Higgs Bundles and Hyperbolicities

Kang Zuo

Abstract. The theory of period maps has been powerful in the study of higher dimensional Shafarevich program under the assumption of the injectivity of Kodaira-Spencer deformation on Hodge bundles. Viehweg-Zuo constructed a class of Higgs bundles on moduli spaces by combining Kodaira-Spencer deformation and Hodge theory, which is accessible in the most general situation, where period maps fail being locally injective. More explicitly, for a family $f: X \to Y$ parametrizing n-folds F of semi ample ω_F and with the degeneration over a closed subvariety $D \subset Y$. Viehweg-Zuo introduced a Higgs bundle (G, τ) over Y with singularities over D by extending the Kodaira-Spencer deformation τ on the higher order cohomologies of the tangent bundle along F. The central feature of this Higgs bundle is that there exists a natural comparison map $\rho: (G, \tau) \to (E, \theta)$, where (E, θ) is the graded Higgs bundle of the variation of Hodge structures of the relative middle cohomology on the cyclic cover $g: Z_s \to X \to Y$ defined by a section from the linear system of the relative pluri-canonical line bundle on X twisting a small anti ample line bundle on Y. The Hodge metric on ker(θ) becomes a non-zero (possibly degenerated) negatively curved Finsler metric on $Y \setminus D =: U$ via the iterated Kodaira-Spencer deformation and if the second graded piece $\rho^{n-1,1}$ of ρ is injective on T_U . This Finsler metric plays a crucial roll in the study of hyperbolicities of U by many people. Indeed $\rho^{n-1,1}$ holds being injective for two exteme cases $\kappa(F) = n$ and $\kappa(F) = 0$ by Bogomolov vanishing theorem and the trivial reason. For the general case $0 \le \kappa(F) \le n$ Viehweg-Zuo showed that it is generically injective along any algebraic curve in U. Very recently X.Lu, R.R. Sun and K. Zuo showed $\rho_{T_U}^{n-1,1}$ is injective for $\kappa(F) = 1$ by investigating Iitaka fibration. Besides Brody, Kobayashi and Viehweg hyperbolicities we rise a conjecture on Borel and topologic hyperbolicities. If time permits I shall outline an approach towards to the conjecture.

This is a joint project with A. Javanpeykar, X. Lu, and R.R. Sun.