首页   系科介绍   师资队伍   科研团队   本科生教学   研究生培养   招聘信息   联系我们

Previous Next
 
首页 >> 学术报告

Weakly nonlinear geometric optics for hyperbolic systems of conservation laws (双曲守恒律方程组的弱非线性几何光学方法)

张永前教授(复旦大学数学科学学院)
2014年10月13日周一下午三点到四点  闵行数学楼102报告厅
 
学术报告

报告内容简介:We present a new approach to analyze the validation of weakly
nonlinear geometric optics for entropy solutions of nonlinear
hyperbolic systems of conservation laws whose eigenvalues are allowed
to have constant multiplicity and corresponding characteristic fields
to be linearly degenerate. The approach is based on our careful
construction of more accurate auxiliary approximation to weakly
nonlinear geometric optics, the properties of wave front-tracking
approximate solutions, the behavior of solutions to the approximate
asymptotic equations, and the standard semigroup estimates. To
illustrate this approach more clearly, we focus first on the Cauchy
problem for the hyperbolic systems with compact support initial data
of small bounded variation and establish that the $L^1-$estimate
between the entropy solution and the geometric optics expansion
function is bounded by $O(\varepsilon^2)$, independent of the time
variable. This implies that the simpler geometric optics expansion
functions can be employed to study the behavior of general entropy
solutions to hyperbolic systems of conservation laws. Finally, we
extend the results to the case with non-compact support initial data
of bounded variation. (joint work with G. Chen and W. Chen)
   
 
 
快捷链接 >>
 
系内资源 >>
 
教学园地 >>
 
  校外链接 >>    华师大-纽约大学联合数学研究中心    上海市数学会    中国数学会    美国数学会    欧洲数学会  
         
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609