Growth Rate of Zeros of Almost all Random Entire Functions

Zhuan Ye

Department of Mathematics and Statistics University of North Carolina University Wilmington

ABSTRACT

Let $f(z,\omega) = \sum_{j=1}^{\infty} A_j(\omega) z^j$ be a random entire function, where $A_j(\omega)$ are independent and identically distributed random variables defined on a probability space $(\Omega, \mathcal{F}, \mu)$. If A_j 's are either equal to $e^{2\pi i\theta_j(\omega)}$ with $\theta_j(\omega)$ being of standard uniform distribution or Gaussian random variables with standard Gaussian distribution, then we prove that for almost all $f(z, \omega)$ and any $a \in \mathbb{C}$ with $f(0, \omega) - a \neq 0$, there is r_0 such that when $r > r_0$,

$$\frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{it}, \omega)| \, dt = \int_0^r \frac{n(t, \omega, a, f)}{t} \, dt + \log|f(0, \omega) - a| + O(1),$$

where $n(t, \omega, a, f)$ is the number of zeros of $f(z, \omega) - a$ in |z| < t and O(1) is independent of ω . The identity can be regarded as the Nevanlinna's second main theorem and has improved some previous theorems on the growth rate of zeros of random entire functions.