首页   系科介绍   师资队伍   科研团队   本科生教学   研究生培养   招聘信息   联系我们

Previous Next
 
首页 >> 学术报告

NON-CONSTANT CR MORPHISMS BETWEEN COMPACT STRONGLY PSEUDO-CONVEX CR MANIFOLDS AND ETALE COVERING BETWEEN RESOLUTIONS OF ISOLATED SINGULARITIES

丘成栋 教授 (清华大学数学系)
2014年4月17日(星期四)15:00-16:00  闵行校区数学楼102教室
 
摘要:
Strongly pseudoconvex CR manifolds are boundaries of Stein varieties with isolated normal singularities. We prove that any non-constant CR morphism between two (2n − 1)-dimensional strongly pseudoconvex CR manifolds lying in a n-dimensional Stein variety with isolated singularities are
necessarily a CR biholomorphism. As a corollary, we prove that any
non-constant self map of (2n − 1)-dimensional strongly pseudoconvex
CR manifold is a CR automorphism. We also prove that a finite etale
covering map between two resolutions of isolated normal singularities must
be an isomorphism. This is a joint work with YU-CHAO TU and HUAIQING ZUO
   
 
 
快捷链接 >>
 
系内资源 >>
 
教学园地 >>
 
  校外链接 >>    上海市核心数学与基础数学重点实验室    华师大-纽大联合数学中心    上海市数学会    中国数学会    美国数学会    欧洲数学会  
         
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609