首页   系科介绍   师资队伍   科研团队   本科生教学   研究生培养   招聘信息   联系我们

Previous Next
 
首页 >> 学术报告

Convergence Analysis of An Expandible Local and Parallel Two-Grid Finite Element Scheme

侯延仁 教授(西安交通大学)
2014年12月1日16:00—17:00  闵行数学楼102报告厅
 
报告人简介:
侯延仁教授,西安交通大学数学与统计学院计算科学系主任,中国计算数学学会第八届理事会常务理事,陕西省计算数学学会理事长,陕西省工业与应用数学学会常务理事兼秘书长。长期从事偏微分方程数值解、大规模工程与科学计算研究。发表学术论文70余篇,其中有40余篇在科学计算有重要影响的SCI刊物SINUM、SISC、J Comput Phys、J Sci Comput等发表。多次主持国家自然科学基金项目,入选2006年新世纪优秀人才支持计划。

报告内容简介:
A expandible local and parallel two-grid finite element scheme based on superposition principle for linear elliptic boundary value problems is proposed and its convergence analysis is presented in this talk. Compared with usual local and parallel finite element schemes, the scheme proposed here can be easily implemented in a large parallel computing system that has vast of computing cores. Convergence result based on a priori error estimations of the $H^1$ and $L^2$ norms of the scheme is obtained. Analysis results show that one can derive an optimal approximation by such local and parallel two-grid scheme within $|\ln H|$ iterations, where $H>0$ is the mesh size of the coarse mesh. Some numerical results are also presented to support the analysis results.

主持人:郑海标 副教授
   
 
 
快捷链接 >>
 
系内资源 >>
 
教学园地 >>
 
  校外链接 >>    华师大-纽约大学联合数学研究中心    上海市数学会    中国数学会    美国数学会    欧洲数学会  
         
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609