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Abstract. We give an explicit formula for the shuffle relation in a general double shuffle frame-
work that specializes to double shuffle relations of multiple zeta values and multiple polyloga-
rithms. As an application, we generalize the well-known decomposition formula of Euler that
expresses the product of two Riemann zeta values as a sum of double zeta values to a formula that
expresses the product of two multiple polylogarithm valuesas a sum of other multiple polyloga-
rithm values.
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1. Introduction

Euler’s decomposition formula is the equation

(1) ζ(r)ζ(s) =
s−1∑

k=0

(
r+k−1

k

)
ζ(r + k, s− k) +

r−1∑

k=0

(
s+k−1

k

)
ζ(s+ k, r − k), r, s> 2,

expressing the product of two Riemann zeta values as a sum of double zeta values

ζ(s1, s2) :=
∑

n1>n2>1

1
ns1

1 ns2
2

.

This formula, together with Euler’s sum formula

n−1∑

i=2

ζ(i, n− i) = ζ(n),

are the two classical identities on double zeta values before the multiple zeta values (MZVs)

ζ(s1, · · · , sk) :=
∑

n1>···>nk>1

1
ns1

1 · · ·n
sk
k

were introduced in the 1990s [23, 38]. Since then MZVs have been studied quite intensively
involving many areas of mathematics and physics, from mixedTate motives [11, 37] to quantum
field theory [9].

A major aspect of these studies is finding algebraic and linear relations among MZVs, such as
Euler’s formulas. Euler’s sum formula was soon generalizedto MZVs [23, 17, 39] as the well-
known sum formula, followed by quite a few other generalizations [7, 12, 21, 26, 28, 31, 32, 33,
34]. To the contrary, no generalizations of Euler’s decomposition formula to MZVs, either proved
or conjectured, have been given even though Euler’s formulahas been revisited recently [1, 4, 13]
and generalized to the product of twoq-zeta values [8, 40]. In our view this situation is due to
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the lack of a suitable context in which a generalization of Euler’s formula makes sense, and the
correct language and tools to formulate and prove such a generalization.

In this paper we generalize Euler’s decomposition formula in two directions, from the product
of one variable functions to that of multiple variables and from multiple zeta values to multiple
polylogarithms. We achieve this by viewing Euler’s decomposition formula as a special instance
of the important double shuffle relation to motivate our generalizations, establishing ageneral
framework of shuffle and quasi-shuffle algebras to formulate these generalizations and applying
a suitable interpretation of the shuffle relation to prove these generalizations.

To motivate our approach, we illustrate the relationship between Euler’s decomposition for-
mula and the double shuffle relations of MZVs. Because of the representations of an MZVas an
iterated sum and as an iterated integral, the multiplication of two MZVs can be expressed in two
ways as the sum of other MZVs, one way following thequasi-shuffle (stuffle) relation and the
other way following theshuffle relation. The combination of these two relations (called thedou-
ble shuffle relations) generates an extremely rich family of relations among MZVs. In fact, as a
conjecture, all relations among MZVs can be derived from these relations and their degenerated
forms, altogether called theextended double shuffle relations [27, 35]. A consequence of this
conjecture is the irrationality ofζ(n) for all odd integersn > 3.

Naturally, determining all the extended double shuffle relations is challenging and the efforts
have utilized a wide range of methods. One difficulty is that the shuffle relations have not been
explicitly formulated in terms of the MZVs. For example, to determine the double shuffle relation
from multiplying two Riemann zeta valuesζ(r) andζ(s), r, s> 2, one uses their sum representa-
tions and easily gets the quasi-shuffle relation

(2) ζ(r)ζ(s) = ζ(r, s) + ζ(s, r) + ζ(r + s).

On the other hand, to get their shuffle relation, one first needs to use their integral representations
to expressζ(r) andζ(s) as iterated integrals of dimensionsr ands, respectively. One then uses

the shuffle relation to express the product of these two iterated integrals as a sum of
(

r+s

r

)
iterated

integrals of dimensionr + s. Finally, these last iterated integrals are translated back to MZVs and
give the shuffle relation ofζ(r)ζ(s). We observe that the explicit shuffle relation in this case is
precisely the decomposition formula of Euler in Eq. (1).See also [4]. Then together with Eq. (2),
we have the double shuffle relation fromζ(r) andζ(s). For the applications of the double shuffle
relation in this special case, we refer the reader to [13] on the connection of double zeta values
with modular forms, and to [34] on weighted sum formula of double zeta values.

In general, even though the computation of the shuffle relation can be performed recursively for
any given pair of MZVs, an explicit formula, naturally a generalization of Euler’s decomposition
formula, is missing so far. As the above example demonstrates, such an explicit formula not only
provides an effective way to evaluate the shuffle relation, but also is important in the theoretical
study of MZVs, especially the double shuffle relations. There are several families of special values
in addition to MZVs, such as the alternating Euler sums [2], the polylogarithms and multiple
polylogarithms [3, 14], especially at roots of unity [35], where the double shuffle relations are
also studied [5, 35, 41], but are less understood. Such an explicit formula for these values should
also be useful to their study.
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Thus we have obtained a suitable context of double shuffle relations to look for a generalization
of Euler’s decomposition formula. It is still challenging to predict and prove such a generaliza-
tion using the standard notion of shuffles. Instead we work with the alternative characterization
of a shuffle as a suitable pair of order preserving injective maps, allowing us to establish explicit
shuffle formulas for the product of any two MZVs, alternating Eulersums and multiple polylog-
arithms, thereby achieving our generalizations of Euler’sformula mentioned above.

As a concrete example, we obtain, for integersr1, s1 > 2 ands2 > 1,

(3) ζ(r1) ζ(s1, s2) =
∑

t1>2,t2>1
t1+t2=r1+s1

(
t1−1

r1−1

)
ζ(t1, t2, s2) +

∑

t1>2,t2,t3>1
t1+t2+t3
=r1+s1+s2

(
t1−1

s1−1

)[(
t2−1

s2−t3

)
+

(
t2−1

s2−1

)]
ζ(t1, t2, t3).

As another instance, for integersr1, s1 > 2 andr2, s2 > 1, we have

ζ(r1, r2) ζ(s1, s2)

=
∑

t1>2,t2,t3>1
t1+t2+t3=r1+r2+s1

(
t1−1

r1−1

)(
t2−1

r2−1

)
ζ(t1, t2, t3, s2) +

∑
t1>2,t2,t3>1

t1+t2+t3=r1+s1+s2

(
t1−1

s1−1

)(
t2−1

s2−1

)
ζ(t1, t2, t3, r2)

+
∑

t1>2,t2,t3,t4>1
t1+t2+t3+t4=
r1+r2+s1+s2

[(
t1−1

r1−1

)(
t2−1

t1+t2−r1−s1

)((
t3−1

s2−t4

)
+

(
t3−1

s2−1

))
(4)

+

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)((
t3−1

r2−t4

)
+

(
t3−1

r2−1

))]
ζ(t1, t2, t3, t4).

We hope this framework can be further extended to deal with other generalizations of multiple
zeta values that have emerged recently, such as the multipleq-zeta values [7, 40] and renormalized
MZVs [21, 22, 30].

The organization of the paper is as follows. In Section 2, we first describe the algebraic frame-
work of double shuffle algebras. We then give our main formula in two variations (Theorem 2.1
and Theorem 2.2). Theorem 2.1 is more general and easier to prove. Theorem 2.2 is more con-
venient for applications to multiple polylogarithm valuesand MZVs (Corollary 2.4 and Corol-
lary 2.5). There we also provide some examples. The proofs ofthe main theorems are quite long.
So several lemmas are first proved in Section 3. Then these lemmas are applied in Section 4
to prove the main formula by induction. As an appendix, Section 5 includes a shuffle product
formulation of the main formula.

Acknowledgements: Both authors thank the hospitality and stimulating environment provided
by the Max Planck Institute for Mathematics at Bonn where this research was carried out. They
also thank Don Zagier and Matilde Marcolli for suggestions on an earlier draft and for encour-
agement. The first author acknowledges the support from NSF grant DMS-0505643.

2. The main theorems, applications and examples

We first set up in Section 2.1 a framework of general double shuffles to give a uniform formu-
lation of the double shuffle relations for multiple zeta values, alternating Euler sums and multiple
polylogarithms. We then state in Section 2.2 our main formula in two variations in this frame-
work. Applications to the aforementioned special values are presented in Section 2.3. Computa-
tions in low dimensions and examples are provided in Section2.4.
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2.1. The general double shuffle framework. We formulate the framework to state our main
theorems in Section 2.2. See Section 2.3 for the concrete cases that have been considered be-
fore [3, 14, 24, 35, 41].

We first introduce some notations. For any setY, denoteM(Y) for the free monoid generated
by Y. Let H(Y) be the free abelian groupZM(Y) with M(Y) as a basis but without considering
the product from the monoidM(Y). WhenH(Y) is equipped with an associative multiplication◦,
we useH◦(Y) to denote the algebra (H(Y), ◦).

Let G be a given set. Define

G = {x0} ∪ {xb | b ∈ G}

to be the set of symbols indexed by the disjoint set{0} ⊔ G. Then the shuffle algebra [29, 36]
generated byG is

(5) H
X (G) := (ZM(G), X )

where the shuffle productX is defined recursively by

(a1a) X (b1b) = a1(a X (b1b)) + b1((a1a) X b), a1, b1 ∈ G, a, b ∈ M(G)

with the convention that 1X b = b = b X 1 for b ∈ M(G). Define the subalgebra

(6) H
X

1(G) := Z ⊕
(
⊕b∈G H

X (G)xb
)
⊆ H

X (G).

For the given setG, let Ĝ be the set product

Ĝ := Z>1 ×G = {w :=
[ s

b

]
| s ∈ Z>1, b ∈ G}.

We will denote the non-unit elements in the free monoidM(Ĝ) by vectors

~ν := [ν1, · · · , νk] =
[ s1,··· ,sk

b1,··· ,bk

]
=
[ ~s
~b

]
∈ Ĝk

and denote [ν1, [ν2, · · · , νk]] = [ν1, ν2, · · · , νk]. Consider the free abelian group

H(Ĝ) := ZM(Ĝ) =
⊕

~ν∈Ĝk, k>0

Z~ν, Ĝ0 = {1}.

As in the case of the shuffle algebra from MZVs, elements ofHX

1(G) of the form

xs1−1
0 xb1x

s2−1
0 xb2 · · · x

sk−1
0 xbk, si > 1, bi ∈ G, 1 6 i 6 k, k > 1,

together with 1, form a basis ofHX

1(G). SinceH(Ĝ) with the concatenation product is the free
non-commutative algebra generated byĜ, there is a natural linear bijection

(7) ρ : H
X

1(G)→ H(Ĝ), xs1−1
0 xb1 · · · x

sk−1
0 xbk ↔

[ s1, s2, ··· , sk

b1, b2, ··· , bk

]
, 1↔ 1.

Throughρ, the shuffle productX onH
X

1(G) defines a product onH(Ĝ) by

(8) ~µ Xρ ~ν := ρ(ρ−1(~µ) X ρ−1(~ν)), ~µ,~ν ∈ H(Ĝ).

Following our notations, we useHXρ (Ĝ) to denote this algebra.
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Now assume thatG is a multiplicative abelian group. Equip̂G = Z>1 × G with the abelian

semigroup structure by the component multiplication:
[ s1

z1

]
·
[ s2

z2

]
=
[ s1+s2

z1z2

]
. Then we define

the quasi-shuffle algebra [25] on̂G to be

(9) H
∗(Ĝ) := (ZM(Ĝ), ∗)

where the multiplication∗ is defined by the recursion

[µ1, ~µ
′] ∗ [ν1, ~ν

′] = [µ1, (~µ
′ ∗ [ν1, ~ν

′])] + [ν1, [µ1, ~µ
′] ∗ ~ν ′] + [(µ1 · ν1), ~µ

′ ∗ ~ν ′],

µ1, ν1 ∈ Ĝ, ~µ ′, ~ν ′ ∈ M(Ĝ), with the initial condition that 1∗ ~ν = ~ν = ~ν ∗ 1 for ~ν ∈ M(Ĝ).
See [18, 19, 25] for its explicit description and its structure.

We define a linear bijection

(10) θ : H
∗(Ĝ)→ H

∗(Ĝ),
[ s1,··· ,sk

b1,··· ,bk

]
7→
[ s1, s2,··· , sk

1
b1
,

b1
b2
,··· ,

bk−1
bk

]

whose inverse is given by

(11) θ−1 : H
∗(Ĝ)→ H

∗(Ĝ),
[ s1,··· ,sk

z1,··· ,zk

]
7→
[ s1, s2,··· , sk

1
z1
, 1

z1z2
,··· , 1

z1···zk

]

Note that the action ofθ is defined by an action on the second row of elements inH∗(Ĝ) which is
again denoted byθ:

(12) θ(b1, · · · , bk) =
( 1
b1
,

b1

b2
, · · · ,

bk−1

bk

)
.

The composition ofρ andθ gives a natural bijection of abelian groups (butnotas algebras)

(13) η : H
X

1(G)→ H
∗(Ĝ), xs1−1

0 xb1 · · · x
sk−1
0 xbk ↔

[ s1, s2, ··· , sk

1
b1
,

b1
b2
, ··· ,

bk−1
bk

]

whose inverse is given by
[ s1,··· ,sk

z1,··· ,zk

]
7→ xs1−1

0 xz−1
1

xs2−1
0 x(z1z2)−1 · · · xsk−1

0 x(z1···zk)−1.

Throughη, the shuffle productX on HX

1(G) transports to a productXη on H(Ĝ), resulting a
commutative algebraHXη (Ĝ) = (H(Ĝ), Xη ). More precisely, for~µ,~ν ∈ H(Ĝ),

(14) ~µ Xη ~ν := η(η−1(~µ) X η−1(~ν)).

Then we have the following commutative diagram of commutative algebras:

(15) HX

0(S1)
ρ

//

η

''

HXρ
0 (Ŝ1)

θ
//
HXη

0 (Ŝ1)

The purpose of this paper is to give an explicit formula for~µ Xη ~ν (Theorem 2.2) which naturally
gives shuffle formulas for MZVs, MPVs and alternating Euler sums. However, as we will see
later, for the proof of this formula, it is more convenient towork with its variation (Theorem 2.1)
for the productXρ since it is more compatible with the module structure onH∗(Ĝ). This approach
also allows us to obtain a formula without requiring thatG is a group, further extending its
potential of applications that will be discussed in a futurework.
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2.2. The statement of the main theorems.We first introduce some notations. For positive
integersk andℓ, denote [k] = {1, · · · , k} and [k+ 1, k+ ℓ] = {k+ 1, · · · , k+ ℓ}. Define

(16) Ik,ℓ =

{
(ϕ, ψ)

∣∣∣∣
ϕ : [k] → [k+ ℓ], ψ : [ℓ] → [k+ ℓ] are order preserving
injective maps and im(ϕ) ⊔ im(ψ) = [k+ ℓ]

}

Let ~a ∈ Gk, ~b ∈ Gℓ and (ϕ, ψ) ∈ Ik,ℓ. We define~aX (ϕ,ψ)
~b to be the vector whoseith component is

(17) (~a X (ϕ,ψ)
~b)i =

{
a j if i = ϕ( j)
b j if i = ψ( j)

= aϕ−1(i)bψ−1(i), 1 6 i 6 k+ ℓ,

with the convention thata∅ = b∅ = 1.
Let~r = (r1, · · · , rk) ∈ Zk

>1, ~s= (s1, · · · , sℓ) ∈ Zℓ>1 and~t = (t1, · · · , tk+ℓ) ∈ Zk+ℓ
>1 with |~r | + |~s| = |~t|.

Here|~r | = r1+· · ·+rk and similarly for|~s| and|~t|. DenoteRi = r1+· · ·+r i for i ∈ [k], Si = s1+· · ·+si

for i ∈ [ℓ] andTi = t1 + · · · + ti for i ∈ [k + ℓ]. For i ∈ [k + ℓ], define

(18) h(ϕ,ψ),i = h(ϕ,ψ),(~r,~s),i =

{
r j if i = ϕ( j)
sj if i = ψ( j)

= rϕ−1(i)sψ−1(i),

with the convention thatr∅ = s∅ = 1.
With these notations, we define

(19) c
~t,(ϕ,ψ)
~r ,~s

(i) =



(
ti−1

h(ϕ,ψ),i−1

)
if i = 1, if i − 1, i ∈ im(ϕ)
or if i − 1, i ∈ im(ψ),

(
ti−1

Ti−R
|ϕ−1([i]) |−S

|ψ−1([i]) |

)

=

( ti−1
i∑

j=1
t j−

i∑
j=1

h(ϕ,ψ), j

) otherwise.

Denote

(20) c
~t,(ϕ,ψ)
~r,~s

:=
k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r,~s

(i) =
k∏

j=1

c
~t,(ϕ,ψ)
~r ,~s

(ϕ( j))
ℓ∏

j=1

c
~t,(ϕ,ψ)
~r,~s

(ψ( j)).

Now we can state the first variation of our main formula.

Theorem 2.1. Let k, ℓ be positive integers. Let G be a set and letHXρ (Ĝ) = (H(Ĝ), Xρ ) be the

algebra defined by Eq. (8). Then for
[ ~r
~a

]
∈ Ĝk and

[ ~s
~b

]
∈ Ĝℓ in HXρ (Ĝ), we have

(21)

[ ~r
~a

]
Xρ

[ ~s
~b

]
=

∑

(ϕ,ψ)∈Ik,ℓ

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

c
~t,(ϕ,ψ)
~r ,~s

[ ~t

~aX (ϕ,ψ)~b

]

=
∑

(ϕ,ψ)∈Ik,ℓ

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

( k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r ,~s

(i)
)[ ~t

~aX (ϕ,ψ)~b

]
,

where c
~t,(ϕ,ψ)
~r,~s

(i) is given in Eq. (19) and~a X (ϕ,ψ)
~b is given in Eq. (17).
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For the purpose of applications to MZVs and multiple polylogarithms, we give an equivalent
form of Theorem 2.1 under the condition thatG is an abelian group. For~w ∈ Gk and~z ∈ Gℓ, we
define

(22) (~w⋆(ϕ,ψ)~z)i =



wj if i = ϕ( j) and eitheri = 1 or i − 1 ∈ im(ϕ),
zj if i = ψ( j) and eitheri = 1 or i − 1 ∈ im(ϕ),
w1···wj

z1···zi− j
if i = ϕ( j) andi − 1 ∈ im(ψ),

z1···zj

w1···wi− j
if i = ψ( j) andi − 1 ∈ im(ϕ).

Theorem 2.2. Let k, ℓ be positive integers. Let G be an abelian group and letHXη (Ĝ) =

(H(Ĝ), Xη ) be the algebra defined by Eq. (14). Then for
[ ~r

~w

]
∈ Ĝk and

[ ~s
~z

]
∈ Ĝℓ in HXη (Ĝ),

we have

(23)

[ ~r

~w

]
Xη

[ ~s
~z

]
=

∑

(ϕ,ψ)∈Ik,ℓ

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~w⋆(ϕ,ψ)~z

]

=
∑

(ϕ,ψ)∈Ik,ℓ

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

( k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r,~s

(i)
)[ ~t

~w⋆(ϕ,ψ)~z

]
,

where c
~t,(ϕ,ψ)
~r,~s

(i) is given in Eq. (19) and~w⋆(ϕ,ψ)~z is given in Eq. (22).

We will next give applications and examples of Theorem 2.2 inSection 2.3 and Section 2.4.
Theorem 2.2 will be shown to follow from Theorem 2.1 in Section 4.1, and Theorem 2.1 will be
proved in Section 4.2. Preparational lemmas will be given inSection 3.

2.3. Applications. In this section, Theorem 2.2 is specialized to give formulasfor multiple zeta
values, alternating Euler sums and multiple polylogarithms. We start with multiple polyloga-
rithms and then specialize further to MZVs and alternating Euler sums. In Section 2.4 we demon-
strate how to apply these formulas by computing examples in low dimensions.

2.3.1. Multiple polylogarithms.A multiple polylogarithm value (MPV) [3, 14, 15] is defined
by

(24) Lis1,··· ,sk(z1, · · · , zk) :=
∑

n1>···>nk>1

zn1
1 · · · z

nk
k

ns1
1 · · ·n

sk
k

where|zi | 6 1, si ∈ Z>1, 1 6 i 6 k, and (s1, z1) , (1, 1). Whenzi = 1, 1 6 i 6 k, we obtain
the multiple zeta valuesζ(s1, · · · , sk) that we will consider in Section 2.3.2. More generally, the
special cases whenzi are roots of unity have been studied [3, 6, 15, 35] in connection with high
cyclotomic theory, mixed motives and combinatorics, and have been found in the computations
of Feynman diagrams [10].

With the notation of [3], we have

(25)
Li s1,··· ,sk(z1, · · · , zk) = λ

( s1, · · · , sk

b1, · · · , bk

)
:=

∑

n1>n···>nk>1

( 1
b1

)n1
(b1

b2

)n2 · · ·
(bk−1

bk

)nk

ns1
1 ns2

2 · · ·n
sk
k

,

where (b1, · · · , bk) = θ
−1(z1, · · · , zk) = (z−1

1 , (z1z2)
−1, · · · , (z1 · · · zk)

−1).
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Hereθ is as defined in Eq. (12).
The product of two sums representing two MPVs is aZ-linear combination of other such sums.

So theZ-linear span of these values is an algebra which we denote by

MPV = Z{Li s1,··· ,sk(z1, · · · , zk) | si ∈ Z>1, |zi | 6 1, (s1, z1) , (1, 1)}.

In the framework of Section 2.1 and Section 2.2, takeG to be the multiplicative abelian group
S1 := {z ∈ C× | |z| = 1}, and consider the subalgebra

H
∗
0(Ŝ

1) := Z ⊕
( ⊕

[ s1

z1

]
,

[ 1

1

]
Z
[ s1,s2,··· ,sk

z1,z2,··· ,zk

])
⊆ H

∗(Ŝ1).

ThenH
∗(Ĝ) coincides with the quasi-shuffle (stuffle) algebra [15, 35] encoding MPVs, and the

multiplication rule of two MPVs according to their sum representations in Eq. (24) follows from
the fact that the linear map

Li ∗ : H
∗
0(Ŝ

1)→ MPV ,
[ s1,··· ,sk

z1,··· ,zk

]
7→ Li s1,··· ,sk(z1, · · · , zk)

is an algebra homomorphism.
We also consider the shuffle algebraHX (S1) and its subalgebras

H
X

0(S1) := Z ⊕
(
⊕a,b∈{0}∪S1,a,1,b,0 xaH

X (S1)xb
)

⊆ H
X

1(S1) := Z ⊕
(
⊕b∈S1 H

X (S1)xb
)
⊆ H

X (S1).

They agree with the shuffle algebras [14, 35] encoding MPVs through their integral representa-
tions [3, 14, 35]

(26) Lis1,··· ,sk(z1, · · · , zk) =
∫ 1

0

∫ u1

0
· · ·

∫ u|~s|−1

0

du1

f1(u1)
· · ·

du|~s|
f|~s|(u|~s|)

.

Here

f j(u j) =

{
(z1 · · · zi)−1 − u j if j = s1 + · · · + si , 1 6 i 6 k,
u j otherwise.

It takes a simpler form in terms ofλ
( s1, · · · , sk

b1, · · · , bk

)
thanks to Eq. (25):

(27) λ
( s1, · · · , sk

b1, · · · , bk

)
=

∫ 1

0

∫ u1

0
· · ·

∫ u|~s|−1

0

du1

g1(u1)
· · ·

du|~s|
g|~s|(u|~s|)

,

as commented in the introduction of [3]. Here

g j(u j) =

{
bi − u j if j = s1 + · · · + si, 1 6 i 6 k,
u j otherwise.

The multiplication rule of two MPVs according to their integral representations in Eq. (27) fol-
lows from the algebra homomorphism [3,§5.4]

Li X : H
X

0(S1)→ MPV , xs1−1
0 xb1 · · · x

sk−1
0 xbk 7→ λ

( s1, · · · , sk

b1, · · · , bk

)
.
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The algebra isomorphismρ : HX

1(S1) → HXρ (Ŝ1) in Eq. (7) restricts to an algebra isomor-
phism

ρ : H
X

0(S1)→ H
Xρ
0 (Ŝ1), xs1−1

0 xb1 · · · x
sk−1
0 xbk ↔

[ s1, s2, ··· , sk

b1, b2, ··· , bk

]
.

Similarly the algebra isomorphismsη : HX (S1) → HXη (Ŝ1) in Eq. (13) andθ : HXρ (Ŝ1) →
HXη (Ŝ1) in Eq. (10) restrict to algebra isomorphisms

η : H
X

0(S1)→ H
Xη
0 (Ŝ1), θ : H

Xρ
0 (Ŝ1)→ H

Xη
0 (Ŝ1).

Define

(28) LiXρ : H
Xρ
0 (Ŝ1)→ MPV ,

[ s1,··· ,sk

b1,··· ,bk

]
7→ λ
( s1, · · · , sk

b1, · · · , bk

)

and

(29) LiXη : H
Xη
0 (Ŝ1)→ MPV ,

[ s1,··· ,sk

z1,··· ,zk

]
7→ Li s1,··· ,sk(z1, · · · , zk).

Then we can organize these maps into the following commutative diagram extending the com-
mutative diagram in (15):

HX

0(S1)
ρ

//

Li X

((RRRRRRRRRRRRRR

η

))

HXρ
0 (Ŝ1)

Li Xρ

��

θ
//
HXη

0 (Ŝ1)

Li Xη
vvllllllllllllll

MPV

where the commutativity of the left triangle follows from the definitions of the maps and that of
the right triangle follows from Eq. (25). Since LiX is an algebra homomorphism andρ andη are
algebra isomorphisms, it follows that LiXρ and LiXη are also algebra homomorphisms.

Therefore, applying LiXρ to the two sides of Eq. (21) in Theorem 2.1, we obtain

Corollary 2.3. Let k, ℓ be positive integers. Let~r ∈ Zk
>1 and~s ∈ Zℓ

>1. Let~a = (a1, · · · , ak) ∈ (S1)k

and~b = (b1, · · · , bℓ) ∈ (S1)ℓ such that
[ r1

a1

]
,
[ 1

1

]
and
[ s1

b1

]
,
[ 1

1

]
.

λ
( ~r
~a
)
λ
( ~s
~b
)
=

∑

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

∑

(ϕ,ψ)∈Ik,ℓ

( k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r ,~s

(i)
)
λ
( ~t
~aX (ϕ,ψ)

~b
)
.

where c
~t,(ϕ,ψ)
~r,~s

(i) is given in Eq. (19) and~a X (ϕ,ψ)
~b is given in Eq. (17).

Similarly, applying LiXη to the two sides of Eq. (23) in Theorem 2.2, we obtain

Corollary 2.4. Let k, ℓ be positive integers. Let~r ∈ Zk
>1 and~s ∈ Zℓ

>1. Let~w = (w1, · · · ,wk) ∈ (S1)k

and~z= (z1, · · · , zℓ) ∈ (S1)ℓ such that
[ r1

w1

]
,
[ 1

1

]
and
[ s1

z1

]
,
[ 1

1

]
. Then

Li~r(~w) Li ~s(~z) =
∑

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

∑

(ϕ,ψ)∈Ik,ℓ

( k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r,~s

(i)
)
Li~t(~w⋆(ϕ,ψ)~z)
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where c
~t,(ϕ,ψ)
~r,~s

(i) is given in Eq. (19) and~w⋆(ϕ,ψ)~z is given in Eq. (22).

See Section 2.4 for examples in low dimensions.

2.3.2. Multiple zeta values and alternating Euler sums.Takingzi = 1, 1 6 i 6 r, in Li s1,··· ,sk(z1, · · · , zk)
defined in Eq. (24) and the corresponding integral representation in Eq. (26), we obtain the MZV
and its integral representation:

ζ(s1, · · · , sk) : =
∑

n1>···>nk>1

1
ns1

1 · · ·n
sk
k

=

∫ 1

0

∫ u1

0
· · ·

∫ u|~s|−1

0

du1

f1(u1)
· · ·

du|~s|
f|~s|(u|~s|)

for integerssi > 1 ands1 > 1. Here

f j(u j) =

{
1− u j if j = s1, s1 + s2, · · · , s1 + · · · + sk,
u j otherwise.

This is also the case whenG = {1} in our framework in Section 2.1 and 2.2. Then we can identify

Ĝ with Z>1 and denote~ν =
[ s1,··· ,sk

z1,··· ,zk

]
=
[ s1,··· ,sk

1,··· ,1

]
by z = zs1 · · · zsk. ThenH∗(Ĝ) coincides with the

quasi-shuffle algebraH∗ encoding MZVs [25, 27] through the identificationzs1 · · · zsk ↔ zs1 · · · zsk.
We will usezs1 · · · zsk in place ofzs1 · · · zsk to avoid confusion with the vector (z1, · · · , zk) in ~ν. H∗

contains the subalgebra

H
∗
0 := Z ⊕ Z

{
zs1 · · · zsk

∣∣∣ si > 1, s1 > 1, 1 6 i 6 k, k > 1
}
.

Likewise the shuffle algebraHX (G), whenG = {1}, coincides with the shuffle algebraHX [24,
27] encoding MZVs, and there are subalgebras

H
X

0 := Z ⊕ x0H
X x1 ⊆ H

X

1 := Z ⊕H
X x1 ⊆ H

X ,

whereH
X

1 coincides withHX

1(Ĝ) defined in Eq. (6). The natural isomorphismη : H
X

1 → H
∗ of

abelian groups in Eq. (13) restricts to an isomorphism of abelian groups

η : H
X

0→ H
∗
0, xs1−1

0 x1 · · · x
sk−1
0 x1 ↔ zs1 · · · zsk.

With the notationz′ Xη z
′′ := η(η−1(z′) X η−1(z′′)) from Eq. (14), thedouble shuffle relation of

MZVs is simply the ideal generated by the set

{z′ Xη z
′′ − z′ ∗ z′′ | z′, z′′ ∈ H

∗
0}

and theextended double shuffle relation of MZVs [27] is the ideal generated by the set

{z′ Xη z
′′ − z′ ∗ z′′, z1 Xη z

′′ − z1 ∗ z
′′ | z′, z′′ ∈ H

∗
0}.

While the productz′∗z′′ simply follows from the quasi-shuffle relation, the evaluation ofz′ Xη z
′′

involves first pullingz′ andz′′ back toHX

0 by η, then expressing the shuffle productη(z′) X η(z′′) as
a linear combination of words inM(x0, x1), and then sending the result forward toH∗0 by η. While
this process can be defined recursively (see Proposition 4.3), the explicit formula is found only in
special cases, such as whenz′ = zr , z′′ = zs are both of dimension one. As we have discussed in
the Introduction, the explicit formula in this case is Euler’s formula in Eq. (1).

Our Theorem 2.2 provides an explicit formula forXη and hence for the shuffle product of
MZVs in the full generality.



EXPLICIT DOUBLE SHUFFLE RELATIONS AND EULER’S FORMULA 11

Corollary 2.5. Let~r ∈ Zk
>1 and~s ∈ Zℓ

>1 with r1, s1 > 2. Then

ζ(~r) ζ(~s) =
∑

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

( ∑

(ϕ,ψ)∈Ik,ℓ

k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r,~s

(i)
)
ζ(~t)

where c
~t,(ϕ,ψ)
~r,~s

(i) is given in Eq. (19).

See Section 2.4 for its specialization to Euler’s decomposition formula and other special cases.

Proof. Sinceζ(~r) = Li~r(~w) andζ(~s) = Li ~s(~z) where the vectors~w and~zhave 1 as the components,
the vectors~w⋆(ϕ,ψ)~z also have 1 as their components and thus are independent of the choice of
(ϕ, ψ) ∈ Ik,ℓ. Then the corollary follows Corollary 2.4. �

Between the case of MZVs and the case of MPVs, there is the caseof alternating Euler sums,
defined by

ζ(s1, · · · , sk;σ1, · · · , σk) :=
∑

n1>···>nk>1

σn1
1 · · ·σ

nk
k

ns1
1 · · ·n

sk
k

,

whereσi = ±1, 1 6 i 6 k. This corresponds to the case whenG = {±1} in our framework. More
generally whenG is the group ofk-th roots of unity, we have themultiple polylogarithms at
roots of unity [35]. We will not go into the details, but will give an examplein Eq. (30) that
generalizes Euler’s formula.

2.4. Examples. We now consider some special cases of Theorem 2.2, Corollary2.4 and Corol-
lary 2.5.

2.4.1. The case of r= s= 1. In this case~r = r1 and~s= s1 are positive integers, and~w = w1 and
~z = z1 are inG. Let~t = (t1, t2) ∈ Z2

>1 with t1 + t2 = r1 + s1. If (ϕ, ψ) ∈ I1,1, then eitherϕ(1) = 1
andψ(1) = 2, orψ(1) = 1 andϕ(1) = 2. If ϕ(1) = 1 andψ(1) = 2, then by Eq. (19), we obtain

c~t,(ϕ,ψ)
r1,s1

(1) =
(

t1−1

r1−1

)
, c~t(ϕ,ψ)

r1,s1
(2) =

(
t2−1

t1+t2−r1−s1

)
= 1

and thus

c~t,(ϕ,ψ)
r1,s1

= c~t,(ϕ,ψ)
r1,s1

(1)c~t,(ϕ,ψ)
r1,s1

(2) =
(

t1−1

r1−1

)
.

By Eq. (22), we have

~w⋆(ϕ,ψ)~z= (w1, z1/w1).

If ψ(1) = 1 andϕ(1) = 2, then by Eq. (19), we obtain

c~t,(ϕ,ψ)
r1,s1

(1) =
(

t1−1

s1−1

)
, c~t,(ϕ,ψ)

r1,s1
(2) =

(
t2−1

t1+t2−r1−s1

)
= 1

and thus

c~t,(ϕ,ψ)
r1,s1

= c~t,(ϕ,ψ)
r1,s1

(1)c~t,(ϕ,ψ)
r1,s1

(2) =
(

t1−1

s1−1

)
.



12 LI GUO AND BINGYONG XIE

By Eq. (22), we have~w⋆(ϕ,ψ)~z= (z1,w1/z1). Therefore,

[ r1

w1

]
Xη

[ s1

z1

]
=
∑

t1,t2>1,t1+t2=r1+s1

(
t1−1

r1−1

)[ t1,t2

w1,z1/w1

]
+
∑

t1,t2>1,t1+t2=r1+s1

(
t1−1

s1−1

)[ t1,t2

z1,w1/z1

]

=
∑

t1,t2>1,t1+t2=r1+s1

(
t1−1

t1−r1

)[ t1,t2

w1,z1/w1

]
+
∑

t1,t2>1,t1+t2=r1+s1

(
t1−1

t1−s1

)[ t1,t2

z1,w1/z1

]

=

s1−1∑

k=0

(
r1+k−1

k

)[ r1+k,s1−k

w1,z1/w1

]
+

r1−1∑

k=0

(
s1+k−1

k

)[ s1+k,r1−k

z1,w1/z1

]

by a change of variablesk = t1 − r1 for the first sum andk = t1 − s1 for the second sum. Then by
Corollary 2.4, we obtain the following relation for double polylogarithms

Li r1(w1)Li s1(z1)=
s1−1∑

k=0

(
r1+k−1

k

)
Li r1+k,s1−k(w1, z1/w1) +

r1−1∑

k=0

(
s1+k−1

k

)
Li s1+k,r1−k(z1,w1/z1),

wherer1, s1 > 1, w1, z1 ∈ S1 and (r1,w1) , (1, 1) , (s1, z1). In the special case whenw1 = ±1 and
z1 = ±1, we have the following relation for alternating Euler sums

(30)

ζ(r1; w1)ζ(s1; z1) =
s1−1∑

k=0

(
r1+k−1

k

)
ζ(r1 + k, s1 − k; w1, z1/w1)

+

r1−1∑

k=0

(
s1+k−1

k

)
ζ(s1 + k, r1 − k; z1,w1/z1),

whenr1, s1 > 1 and (r1,w1) , (1, 1) , (s1, z1).
Further specializing, whenr1, s1 > 2 andw1 = z1 = 1, we obtain the decomposition formula of

Euler in Eq. (1).

2.4.2. The case of r= 1, s= 2. In this case
[ ~r

~w

]
=
[ r1

w1

]
and
[ ~s
~z

]
=
[ s1,s2

z1,z2

]
. Let~t = (t1, t2, t3) ∈

Z
3
>1 with t1 + t2 + t3 = r1 + s1 + s2. There are 3 pairs (ϕ, ψ) in I1,2.
Whenϕ(1) = 1,ψ(1) = 2 andψ(2) = 3, by Eq. (19), we have

c
~t,(ϕ,ψ)
r1,~s

(1) =
(

t1−1

r1−1

)
, c

~t,(ϕ,ψ)
r1,~s

(2) =
(

t2−1

t1+t2−r1−s1

)
, c

~t,(ϕ,ψ)
r1,~s

(3) =
(

t3−1

s2−1

)
.

When the second and the third terms are nonzero, we havet1 + t2 > r1 + s2 andt3 > s2. Then the
inequalities must be equalities and we havec

~t,(ϕ,ψ)
r1,~s

(2) = c
~t,(ϕ,ψ)
r1,~s

(3) = 1. Thus

c
~t,(ϕ,ψ)
r1,~s

= c
~t,(ϕ,ψ)
r1,~s

(1)c
~t,(ϕ,ψ)
r1,~s

(2)c
~t,(ϕ,ψ)
r1,~s

(3) =



(
t1−1

r1−1

)
, if t3 = s2,

0, otherwise.

By Eq. (22) we have
~w⋆(ϕ,ψ)~z= (w1, z1/w1, z2).

Similarly, whenϕ(1) = 2,ψ(1) = 1 andψ(2) = 3, we have

c
~t,(ϕ,ψ)
r1,~s

=

(
t1−1

s1−1

)(
t2−1

s2−t3

)
, ~w⋆(ϕ,ψ)~z= (z1,w1/z1, z1z2/w1),
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and whenϕ(1) = 3,ψ(1) = 1 andψ(2) = 2, we have

c
~t,(ϕ,ψ)
r1,~s

=

(
t1−1

s1−1

)(
t2−1

s2−1

)
, ~w⋆(ϕ,ψ)~z= (z1, z2,w1/(z1z2)).

Combining these computations with Corollary 2.4 we obtain,for r1, s1, s2 > 1 and (r1,w1) ,
(1, 1) , (s1, z1),

Li r1(w1) Li s1,s2(z1, z2) =
∑

t1,t2,t3>1
t1+t2=r1+s1

(
t1−1

r1−1

)
Li (t1,t2,s2)(w1, z1/w1, z2)

+
∑

t1,t2,t3>1
t1+t2+t3
=r1+s1+s2

[(
t1−1

s1−1

)(
t2−1

s2−t3

)
Li (t1,t2,t3)(z1,w1/z1, z1z2/w1)

+

(
t1−1

s1−1

)(
t2−1

s2−1

)
Li (t1,t2,t3)(z1, z2,w1/(z1z2))

]
.

Takingw1 = z1 = z2 = 1 (or by Corollary 2.5) we obtain the relation in Eq. (3) amongMZVs.

2.4.3. The case of r= s = 2. In this case
[ ~r

~w

]
=
[ r1,r2

w1,w2

]
and
[ ~s
~z

]
=
[ s1,s2

z1,z2

]
. Let ~t =

(t1, t2, t3, t4) ∈ Z4
>1 with t1 + t2 + t3 + t4 = r1 + r2 + s1 + s2. Then there are

(
4

2

)
= 6 choices

of (ϕ, ψ) ∈ I2,2.
If ϕ(1) = 1,ϕ(2) = 2,ψ(1) = 3 andψ(2) = 4, by Eq. (19), we have

c
~t,(ϕ,ψ)
~r ,~s

(1) =
(

t1−1

r1−1

)
, c

~t,(ϕ,ψ)
~r ,~s

(2) =
(

t2−1

r2−1

)
,

c
~t,(ϕ,ψ)
~r,~s

(3) =
(

t3−1

t1+t2+t3−r1−r2−s1

)
=

(
t3−1

s2−t4

)
, c

~t,(ϕ,ψ)
~r,~s

(4) =
(

t4−1

s2−1

)
.

When the third and fourth terms are nonzero, we havet1+ t2+ t3 > r1+ r2+ s1 andt4 > s2. Hence
they must be equalities and thusc

~t,(ϕ,ψ)
~r ,~s

(3) = c
~t,(ϕ,ψ)
~r ,~s

(4) = 1. Then

c
~t,(ϕ,ψ)
~r,~s

= c
~t,(ϕ,ψ)
~r,~s

(1)c
~t,(ϕ,ψ)
~r,~s

(2)c
~t,(ϕ,ψ)
~r,~s

(3)c
~t,(ϕ,ψ)
~r,~s

(4) =



(
t1−1

r1−1

)(
t2−1

r2−1

)
, if t4 = s2,

0, otherwise.

Similarly, if ϕ(1) = 3,ϕ(2) = 4,ψ(1) = 1 andψ(2) = 2, then

c
~t,(ϕ,ψ)
~r ,~s

=



(
t1−1

s1−1

)(
t2−1

s2−1

)
, if t4 = r2,

0, otherwise.

If ϕ(1) = 1,ϕ(2) = 3,ψ(1) = 2 andψ(2) = 4, then

c
~t,(ϕ,ψ)
~r ,~s

=

(
t1−1

r1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−t4

)
.

If ϕ(1) = 2,ϕ(2) = 4,ψ(1) = 1 andψ(2) = 3, then

c
~t,(ϕ,ψ)
~r,~s

=

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−t4

)
.
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If ϕ(1) = 1,ϕ(2) = 4,ψ(1) = 2 andψ(2) = 3, then

c
~t,(ϕ,ψ)
~r,~s

=

(
t1−1

r1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−1

)
.

If ϕ(1) = 2,ϕ(2) = 3,ψ(1) = 1 andψ(2) = 4, then

c
~t,(ϕ,ψ)
~r,~s

=

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−1

)
.

Then from Corollary 2.5, we obtain Eq. (4). We likewise obtain formulas for the products of
double multiple polylogarithms and those of double alternating Euler sums.

3. Preparational lemmas

In this section we prove some properties of the coefficientsc
~t,(ϕ,ψ)
~r ,~s

in our Theorem 2.1 and
Theorem 2.2 in preparation for their proofs in the next section.

We recall some notations from Section 2.2. Letk, ℓ > 1, ~r ∈ Zk
>1, ~s ∈ Z

ℓ
>1, ~t ∈ Z

k+ℓ
>1 with

|~t| = |~r | + |~s| and (ϕ, ψ) ∈ Ik,ℓ be given. For 16 i 6 k+ ℓ, denote

(31) h(ϕ,ψ),i = h(ϕ,ψ),(~r,~s),i =

{
r j if i = ϕ( j),
sj if i = ψ( j).

We note that, if we define

(32) εϕ,ψ(i) =

{
1 if i ∈ im(ϕ),
−1 if i ∈ im(ψ),

then Eq. (19) can be rewritten as

(33) c
~t,(ϕ,ψ)
~r ,~s

(i) =



(
ti−1

h(ϕ,ψ),i−1

)
if i = 1
or if i > 2 andεϕ,ψ(i)εϕ,ψ(i − 1) = 1,

( ti−1
i∑

j=1
t j−

i∑
j=1

h(ϕ,ψ), j

)
if i > 2 andεϕ,ψ(i)εϕ,ψ(i − 1) = −1.

Also recall

c
~t,(ϕ,ψ)
~r ,~s

=

k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r,~s

(i).

For the inductive proof to work, we also include the case whenone ofk or ℓ (but not both) is
zero which corresponds to the case when~µ or ~ν ∈ H∗0(Ĝ) is the empty word 1. We will use the
convention thatZ0

>1 = {e} and denote|e| = 0. Whenk = 0, ℓ > 1, we will also denote~r = e,
denotef : [k](= ∅) → [k + ℓ] = [ℓ] and denoteI0,ℓ = {(f , id[ℓ])}. Similarly, whenℓ = 0, k > 1, we
denote~s = e, f : [ℓ] → [k + ℓ] = [k] andIk,0 = {(id[k] , f )}. Then the notations in Eq. (31) – (33)
still make sense even if exactly one ofk andℓ is zero. More precisely, whenk = 0, ℓ > 1, we
haveh(f ,id[ℓ]),(e,~s),i = si, εf ,id[ℓ] (i) = −1, 1 6 i 6 ℓ. Also, for any~s and~t ∈ Zℓ

>1 with |~s| = |~t|, we have

(34) c
~t,(f ,id[ℓ])
e,~s =

ℓ∏

i=1

(
ti−1

si−1

)
=

ℓ∏

i=1

δti
si
.
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Similarly, if ~s= e, then for any~r ,~t ∈ Zk
>1 with |~r | = |~t|, we haveh(id[k] ,f ),(~r,e),i = r i, εid[k] ,f (i) = 1, 1 6

i 6 k and

(35) c
~t,(id[k] ,f )
~r,e =

k∏

i=1

δti
r i
.

We first give some conditions for the vanishing ofc
~t,(ϕ,ψ)
~r ,~s

.

Lemma 3.1. Let k, ℓ > 1. Let~r ∈ Zk
>1, ~s ∈ Z

ℓ
>1 and~t ∈ Zk+ℓ

>1 with |~r | + |~s| = |~t|. Let (ϕ, ψ) ∈ Ik,ℓ.

Then c
~t,(ϕ,ψ)
~r ,~s

, 0 if and only if, for1 6 i 6 k+ ℓ,



ti > h(ϕ,ψ),i, if i = 1 or if i > 2 andεϕ,ψ(i)εϕ,ψ(i − 1) = 1,
i∑

j=1
t j >

i∑
j=1

h(ϕ,ψ), j >
i−1∑
j=1

t j, if i > 2 andεϕ,ψ(i)εϕ,ψ(i − 1) = −1.

Proof. By definition,c~t,(ϕ,ψ)
~r,~s

, 0 if and only if c
~t,(ϕ,ψ)
~r ,~s

(i) , 0 for everyi ∈ [k + ℓ]. Also
(

a

b

)
, 0 if

and only ifa > b > 0. Then the lemma follows since
(
ti − 1 > h(ϕ,ψ),i − 1 > 0

)
⇔
(
ti > h(ϕ,ψ),i > 1

)

and

(
ti − 1 >

i∑

j=1

t j −

i∑

j=1

h(ϕ,ψ),i > 0
)
⇔
(
−

i−1∑

j=1

t j > −

i−1∑

j=1

t j − 1 > −
i∑

j=1

h(ϕ,ψ), j > −

i∑

j=1

t j

)
.

�

Lemma 3.2. Let k, ℓ,~r, ~s,~t be as in Lemma 3.1.

(a) Let (ϕ, ψ) ∈ Ik,ℓ. If ϕ(1) = 1, s1 = 1 and t1 > r1 or if ψ(1) = 1, r1 = 1 and t1 > s1, then

c
~t,(ϕ,ψ)
~r ,~s

= 0.

(b) If t1 < min(r1, s1), then c
~t,(ϕ,ψ)
~r ,~s

= 0 for any(ϕ, ψ) ∈ Ik,ℓ.

Proof. (a). We only consider the case whenϕ(1) = 1, s1 = 1 andt1 > r1. The proof of the other
case is similar. Sinceϕ(1) = 1, we haveψ(1) > 1. This means thath(ϕ,ψ),i = r i for 1 6 i 6 ψ(1)−1

andh(ϕ,ψ),ψ(1) = s1. Supposec
~t,(ϕ,ψ)
~r ,~s

, 0. Then by Lemma 3.1, we haveti > r i for 2 6 i 6 ψ(1)− 1

and
ψ(1)−1∑

j=1
r j + s1 >

ψ(1)−1∑
j=1

t j by takingi = ψ(1). From these two inequalities, we obtainr1 + s1 > t1

and hencer1 > t1 sinces1 = 1. This is a contradiction.

(b) If t1 < min(r1, s1), then t1 < h(ϕ,ψ),1. So by Lemma 3.1, for every (ϕ, ψ) ∈ Ik,ℓ we have

c
~t,(ϕ,ψ)
~r ,~s

= 0. �

We next give some relations among the numbersc
~t,(ϕ,ψ)
~r ,~s

(i) as the parameters vary.
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Definition 3.3. Let~e1 denote(1, 0, · · · , 0)of suitable dimension. So for any vector~x = (x1, x2, · · · , xk)
and a∈ Z, we have

~x− a~e1 = (x1 − a, x2, · · · , xk).

Define
~x ′ = (x′1, · · · , x

′
k−1) := (x2, · · · , xk)

with the convention that(x1)′ = e. For a function f on[k], let f♯ and f♭ be respectively the
functions on[k− 1] and [k] defined by

f ♯(x) = f (x+ 1)− 1, f ♭(x) = f (x) − 1

with the convention that[0] = ∅ and that, if f is a function on[1], then f♯ = f . Let f& and f∗ be
respectively the functions on[k + 1] and[k] defined by

f & (1) = 1, f & (x) = f (x− 1)+ 1, f ∗(y) = f (y) + 1, 2 6 x 6 r + 1, 1 6 y 6 r.

Also define

Ik,ℓ,ϕ(1)=1 = {(ϕ, ψ) ∈ Ik,ℓ | ϕ(1) = 1}, Ik,ℓ,ψ(1)=1 = {(ϕ, ψ) ∈ Ik,ℓ | ψ(1) = 1}.

Lemma 3.4. Let k, ℓ > 1. The map

(♯, ♭) : Ik,ℓ,ϕ(1)=1→ Ik−1,ℓ, (ϕ, ψ) 7→ (ϕ♯, ψ♭)

is a bijection whose inverse is given by

(& , ∗) : Ik−1,ℓ → Ik,ℓ,ϕ(1)=1, (ϕ, ψ) 7→ (ϕ& , ψ∗).

Similarly, the map

(♭, ♯) : Ik,ℓ,ψ(1)=1→ Ik,ℓ−1, (ϕ, ψ) 7→ (ϕ♭, ψ♯)

is a bijection whose inverse is given by

(∗,& ) : Ik,ℓ−1→ Ik,ℓ,ψ(1)=1, (ϕ, ψ) 7→ (ϕ∗, ψ& ).

Proof. From the definition we verify that

(♯, ♭)(Ik,ℓ,ϕ(1)=1) ⊆ Ik−1,ℓ

and
(& , ∗)(Ik−1,ℓ) ⊆ Ik,ℓ,ϕ(1)=1.

Then to prove the first assertion we only need to show that (ϕ♯)& = ϕ and (ψ♭)∗ = ψ if ϕ(1) = 1,
and that (ϕ& )♯ = ϕ and (ψ∗)♭ = ψ. We just check the first equation and leave the others to the
interested reader. First we have (ϕ♯)& (1) = 1 by definition. Sinceϕ(1) = 1, we have (ϕ♯)& (i) = ϕ(i)
wheni = 1. If i > 2, then by definition we haveϕ♯(i−1) = ϕ(i)−1 and (ϕ♯)& (i) = ϕ♯(i−1)+1 = ϕ(i),
as desired.

The proof of the second assertion in the lemma is similar. �

Lemma 3.5. Let k, ℓ,~r, ~s,~t and(ϕ, ψ) be as in Lemma 3.1.
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(a) Let a and b be integers such that a< min(t1, r1), b < min(t1, s1). Then for all i∈ {2, · · · , k+
ℓ}, we have

c
~t−a~e1,(ϕ,ψ)
~r−a~e1,~s

(i) = c
~t,(ϕ,ψ)
~r,~s

(i)

and
c
~t−b~e1,(ϕ,ψ)
~r ,~s−b~e1

(i) = c
~t,(ϕ,ψ)
~r ,~s

(i).

(b) If ϕ(1) = 1 and r1 = t1 = 1, then

(36) c
~t,(ϕ,ψ)
~r,~s

(i + 1) = c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

(i), 1 6 i 6 k+ ℓ − 1,

with the notations in Definition 3.3. Similarly, ifψ(1) = 1 and s1 = t1 = 1, then

(37) c
~t,(ϕ,ψ)
~r,~s

(i + 1) = c
~t ′,(ϕ♭,ψ♯)
~r ,~s′

(i), 1 6 i 6 k+ ℓ − 1.

Proof. (a) We prove the first equality. The proof for the second equality is similar. Sincea <
min(r1, t1), we have~r − a~e1 ∈ Z

k
>1 and~t − a~e1 ∈ Z

k+ℓ
>1 . For better distinction, we will use the full

notationh(ϕ,ψ),(~r,~s),i defined in Eq. (31) instead of its abbreviationh(ϕ,ψ),i. Then we have

(38) h(ϕ,ψ),(~r−a~e1,~s),i =

{
h(ϕ,ψ),(~r,~s),i if i , ϕ(1),
h(ϕ,ψ),(~r,~s),i − a if i = ϕ(1).

Let i ∈ {2, · · · , k+ ℓ}. If εϕ,ψ(i)εϕ,ψ(i − 1) = 1, theni , ϕ(1). Indeed, ifi = ϕ(1), theni − 1 must
be in im(ψ), implying thatεϕ,ψ(i)εϕ,ψ(i − 1) = −1. Thus

c
~t−a~e1,(ϕ,ψ)
~r−a~e1,~s

(i) =
(

ti−1

h(ϕ,ψ),(~r−a~e1,~s),i−1

)
=

(
ti−1

h(ϕ,ψ),(~r ,~s),i−1

)
= c

~t,(ϕ,ψ)
~r ,~s

(i).

If εϕ,ψ(i)εϕ,ψ(i − 1) = −1, then eitheri = ϕ( j) or i − 1 = ϕ( j) for some j ∈ [k]. In either case, we
havei > ϕ(1) sinceϕ keeps the order. Thus by Eq. (38), we have

i∑

j=1

h(ϕ,ψ),(~r−a~e1,~s), j =

i∑

j=1

h(ϕ,ψ),(~r,~s), j − a.

So

c
~t−a~e1,(ϕ,ψ)
~r−a~e1,~s

(i) =
( ti−1

(t1−a)+
i∑

j=2
t j−

i∑
j=1

h(ϕ,ψ),(~r−a~e1,~s), j

)
=

( ti−1
i∑

j=1
t j−

i∑
j=1

h(ϕ,ψ),(~r,~s), j

)
= c

~t,(ϕ,ψ)
~r ,~s

(i).

(b) Letϕ(1) = 1 andr1 = t1 = 1. By Eq. (31), for 16 i 6 k + ℓ − 1,

h(ϕ,ψ),(~r,~s),i+1 =

{
r j if i + 1 = ϕ( j)
sj if i + 1 = ψ( j)

=

{
r ′j−1 if i = ϕ( j) − 1
sj if i = ψ( j) − 1

=

{
r ′j if i = ϕ( j + 1)− 1
sj if i = ψ( j) − 1

=

{
r ′j if i = ϕ♯( j)
sj if i = ψ♭( j).

Thus

(39) h(ϕ,ψ),(~r,~s),i+1 = h(ϕ♯,ψ♭),(~r ′,~s),i, 1 6 i 6 k+ ℓ − 1.

Also, for 16 i 6 k+ ℓ − 1, sinceϕ(1) = 1, we have

i + 1 ∈ im(ϕ)⇔ i + 1 = ϕ( j), j ∈ {2, · · · , k} ⇔ i = ϕ♯( j − 1), j − 1 ∈ [k− 1]⇔ i ∈ im(ϕ♯).
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Similarly, i + 1 ∈ im(ψ) ⇔ i ∈ im(ψ♭). Thus

(40) εϕ,ψ(i + 1) = εϕ♯,ψ♭(i), 1 6 i 6 k+ ℓ − 1.

We now verify Eq. (36) fori = 1. Sinceϕ(1) = 1, either 2= ϕ(2) or 2= ψ(1). If 2 = ϕ(2), then
εϕ,ψ(2)εϕ,ψ(1) = 1 and so

c
~t,(ϕ,ψ)
~r ,~s

(2) =
(

t2−1

r2−1

)
=

(
t′1−1

r ′1−1

)
= c

~t ′,(ϕ♯,ψ♭)
~r ′,~s

(1).

If ψ(1) = 2, thenεϕ,ψ(2)εϕ,ψ(1) = −1. So by the condition thatr1 = t1 = 1, we obtain

c
~t,(ϕ,ψ)
~r ,~s

(2) =
(

t2−1

t1+t2−r1−s1

)
=

(
t2−1

t2−s1

)
=

(
t2−1

s1−1

)
=

(
t′1−1

s1−1

)
= c

~t ′,(ϕ♯,ψ♭)
~r ′,~s

(1).

Next consideri > 2. By Eq. (39) and Eq. (40), we have

c
~t,(ϕ,ψ)
~r ,~s

(i + 1) =



(
ti+1−1

h(ϕ,ψ),(~r ,~s),i+1−1

)
if εϕ,ψ(i + 1)εϕ,ψ(i) = 1,

( ti+1−1
i+1∑
j=1

t j−
i+1∑
j=1

h(ϕ,ψ),(~r ,~s), j

)
if εϕ,ψ(i + 1)εϕ,ψ(i) = −1,

=



(
t′i −1

h
(ϕ♯,ψ♭),(~r ′,~s),i

−1

)
if εϕ♯,ψ♭(i)εϕ♯,ψ♭(i − 1) = 1,

( t′i−1
i∑

j=1
t′j−

i∑
j=1

h
(ϕ♯,ψ♭),(~r ′ ,~s), j

)
if εϕ♯,ψ♭(i)εϕ♯,ψ♭(i − 1) = −1,

sincet1 = 1 andh(ϕ,ψ),(~r,~s),1 = r1 = 1. Therefore, we havec
~t,(ϕ,ψ)
~r,~s

(i + 1) = c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

(i) wheni > 2.
The proof for Eq. (37) is similar. �

Lemma 3.6. Let k, ℓ,~r, ~s,~t and(ϕ, ψ) be as in Lemma 3.1.

(a) Suppose that r1 > 2 and s1 > 2. If t1 > 2, then we have

(41) c
~t,(ϕ,ψ)
~r,~s

= c
~t−~e1,(ϕ,ψ)
~r−~e1,~s

+ c
~t−~e1,(ϕ,ψ)
~r,~s−~e1

If t1 = 1, then we have

(42) c
~t,(ϕ,ψ)
~r ,~s

= 0.

(b) Suppose that r1 = s1 = 1. If ϕ(1) = 1 and t1 = 1, then we have

(43) c
~t,(ϕ,ψ)
~r,~s

= c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

with the notations in Definition 3.3. Ifψ(1) = 1 and t1 = 1, then we have

(44) c
~t,(ϕ,ψ)
~r ,~s

= c
~t ′,(ϕ♭,ψ♯)
~r ,~s′

.

If t1 > 2, then we have

(45) c
~t,(ϕ,ψ)
~r ,~s

= 0.
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(c) Suppose that r1 = 1 and s1 > 2. If ϕ(1) = 1 and t1 = 1, then we have

(46) c
~t,(ϕ,ψ)
~r ,~s

= c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

.

If ψ(1) = 1 and t1 = 1, then we have

(47) c
~t,(ϕ,ψ)
~r ,~s

= 0.

If t2 > 2, then we have

(48) c
~t,(ϕ,ψ)
~r,~s

= c
~t−~e1,(ϕ,ψ)
~r,~s−~e1

.

Similar statements hold when r1 > 2 and s1 = 1.

Proof. (a) If ϕ(1) = 1, then

c
~t,(ϕ,ψ)
~r ,~s

(1) =
(

t1−1

r1−1

)
=

(
t1−2

r1−2

)
+

(
t1−2

r1−1

)
= c

~t−~e1,(ϕ,ψ)
~r−~e1,~s

(1)+ c
~t−~e1,(ϕ,ψ)
~r ,~s−~e1

(1).

Similarly, if ψ(1) = 1, we also have

c
~t,(ϕ,ψ)
~r ,~s

(1) = c
~t−~e1,(ϕ,ψ)
~r−~e1,~s

(1)+ c
~t−~e1,(ϕ,ψ)
~r ,~s−~e1

(1).

In either case, by Lemma 3.5.(a) we have

c
~t,(ϕ,ψ)
~r ,~s

(i) = c
~t−~e1,(ϕ,ψ)
~r−~e1,~s

(i) = c
~t−~e1,(ϕ,ψ)
~r ,~s−~e1

(i)

wheni ∈ {2, · · · , k+ ℓ}. Hence

c
~t,(ϕ,ψ)
~r,~s

=

k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r ,~s

(i)

= (c
~t−~e1,(ϕ,ψ)
~r−~e1,~s

(1)+ c
~t−~e1,(ϕ,ψ)
~r,~s−~e1

(1))
k+ℓ∏

i=2

c
~t,(ϕ,ψ)
~r ,~s

(i)

=

k+ℓ∏

i=1

c
~t−~e1,(ϕ,ψ)
~r−~e1,~s

(i) +
k+ℓ∏

i=1

c
~t−~e1,(ϕ,ψ)
~r ,~s−~e1

(i)

= c
~t−~e1,(ϕ,ψ)
~r−~e1,~s

+ c
~t−~e1,(ϕ,ψ)
~r ,~s−~e1

.

This proves Eq. (41). Eq (42) follows from Lemma 3.2 (b).

(b) First we assume thatt1 = 1. For (ϕ, ψ) ∈ Ik,ℓ, eitherϕ(1) = 1 orψ(1) = 1. If ϕ(1) = 1, then

c
~t,(ϕ,ψ)
~r ,~s

(1) =
(

t1−1

r1−1

)
=

(
0

0

)
= 1

and by Lemma 3.5.(b) we have

c
~t,(ϕ,ψ)
~r,~s

(i + 1) = c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

(i).

Hence

c
~t,(ϕ,ψ)
~r,~s

=

k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r ,~s

(i) =
k+ℓ∏

i=2

c
~t,(ϕ,ψ)
~r,~s

(i) =
k+ℓ−1∏

i=1

c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

(i) = c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

.

This proves Eq. (43). The proof of Eq. (44) is similar. The equality for t1 > 2 follows from
Lemma 3.2.(a).
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(c) Suppose thatr1 = 1 ands1 > 2.
Case 1:t1 = 1. We consider the case ofϕ(1) = 1. By Lemma 3.5.(b) we have

c
~t,(ϕ,ψ)
~r,~s

(i + 1) = c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

(i).

Combining this with

c
~t,(ϕ,ψ)
~r,~s

(1) =
(

t1−1

r1−1

)
=

(
0

0

)
= 1,

we obtain

c
~t,(ϕ,ψ)
~r ,~s

=

k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r,~s

(i) =
k+ℓ−1∏

i=1

c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

(i) = c
~t ′,(ϕ♯,ψ♭)
~r ′,~s

.

This proves Eq. (46). Ifψ(1) = 1, then

c
~t,(ϕ,ψ)
~r ,~s

(1) =
(

t1−1

s1−1

)
=

(
0

s1−1

)
= 0

sinces1 − 1 > 1 and soc~t,(ϕ,ψ)
~r,~s

= 0, as needed.

Case 2: t1 > 2. We will consider the four subcases whenψ(1) = 1 andt1 < s1, whenψ(1) = 1
andt1 > s1, whenψ(1) = 1 andt1 = s1, and whenϕ(1) = 1.

If ψ(1) = 1 andt1 < s1, then

c
~t,(ϕ,ψ)
~r ,~s

= 0 = c
~t−~e1,(ϕ,ψ)
~r ,~s−~e1

by Lemma 3.1. Ifψ(1) = 1 andt1 > s1, then by Lemma 3.2.(a) we also have

c
~t,(ϕ,ψ)
~r ,~s

= 0 = c
~t−~e1,(ϕ,ψ)
~r ,~s−~e1

.

So in these two subcases (48) holds.
Now if ψ(1) = 1 andt1 = s1, then

c
~t,(ϕ,ψ)
~r,~s

(1) =
(

t1−1

s1−1

)
= 1 =

(
t1−2

s1−2

)
= c

~t−~e1,(ϕ,ψ)
~r ,~s−~e1

(1).

If ϕ(1) = 1, then sincer1 = 1, we have

c
~t,(ϕ,ψ)
~r ,~s

(1) =
(

t1−1

r1−1

)
=

(
t1−1

0

)
= 1 =

(
t1−2

0

)
=

(
t1−2

r1−1

)
= c

~t−~e1,(ϕ,ψ)
~r ,~s−~e1

(1).

In both subcases, by Lemma 3.5.(a) we always have

c
~t,(ϕ,ψ)
~r,~s

(i) = c
~t−~e1,(ϕ,ψ)
~r,~s−~e1

(i).

for i > 2. Therefore,

c
~t,(ϕ,ψ)
~r,~s

=

k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r ,~s

(i) =
k+ℓ∏

i=1

c
~t−~e1,(ϕ,ψ)
~r ,~s−~e1

(i) = c
~t−~e1,(ϕ,ψ)
~r,~s−~e1

.

This proves (48).
The proof for the instance ofr1 > 2 ands1 = 1 is similar. �

4. Proof of the main theorems

We first show that, under the condition thatG is an abelian group, Theorem 2.1 and Theo-
rem 2.2 are equivalent. Then we only need to prove Theorem 2.1. This is done in Section 4.2.
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4.1. The equivalence between Theorem 2.1 and Theorem 2.2.We start with a lemma.

Lemma 4.1. Let G be an abelian group. With the notations in Eq. (12), (17)and (22), we have

(49) θ(~a X (ϕ,ψ)
~b) = θ(~a)⋆(ϕ,ψ)θ(~b).

Proof. Let ~w = θ(~a) and~z = θ(~b). Then by Eq. (12), we havewj = 1/a1 when j = 1 and
wj = a j−1/a j when j > 2. Similarly,zj = 1/b1 when j = 1 andzj = b j−1/b j when j > 2.

Recall Eq. (17):

(~a X (ϕ,ψ)
~b)i =

{
a j if i = ϕ( j),
b j if i = ψ( j).

Wheni = 1, we have

θ(~a X (ϕ,ψ)
~b)1 = (~aX (ϕ,ψ)

~b)−1
1 =

{
a−1

1 = w1 if 1 = ϕ(1)
b−1

1 = z1 if 1 = ψ(1)
= (~w⋆(ϕ,ψ)~z)1.

Next let i > 2. Assume thati ∈ im(ϕ), sayi = ϕ( j) for some j ∈ [k]. If i − 1 ∈ im(ϕ), then j > 2
andi − 1 = ϕ( j − 1). Thus

θ(~a X (ϕ,ψ)
~b)i =

(~aX (ϕ,ψ)
~b)i−1

(~aX (ϕ,ψ)
~b)i

=
a j−1

a j
= wj .

If i − 1 ∈ im(ψ), theni − 1 = ψ(i − j). Thus

θ(~aX (ϕ,ψ)
~b)i =

(~a X (ϕ,ψ)
~b)i−1

(~aX (ϕ,ψ)
~b)i

=
bi− j

a j
=

(z1 · · · zi− j)−1

(w1 · · ·wj)−1
=

w1 · · ·wj

z1 · · · zi− j
.

Hence by Eq. (22),

θ(~a X (ϕ,ψ)
~b)i = (~w⋆(ϕ,ψ)~z)i

when i ∈ im(ϕ). A similar argument shows that the above equality also holds wheni ∈ im(ψ).
This proves (49). �

Proposition 4.2. When G is an abelian group, Theorem 2.2 is equivalent to Theorem 2.1.
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Proof. From the definitions ofθ, Xη and Xρ , we see thatθ is an algebra isomorphism from

HXρ (Ĝ) = (H(Ĝ), Xρ ) to HXη (Ĝ) = (H(Ĝ), Xη ). So for any
[ ~r
~a

]
,
[ ~s
~b

]
∈ HXρ (Ĝ),

[ ~r
~a

]
Xρ

[ ~s
~b

]
=

∑

(ϕ,ψ)∈Ik,ℓ

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

c
~t,(ϕ,ψ)
~r ,~s

[ ~t

~aX (ϕ,ψ)~b

]

⇔ θ(
[ ~r
~a

]
Xρ

[ ~s
~b

]
) = θ(

∑

(ϕ,ψ)∈Ik,ℓ

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

c
~t,(ϕ,ψ)
~r ,~s

[ ~t

~aX (ϕ,ψ)~b

]
)

⇔ θ(
[ ~r
~a

]
) Xη θ(

[ ~s
~b

]
) =

∑

(ϕ,ψ)∈Ik,ℓ

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

c
~t,(ϕ,ψ)
~r ,~s

θ(
[ ~t

~aX (ϕ,ψ)~b

]
)

⇔
[ ~r

θ(~a)

]
Xη

[ ~s

θ(~b)

]
=

∑

(ϕ,ψ)∈Ik,ℓ

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

c
~t,(ϕ,ψ)
~r ,~s

[ ~t

θ(~aX (ϕ,ψ)~b)

]

⇔
[ ~r

θ(~a)

]
Xη

[ ~s

θ(~b)

]
=

∑

(ϕ,ψ)∈Ik,ℓ

~t∈Zk+ℓ
>1 ,|~t|=|~r |+|~s|

c
~t,(ϕ,ψ)
~r ,~s

[ ~t

θ(~a)⋆(ϕ,ψ)θ(~b)

]
(by Eq. (49)).

Then the proposition follows from the bijectivity ofθ. �

4.2. Proof of Theorem 2.1. In this section we prove Theorem 2.1. We first describe recursive
relations ofXρ that we will use later in the proof.

Let HXρ +(Ĝ) be the subring ofHXρ (Ĝ) generated by
[ ~s
~b

]
with ~s ∈ Zk

>1,
~b ∈ Gk, k > 1. Then

H
Xρ (Ĝ) = Z ⊕H

Xρ +(Ĝ).

Define the following operators

P :HXρ +(Ĝ)→ H
Xρ (Ĝ), P(

[ s1,s2,··· ,sk

b1,b2,··· ,bk

]
) =
[ s1+1,s2,··· ,sk

b1,b2,··· ,bk

]
,

Qb :HXρ (Ĝ)→ H
Xρ (Ĝ), Qb(

[ s1,··· ,sk

b1,··· ,bk

]
) =
[ 1,s1,··· ,sk

b,b1,··· ,bk

]
, Qb(1) =

[ 1

b

]
.

Proposition 4.3. The multiplicationXρ on HXρ (Ĝ) defined in Eq. (14) is the unique one that
satisfies the Rota-Baxter type relations[18]:

P(ξ1) Xρ P(ξ2) = P
(
ξ1 Xρ P(ξ2)

)
+ P
(
P(ξ1) Xρ ξ2

)
, ξ1, ξ2 ∈ H

Xρ +(Ĝ),

Qa(ξ1) Xρ Qb(ξ2) = Qa
(
ξ1 Xρ Qb(ξ2)

)
+ Qb
(
Qa(ξ1) Xρ ξ2

)
, ξ1, ξ2 ∈ H

Xρ (Ĝ),

P(ξ1) Xρ Qb(ξ2) = Qb
(
P(ξ1) Xρ ξ2

)
+ P
(
ξ1 Xρ Qb(ξ2)

)
, ξ1 ∈ H

Xρ +(Ĝ), ξ2 ∈ H
Xρ (Ĝ),

Qb(ξ1) Xρ P(ξ2) = Qb
(
ξ1 Xρ P(ξ2)

)
+ P
(
Qb(ξ1) Xρ ξ2

)
, ξ1 ∈ H

Xρ (Ĝ), ξ2 ∈ H
Xρ +(Ĝ).

with the initial condition that1 Xρ ξ = ξ Xρ 1 = ξ for ξ ∈ HXρ (Ĝ).
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Proof. Let HX +
1 (G) be the subring ofHX

1(G) generated by words of the formuxb with b ∈ G.
Then

H
X

1(G) = Z ⊕H
X +

1 (G).

Define operators
I0 :HX +

1 (G)→ H
X

1(G), I0(u) = x0u,

Ib :HX

1(G)→ H
X

1(G), Ib(u) =

{
xbu, u , 1,
xb, u = 1,

for b ∈ G. Then the well-known recursive formula of the shuffle product

(a1a) X (b1b) = a1(a X (b1b)) + b1((a1a) X b), a1, b1 ∈ G, a, b ∈ M(G)

can be rewritten as the following relations ofI0 andIa, Ib, a, b ∈ G,

(50)

I0(u) X I0(v) = I0
(
u X I0(v)) + I0(I0(u) X v

)
, u, v ∈ H

X +

1 (G),

Ia(u) X Ib(v) = Ia
(
u X Ib(v)) + Ib(Ia(u) X v

)
, u, v ∈ H

X

1(G),

I0(u) X Ib(v) = I0
(
u X Ib(v)

)
+ Ib
(
I0(u) X v

)
, u ∈ H

X +

1 (G), v ∈ H
X

1(G),

Ib(u) X I0(v) = Ib
(
u X I0(v)

)
+ I0
(
Ib(u) X v

)
, u ∈ H

X

1(G), v ∈ H
X +

1 (G).

Under the bijectionρ : HX

1(G) → HXρ (Ĝ) in Eq. (13), I0 and Ib, b ∈ G, are sent toP and
Qb, b ∈ G, respectively. Further the relations in Eq. (50) forI0 and Ib, b ∈ G, take the form
in Proposition 4.3. Finally, sinceX is the unique multiplication onHX

1(G) characterized by
its recursive relation Eq. (50) and the initial condition 1X u = u X 1 = u, Xρ is also unique as
characterized. �

For~b ∈ Gk, recall the following notation from Definition 3.3:

~b ′ = (b′1, · · · , b
′
k−1) := (b2, · · · , bk)

with the convention that~b ′ = e whenk = 1. In the proof for Theorem 2.1 we also need the
following lemma.

Lemma 4.4. Let~t ∈ Zk+ℓ−1
>1 , ~a ∈ Gk and~b ∈ Gℓ.

(a) For any(ϕ, ψ) ∈ Ik−1,ℓ we have

(51) Qa1(
[ ~t

~a ′X (ϕ,ψ)~b

]
) =
[ (1,~t)

~aX (ϕ& ,ψ∗)
~b

]

with the notations in Eq. (17) and Definition 3.3.
(b) For any(ϕ, ψ) ∈ Ik,ℓ−1 we have

(52) Qb1(
[ ~t

~aX (ϕ,ψ)~b ′

]
) =
[ (1,~t)

~aX (ϕ∗,ψ& )
~b

]
.

Proof. (a) Let ~̟ = (̟1, · · · , ̟k+ℓ−1) := ~a ′ X (ϕ,ψ)
~b and~τ = (τ1, · · · , τk+ℓ) := ~aX (ϕ& ,ψ∗)

~b. By the
definition ofQa1, we only need to prove that

τi =

{
a1 if i = 1,
̟i−1 if i > 2.
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Sinceϕ& (1) = 1, we haveτ1 = a1. Now let i > 2. We havei ∈ im(ϕ& ) or i ∈ im(ψ∗). If i ∈ im(ϕ& ),
say i = ϕ& ( j), theni − 1 = ϕ( j − 1). Thus we haveτi = a j and̟i−1 = a′j−1 = a j. This shows
thatτi = ̟i−1. If i ∈ im(ψ∗), sayi = ψ∗( j), theni − 1 = ψ( j). Thusτi = b j and̟i−1 = b j again
showingτi = ̟i−1.

(b). The proof is similar to that for Item. (a). �

Proof of Theorem 2.1. We prove the extended form of (21) where one ofk andℓ, but not both,
might be zero. We prove this by induction on|~r | + |~s| > 1. If |~r | + |~s| = 1, then exactly one ofk

andℓ is zero. So exactly one of
[ ~r
~a

]
and
[ ~s
~b

]
is the identity 1. Then by (34) and (35), there is

nothing to prove. For any given integern > 2, assume that the assertion holds for every pair (~r , ~s)
with |~r | + |~s| < n. Now consider~r and~s with |~r | + |~s| = n. If one of k or ℓ is 0, then again by
(34) and (35) there is nothing to prove. So we may assume thatk, ℓ > 1. There are four cases to
consider.

Case 1.r1 > 2 and s1 > 2. Then by Proposition 4.3 and the induction hypothesis, we have

[ ~r
~a

]
Xρ

[ ~s
~b

]
= P(

[ ~r−~e1

~a

]
) Xρ P(

[ ~s−~e1

~b

]
)

= P(
[ ~r−~e1

~a

]
Xρ

[ ~s
~b

]
+
[ ~r
~a

]
Xρ

[ ~s−~e1

~b

]
)

= P
( ∑

(ϕ,ψ)∈Ik,ℓ

∑

~t ∈ Zk+ℓ
>1

|~t |=|~r |+|~s|−1

(c
~t,(ϕ,ψ)
~r−~e1,~s

+ c
~t,(ϕ,ψ)
~r ,~s−~e1

)
[ ~t

~aX (ϕ,ψ)~b

] )

=
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t ∈ Zk+ℓ
>1

|~t |=|~r |+|~s|−1

(c
~t,(ϕ,ψ)
~r−~e1,~s

+ c
~t,(ϕ,ψ)
~r ,~s−~e1

)
[ ~t+~e1

~aX (ϕ,ψ)~b

]

=
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t ∈ Zk+ℓ
>1

|~t |=|~r |+|~s|,t1>2

(c
~t−~e1,(ϕ,ψ)
~r−~e1,~s

+ c
~t−~e1,(ϕ,ψ)
~r ,~s−~e1

)
[ ~t

~aX (ϕ,ψ)~b

]

=
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t ∈ Zk+ℓ
>1

|~t |=|~r |+|~s|,t1>2

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)~b

]
(by Eq. (41))

=
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t ∈ Zk+ℓ
>1

|~t |=|~r |+|~s|

c
~t,(ϕ,ψ)
~r ,~s

[ ~t

~aX (ϕ,ψ)~b

]
(by Eq. (42)).

Case 2.r1 = s1 = 1. We will use the notations~r ′, ~s′, ~a ′ and~b ′ in Definitions 3.3. Then

[ ~r
~a

]
Xρ

[ ~s
~b

]
= Qa1(

[ ~r ′
~a ′

]
) Xρ Qb1(

[ ~s′

~b ′

]
)

= Qa1(
[ ~r ′
~a ′

]
Xρ

[ ~s
~b

]
) + Qb1(

[ ~r
~a

]
Xρ

[ ~s′
~b ′

]
)
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= Qa1

( ∑

(ϕ,ψ)∈Ik−1,ℓ

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ,ψ)
~r ′,~s

[ ~t

~a ′X (ϕ,ψ)~b

])

+Qb1

( ∑

(ϕ,ψ)∈Ik,ℓ−1

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ,ψ)
~r,~s′
[ ~t

~aX (ϕ,ψ)~b ′

] )

=
∑

(ϕ,ψ)∈Ik−1,ℓ

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ,ψ)
~r ′,~s

[ (1,~t)

~aX (ϕ& ,ψ∗)
~b

]

+
∑

(ϕ,ψ)∈Ik,ℓ−1

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ,ψ)
~r,~s′
[ (1,~t)

~aX (ϕ∗ ,ψ& )
~b

]
( by Eq.(51) and (52))

=
∑

(ϕ,ψ)∈Ik,ℓ
ϕ(1)=1

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ♯,ψ♭)
~r ′,~s

[ (1,~t)

~aX (ϕ,ψ)~b

]

+
∑

(ϕ,ψ)∈Ik,ℓ
ψ(1)=1

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ♭,ψ♯)
~r ,~s′

[ (1,~t)

~aX (ϕ,ψ)~b

]
(by Lemma 3.4)

=
∑

(ϕ,ψ)∈Ik,ℓ
ϕ(1)=1

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c(1,~t),(ϕ,ψ)
~r ,~s

[ (1,~t)

~aX (ϕ,ψ)~b

]

+
∑

(ϕ,ψ)∈Ik,ℓ
ψ(1)=1

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c(1,~t),(ϕ,ψ)
~r ,~s

[ (1,~t)

~aX (ϕ,ψ)~b

]
(by Eq. (43) and (44))

=
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c(1,~t),(ϕ,ψ)
~r ,~s

[ (1,~t)

~aX (ϕ,ψ)~b

]

=
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈Zk+ℓ
>1

|~t|=|~r |+|~s|,t1=1

c
~t,(ϕ,ψ)
~r ,~s

[ ~t

~aX (ϕ,ψ)~b

]

=
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈ Zk+ℓ
>1

|~t |=|~r |+|~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)~b

]
(by Eq. (45)).

Case 3. r1 = 1 and s1 > 2. With the notations in Definitions 3.3, we write~r = (1,~r ′). Let
~a ′ = (a2, · · · , ar). Then

[ ~r
~a

]
Xρ

[ ~s

~b

]
= Qa1(

[ ~r ′
~a ′

]
) Xρ P(

[ ~s−~e1

~b

]
)
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= Qa1(
[ ~r ′
~a ′

]
Xρ

[ ~s
~b

]
) + P(

[ ~r
~a

]
Xρ

[ ~s−~e1

~b

]
)

= Qa1(
∑

(ϕ,ψ)∈Ik−1,ℓ

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ,ψ)
~r ′,~s

[ ~t

~a ′X (ϕ,ψ)~b

]
)

+P(
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈ Zk+ℓ
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ,ψ)
~r ,~s−~e1

[ ~t

~aX (ϕ,ψ)~b

]
)

=
∑

(ϕ,ψ)∈Ik−1,ℓ

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ,ψ)
~r ′,~s

[ (1,~t)

~aX (ϕ& ,ψ∗)
~b

]

+
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈ Zk+ℓ
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ,ψ)
~r ,~s−~e1

[ ~t+~e1

~aX (ϕ,ψ)~b

]
(by Eq. (51))

=
∑

(ϕ,ψ)∈Ik,ℓ
ϕ(1)=1

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ♯,ψ♭)
~r ′,~s

[ (1,~t)

~aX (ϕ,ψ)~b

]

+
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈ Zk+ℓ
>1

|~t|=|~r |+|~s|−1

c
~t,(ϕ,ψ)
~r ,~s′
[ ~t+~e1

~aX (ϕ,ψ)~b

]
(by Lemma 3.4)

=
∑

(ϕ,ψ)∈Ik,ℓ
ϕ(1)=1

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c(1,~t),(ϕ,ψ)
~r,~s

[ (1,~t)

~aX (ϕ,ψ)~b

]

+
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈ Zk+ℓ
>1

|~t|=|~r |+|~s|−1

c
~t+~e1,(ϕ,ψ)
~r ,~s

[ ~t+~e1

~aX (ϕ,ψ)~b

]
(by Eq. (46) and (48))

=
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈ Zk+ℓ−1
>1

|~t|=|~r |+|~s|−1

c(1,~t),(ϕ,ψ)
~r,~s

[ (1,~t)

~aX (ϕ,ψ)~b

]

+
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈ Zk+ℓ
>1

|~t|=|~r |+|~s|−1

c
~t+~e1,(ϕ,ψ)
~r ,~s

[ ~t+~e1

~aX (ϕ,ψ)~b

]
(by Eq. (47))

=
∑

(ϕ,ψ)∈Ik,ℓ

∑

~t∈ Zk+ℓ
>1

|~t|=|~r |+|~s|

c
~t,(ϕ,ψ)
~r ,~s

[ ~t

~aX (ϕ,ψ)~b

]
.

Case 4.r1 > 2 and s1 = 1. The proof for this case is similar to that for Case 3. �
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5. Appendix: a shuffle formulation of the main formula

The main body of the paper does not depend on this Appendix. Here we give another formu-
lation of Theorem 2.1 in terms of shuffles of permutations for those who are interested in a more
precise connection between the main formula and the shuffle product.

Let integersk, ℓ > 1 be given. Let

(53)
S(k, ℓ) : =

{
σ ∈ Σk+ℓ | σ

−1(1) < · · · < σ−1(k), σ−1(k+ 1) < · · · < σ−1(k+ ℓ)
}

=
{
σ ∈ Σk+ℓ

∣∣∣∣
if 1 6 σ(i) < σ( j) 6 k
or k+ 1 6 σ(i) < σ( j) 6 k+ ℓ,

theni < j
}
.

be the set of (k, ℓ)-shuffles.
To state the shuffle form of our main formula we need the following notations. Define

εσ : [k + ℓ] → {±1}, εσ(i) =

{
1, 1 6 σ(i) 6 k,
−1, k+ 1 6 σ(i) 6 k+ ℓ.

Let~r = (r1, · · · , rk) ∈ Zk
>1 and~s= (s1, · · · , sℓ) ∈ Zℓ>1. Denote

~κ = (κ1, · · · , κk+ℓ) := (r1, · · · , rk, s1, · · · , sℓ).

Let ~a ∈ Gk and~b ∈ Gℓ. Denote

~γ = (a1, · · · , ak, b1, · · · , bℓ).

Forσ ∈ S(k, ℓ) we denote

~a X σ
~b = (γσ(1), · · ·γσ(k+ℓ)).

We have the following equivalent form of Theorem 2.1.

Theorem 5.1. Let G be a set and letHXρ (Ĝ) = (H(Ĝ), Xρ ) be as defined by Eq. (8). Then for
[ ~r
~a

]
∈ Ĝk and

[ ~s
~b

]
∈ Ĝℓ in HXρ (Ĝ), we have

[ ~r
~a

]
Xρ

[ ~s
~b

]
=

∑

σ∈S(k,ℓ),
~t∈Zk+ℓ

>1 ,|~t|=|~r |+|~s|

( k+ℓ∏

i=1

( ti−1

κσ(i)−1− 1
2 (1−εσ(i)εσ(i−1))

i−1∑
j=1

(t j−κσ( j))

))[ ~t

~aX σ
~b

]

with the convention thatεσ(0) = εσ(1).

Proof. Let Ik,ℓ be as defined in Eq. (16). We have the bijection betweenS(k, ℓ) andIk,ℓ given by

(54) σ−1( j) := σ−1
ϕ,ψ( j) =

{
ϕ( j) if 1 6 j 6 k,
ψ( j − k) if k+ 1 6 j 6 k+ ℓ.

That is,

σ(i) := σϕ,ψ(i) =

{
ϕ−1(i) if i ∈ im(ϕ),
k+ ψ−1(i) if i ∈ im(ψ).

Thus we have

(55) κσ(i) =

{
κϕ−1(i), i ∈ im(ϕ)
κk+ψ−1(i), i ∈ im(ψ) =

{
rϕ−1(i), i ∈ im(ϕ)
sψ−1(i), i ∈ im(ψ) = h(ϕ,ψ),i
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and

(56) (~a X σ
~b)i = γσ(i) =

{
γϕ−1(i), i ∈ im(ϕ)
γk+ψ−1(i), i ∈ im(ψ)

=

{
aϕ−1(i), i ∈ im(ϕ)
bψ−1(i), i ∈ im(ψ)

= (~aX (ϕ,ψ)
~b)i.

By Eq. (56) we have

(57) ~aX σ
~b = ~aX (ϕ,ψ)

~b.

Let εϕ,ψ be the function [k+ ℓ] → {1,−1} defined in Eq. (32). Then forσ = σϕ,ψ,

εσ(i) = 1⇔ σ(i) ∈ [k] ⇔ i = σ−1( j), j ∈ [k] ⇔ i = ϕ( j), j ∈ [k] ⇔ i ∈ im(ϕ)⇔ εϕ,ψ(i) = 1.

So we have

(58) εσ(i) = εϕ,ψ(i), 1 6 i 6 k+ ℓ.

Now our theorem follows from Eq. (33), (55), (57), (58) and Theorem 2.1. �
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logarithmes et conjecture de Deligne-Ihara” au C.I.R.M.(Luminy), April 2000.

[6] D. Bowman and D. Bradley, Resolution of some open problems concerning multiple zeta evaluations of
arbitrary depth,Compos. Math.139(2003), 85-100.

[7] D. M. Bradley, Multipleq-zeta values,J. Algebra, 283, (2005), no. 2, 752–798math.QA/0402093
[8] D. M. Bradley, Aq-analog of Euler’s decomposition formula for the double zeta function.Int. J. Math.

Math. Sci.21 (2005), 3453–3458.
[9] D. J. Broadhurst and D. Kreimer, Association of multiplezeta values with positive knots via Feynman

diagrams up to 9 loops,Phys. Lett. B, 393, (1997), no. 3-4, 403–412.
[10] D. J. Broadhurst, Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth

root of unity,European Phys. J. C (Fields)8 (1999), 311-333.
[11] P. Deligne and A. B. Goncharov, Groupes fondamentaux motiviques de Tate mixte,Ann. Sci.École Norm.
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