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ON FAMILIES OF FILTERED (¢, N)-MODULES

BINGYONG XIE

ABSTRACT. In this paper, as a generalization of Berger’s construction, we give a functor
from the category of families of filtered (¢, N)-modules (with certain condition) to the
category of families of (¢, I"')-modules. Combining this with Kedlaya and Liu’s theorem
we show that, when the base is a reduced affinoid space, every family of weakly admis-
sible filtered (¢, N)-modules can locally be converted into a family of semistable Galois
representations.

Introduction

In p-adic Hodge theory one considers (¢,T')-modules as the category of semilinear
algebra data describing p-adic Galois representations, and considers weakly admis-
sible filtered (¢, N)-modules as the category of semilinear algebra data describing
semistable Galois representations. See [6,7] for the constructions of these equivalences.

Recently mathematicians are interested in families of these modules.

In [3] Berger and Colmez defined a functor from the category of families of p-
adic Galois representations to the category of families of overconvergent étale (p,T")-
modules. But the functor of Berger—Colmez fails to be an equivalence of categories,
in contrast with the classical case.

However Kedlaya and Liu [10] showed that, when the base is an affinoid space,
every family of overconvergent étale (p,I')-modules can locally be converted into a
family of p-adic Galois representations.

Theorem 0.1 ([10, Theorem 0.2]). Let L be a reduced affinoid algebra over Q,,
and let My be a family of (p,T')-modules over E@QPBLgK in the sense of [10]. If M,
is étale for some x € Max(L), then there exists an affinoid neighborhood Max(B) of x
and a B-linear representation Vi of G whose associated (¢, T')-module is isomorphic
to By M. Moreover Vg is unique for this property.

Berger and Colmez [3] also defined a functor from the category of families of
semistable Galois representations to the category of families of weakly admissible
filtered (¢, N)-modules, which also fails to be equivalent.

In this paper we show that, when the base is an affinoid space, every family of
weakly admissible filtered (¢, N)-modules can locally be converted into a family of
semistable Galois representations. Following an ideal mentioned in [10], this is done
by generalizing Berger’s construction in [2] to families of filtered (¢, N)-modules and
then applying Theorem 0.1.
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Based on Schneider and Teitelbaum’s notions of Fréchet—Stein algebras and coad-
missible modules over a Fréchet—Stein algebra, we introduce a category of coadmissible
(¢, T')-modules. This category is studied by Kedlaya et al. [11]. As a generalization
of Berger’s functor given in [2], we construct a functor from the category of families
of filtered (p, N)-modules satisfying Condition (Gr) to the category of coadmissible
(¢, T')-modules. For a families of filtered (p, NV)-modules, we mean a filtered (¢, N)-
module over a coefficient algebra £. See Section 2 for the precise definition. Such a
filtered (p, N)-module D (over £) is said to satisfies (Gr) if the filtration Fil® has the
following property:

For every i € Z, Gr'Dg = FiliDK/FiliHDK is locally free over £ ®q,
K of constant rank.

When the base £ is a reduced affinoid algebra, a coadmissible (¢, I')-module is
essentially a family of (¢,T')-modules (in the sense of [10]), so that we can apply
Theorem 0.1. As a result, we obtain that, when the base is a reduced affinoid space,
every family of weakly admissible filtered (¢, N)-modules satisfying (Gr) locally comes
from some family of semistable Galois representations.

Our main result is the following

Theorem 0.2. Let £ be a reduced affinoid algebra and let D be a filtered (o, N)-
module over L ®q, Ko that satisfies (Gr). If D, is weakly admissible for some x €
Max(L), then there exists an affinoid neighborhood Max(B) of © and a semi-stable
B-representation Vg of Gk whose associated filtered (o, N)-module is isomorphic to
Dg. Moreover, Vi is unique for this property.

In the case of N = 0 some related results were obtained by Hellmann [9]. We
explain Hellmann’s results as follows. Fix an integer d > 0 and (a conjugacy class of)
a dominant coweight v of the algebraic group Resg /g, GLq with reflex field £. Let ©,,
be the fpqe-stack on the category of rigid spaces over K (or slightly more generally,
on the category of adic spaces locally of finite type) whose X-valued points are triples
(D, ¢, Fil*) with a locally free Ox ®q, Ko-module D, a semilinear automorphism ¢,
and a filtration of D ®q, K that is of type v.

Theorem 0.3 ([9, Theorem 1.1]). The weakly admissible locus is an open substack
DY of D, on the category of adic spaces locally of finite type over E.

Theorem 0.4 ([9, Theorem 1.3, Theorem 8.26]). Let v be a miniscule cocharacter
of Resg g, GLa-

(a) Then the groupoid of families of crystalline representations of G g with Hodge-
Tate weights v is an open substack D™ of DWa,
(b) The groupoid

Resl,is : X — { families of crystalline representations on X with Hodge-Tate weights v}

on the category of adic spaces locally of finite type over E is isomorphic to
the stack D™ and thus is an open substack of DY?.

That a cocharacter is miniscule means that the Hodge-Tate weights are in {0, 1}.
Now let D be any filtered ¢-module of miniscule type v (with reflex field E =
Qp). Since D, is weakly admissible and thus comes from a crystalline representation
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according to Colmez—Fontaine theorem, by Theorem 0.3 and Theorem 0.4, there exist
a neighborhood Max(B) of x and a crystalline B-representation Vi of Gx whose
associated filtered p-module is isomorphic to Dg. So Theorem 0.2 is recovered for
filtered p-modules of miniscule type.

We outline the structure of this paper. In Section 1 we recall the rings coming from
p-adic Hodge theory. In Section 2 we recall the notion of families of filtered (¢, N)-
modules. In Section 3.1 we recall the notions of free families and locally free families of
(¢, T')-modules, and in Section 3.2 we recall Berger and Colmez’s construction in [3].
In Section 4 we introduce the category of coadmissible (¢,I')-modules and give a
functor from the category of families of filtered (¢, N)-modules satisfying (Gr) to the
category of coadmissible (¢, T')-modules. In Section 5 we prove Theorem 0.2.

1. Rings of p-adic Hodge theory

We recall the construction of Fontaine’s period rings. Please consult [1,8] for more
details.

Throughout this paper let K be a finite extension of Q,, K the maximal absolutely
unramified subfield of K. Let ¢ be the Q,-automorphism of K, that reduces to the
absolutely Frobenius of the residue field. Let p,» be the set of p™-th roots of unity
in Qp, fipe = Up>o pipn. For a finite extension K of Q,, put K, = K(u,) and
Koo = K(pipe) = Upso Kn- Set I =T = Gal(Ko/K) and Hg = Gal(Q,/K).

Let C, be a completed algebraic closure of @, with valuation subring Oc, and
p-adic valuation v, normalized such that v,(p) = 1.

Let E be {(®);>0 | 2D € C, (x(’+1))p — 2() Vi € N}, and let ET be the subset
of E such that z(® Oc, - lfz,y € E we define x + y and xy by

(z+y)D = jlirgo(m(iﬂ’) 4yl (zy) D = £Dy®,

Then E is a field of characteristic p. Define a function UE E — RU {+o0} by putting
vp((2™)) = v, (a )) This is a valuation under which E is complete and E* is the
ring of integers in E. If we let € = () be an element of E* with €© = 1 and
¢ £ 1, then E is a completed algebraic closure of F,((e — 1)).
Let AT be the > ring W(E*) of Witt vectors with coefficients in E*, A the ring of

Witt vectors W(E) and B = A[1/p]. Put 7 = [e] — 1 € AT, where [¢] denotes the
Teichmiiller lifting of €. Let A be the completion of the maximal unramified extension
of Z,((m)) in A, B = A[1/p).

If 7, s are two elements in N[1/p] U {+oc}, we put Almsl = KJ“{[;T],@} and
Blsl = Al™sl[1/p] with the convention that p/[77>°] = 1/[7] and [7T°°]/p = 0. If
I is a subinterval of R U {400}, we put B, = O, S]CIB[ sl If T C J are two closed

intervals, then BZ C B!, and we define a valuation v; on B’ by demanding vi(z) =0

if and only if s Al — pAI . Then ]A?EVI is a Banach space £or the valuation v; and the
completion of B” for the valuation B! is identified with B!. Put

nfr _ nlr ntr _ il nt.0 _ 1Ko,
B = plrteel - BLY = BInt<l and B, = Bf;) = B0l
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Note that ]A?;L’g is a Fréchet space for the valuations v[™*! with s € [r, +oo[, and

BT is dense in ﬁll; Put Bf = U,?Oﬁ”’ and Eiig = UTZOEIfg' Equip Bt and Eiig
— Bf

with the inductive limit topology. Set Efgg = E:qg[&r] and Efog rigfr], where
£y =log(m). Our notations 7 and ¢, coincide with the notations X and £x = log(X)
in [2] respectively. As in [2, Section II.2], we extend the actions of ¢ and I" to Bfgg

and fifog by the formulas ¢(£;) = pl; + log(p(m)/7P) and () = £ + log(y(m) /7).

All of the above rings admit actions of Gx. Put Bx = B« EK = EHK, Eﬁ( =
(BT)x, Bl = Uy»oBY and B}, - = UrsoBl! ;. Put B = BY" N B. We equip
Bl with the weak topology (see [3]). Let BI{;’ « be the Fréchet completion of Bf"
for the topology induced from that on ]A?;Ii’;K. Put B;( = UTZOB};T and Biigﬂ =
UTEOBI{;K- The G-actions on B} and BIig,K factor through I'. For s > r let B[;;’S] be

the completion of BL’; 5 for the valuation v[™l.

All of Bf, Bf, BI,,, B and B,
There exists a sufficiently large r(K) such that, if s > r > r(K), then B[I?s] is
;;Oioo a;T* with coefficients a; € K/, and
convergent on the domain p~1/" < IT| < p~1/5. Here we use K|, to denote the maximal
absolutely unramified subfield of K.

If £ is a Banach space over Q, and B is a locally convex space over Q,, let L&, B
be the completion of £ ®q, B for the projective tensor product topology [12, Section

17]. Note that, if £ or B is finite over Q,, then E@QPB = L ®q,B.

x admit actions of ¢.

isomorphic to the ring consisting of f = >

Lemma 1.1. If £ is a Banach space over Q, and B is a locally convex space over
Qp with an action of a group G, then the G-action can be extended L-linearly and
continuously to L&g, B in a unique way, and (L&g,B)¢ = L&g, BY.

Proof. By [12, Proposition 10.1] there exists a set X such that £ is topologically
isomorphic to the Banach space co(X) defined by

co(X) :={f : X — Qp such that for any ¢ > 0 the set {x € X : |f(z)| > €} is finite}.

Therefore £ has a topological basis {e;}zex if we identify £ with ¢o(X) via the
above isomorphism. From the definition of completion topological tensor product,
we see that E@QPB consists of ) _y aze, with a, € B, such that for any open
neighborhood U of 0 in B, the set {z € X : a, ¢ U} is finite. We can extend the G-
action to E@)QPB by letting g(>__c x @z€z) = > cx 9(az)e.. The uniqueness of such
an extension follows from the continuity. It is clear that g3 .y az€s) = D c x Gz€a
if and only if a, are all in BY. In other words (L®q, B)® = L&q, BC. O

Definition 1.2. A coefficient algebra means a commutative Banach algebra £ over
Q, satisfying the following conditions:

(a) The norm on L restricts to the norm on Q,;
(b) For each maximal ideal m of £, the residue field Ly, := £/m is finite over Qy;
(¢) The Jacobson radical of L is zero; in particular, £ is reduced.
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For example, any reduced affinoid algebra over Q, is a coefficient algebra. In par-
ticular, any finite extension of Q, is a coeflicient algebra.

As B! and B! are Fréchet algebras and thus are locally convex, for any coefhi-
cient algebra £ we can form £®@)BI and £®Q B!. Then we define £®Qp rig, K¢ 10 be

T>0£®@p Bil’g x and equip it with the inductive limit topology We define £®Qp rig’
L&Bq, BJr and L®&q, Bf. similarly. Then we put E®Qp log = (LRq, rlg)[ﬁﬂ] and
£®Qp log ([,®@ Brlg)[ﬂﬂ]. From the proof of Lemma 1.1 we see that, if B = B!, Bl
etc, and if £ is an endomorphism on B, 1 ® § : L ®q, B — L ®q, B can be uniquely
extended to a continuous endomorphism on E@@pB . By abuse of notations, we always
denote the resulting endomorphism by the same notation £.

Notation 1.3. For £ a coefficient algebra over Q, and I a subinterval of RU {+o0},
let RL be the ring of Laurent series over £ in the variable T that is convergent if

0, (T)~1 € I. Write R for RITL

When r > r(K), ﬁ@QPBIi’;K is isomorphic to R} ®q, K{ via 7 — T, and so
E@QPBLg x 1s isomorphic to R, ®q, K.

2. Filtered (¢, N)-modules

Definition 2.1. Let £ be a coefficient algebra. A filtered (o, N)-module over £ ®q,
Ky is a locally free £ ®q, Ko-module D of finite rank together with the following
structures:

(a) a ¢-semilinear automorphism on D which is again denoted by ¢;

(b) a linear endomorphism N on D satisfying Ny = ppN;

(c) a descending, separated and exhaustive Z-filtration Fil*Dg on Dg := K ®,
D by £ ®q, K-submodules.

Let FilM?fX be the category of filtered (¢, N)-modules over L®q, Ko. When £ = Q,,
File}’fZ is denoted by FilM%" for shortness.

If £’ is another coefficient algebra and there is a continuous map £ — £’, then we
have a functor

FiM$) — FilM%Y,, D D=L @, D.

In particular, if m is a maximal ideal of £, then Dy, = Ly ®, D is a filtered (p, N)-
module over Ly, ®q, Ko. Hence a filtered (¢, N')-module over L®g, Ko can be consid-
ered as a family of filtered (p, N)-modules on Max (L), the maximal spectrum of L.

Lemma 2.2. Suppose that L is a finite extension of Q,. If D is an object in FllMK I
then D is free over L ®q, Ko.

Proof. Assume that L Rq, Ky = Hz L;.Put D, =1L, ®L®QPKO D. Then D = @Z D;.
As ¢ acts transitively on the set {L;}, it also acts transitively on the set {D;}. This

implies that for any two indices 7, j we have dimp, D; = dimp; D; which ensures the
freeness of D. 0
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Proposition 2.3. Suppose that L is a reduced affinoid algebra over Q,. Let D be an
object in FilM?}’,ZZ. Then for any x € Max(L) there exists a neighborhood Max(B) of

x such that Dg =B ®c D is free over B ®q, Ko.

Proof. By Lemma 2.2, D, is free over L, ®q, Ko. Let {v;} be a basis of D, over
L, ®q, Ko, and let {e;} be a basis of Ky over Q,. Then {e;v;};; is a basis of D,
over L,. For any i let ©; be a lifting of v; in D. Let M be the L-submodule of D
generated by {e;0;}; ;. Since D/M is finitely generated over L, the support of D/M
is a closed subset of Spec(L£). Thus D/M vanishes on a (Zariski) open neighborhood
of x in Spec(L). So there is some f € £ with f(z) # 0 such that D/M vanishes on
Spec(Ly¢), or equivalently £ ®, D is generated by {e;0;}; ; over L. Let Max(B) be
the Laurent subdomain of Max(L) defined by |f| > |f(z)|. Then Max(B) is an open
neighborhood of x in Max (L), and B®, D, as a B-module, is generated by {e;0;}; ;,
which implies that B ®, D is free over B ®q, Ko. O

Let Byr be Fontaine’s de Rham period ring. Put

L&, By = lim L ®q, (Bir/t'Bir) and L&g,Bar = Uizot ™' (L&g,Bir)-

Then G acts continuously on ﬁ@QdeR in the way that G acts on L trivially.
Recall that

(,c@@pfs;ggu J1])6x = (cég@pfsggu /) = L ®q, Ko, (L&g,Bar)®" = L ®q, K.

Let V be an L-representation of G, which means that V is a finite locally free
L-module (of constant rank) together with a continuous action of Gk.

Definition 2.4. We say that V is semistable (resp. crystalline) if

Dyt 2 (V) = ((L&q, B [1/1]) @ V)9

(resp. Deris,c (V) = ((E@pr’)ji_g[l/t]) Qr V)GK)
is a locally free £ ®q, Ko-module of rank d = rank,V'. Similarly we say that V' is de
Rham if
Dar,c (V) := ((LBqg,Bar) @ V)9
is a locally free £ ®q, K-module of rank d.

Write Rep?™®(G k) (resp. Repl (Gx), Reptt(Gk)) for the category of crystalline
(resp. semistable, de Rham) L-representations of G .

Now we suppose that L is a reduced affinoid algebra till the end of this section.
In this case, by a result of Berger and Colmez [3, Corollary 6.3.3], V' is crystalline
(resp. semi-stable) if and only if so are Vi = L, ®,V for all m € Max(L). Furthermore

Dcris,Lm (Vm) =Ly ®¢ Dcris7£(v) (resp- Dst,Lm(Vm) =Ly Q¢ Dst,L(V))-

If V is semi-stable, then Dg; (V') is an object in File}’;]X with Dg 2(V)k = Dar.2(V).
So Dy« is a functor from the category Rep} (G ) to the category FilM?fX.
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In the case when L is a finite extension of @, the image of the functor Dg;  can
be determined explicitly. An object D in FilM?;JX can also be considered as an object
in FilM?N by forgetting the £-module structure. We say that D is weakly admissible
if it is so as an object in FiM$". Let FilM% 2™ be the full subcategory of FilM 77,
consisting of weakly admissible objects.

Proposition 2.5. If L is a finite extension of Qp, then the functor Dg 1 is an

equivalence of categories between RepS (Gk) and FilM?,]X’Wa; the quasi-inverse is the
functor Vg 1, defined by

Va0 (D) = (Bf,[1/1] ® K, D)*=N=0 N Fil’(Bar ®x D).

Proof. According to Colmez-Fontaine theorem [6], Dy g, is an equivalence of cate-
gories between Repap (Gk) and File(’ié;wa. But an object V in Rep?' (G ) is equiv-
alent to an object V in Repgﬁp(G k) together with a homomorphism L — End(V),

while an object D in FilM%""* is equivalent to an object D in FilM?%’pwa together

with a homomorphism L — End(D). Here, End(V) denotes Endg, (V'), and End(D)

denotes the ring of endomorphisms of D in the category FilM?%;}wa. O

In the general case, it is difficult to determine the image of the functor Dg; ..
The main result of this paper is the following

Theorem 2.6 (=Theorem 0.2). Let £ be a reduced affinoid algebra and let D be
a filtered (p, N')-module over L ®q, Ko that satisfies (Gr). If D, is weakly admissible
for some x € Max(L), then there exists an affinoid neighborhood Max(B) of = and
a semi-stable B-representation Vi of Gk whose associated filtered (¢, N)-module is
isomorphic to Di. Moreover, Vi is unique for this property.

The proof of Theorem 2.6 will be given in Section 5.

3. (¢,T)-modules

3.1. Free and locally free (¢, I')-modules. By a (locally) free (¢,T')-module over
E@QPB}{ (resp. E@QPBL&K) we mean a (locally) free E@@pB}{(resp. E@QPBL&K)_
module D of finite rank equipped with a semilinear action of ¢ such that the map
©*D — D is an isomorphism, and a semilinear action of I' that commutes with the -
action and is continuous for the profinite topology on I' and the topology on E@QPB}(

(resp. EQA@QPBL&K) given in Section 1.

Definition 3.1. A locally free (¢,I")-module D over E@QPB;{ is called étale if it
admits a finite (¢, I")-stable (Og@)szTK)—submodule N such that ¢*N — N is iso-
morphic and the induced map (ﬁ@@p B}() 0,8, Al N — D is isomorphic. We say
that a locally free (¢, I")-module D over [,@QPBL&K is étale if it arises from an étale

(¢, T')-module over £<§>@ka by base extension.
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By [10, Proposition 6.5] the natural base change functor from the category of étale
(¢,T)-modules over L&q, Bl to the category of étale (p, I')-modules over E@QPBL&K
is fully faithful.

The following property of free (¢, I')-modules over E@@pBT

rig, ¢ 18 very useful.

Proposition 3.2. Let D be a free p-module over £(§>QPBLg’K. Then there ezists a
sufficiently large r(D) > r(K) such that for any r > r(D) there exists a unique free

ﬁ@QpBT’T

rig. i ~Submodule D, of D satisfying the following conditions

(a) D = (L®q,Bl, ) ®rg, prr  Dis

p “rig, K

(b) ¢(D,.) is contained in (E@QPBL’gK) O L5q, BL D, and generates the latter

rig, K
as an E@QPBI{gTK-module.
In particular, we have Dy = (E(EAQQPBL’;K) ®£®@,,Bfi’§,x D, for any s > r, and if D is
a (p,I')-module, then v(D,) =D, for all v € T.

In the case when £ = Q,, this is exactly [2, Theorem 1.3.3]. For the proof of
Proposition 3.2 we need Lemma 3.3 and Proposition 3.4 below.

Let F(T) be a formal series such that F(T) = (7). Since ¢ is a lifting of the
absolute Frobenus, we can write F'(T') = TP + pf(T) with f € Og;[[T]].

Lemma 3.3. When r > p, the map z — F(z) induces a surjection from {z €
Cp |l p /" <zl <1} to{weC, | p7P/" < |w| < 1}.

Proof. When 0 < v,(w) < 1, the Newton polygon of F(T') — w is

(0,0p(w))

So any root z of F(T') — w satisfies v,(2) = vp(w)/p. O

Proposition 3.4. Let L be a coefficient algebra. When r > 0, we have

LBg,BLY 1 N (LB, BL 1) = ¢(LEg,BEE)

Proof. We choose a Qp-basis {v1,--- , vy} of K. Then {p(v1),---p(vm)} is again a
Qp-basis of K{. When r > 0, L®q, BL’;K is isomorphic to R} ®q, K. Thus, if G is
in E@QPBI{Q’K, we may express G in the form

G = Z (Z .ZL'UTZ> & Uj,

Jj=1
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where 3, z;;2% is convergent on the domain p~1/" < |z| < 1 for any j € {1,--- ,m}.
Put

=) =3 S0y ) o ) = 3 (S ) & )

j=1 \ i j=1 \ i
If H is again in E@Qp BL’; > then by Lemma 3.3, >, z;w" is convergent on the domain
p~P/7 < |w| < 1 for any j € {1,---,m}, which implies that G is in E@QPBI{;Q’;. O
Proof of Proposition 3.2. The argument is similar to the proof of [2, Theorem 1.3.3].

We give the details for completeness.

Since D is a free C@QPBIig’K—module, it has an E@QPBLgvK—basis {e1,...,eq}. As

E(g@pBIig,K = U ‘C@QPBI{g,K’

r>0

there exists o = r(D) such that the matrix of ¢ relative to this basis is contained in

GL4(L&®qg, Bl ). For any r > o put D, = &, (L&, Bl

Nie K rig.xc)€i- Obviously

D= (£®QpBiig,K> OrLsg, BYT D;.

rig, K

Further
Dpr = (£®QpBIfg,TK) ®L®QPB” D

rig, K
has a basis in ¢(D,.). Indeed, {p(e;) | ¢ = 1...,d} is such a basis. This proves the
existence of D,..

Let DV and D be two E@QVBL’; -submodules of D satisfying Conditions (a)
and (b). We choose bases for these two submodules. Let P; and P> be respectively

the matrices of ¢ relative to these two bases, so P, P, are in GLd(Eéé@pBL’gTK). Let

M e GLd(EQA@@p BLg,K) be the transformation matrix from the basis of D" to that
of D). Then (M) = P{'MP,. We show that M is in GLq(L&q,Bj! ). If M is
in My(L&g,B;? ;) with s > pr, then (M) = P ' MP, is also in My(£L&g,Bf;? ).
By Proposition 3.4 we see that M is in Md(E®QPBT’S/d), and by induction we finally

rig, K
get M € My(L&q, Bl ). Similarly we have M~! € My(L&g, B! ;). So M is in

GLd(AC@QpBT{;’ ), which implies that Dgl) = D7(«2). This proves the uniqueness of D,..

r

If s > r, the module (E@QPBL’;K) ® g, plr, Dr satisfies (a) and (b) (in which

take r to be s). Thus by the uniqueness of D, we have

D, = <£®@pBI{§,K) ®c®QpBT”" D;..

rig, K

If D is a (¢, I')-module, from the uniqueness of D, we obtain v(D,) = D, for any
vel. ]

3.2. Locally free (¢, I')-modules associated to L-linear representations. We
recall the functor of Berger and Colmez from the category of L-representations of G
to the category of étale (p,T')-modules over E@QPB}{ and the functor of Kedlaya
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and Liu from the the category of L-representations of G to the category of étale
(¢, I')-modules over E@@pBiig’K.

For any finite extension K’ of K put A%/ n = g@‘"(AT]}enT).

Proposition 3.5 ([3, Proposition 4.2.8]). Let L be a coefficient algebra over Q.
Let T, be a free O -linear representation of rank d. Let K' be a finite Galois extension
of K such that Gk acts trivially on Tz /12pTc. Then there exists n(K',Tc) > 0 such
that for n > n(K',T,), (Og@szT’(p_l)/”) ®o, Tr has a unique (Og@sz%}Zl)/p)—

submodule DTL’;(}%:L)/I’(T[;) that is free of rank d and fixed by Hy/, has a basis almost

invariant under U'xs (i.e., for any v € Tk the matriz of action of v —1 on this basis
has positive valuation) and satisfies

(Oﬁggngt(p—l)/p) ®p 5. atG-1/p DE;(;;,}@)/IJ(TL) _ (OL@DZP};HP—U/IJ) ®0, Tr.
K/ ,n

0, ®z,
Here ' = Gal(K'Ko/K') and Hir = Gal(Q,/K'Koo).

Theorem 3.6 ([3, Théoreme 4.2.9]). Let L be a coefficient algebra over Q. Let V
be an L-representation admitting a free Galois stable O -lattice T. Then there exists
some n such that for any r > (V) = (p — 1)p"~! we may define

r = T n (p—1
DY (V) i= ((£80,BK)) @05, sty #" (D (1)

for some K’ and n, so that the construction does not depend on the choices of T, K,
n, and the following statements hold.

(a) The (E@QPBTI{)-module IBTET(V) is locally free of rank d.
(b) The natural map (L&g,B") ®rLgq, Bl DL (V) — (LBg,BM™) @, V is an
isomorphism.
(¢) For any mazximal ideal m of L, writing Vin := Lyn ®, V', the natural map
Lo ®:DE"(V) — DTL‘: (Vi) is an isomorphism.
Put
DL(V) := (L&g,Bk) Do Bl D (V)
and
Diig,ﬁ(v) = (‘C®QpBLg,K) ® L84, Bl DJ,rc(V)~

Then DTL(V) (resp. Diig’L(V)) is an étale (¢,I')-module over £<§>QPB}< (resp. E@QP

T
Brig,K)'

Proposition 3.7 ([10]). We have

= <(£®QpBrig) (§§L(§)QPBJr Drig,[,(V)> '

rig, K

~ = ®
V= ((£8,B" €5,y DEV))

4. Coadmissible (¢, I')-modules and filtered (¢, N)-modules

In this section we introduce a notion of coadmissible (¢, I')-modules and construct a
functor, a family version of Berger’s functor [2], from the category of filtered (¢, N)-
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modules satisfying the condition (Gr) to the category of coadmissible (¢, I')-modules.
Throughout this section, we always assume that £ is noetherian and satisfies the
condition (FL) given in Section 4.1, and that 7,7/, s, s’ and u are in N[1/p].

4.1. Coadmissible (¢, I')-modules. First we recall the notions of Fréchet—Stein
algebras and coadmissible modules defined by Schneider and Teitelbaum [13, Sec-
tion 3].

Definition 4.1. A (commutative) Fréchet—algebra A over K is called a Fréchet-Stein
algebra if there is a sequence ¢; < --- < g, < --- of continuous algebra seminorms on
A that defines the Fréchet topology on A such that

o A, =A/{x € A|g,(z) =0} is a noetherian Banach algebra,

o A, isaflat Ay, -module for any n € N.

For (A, (¢,)) as above we have A = lim A, .

Definition 4.2. A coherent sheaf for (A, (q,)) is a sequence { M, }nen, where M, is

a finite A, -module, together with isomorphisms A, ®4 M, 1 = M,.

dn+41

If {M,,} is a coherent sheaf for (A, (g,)), its A-module of “global sections” is defined
by I'({ My, }) := lim M,,. If { M., } is a coherent sheaf for (A, (¢,)) and if M = I'({ M., }),

then the natural map A,, ®4 M — M, is isomorphic for any n € N.

Definition 4.3. An A-module is called coadmissible if it is isomorphic to the module
of global sections of some coherent sheaf for (A, (g,))-

The “global sections” functor I" is an equivalence of categories between the category
of coherent sheaves for (A, (¢,)) and the category of coadmissible A-modules.

For a coadmissible A-module M associated to a coherent sheaf {M,}, we may
equip each M,, with its canonical Banach space topology and then equip M with the
projective limit topology of these canonical topologies. The resulting topology on M
is called the canonical topology of M.

Let (A4’ (q,,)) be another Fréchet—Stein algebra and assume that there is a contin-
uous map A — A’. For a coadmissible A-module M, in general A’® 4 M is not a coad-
missible A’-module. But {47, ®4 M} is a coherent sheaf. Let (A'®4 M )24 denote the
corresponding coadmissible A’-module. Then the natural map A’@ 4 M — (A'® 4 M)?d
has a dense image.

Until the end of this section we assume that the coefficient algebra £ is noetherian
and satisfies the following condition:

(FL) For any two closed subintervals I’ = [r/,s'] C I = [r,s] of [0,+o00] with
r <7 <s <sallin N[1/p], RL is flat over RL.

Lemma 4.4. If L is a reduced affinoid algebra over Q,, then L satisfies (FL).

Proof. Let I' C I be two closed subintervals of [0, +oo[ with I = [r,s] and I" = [/, §'],
r <1’ < s < s Since ' and s are rational number, we may write ' = a/b and
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s' = ¢/d with a,b, ¢,d € N. Then Max(RE) is the Weierstrass subdomain of Max(R%)
defined by |p?/T®| < 1 and |T¢/p?| < 1. (In the case of r = 7' = 0, Max(REL) is the
Weierstrass subdomain defined by |T¢/p?¢| < 1.) Thus by [5, Corollary 7.3.2/6] we see
that Rg is flat over RL. d

The condition (FL) ensures that R is a Fréchet-Stein algebra and is isomorphic
to the projective limit liLnR[Z’S] of Banach algebras. When r is sufficiently large,
S

E@@p BL’; x 1s isomorphic to R} ®q, Kj and thus is a Fréchet—Stein algebra.

Definition 4.5. A coadmissible p-module (resp. (¢, I')-module) M over E@@pBiig’K
means a direct system {M,},>,, where u is a positive rational number in N[1/p],
and M,. is a coadmissible E@QPBI{Q w-module for any r > u, satisfying the following
properties:
(a) For any s > 7, Ml .= (E@QPB[I?S]) Doy, Bl M, is locally free over
D

rig, K
E@Qp B[Iz’s] of constant rank;
(b) For any 7’ > r, the natural map M, — M, induces an isomorphism

d
5. ph’ ML
<(£®QpBrig,K> ®L®QpBI{;K M) — M’r‘/’
(c) For any r > u there exists a semilinear map ¢ : M, — M,, such that

(E@)QPBL’;TK) - ¢(M,) is dense in M, for the canonical topology and such

that the following diagram

M, —= M,
is commutative for any pair r < r’ with r > u, where the horizontal arrows
are natural maps.
If M satisfies one more condition

(d) for any r > wu there exists a semilinear I'-action on M, that are compatible
with the natural maps M, — M, (7' > r) and the maps ¢ : M,, — M,,,

then M is called a coadmissible (¢,T")-module.

Remark 4.6. Condition (b) is equivalent to the following condition:

If r <7’ <s' <s, then the map M,, — M, induces an isomorphism
& Bl M 2 vlrsT
(L8, Bx ™) @5, Bl —

Condition (c) is equivalent to the following condition:

For any pair » < s with r > wu, there exists a semilinear map ¢ :
MIsl — MlPrpsl such that (M) generates MP™Ps! and such that
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if r <7’ < <s, then the following diagram

M78] —— gl s']

ok
Mlprps] ——— p\lpr'.ps']

is commutative where the horizontal arrows are natural maps.

Proposition 4.7. Any free @-module (resp. (p,I')-module) over £®QpBiig,K is a
coadmissible p-module (resp. (¢,T')-module).

Proof. This follows from Proposition 3.2. ]

If £ — L’ is a continuous map of coefficient algebras, and if M is a coadmissible
w-module (resp. (¢, I')-module) over E@f)@pBT then there exists a unique coadmis-

rig, K
sible ¢p-module (resp. (¢, I')-module) over £’ (E&@pBT denoted by Mg/, such that

rig, K’
for any pair s > r as in Definition 4.5 one has

(M)l = (L'8g, B @ oM,

L&q, By
To end this subsection, we apply Kedlaya and Liu’s result [10] to coadmissible
p-modules and (p, I')-modules.

Definition 4.8. Let K be a finite extension of @, and let £ be a reduced affinoid
algebra over K. Recall that R denotes the ring of Laurent series with coefficients in
K in a variable T convergent on the annulus 0 < v,(T) < 1/r. By a vector bundle over
L kR we will mean a coherent locally free sheaf over the product of this annulus
with Max(£) in the category of rigid analytic spaces over K. (In the case that L is
disconnected, we insist that the rank be constant.) By a vector bundle over LOkRK
we will mean an object in the direct limit of the categories of vector bundles over
LB Ry as 7 — +00.

When r > 0 one has isomorphisms BL’; K = Rl We thus obtain the notion of a

vector bundle over E@@pBIi’g « dependent on the choice of the isomorphism. However,

T

rig, K does not depend on the choice.

the notion of a vector bundle over £®QPB

Definition 4.9. Let K be a finite extension of QQ, and let £ be a reduced affinoid
algebra over Q,. By a family of ¢-modules (resp. (¢,T')-modules) over L@@pBLg’K we
mean a vector bundle .# over £®@p BL& x equipped with an isomorphism ¢*.# — #
viewed as a semilinear p-action (and a semilinear I'-action commuting with the -
action).

Now let (M;{M,},>,) be a coadmissible ¢-module (resp. (¢,I')-module) over

L&q, Biig, - For any 7 > u let .#, be the coherent sheaf over Max(L&q, BL’; ) asso-

ciated to M,.. Then ., is a vector bundle over the affinoid space Max(ﬁ@QpBii’g %)
Let .# be the direct limit of the system {.#, | r > u}. Conditions (¢) and (d)
in Definition 4.5 ensure that .# is a family of @-modules (resp. (¢,T)-modules)
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over E@QPBL& - In this way we associate to any coadmissible ¢-module (resp.
(p,T')-module) over £<§>QPBL& ¢ a family of p-modules (resp. (¢, T")-modules) over
£®Q1)B:"rig,K'

By Theorem 0.1 i.e., [10, Theorem 0.2] we have the following

Corollary 4.10. Let L be a reduced affinoid algebra over Q,, M a coadmissible (¢,T')-
module over E@QPBL&K. If M, is étale for some x € Max(L), then there exist an
affinoid neighborhood Max(B) of x and a B-linear representation Vg of Gk whose
associated (p,T')-module is B& ;M. Furthermore, Vi is unique for this property.

4.2. Coadmissible ¢p-modules associated to ¢-compatible sequences. Put
rn = (p—1)p"~ L. For any r > (p—1)/p, let n(r) be the smallest integer n such that
Tp > T.

For any n > n(r), there exists a natural map =™ : BL’;’K — K, [[t]]. Here K, [[t] is
equipped with the topology that is the pullback of the product topology on H:f:oo K,
via the map K, [[t]] — ;:OZOO Kpn, Yo amt™ — (am)m, where each K, is equipped
with the usual p-adic topology. For this topology {p™ Ok, [[t]] + t" Kp[[t]]}m>0 is a
fundamental system of neighborhoods of 0. We extend ¢~ continuously to an £L-linear
map £®QpBI{£,K — L&q, K, [[t]], which is denoted by ¢,. By this map L&q, K, [[t]]
is endowed with an LAE@@})BL’Q i )-module structure.

T
rig, K’

)-module structure on D,., which is denoted as ¢,,(D,.). By abuse of

If D is a locally free ¢-module over E@)QPB the formula ¢,,(\) - z = A = gives

o 10 (B0, B

notations, put

(ﬁ@QpKn[[t]]) ®Z’®QPBI;;K Dr = (ﬁ@QpKnHt]]) ®L"(£®Q;;Bjig,1<) Ln(Dr).

There is a natural map

¢n1<£®QpKn+1((t))) DrLiq, Ka((1) [<£®QpKn((t))> ®ZL®QPBW DT}

rig, K

. (g@QpKnH((t))) ®Zg;ij;;K D:

defined by ¢n(f @ (9 ® tn(2))) = fg & tni1((7)).
Definition 4.11. Let D be a locally free g-module over B! u > r(D). Let

rig, K
M, } o >na) be a sequence, where M, is an £LRg, K, [[t]]-submodule of
>n(u) Qp
(ﬁ@(@pKn((t))) ®£"®QPBI{;K Du

We say that {M,,},>n() is p-compatible if
@n((ﬁ@QpKn+1Ht]]) ®£®QpKnHtH Mn) = Mn+1‘

Let D be a locally free (¢,T')-module, h a positive integer and u a sufficiently large
rational number. Let M, be a closed flat E@QPBL’; s-submodule of t~"D,, satisfying
the following conditions:

(a) t"D, CM, Ct"Dy;
(b) M, is I'-invariant;
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(¢) ¢(M,,) is contained in (ﬁ@@pBi{é’)uK) - My;

(d) (L&Bq, BL’g}) (M) is dense in (£®QPBL’Z}() -M,, for the canonical topology
of t_thu.
For any n > n(u), put
M, = (L&q, K,[[t]]) ®?®@ gt M

Then {M,, },,>n(u) is p-compatible and satisfies

" (LBg, Kal[l]]) ® D, C M, Ct "(LBq, K, [[t])) ® D.,

Ly tn
S ts S s
£®QpBrigu,K ‘C®QpBri;K

for all n > n(u).
For the converse we have the following theorem.

Theorem 4.12. Let D be a locally free p-module (resp. (¢, T')-module) of rank d over
L:@QPBL&K, u>r(D). If

(M, | My € (L8, Knl(1))) ©5 pro Didazat
15 a p-compatible sequence such that M, is a locally free E@QpKn[[t]]—module of rank
d for any n, and there exists a positive integer h such that
(4.1) t"(LBg, Knl[t]) @ Du € M, Ct"(LBq, Kn[[t]) @ D.,

S T, S T,
[’®@pBri;K L®Qp Brig,K

then there exists a coadmissible p-submodule (resp. (p,T')-submodule) M of D[1/t]
such that

(L&q, Kn[[t]]) ® M, = M,

ln
~ 1
L®@p Bri;,K

for any n > n(u).

To prove Theorem 4.12 we first give two lemmas and two propositions below.
For any r > u, we put

M, = {z € t "D, | v,(x) € M, for any n > n(r)}.
Lemma 4.13. M, is a coadmissible E@QpBL’;K—submodule of t="D,.

Proof. As the maps t,, n > n(r), are all continuous, M, is closed in t~"D,.. But a
submodule of a coadmissible E@QPBL’; -module is itself coadmissible if and only if
it is closed. 0

Lemma 4.14. We have (L®qg, Kn[[]]) ®Z‘® gt My =M, for any n > n(r).

Qp Prig, K
Proof. Note that E@QPKH[[t]] is isomorphic to (£ ®q, K,)[[t], so E@QpKn[[t]] is
a noetherian ring. Put ¢ = ¢(r)/m. Then K,[[t]] is the ¢"!(g)-adic completion
of @‘"(BL’;K). It follows that L&q, K,[[t] = (£ ®q, K,)[[t]] is the ¢"~1(g)-adic
completion of Ln(£<§>@pBii’;K). Thus L&q, K, [[t] is flat over 1, (LR, BL’;K). Hence

(L, Knlll) ©5 prr M = (L3 Knlll]) ©5 p 7D
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is injective, and by the definition of M, the image of this map is contained in M,,. On
the other hand, as (£L®q, Ky, [[t]]) ®Z‘® g My and M, are finite over L&q, Kn|[t]],
they are complete for the t-adic topolgg;gSo we only need to show that the natural
map
S Ln h
(‘C®QpKn[[t]]) ®E®@pBLgK M’I" - Mn/t Mn

is surjective. By (4.1), for any = € M, there exists y € t="D, such that v, (y) —
x € t"M,. By [2, Lemma 1.2.1] there exists ¢, 3h € BngK such that ¢, (tp3n) = 1
mod 3" K,,[[t] and v, (tn3n) € 3Ky [[t] if m > n(r) and m # n. Put 2 = t, 3,y.
Then

n(2) = tn(y) € " (L&, Knllt]]) @' .. D, Ct"M,

£®QpBr;g,K
and
L (2) € PM(LBg, K [t]]) ®Z%Q g DrC th M,
p Crig,
if m # n. Thus 2 is in M, and the map (L®q, K, [[t]]) ®2"® grr My — M, /th M,
Q r1
is surjective. o 0

Proposition 4.15. If s > r > u, then (£®@ Bl S]) B & BT M, s locally free
Qp Prig, K
over E®QPB[IQ 3 of rank d = rank(D).

Proof. Put Ml = (LI@QPBE,T(’S]) ®£®Q gt M,. Since M[s] is contained in a locally

rig, K
free module ¢t~"DU"*! of rank d and contains a locally free submodule t"D!"s] of rank d,

it suffices to show that M™*! is flat over E@QPB[IQ’S]. By Gabber’s criterion [4, Section
2.6 Lemma 1] we only need to show the following three assertions. (i) MI™*I[1/#] is
flat over L@QPB[I?S}H/IS]. (ii) Ml is t-torsion free. (iii) Ml /tM[™s] is flat over
L@QPB[I?S]/(t) = L®q, (B[IQ’S]/(t)). The first two are trivial. For (iii), if there is no
integer n such that r < r, < s, then t is invertible in B[IQ’S] and there is nothing to

prove. So we assume that there exists at least one integer n such that » <r, <s.
n

In this case the map ¢~ Bing — K,[[t]] can be extended to a map ¢~
B[;;’s] — K, [[t]]. We also use ¢, to denote the map

n .

‘C®@p rng_>‘C®Q H ”

The maps ¢, with r < r, < s induces an inclusion

sl L8, Bl — I & K.l

r<rn<s

and an isomorphism

T LB, B /) = [ £e, K

r<r,<s
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Here, we use [[ todenote []  for shortness. Since

r<r,<s n: r<r,<s
3 Ln [rys] —
(C8, Kalll) &7,y MP = M,

is locally free of rank d over L&q, K, [[t]] for any n satisfying r < 7, < s, we see that

o~ (Il 7,8
H L&, Kn[t] | ® g M)

r<r,<s ﬁ@)QpBK
~ [r,s]
= I o Kall) @ o M0
r<r,<s poK

is locally free of rank d over [[, ., . (L&q, Kn[[t]). Consequently,

gl [r,s] [r,s]
I £®0, Ku | ©fg, iy ML/

r<r,<s

is locally free of rank d over [], ., . L ®q, Kn. As ™l is isomorphic, MIs! /tMIm#]

is flat over £<§>@p (B[IQ’S]/(t)). O
Proposition 4.16. (a) For any s > s > r' > r > u we have a natural isomor-
phism

(L8, BE ") ®.4, i M S M,

P

(b) For any pair r' > r with r > u, (ﬁ@@pBT.’r/ ) - M, is contained and dense in

M rig, K
c) ¢(M,) is contained in M,, and L&g BT - ip(M,.) is dense in M.
P Qp rig, K P

[r,s]

Proof. We first prove (a). As E@QPB[IQ,’SI] is flat over L®g, By'", the natural map

[74, 73/]

= sl (5. gl
(£80,Bi ") @5, pire Ml = (L&q, Bl ) ©paq, Bl . Mr
— (£8q,BY ) ®5, prr, t7"Ds

is an injection. By definition (L@QFBI{Q )- M, is contained in M,, so the image of the
above injection is contained in M5l Tet N; denote this image and let Ny denote
MU,

We claim that Ny = Nj + tNs. If there is no n € Z such that ' < r, <, then ¢
is invertible in B[;;/’s/} and there is nothing to prove. So we assume that there exists

at least one n € Z such that ' < r, < &. For any n with ' < r, < s, by Lemma
4.14 we have

(L&, Knllt]) @' sy N1 = My = (LBg, Kn[lt]) @'

~ )8 ~ s NQ-
L&q, BY, L®q, B
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It follows that

8]

il
I 2o Ku D, B oy V1
P <ra s’
[[T/ys/]
=| JI £ Kn ®£®QP(B[§/,S/W))Ng/tNQ.

r'<rp<s’

Since 7175 is an isomorphism, we obtain N7 /tN1 = No/tNs. In other words, we have
Ny = Ny +tNs.

By induction we obtain that No = Ny + t' N, for any integer ¢ > 1. In particular,
Ny = Ny + t28Ny. As 12PN, C DIl is contained in Ny, we get Ny = No.

We next prove (b). We have already seen that (E@QPBL’; )M, is contained in
M,. The closure of (L&q, BL’; &)+ M, is exactly the coadmissible L&q, BL’; -module
associated to the coherent sheaf

—~ [T/,Sl]
((‘C®QpBK ) ®L®QPBT,T MT) ,

rig, K

and hence coincides with M, by (a).
We can prove (c) similarly. We omit the details. O

Proof of Theorem 4.12. Let M be the inductive system {M,},>,. By Lemma 4.13,
Proposition 4.15 and Proposition 4.16, we see that (M;{M,},>,) is a coadmissible

p-module over E@QPBL&K. If D is a (¢,I")-module, then by definition M, is stable
under I'. In this case, (M;{M,},>,) is a coadmissible (¢, I")-module. O

4.3. Coadmissible (¢,I')-modules associated to filtered (¢, N)-modules.
Recall that p(l,) = ply +log(e(m)/mP) and y({r) = £r + log(v(m)/m) for any v € T.
Let N be the BiigvK—derivation on BL&K[&T} defined by N(¢;) = —p/(p — 1). We
extend these operators L-linearly and continuously to (L@@pBIig, i) [=]). Then we ex-
tend the inclusion ¢, : E@QPBL’;K — LRq, Kn[[t] to (E@QPBI{;K)[EW} by putting
tn(lr) = log(e(”) exp(t/p") —1) € E@QpKn[[tH.

Let D be a filtered (¢, N)-module over £ ®g, Ko of rank d that satisfies Condition
(Gr).

Put

P~ N=0
D= ((‘C@QpBiig,K)[gﬂ'] ®£®QPKU D) .

Proposition 4.17. The following statements hold:
(a) D is a locally free (¢,T')-module over E@QPBL&K of rank d.
(b) We have

(’C@QpBIig,K)MW] ®£®@pBT D= (£®QpBIig,K)[£W] ®£®@,,Ko D.

rig, K

The proof is due to Xiao.
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Proof. Without loss of generality we may assume that D is free. Let e1,...,eq be a

basis of D. Note that N =0 on D. For any i = 1,...,d, put f; = exp(p;IEﬂN)ei =

Z?;é (%jf"y Ni(e;). As e; = exp(—%&r]\f)fi for any i, we see that {fi,..., fa}
is a basis of (C@@I)BL&K)[EW] ® L8, Bl D over (£®QpBiig,K>[€W]’ Observe that
N(f;) =0 for all i. It follows that D is a free (¢, I')-module and {f1,..., f4} is a basis
of D. O

For any n > 0 we have ¢~ "(K() C K. Thus there are ¢~ "(Ky)-module structures
on K and on D. To avoid misunderstanding we use ¢, (D) to denote the ¢~ "(Kj)-
module structure on D. Write K ®@% D for K ®,-n(x,) tn(D). There is a map &, :
K®k, D — K®% D sending 1 ®x to n® 1, (" (x)). Then we obtain a filtration on
the range D}, = K ®% D via the map &,. Define a filtration on (£ ®q, K,)((t)) by
the formula

Fil' (£ ®q, Ka)((t))) = t'(£ @q, K)[[t]], i€ Z.

Then for each n we obtain a filtration on (£ ®q, Kn)((t)) ®ceq, k Di-
Put

M, (D) = Fil’ (£ @, K.)(1) @ciq, & D).

Since D satisfies (Gr), for any n € N, M,,(D) is a locally free E@QP K, [[t]]-module of
rank d.

Choose an integer u > (D). If n > n(u), we may consider M,, as an E@@pKnHtH—
bmodule of (L&q, K, [[t]]) @ . Du.

submodule of (L&q, K, [ H)®£®Bfi’g;x

Proposition 4.18. The family {M,,(D)},>n(w) 5 p-compatible.

Proof. This follows from the formula &,4+1 = ¢, 0 &, (for all n > n(u)) on Dg. O

Let h be a positive integer such that the filtration on Dy satisfies Fil_hDK = Dg
and Fil" Dy = 0. Then for any n > n(u), M, (D) satisfies
t"(L&q, Kn[t]]) ®Z®QPBM D, C My (D) Ct~"(L&q, K.[[1]]) ®Z®QPBM D..

rig, K rig, K

Applying Theorem 4.12 we get a coadmissible (¢, I')-module over C@@pBLg, x Which is

denoted by M (D). Therefore we obtain a functor, denoted by M, from the category of
filtered (¢, N)-modules over £ ®q, Ko satisfying (Gr) to the category of coadmissible

(¢, T')-modules over E@QPBL&K.
The functor M is functorial by the following

Proposition 4.19. If L' is another coefficient algebra and L — L' is a continuous
map, then M(Dg/) = M(D)gr.

Proof. We have

My (Dgr) = (£'®q, Kal[t]]) D L8q, K1) Mn(D)-
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Thus by the definitions of M(D),. and M (D), we have a natural map
<£/®QpBI{;,K) ®L&q,B « M(D)r = M(Dpr)y.
What we need to show is that, for any s > r > wu this map induces an isomorphism

<£/®QPB[I?S])®/;®QPBE?S] M(D)[r,s} _>M(D£/)[T’s],

Let N7 and Ny be respectively the domain and the range of this map. Then for any
n satisfying r < r, < s we have

13 Ln
(B0, Knll) ©20 pion M

@pB[;?S]

— I3 tn
- (E ®Q1}Kn[[t]]) ®‘C®QPB[I?S

= (L'&o, Knllt]) ® gy, k1) ((E®@pKn[[t]]) ® g, Lo M(D)[ml>
= (L'8q, Kallt]]) D Ldq, kaf1] Mn(D)
= Mn(Dyr)

. 13 tn
= (e, Kall) @5,

y M(D)I]

Ny

Now repeating the argument in the proof of Proposition 4.16 (a) we obtain
N1 = Ns. O

Corollary 4.20. If m is a mazximal ideal of L, then M(D)y is the (p,T')-module
over Ly ®q, Biig’K associated to the filtered (¢, N)-module Dy, over Ly ®q, Ko.

The following proposition tells us that the functor M is faithful.

Proposition 4.21. If D is a filtered (o, N)-module over L ®q, Ko satisfying (Gr),
then

~ r
D = ((£8¢,Bliy )1/t b @5 g1 M(D)) .

p rig, K

To prove Proposition 4.21 we need the following lemma.
Lemma 4.22. We have
((£&q,Bly )1/t L))" = £ ©q, Ko.

Proof. We define the operators V = % (v sufficiently close to 1) and 9 = [6]%

on C@QPBL&K in a way similar to that in [1], and then extend them to (E@@pBiig,K)
[1/t, (). Note that V = td. If x € ((L&q, B, x)[1/t£x])', then Vz = tdz = 0 and
so x is in £<§>QPBLg7K. As

(B = (Bl )" = Ko,

by Lemma 1.1 we obtain (E@QPBL’;K)F = L ®q, Ko. So we have (E@QPBL&K)F

£®@p K. O
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Proof of Proposition 4.21. From Proposition 4.17 (b) and the relation D[1/t] =
M(D)[1/t] we obtain

(£®Qp rig, K)[]‘/t’ 67"] ®E®@pBlig’K M( ) (£®Qp rig, K)[]'/t7 ‘€7T] ®£®QPK0 D.

Now our conclusion follows from Lemma 4.22. O

5. Proof of Theorem 2.6

Throughout this section let £ be a reduced affinoid algebra over @,. Since any reduced
affinoid algebra satisfies (FL), we can apply results in Section 4.

Proposition 5.1, Corollary 5.2 and Proposition 5.3 below are useful for the proof
of Theorem 2.6. Put

D (V) = ((£L8g,Byf,) @ V)r

Proposition 5.1. If V is a de Rham L-representation of G, then the map BIog

Rt
Blog induces an isomorphism

(5.1 D (V) — (680, Bl we V) "

Proof. The injectivity of (5.1) is clear.
For any n € N, put D, (BIO;" ®QPV)GK which is an £L®gq, Ko-module. Note that
tn, induces an inclusion D,, < Dggr (V). As V is de Rham, we see that Dggr (V) is

finite over £ ®q, Ko. Thus D,, is finite over £ ®q, Ko. There is a sufficiently large ng
such that the image of D; (V) is contained in D,,,. For any n > ng and any maximal

ideal m of £, by [1, Proposition 3.4] the map D} .(V)/mDJ (V) — D,/mD, is
surjective. Combining this with the fact that D,, is finite over £ ®q, Ko, we see that
the map D; (V) — D, is surjective. It follows that (5.1) is surjective. O

Corollary 5.2. IfV is a de Rham L-representation of Gk, then the map BJr — Bfog
induces an isomorphism

~ K
(5.2) Dae(V) = (L8, Bl [1/1) @2 v)
Proof. If V' is of negative Hodge-Tate weights, we have Dy (V) = D;ﬁ(\/) and
~ K ~
((E@QP log[1/t]) ®r V) = (([,@@p log) ®r V) . In general, we have

Do (V) = t7'DJ; £(V(~d))(d)

and
—~ K —d —~ Gk
((c30, Bl @ v) ™ = ((£80,BLy @c Vi-d)) (@)
when d is sufficiently large. Thus our statement follows from Proposition 5.1. (]
Proposition 5.3. If V is a semistable L-representation and D = Dng(V), then for

any sufficiently large n € N we have

(B0, Kull) ©f5, i Dr=Fil’((£80, Kn((1) ©zeg, x Danc(V)).
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Proof. By [3, Lemma 4.3.1 and Theorem 5.3.2], if n € N is sufficiently large, then

(L8, Bly) @' D, = Fil’((£8q, Bar) ®csq, x Danc(V))

LB BT’

and

(L8, Kal(®)) @2 oo D= (£80,Kn((®)) @cso, x Dane(V).

£®@p Brzg K

Combining these two facts and the fact that
Fil’ (£, Kul(1))) @0, x Dar (V)

=Fil° ((E@)Qp Bar) ®req, K DdR,c(V)) N (L&, K. ((1))) ®rL@q, Kk Dar,c(V),
we obtain

(B0, Kull) ©f5 g1 Dr CFI’((£80, Kn((1) ©26g, 5 Dan.c(V)).

By [2] this inclusion becomes isomorphic after modulo m for any maximal ideal m of
L. Therefore it is itself isomorphic. O

Proof of Theorem 2.6. Let D be a filtered (¢, V)-module over £ ®q, Ko that satisfies
(Gr). As D satisfies (Gr), M(D) is a coadmissible (¢,T')-module over E@QPBLgJ(.
As the functor M is functorial, we have M(D), = M(D,). Because D, is weakly
admissible, by [2], M(D), is étale. Thus by Corollary 4.10 there exist an affinoid
neighborhood Max(B) of x in Max(L) and a B-linear representation Vg whose asso-
ciated (p,T')-module is B&,M(D) = M(B®, D).

By Proposition 4.21

R T
Boe D= ((B8g, Bl k[1/t) @z, p1_, MBec D))

rig, K

r
((B®@ log, K[l/t]) ®B®Qp vig, K rlg(VB)) .

It follows that, for any rigid point y € Max(B),

r
(B ®£ D)y = ((Ly ®Qp B}Logj([l/t]) ®Ly®@pBIig,K Drlg(VB ®B L ))

where L, = B/m,. Thus V3 ®p L, is semistable for any y € Max(B). Then by [3] V3
is semistable.
Note that

(BB, Bl c[1/8) ©55, 51 Dlig(Vi)) € (B30, Bl 11/t) 05 Vi) ™~

So, by Corollary 5.2, B ®, D is contained in Dg 5(V3). The inclusion B @, D —
Dg,58(V5) is in fact isomorphic, since it induces isomorphisms D, = Dst,z, (Vy) at
all rigid points y € Max(B).

By Lemma 4.14 there exists a sufficiently large r such that for any n > n(r),
(B30, Kull]) @5, i Dl se(V)r = FIl’( (B0, Knl(1))) @50, i (B D).
But by Proposition 5.3 we have

(B30, Kalll]) @35,y Dhigsc(Vis)r = Fil’((BEg, K (1)) @, ¢ Dar (V) ).
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11Ce

0 ((B@)Qp K (1)) ®B®QPK(B®£D)K) — Fil° ((B@@@p K (1)) ®B®QPKDdR,B(VB)) .

It follows that the filtration on Dgr 5(Vi) and the filtration on (B®,:D)g coincide.
Therefore the filtered (¢, N)-module associated to Vg is B®, D.

The uniqueness of Vg follows from Corollary 4.10. O
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