当前位置: 首页 > 学术报告
Deformations of symplectic singularities and the orbit method for Semisimple Lie Algebras
Ivan Losev 教授(美国Northeastern University)
2018-01-01 12:13  华东师范大学

曹锡华数学论坛

主持人:舒斌 教授

主办单位:数学系 科技处

报告人简介:
美国东北大学数学系教授。2007年获莫斯科大学博士学位;2007-2008:白俄罗斯国立大学;2008-2011: 麻省理工学院讲师;2011-2015:美国东北大学副教授。
Losev是国际李理论表示理论领域最富天才的年轻数学家。他在前沿领域的研究深刻而全面。早在2010年,成为国际数学家大会特报告人。

报告内容简介:
Symplectic singularities were introduced by Beauville in 2000. These are especially nice singular Poisson algebraic varieties that include symplectic quotient singularities and the normalizations of orbit closures in semisimple Lie algebras. Poisson deformations of conical symplectic singularities were studied by Namikawa who proved that they are classified by points of a vector space. Recently I have proved that quantizations of conical symplectic singularities are still classified by the points of the same vector spaces. I will explain these results and then apply them to establish a version of Kirillov’s orbit method for semisimple Lie algebras.