proof. As L&q, K, [[t]] is the ¢"~!(g)-adic completion of Ln(£<§>QpB[IT(’S]), L&q, K, [[t]] is flat over v, (L@QPB%’S]).
Since the direct product of a family of flat modules over a noetherian ring is again flat [5, p.122 Exercise 4], the
target of :["*] is flat over the source. So the target of 7I"* is flat over the source.

To show that the target is faithfully flat over the source, we only need to show that, for any maximal ideal

I of the source, there exists a maximal ideal of target which restricts to I. Note that every prime ideal of BE?S]
which contains ¢ in fact contains ¢™ 1(q) for some m € [n(r),n(s)]. Then I contains the image of ™ 1(q)

in L&q, (B[Izg]/(t)) which is denoted by the same notation ¢™~!(g). As the map t,, induces an isomorphism

L&q, B[IQS]/(<pm*1(q)) — L ®q, K, the image of I under the map E@QPB[IQ’S]/(@ — L ®q, K, is contained in
a maximal ideal J,,, of L ®q, Ky,. Then

J = {(xn)n(s)an,L(r) (T € Iy and x, € L®g, Ky if n # m}

is a maximal ideal of [, (s> n>n(r) £ ®g, Kn and (1) is contained in J. O

12



Proposition 4.14. If s > r > u, then (£®Q B 8]) Rra, B M,. is locally free over L@@IJB[I?S] of rank
Up “rig, K
d = rank(D).

Proof. Write Ml = (ﬁ@@p B[I?s]) @&y, BLT M,.. Since MI™*] is contained in a free module t="DI["s] of rank
p “rig, K

d and contains a free submodule t"D] of rank d, it suffices to show that M[™* is flat over E@QPB[[{’S]. By

Gabber’s criterion [4, §2.6 Lemma 1], we only need to show that MI"*![1/¢] is flat over E@QPB[IT(’S] [1/t], that

M5l is t-torsion free and that M™sl /tMI™s] is flat over E@QPB[IT(’S]/(t) = LRq, (BI2*1/(1)). The former two are
trivial.

As (L&q, K, [[t]]) @

5, Bl Ml = M, is free of rank d over E@QpKn[[t]] for any n € [n(r), n(s)],
0p B

(I cBoKull) © oo MO

n(s)znzn(r)

S (5] ()
= I eBo Kl s M

n(s)>n>n(r) ¢

Yp

is free of rank d over [, )>n>n(m) (L&q, Kn[[t]]). Consequently,

gl sl
K D ] M[r,s] M[r,s]
| <>>H> <>E®Q‘° ") Do, @iy M)

is free of rank d over [, >nsnm £ ®0, Kn- As [L, 55 nsn(r) £ @q, Kn is faithfully flat over LBq, (B[;;’S]/(t))7
Ml M1 is flat over L&q, (B[I?s]/(t)). O

Proposition 4.15. (a) For any s > s’ > ' > r > u we have a natural isomorphism

(‘C@QpB[IQ’S ]) ®L® LB Mirsl 2 sl

(b) For any pair r' > r with r > u, ([@QPBI{;K) - M, is contained in in M,. and is dense in the latter.
(¢) ©(M,) is contained in My, and (LR®q, BLgTK) ©(M,) is dense in M,,.
Proof. We prove It. (). As E@QFB[I?’SI] is flat over £®Q B[T’ s] , the natural map

(559@;.3&2 “He girel Ml = (£®QPB[IZ ) ®L86,Bl7 « M — (£®QPB[ ]) ®L86,Bl7 « t="D,

£®Qp

is injective. By definition, (L&, Bl
in MU'l Let Ny denote this image and let Ny denote MI"#'1. For any n € [n(r'), n(s')], by Lemma 1.12 we

have

)-M,. is contained in M,, so the image of the above injection is contained

(L&q, Kna[[1]]) D g pirt w1 N1 = M = (L&q, Kallt]) ® £, By Ve
It follows that
H L ®Qp Kn ®Z[i’s ] [ ’ /] Nl/tNl

£8o, (BY /(1))
n(s)>n>n(r) K

7[7,/,5/]
= H L ®Qp Kn ®L ~ [7" 5./] N2/tN2
LBq, By "7 /(t)
n(s)>n>n(r) R
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Combining this with the fact that [], o)>n5n) £ ®g, Ky is faithfully flat over LBq, (B[;(”,s’]/(t))’ we obtain
N /tNy = No/tN;. In other words, we have Ny = Nj + tN,. By induction we obtain that No = N; + t*N, for
any integer £ > 1. In particular, No = N7 + 2PNy, As t2" Ny  t"DU#] is contained in N1, we have N1 = Ns.

Next we prove It. (b). We have already seen that (E@@pBL’g) %) - M, is contained in in M,.. The clo-
sure of (ﬁ@QpBL’; %) - M, is exactly the coadmissible E@QPBL’Q x-module associated to the coherent sheaf

((E@@ZDB[I?’S/]) ®£®Q BT M,,) . Thus by It. (@), it coincides with M, .
P i S’ZT’

rig, K
It. (@) can be proved similarly. We omit the details. O
Proof of Theorem [4.10. Let M be the inductive system {M,},>,. By Lemma [4.11, Proposition 4.14] and

Proposition 4.15, (M; {M; },>,) is a coadmissible ¢-module over E@QPBL&K. If D is a (¢,I')-module, then by
definition M, is stable under I'. In this case, (M;{M,},>,) is a coadmissible (¢, I')-module. O

4.3 Coadmissible (¢,I')-modules associated to filtered (¢, N)-modules

Recall that ¢(fx) = plx +log(e(m)/mP) and y(€x) = {x +1og(y(m) /) for any v € I". Let N be the BIig,K_
derivation on Biig, x[¢x] defined by N(¢x) = —p/(p—1). We extend these operators L-linearly and continuously
to (l:@QpBIig,K)[KX]‘ Then we extend the inclusion ¢, : L@QPBL’;",K — L&q, Kn[[t] to (EQA@QPBI{;K)MX] by
letting ¢, (£x) = log(e™ exp(t/p") — 1) € E@QPK”[[t]].

Let D be a filtered (¢, N)-module over £ ®q, Ko. We suppose that D is free over £ ®q, Ky and satisfies
the following two conditions:

(GBN). There exists a basis compatible with N. Explicitly there exists a base {v1,---,v4} of D over
L ®q, Ko such that N(v;) =0 and N(v;) € L®q, Ko-v1 ®--- & L ®q, Ko-vi—1 fori>2.

(GFF). If n € N is sufficient large, then for any 4, Fili((ﬁ ®q, Kn)((t)) ®req, Ko D) is free of rank
d = rank,V over (£ ®q, Ky)[[t]], where

Fni((ﬁ ©a, Kn)(1) @ o, Ko D) = 3 (F(L@q, Kn)[H]]) - Fil' D
j+e>i

Note that (GBN) is a stronger version of (BN).

Put .
D= ((‘C@QpBilg,K)[gX] ®£®QPK0 D) .

Proposition 4.16. Suppose that D satisfies the condition (GBN). Then the following hold:
(a) D is a free (p,I')-module over L@QPBL&K of rank d.
(b) We have
(L&, Bl )lx] ® 5. 51 D= (LEqg,BL, x)[lx] ®reg, Ko D-

Up “rig, K

Proof. As D satisfies (GBN), there exists an £ ®q, Ko-base {vi,---,vq} of D such that N(v;) = 0 and
N(vi) € L®qg, Ko-v1 @ ® L Rq, Ko-vi—g fori>2.

We show that, there exist elements v}, --- , v} of D such that for any i € {1,--- ,d} the (L@QPBIig wllx]-
submodule (v}, - ,v}) generated by {v{,---,v;} and the submodule (vy,--- ,v;) generated by {v{, -+, v} are
same. We process it iteratively. For i = 1 we put v = v;. Assume that ¢ > 2 and (v}, -+ ,vj_1) = (v1,- -+ ,vi—1).
Then there exist a1, -+ ,a;_1 € (L@)QPBL&K)[KX] such that N(v;) = a1v] + -+ + a;—1v,_;. Since the operator
N : (EQA@QPBL&K)MX] — (L’QA@QPBL&K)[@X] is surjective, there exist by, -+ ,b;—1 € (E@QPBL&K)[KX] such that
N(bl) = Qy, * -, N(bi_1) = Q;—1.- Put U; = V; — b1’U/1 — e — bi_ﬂ/;fl, which is in D. Then <’U/1,-'- ,’U;> =
(v1,--+ ,v;), as wanted. By construction v1,--- , v/, are linearly independent over (£®QPBIig,K)[£X]'

14



By definition D is a (¢,I')-module. So, to prove It. (@), we only need show that D = £<§>QPBLg’K .
VBB E@QPBL&K -v). For any v € (C&é@pBiig,K)VX] ®rLeq, Ko D, writing v = a1v] + -+ - aqvy, we have
N(v) = N(a1)v] + -+ + N(aq)v}, and thus N(v) = 0 if and only if N(a;) = --- = N(aq) = 0 or equivalently
ai,- -+ ,aq are in E@QPBL&K.

/ It. (b)) follows from the facts that (v{,--- ,v) = (v1,--- ,vq) and that D = E@QPBL&K-U{@' : ‘@E@QPBL&K'
vy O
For any n > 0 we have ¢~ "(Ky) C K. Thus there are ¢~ "(Kp)-module structures on K and on D. The
latter is denoted by t,(D). We write K @ D for K ®@,-n(k,) tn(D). There is a map &, : K ®k, D —
K ®g,-n(ky,) tn(D) sending p1 ® x to pt ® 1, (4" (x)). Then we obtain a filtration on the target Dy = K ®% D
via the map &,. Define a filtration on (£ ®q, K,)((t)) by the formulas

Fil' (£ ©q, Kn)((1))) = (L @, K.)[[].

Then we obtain a filtration on (£ ®q, Kn)((t)) ®reg, k Dik-
Put
M, (D) = Fil’((£ ®g, Kn)((t)) ®caq, k Di)-

Since D satisfies (GFF), there exists a sufficient large ng such that, if n > ng, then M, (D) is a free L&q, K, [[t]]-
submodule of rank d.

Let u > {r(D),r(ng)}. If n > n(u), we may consider M, as an L&q, K, [[t]]-submodule of (E@QpKn[[t]])(@?@Bm
rig, K

Dy.
Proposition 4.17. The family {M,,(D)}n>n ) is p-compatible.
Proof. This follows from the formulas &,11 = ¢, 0 &, on D. O

Let h be a positive integer such that the filtration on Dy satisfies Fil_hDK = Dk and FilhDK = 0. Then
for any n > n(r), M, (D) satisfies

t"(L&q, Kn[[t])) ® D, C M,(D) C t™"(L&q, K, [[t]]) ® D,.

tn
['@QMPBTJL

ln
3 thu
‘C®Qp Brig,K rig, K

Applying Theorem 4.10 we get a coadmissible (¢, T')-module over E@QPBL&K which is denoted by M(D).
Hence we obtain a functor, denoted by M, from the category of filtered (¢, N)-modules over £ ®q, Ko

which satisfy the conditions (GBN) and (GFF) to the category of coadmissible (¢, I')-modules over [@QPBL&K.
The functor M is functorial by the following

Proposition 4.18. If £’ is another coefficient algebra and L — L' is a continuous map, then M(Dyg/) =
M(D)g.

Proof. We have
Mn(DE/) = (£/®QPKHHt]]) ®C®QpKn[[tH Mn(D)

Thus by definition of M(D), and M(D,/), we have a natural map
(‘Cl@QPBI;;K) ®£®QpBIig,K M(D)., — M(D,C’)r'
What we need to show is that, for any s > r > u it induces an isomorphism
(L8, B™) @5, pypa MD) — M(D)
Let Ny and N be respectively the source and the target of this map. Then for any n € [n(r),n(s)] we have

(£, Kulll) ©75 e M
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= (£/®QpKn[[t]]) ®Z’®QPB[I?S] M(D)[77é]

= (L'®q, Kaullt]) ®L&q, Knlltl] ((ﬁGA@QPKn[[tH) " ]M(D)[’”*s])

LB, BY*
= (L8, Knlltl)) ®c, xofig) Ma(D)
= Mn(DL’)
= (£/®QPKTL[[t]]) ZL@QPB[I:,S] No

Now repeating the argument in the proof of Proposition [4.15/It. (&), we obtain N3 = Nj, as desired. O

Corollary 4.19. Ifm is a mazimal ideal of L, then M(D)y, is the (¢,T")-module over Ly ®q, Biig,K associated
to the filtered (p, N')-module Dy, over Ly ®q, Ko.

The following proposition tells us that the functor M is faithful.

Proposition 4.20. If D is a filtered (o, N)-module over L ®q, Ko which is free over L ®q, Ko and satisfies
(GBN) and (GFF), then

~ r
D = ((£8g,Bl, )1/t 0x] @, p1  M(D)) .

rig, K
Lemma 4.21. We have
((£L&g,Bl, 1/t (x))' = L ®g, Ko.

Proof. We define the operators V = % (v sufficiently close to 1) and 0 = [6]% on E@QpBIig’K in
a way similar to that in [I], and then extend them to (E@QPBLg’K)[l/t,EX]. Note that V = td. If « €

((E@QPBLg’K)[l/t,KX])F, then Vo = 0x = 0 and so z is in C@QPBL&K. As

BN = (Bl )F = Ko,

by Lemma [I.1l we obtain (E@QPBT’T

rig,K)F =L X, K. So, (‘C®QpBIig,K)F =L Qq, K. 0

Proof of Proposition [/.20. From Proposition 4.16 It. (b) and the relation D[1/t] = M(D)[1/t] we obtain

(L8, Bl )L/t x] © 5, g1 M(D) = (L8, B, )1/t x] e, iy D-

rig, K

Now our conclusion follows from Lemma 4.21 O

5 Proof of Theorem 2.6

From now on we suppose that £ is a reduced affinoid algebra. Observe that Condition (Gr) implies the following
condition
(FF). For any x € Max(L) there exists a neighborhood Max(B) of x such that, if n € N is sufficient large,

then for any 4, Fil’ ((B ®q, Kn)((t) ®Bsq, Ko DB> is free of rank d = rank,V over (B ®q, Ky)[[t]], where

Fil' ((£ @g, Kn)((1) @8, K, D) == Y ((£@q, K)[[]) - Fil'(Ds) .
JHe>i

So, Theorem [2.6! is a consequence of the following
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Theorem 5.1. Let L be a reduced affinoid algebra and let D be a filtered (p, N)-module over L ®q, Ko which
satisfies (BN) and (FF). If D, is weakly admissible for some x € Max(L), then there exists an affinoid
neighborhood Max(B) of x and a semi-stable B-representation Vi of G whose associated filtered (o, N)-module
is isomorphic to Dg. Moreover, Vg is unique for this property.

Proposition [5.2] and Corollary 5.3/ below are useful for the proof of Theorem [5.1.
Put
D3 (V) := (L&, Byl,) @ V) .

log

Proposition 5.2. IfV is a de Rham L-representation of Gk, then the map Bf — B/

Jog Jog induces an isomorphism

D, (V) = ((£8¢,Bl,) 2. V) o (5.1)

log

Proof. For any n € N, put D,, = (B;r(;;" @Qp V)&x which is a L®q, Ko-module. Note that ¢, induces an inclusion
Dy, — Dgr,£(V). As V is de Rham, Dqr, (V) is finite over £ ®q, Ko. Thus D, is finite over £ ®q, Ko. There
is a sufficient large ng such that the image of D;y (V) is contained in D,,,. For any n > ny and any maximal
ideal m of £, by [I, Proposition 3.4], the map D:t’E(V)/mD:t,[:(V) — D, /mD,, is surjective. Combining this
with the fact that D, is finite over £ ®q, Ko, we see that the map D:;,L(V) — D, is surjective. It follows that
(5.1) is surjective. O

Corollary 5.3. IfV is a de Rham L-representation of Gi, then the map Eﬂ;g — Efog induces an isomorphism

D o(V) — ((£80, B, 1/ 0 V) " (5.2)

n

Proposition 5.4. If V is a semi-table L-representation and D = Drig(V), then there exists a sufficient large

n > n(r(D)) such that

(L8, Kullt) @45 4 Dr = Fil'(£8g, Kn((1)) ©co, k Dane(V)).
Qp Prig, K

Proof. By [3, Lemma 4.3.1, Theorem 5.3.2] if n € N is sufficient large, then

(L&¢,Blp) @ e Dr= Filo((£®@deR) ® Lo, K DdR,E(V))
Qp Prig, K
and
(£80,Kn(() @25 1o Dy = (£80,Kanl(1))) ©rog,x Danc(V).

Combining these two facts and the fact that
Fi]o ((ﬁ@@pKn((t))) ®L®@p}( DdR,L(V))
=Fil° ((ﬁé@deR) ®Leq, K DdR,ﬁ(V)) N (LB, Kn((t))) ®Loq, k Dar.c(V),

we obtain

£®Qijig,K

(£8g, Kallt) & D, € Fil’((£8g, Ku((1))) @ceo,  Dan.c(V)).

By [2] this inclusion is isomorphic after modulo m for any maximal ideal m of £. Therefore it is itself isomorphic.
O

Now we can prove Theorem 5.1.

Proof of Theorem!|5.1. By Proposition 2.3/ without loss of generality we may assume that D is free over L&q, Ko.
As D satisfies (BN) and (FF), there is a neighborhood Max(£L’) of x in Max(£) such that D satisfies (GBN)
and (GFF).
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As Dy is free over L' ®g, Ko, and satisfies the conditions (GBN) and (GFF), M(D,/) is a coadmissible

(¢, T')-module over L/(@QPBL&K. As the functor M is functorial, we have M(D), = M(D,). Because D,
is weakly admissible, by [2], M(D), is étale. Thus by Corollary 4.8 there exist an affinoid neighborhood
Max(B) of x in Max(L') and a B-linear representation Vi whose associated (i, T')-module is B& . M(Dy/) =
M(B®g Der) = M(B®, D).

By Proposition 4.20

R r
B D = (B30, xlL/1) g, ny, , MBEc D))

~ r
— (BB, Bl,y ic[1/1) @55, 5y, Dha(Vi)) -

ig, K

It follows that, for any rigid point y in Max(B),

r
(Boe D)y = ((Ly @, By x[1/1) 1 0, 1 Di(Ve@sLy)) |

Qp Prig, K

where L, = B/m,. Thus Vg ®z3 L, is semistable for any y € Max(B). Then by [3] V3 is semistable.
Note that

~ r o~ Gk
(BB, Blog i1/ @5z, n, , Dhe(Ve)) < ((BBq,BL,11/0) @5 Vi)

K

So, by Corollary 5.3, B®&, D is contained in Dg; 5(Vg). The inclusion B®, D — Dg; g(V3) is in fact isomorphic,
since it induces isomorphisms Dy, — Dy 1, (V) at all rigid points y € Max(B).
By Lemma [4.12) there exists a sufficient large r such that for any n > n(r),

(BB0, Kull]) @435, 1 Dl (Vi) = Fi' (880, K0 (1)) @550, (B2 D))

But by Proposition 5.4 we have

(B, Kulltl) @155 i Dhig (Vi) = Fil’ (B0, Ku((1) ©5eq, i Dars(Ve) ).

Hence
Fil’((BEg, Kn((1)) @8,k Bz D)) = Fil’ ((BEg, Ku((1)) @50, k Dar.s(V))-

It follows that the filtration of Dar (V) and the filtration of (B®,.D) agree. Therefore the filtered (o, N)-
module associated to Vi is B®, D.
The uniqueness of Vi follows from Corollary 4.8l O

Condition (FF) in Theorem [5.1] is necessary. Indeed we have the following
Proposition 5.5. If V is a semi-stable L-representation of Gk of rank d, then D = Dg, (V') satisfies (FF).

Proof. This follows from Proposition 5.4l O
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