C*-algebras of certain non-minimal homeomorphisms on a Cantor set

Zhuang Niu
(Joint work with Sergey Bezuglyi and Wei Sun)
University of Wyoming

17 June, 2013

Minimal Cantor System

Let X be a Cantor set, and let $\sigma: X \rightarrow X$ be a minimal homeomorphism. Let $y \in X$. Consider

$$
A=\mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}
$$

and

$$
A_{y}=\mathrm{C}^{*}\{f, g u: f, g \in \mathrm{C}(X), g(y)=0\} \subseteq A
$$

Minimal Cantor System

Let X be a Cantor set, and let $\sigma: X \rightarrow X$ be a minimal homeomorphism. Let $y \in X$. Consider

$$
A=\mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}
$$

and

$$
A_{y}=\mathrm{C}^{*}\{f, g u: f, g \in \mathrm{C}(X), g(y)=0\} \subseteq A
$$

Theorem
A is a simple $A \mathbb{T}$-algebra, and A_{y} is a simple $A F$-algebra. Moreover, $K_{0}(A) \cong K_{0}\left(A_{y}\right)$ as order-unit groups.

Bratteli-Vershik Models for minimal systems

Let $B=(V, E, \leq)$ be an ordered Bratteli diagram.

Bratteli-Vershik Models for minimal systems

Let $B=(V, E, \leq)$ be an ordered Bratteli diagram. That is 1. (V, E) is a simple Bratteli diagram.

Bratteli-Vershik Models for minimal systems

Let $B=(V, E, \leq)$ be an ordered Bratteli diagram. That is

1. (V, E) is a simple Bratteli diagram.
2. For every vertex v, the set of edges $r^{-1}(v)$ which end at v form a totally ordered set.

Bratteli-Vershik Models for minimal systems

Let $B=(V, E, \leq)$ be an ordered Bratteli diagram. That is

1. (V, E) is a simple Bratteli diagram.
2. For every vertex v, the set of edges $r^{-1}(v)$ which end at v form a totally ordered set. It induces a lexicographical order on the set of infinite paths, i.e.,

$$
\left(\xi_{1}, \xi_{1}, \ldots\right)>\left(\eta_{1}, \eta_{2}, \ldots\right)
$$

if an only if there is N such that

$$
\xi_{n}=\eta_{n}, \quad \forall n>N \quad \text { and } \quad \xi_{N}>\eta_{N}
$$

Bratteli-Vershik Models for minimal systems

Let $B=(V, E, \leq)$ be an ordered Bratteli diagram. That is

1. (V, E) is a simple Bratteli diagram.
2. For every vertex v, the set of edges $r^{-1}(v)$ which end at v form a totally ordered set. It induces a lexicographical order on the set of infinite paths, i.e.,

$$
\left(\xi_{1}, \xi_{1}, \ldots\right)>\left(\eta_{1}, \eta_{2}, \ldots\right)
$$

if an only if there is N such that

$$
\xi_{n}=\eta_{n}, \quad \forall n>N \quad \text { and } \quad \xi_{N}>\eta_{N}
$$

3. There are a unique maximal infinite path $\xi_{\max }$ and a unique minimal path $\xi_{\text {min }}$.

Let X_{B} be the space of all infinite paths of (V, E). It forms a Cantor set naturally. Define the Vershik map

$$
\sigma: X_{B} \rightarrow X_{B}
$$

by
$\sigma(\xi)= \begin{cases}\left(\eta_{1}^{\min }, \ldots, \eta_{n}^{\min }, \xi_{n}+1, \ldots\right) & \text { if } \xi_{1}, \ldots, \xi_{n} \in V_{\max }, \xi_{n+1} \notin V_{\max } \\ \xi_{\text {min }} & \text { if }\left(\xi_{1}, \xi_{2}, \ldots\right)=\xi_{\max },\end{cases}$
where $\xi=\left(\xi_{1}, \xi_{2}, \ldots\right)$. Then σ is a minimal homeomorphism.

Let X_{B} be the space of all infinite paths of (V, E). It forms a Cantor set naturally. Define the Vershik map

$$
\sigma: X_{B} \rightarrow X_{B}
$$

by
$\sigma(\xi)= \begin{cases}\left(\eta_{1}^{\min }, \ldots, \eta_{n}^{\min }, \xi_{n}+1, \ldots\right) & \text { if } \xi_{1}, \ldots, \xi_{n} \in V_{\max }, \xi_{n+1} \notin V_{\max } \\ \xi_{\min } & \text { if }\left(\xi_{1}, \xi_{2}, \ldots\right)=\xi_{\max },\end{cases}$
where $\xi=\left(\xi_{1}, \xi_{2}, \ldots\right)$. Then σ is a minimal homeomorphism.
Theorem (HPS)
Any minimal Cantor system has a Bratteli-Vershik model as described above. Moreover $K_{B}=K_{0}\left(A_{y}\right)$, where K_{B} is the dimension group associated to the Bratteli diagram $B=(V, E)$, and it exhausts all simple dimension group which is not isomorphic \mathbb{Z}.

Cantor system with finitely many minimal subsets

Consider a homeomorphism σ of a Cantor set X such that

1. There are only finitely many minimal invariant closed subsets $Y_{1}, Y_{2}, \ldots, Y_{k}$,

Cantor system with finitely many minimal subsets

Consider a homeomorphism σ of a Cantor set X such that

1. There are only finitely many minimal invariant closed subsets $Y_{1}, Y_{2}, \ldots, Y_{k}$,
2. (X, σ) does not invariant clopen subset (i.e., (X, σ) is indecomposible).

Cantor system with finitely many minimal subsets

Consider a homeomorphism σ of a Cantor set X such that

1. There are only finitely many minimal invariant closed subsets $Y_{1}, Y_{2}, \ldots, Y_{k}$,
2. (X, σ) does not invariant clopen subset (i.e., (X, σ) is indecomposible).
Let us call such a system a k-minimal system.

Some C*-algebras associated to a k-simple system

- $A=\mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}$.

Some C*-algebras associated to a k-simple system

- $A=\mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}$.
- Fix $y_{1} \in Y_{1}, y_{2} \in Y_{2}, \ldots, y_{k} \in Y_{k}$, and consider

$$
A_{y_{1}, \ldots, y_{k}}=\mathrm{C}^{*}\left\{f, g u: f, g \in \mathrm{C}(X), g\left(y_{1}\right)=\cdots=g\left(y_{k}\right)=0\right\} \subseteq A
$$

Some C*-algebras associated to a k-simple system

- $A=\mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}$.
- Fix $y_{1} \in Y_{1}, y_{2} \in Y_{2}, \ldots, y_{k} \in Y_{k}$, and consider

$$
A_{y_{1}, \ldots, y_{k}}=\mathrm{C}^{*}\left\{f, g u: f, g \in \mathrm{C}(X), g\left(y_{1}\right)=\cdots=g\left(y_{k}\right)=0\right\} \subseteq A
$$

- $I=\mathrm{C}_{0}(X \backslash Y) \rtimes_{\sigma} \mathbb{Z}$, where $Y=\bigcup_{i=1}^{k} Y_{i}$.

Some C*-algebras associated to a k-simple system

- $A=\mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}$.
- Fix $y_{1} \in Y_{1}, y_{2} \in Y_{2}, \ldots, y_{k} \in Y_{k}$, and consider

$$
A_{y_{1}, \ldots, y_{k}}=\mathrm{C}^{*}\left\{f, g u: f, g \in \mathrm{C}(X), g\left(y_{1}\right)=\cdots=g\left(y_{k}\right)=0\right\} \subseteq A
$$

- $I=\mathrm{C}_{0}(X \backslash Y) \rtimes_{\sigma} \mathbb{Z}$, where $Y=\bigcup_{i=1}^{k} Y_{i}$.

Remark

I is an ideal of A, and also an ideal of $A_{y_{1}, \ldots, y_{k}}$. One has the following exact sequence

$$
0 \longrightarrow I \longrightarrow A \longrightarrow \bigoplus_{i=1}^{k} \mathrm{C}\left(Y_{i}\right) \rtimes_{\sigma} \mathbb{Z} \longrightarrow 0
$$

A few more remarks

Theorem (Poon)
The C^{*}-algebra $A_{y_{1}, \ldots, y_{k}}$ is $A F$.

A few more remarks

Theorem (Poon)
The C^{*}-algebra $A_{y_{1}, \ldots, y_{k}}$ is $A F$.
Hence the ideal $/$ is $A F$.

A few more remarks

Theorem (Poon)
The C^{*}-algebra $A_{y_{1}, \ldots, y_{k}}$ is $A F$.
Hence the ideal I is AF. Since that $\bigoplus_{i=1}^{k} \mathrm{C}\left(Y_{i}\right) \rtimes_{\sigma} \mathbb{Z}$ is $A \mathbb{T}$, the C^{*}-algebra A is AT if and only if the index map is 0 .

A few more remarks

Theorem (Poon)
The C^{*}-algebra $A_{y_{1}, \ldots, y_{k}}$ is $A F$.
Hence the ideal I is AF. Since that $\bigoplus_{i=1}^{k} \mathrm{C}\left(Y_{i}\right) \rtimes_{\sigma} \mathbb{Z}$ is $A \mathbb{T}$, the C*-algebra A is AT if and only if the index map is 0 .
Consider the six-term exact sequence

A few more remarks

Theorem (Poon)
The C^{*}-algebra $A_{y_{1}, \ldots, y_{k}}$ is $A F$.
Hence the ideal I is AF. Since that $\bigoplus_{i=1}^{k} \mathrm{C}\left(Y_{i}\right) \rtimes_{\sigma} \mathbb{Z}$ is AT , the
C*-algebra A is AT if and only if the index map is 0 .
Consider the six-term exact sequence

The image of Ind is $\left(\bigoplus_{i=1}^{k} \mathbb{Z}\right) / \mathbb{Z}(1, \ldots, 1)$.

A few more remarks

Theorem (Poon)
The C^{*}-algebra $A_{y_{1}, \ldots, y_{k}}$ is $A F$.
Hence the ideal I is AF. Since that $\bigoplus_{i=1}^{k} \mathrm{C}\left(Y_{i}\right) \rtimes_{\sigma} \mathbb{Z}$ is $A \mathbb{T}$, the
C^{*}-algebra A is $A T$ if and only if the index map is 0 .
Consider the six-term exact sequence

The image of Ind is $\left(\bigoplus_{i=1}^{k} \mathbb{Z}\right) / \mathbb{Z}(1, \ldots, 1)$. Hence A is $A \mathbb{T}$ if and only if $k=1$.

Bratteli-Vershik Model for k-minimal system

Definition

A Kakutani-Rokhlin partition of (X, σ) consists of pairwise disjoint clopen sets

$$
\{Z(I, j) ; 1 \leq I \leq L, 1 \leq j \leq J(I)\}
$$

for some natural numbers $J(1), \ldots, J(L)$ such that

1. $\cup_{l, j} Z_{l, j}=X$ and
2. $\sigma(Z(I, j))=Z(I, j+1)$ for any $1 \leq j<J(I)$.

For a k-simple system, Kakutani-Rohklin partitions always exist. Moreover

Theorem (HPS)

There are Kakutani-Rokhlin partitions of X

$$
\mathscr{P}_{n}=\{Z(n, I, j) ; 1 \leq I \leq L(n), 1 \leq j \leq J(n, I)\}
$$

such that

1. the sequence $\left(Z_{n}:=\bigcup_{I=1}^{L(n)} Z(n, I, J(n, I))\right)$ is a decreasing sequence of clopen sets with intersection $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$
2. the partition \mathscr{P}_{n+1} is finer than the partition \mathscr{P}_{n},
3. $\bigcup_{n} \mathscr{P}_{n}$ generates the topology of X.

Hence Bratteli-Vershik Model always exists for a k-simple system.

Definition

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \geq 1$, there are pairwise disjoint subsets $V_{1}^{n}, \ldots, V_{k}^{n}$ of V^{n} such that

1. the diagram B is connected (as a graph),

Definition

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \geq 1$, there are pairwise disjoint subsets $V_{1}^{n}, \ldots, V_{k}^{n}$ of V^{n} such that

1. the diagram B is connected (as a graph),
2. for any $1 \leq i \leq k$ and any $v \in V_{i}^{n+1}$, one has that $s\left(r^{-1}(v)\right) \subseteq V_{i}^{n}$,

Definition

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \geq 1$, there are pairwise disjoint subsets $V_{1}^{n}, \ldots, V_{k}^{n}$ of V^{n} such that

1. the diagram B is connected (as a graph),
2. for any $1 \leq i \leq k$ and any $v \in V_{i}^{n+1}$, one has that $s\left(r^{-1}(v)\right) \subseteq V_{i}^{n}$,
3. for any $1 \leq i \leq k$ and any level n, there is $m>n$ such that each vertex of V_{i}^{m} is connected to all vertexes of V_{i}^{n}.

Definition

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \geq 1$, there are pairwise disjoint subsets $V_{1}^{n}, \ldots, V_{k}^{n}$ of V^{n} such that

1. the diagram B is connected (as a graph),
2. for any $1 \leq i \leq k$ and any $v \in V_{i}^{n+1}$, one has that $s\left(r^{-1}(v)\right) \subseteq V_{i}^{n}$,
3. for any $1 \leq i \leq k$ and any level n, there is $m>n$ such that each vertex of V_{i}^{m} is connected to all vertexes of V_{i}^{n}.
Moreover, denote by $V_{o}^{n}=V^{n} \backslash\left(V_{1}^{n} \cup \cdots \cup V_{k}^{n}\right)$ for $n \geq 1$. Then
4. The diagram B is said to be strongly k-simple if for any level n, there is $m>n$ such that if a vertex in V_{o}^{m} is connected to some vertex of V_{o}^{n}, then it is connected to all vertices of V_{o}^{n}.

Definition

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \geq 1$, there are pairwise disjoint subsets $V_{1}^{n}, \ldots, V_{k}^{n}$ of V^{n} such that

1. the diagram B is connected (as a graph),
2. for any $1 \leq i \leq k$ and any $v \in V_{i}^{n+1}$, one has that $s\left(r^{-1}(v)\right) \subseteq V_{i}^{n}$,
3. for any $1 \leq i \leq k$ and any level n, there is $m>n$ such that each vertex of V_{i}^{m} is connected to all vertexes of V_{i}^{n}.
Moreover, denote by $V_{o}^{n}=V^{n} \backslash\left(V_{1}^{n} \cup \cdots \cup V_{k}^{n}\right)$ for $n \geq 1$. Then
4. The diagram B is said to be strongly k-simple if for any level n, there is $m>n$ such that if a vertex in V_{o}^{m} is connected to some vertex of V_{o}^{n}, then it is connected to all vertices of V_{o}^{n}.
5. The diagram B is said to be non-elementary if for any V_{o}^{n}, there is $m>n$ such that the multiplicity of the edges between V_{o}^{n} and V_{o}^{m} is either 0 or at least 2.

How to order it?

Definition

An ordered Bratteli diagram $B=(V, E, \geq)$ is called k-simple (with a slight abusing of notation) if it satisfies the following conditions:

1. the unordered Bratteli diagram (V, E) is k-simple,

How to order it?

Definition

An ordered Bratteli diagram $B=(V, E, \geq)$ is called k-simple (with a slight abusing of notation) if it satisfies the following conditions:

1. the unordered Bratteli diagram (V, E) is k-simple,
2. There are infinite paths $z_{1, \max }, \ldots, z_{k, \max }$ and $z_{1, \min }, \ldots, z_{k, \text { min }}$ such that for any level n and $1 \leq i \leq k$,

$$
\left\{z_{i, \text { min }}^{n}, z_{i, \text { max }}^{n}\right\} \subset V_{i}^{n}
$$

and $X_{\max }=\left\{z_{1, \max }, \ldots, z_{k, \max }\right\}, X_{\text {min }}=\left\{z_{1, \min }, \ldots, z_{k, \min }\right\}$.

How to order it?

Definition

An ordered Bratteli diagram $B=(V, E, \geq)$ is called k-simple (with a slight abusing of notation) if it satisfies the following conditions:

1. the unordered Bratteli diagram (V, E) is k-simple,
2. There are infinite paths $z_{1, \max }, \ldots, z_{k, \max }$ and $z_{1, \min }, \ldots, z_{k, \text { min }}$ such that for any level n and $1 \leq i \leq k$,

$$
\left\{z_{i, \min }^{n}, z_{i, \text { max }}^{n}\right\} \subset V_{i}^{n}
$$

and $X_{\max }=\left\{z_{1, \max }, \ldots, z_{k, \max }\right\}, X_{\min }=\left\{z_{1, \min }, \ldots, z_{k, \min }\right\}$.

Remark

One consequence of this condition is that there is L such that for all $n \geq L$ and any $v \in V_{o}^{n}$, the maximal edge (or minimal edge) starting with v backwards to V^{1} will end up in V_{i}^{1} for some $1 \leq i \leq k$. Denote by $m_{+}(v)=i$ (or $m_{-}(v)=i$).

3 (Continuity Conditons)

3 (Continuity Conditons) For any $v \in V_{o}^{n}$, one has
3 -a if e is an edge with $s(e)=v$, one has

$$
m_{-}(s(e+1))=m_{+}(v),
$$

3 (Continuity Conditons) For any $v \in V_{o}^{n}$, one has 3 -a if e is an edge with $s(e)=v$, one has

$$
m_{-}(s(e+1))=m_{+}(v),
$$

(if $e \in E_{\text {max }}$, the vertex $s(e+1)$ is understood as $s\left(e^{\prime}+1\right)$ with e^{\prime} a non-maximal edge starting with e and ending at some level $m>n$-such edge exists and $m_{-}(s(e+1))$ is well defined, by Condition 2),

3 (Continuity Conditons) For any $v \in V_{o}^{n}$, one has 3 -a if e is an edge with $s(e)=v$, one has

$$
m_{-}(s(e+1))=m_{+}(v),
$$

(if $e \in E_{\text {max }}$, the vertex $s(e+1)$ is understood as $s\left(e^{\prime}+1\right)$ with e^{\prime} a non-maximal edge starting with e and ending at some level $m>n$-such edge exists and $m_{-}(s(e+1))$ is well defined, by Condition 2), and
3-b if e is an edge with $e \notin E_{\text {max }}, r(e)=v$ and $s(e) \in V_{i}^{n-1}$ with $n \geq 3$, one has

$$
m_{-}(s(e+1))=i .
$$

3 (Continuity Conditons) For any $v \in V_{o}^{n}$, one has 3 -a if e is an edge with $s(e)=v$, one has

$$
m_{-}(s(e+1))=m_{+}(v),
$$

(if $e \in E_{\text {max }}$, the vertex $s(e+1)$ is understood as $s\left(e^{\prime}+1\right)$ with e^{\prime} a non-maximal edge starting with e and ending at some level $m>n$-such edge exists and $m_{-}(s(e+1))$ is well defined, by Condition 2), and
3-b if e is an edge with $e \notin E_{\text {max }}, r(e)=v$ and $s(e) \in V_{i}^{n-1}$ with $n \geq 3$, one has

$$
m_{-}(s(e+1))=i .
$$

Remark

Note that if $k=1$, then Condition 3 is redundant.

An example

Theorem
There is a bijection correspondence between the equivalence classes of k-simple ordered Bratteli diagrams and the pointed topological conjugacy classes of Cantor systems with k minimal invariant subsets.

Transition Graphs

Definition

Let $B=(V, E, \geq)$ be a k-simple ordered Bratteli diagram.

Transition Graphs

Definition

Let $B=(V, E, \geq)$ be a k-simple ordered Bratteli diagram. For each level $n \geq 2$, define the transition graph L_{n} to be the following directed graph:

Transition Graphs

Definition

Let $B=(V, E, \geq)$ be a k-simple ordered Bratteli diagram. For each level $n \geq 2$, define the transition graph L_{n} to be the following directed graph:The vertices of L_{n} are Y_{1}, \ldots, Y_{k}, and the edges are labelled by the vertices in V_{o}^{n}.

Transition Graphs

Definition

Let $B=(V, E, \geq)$ be a k-simple ordered Bratteli diagram. For each level $n \geq 2$, define the transition graph L_{n} to be the following directed graph:The vertices of L_{n} are Y_{1}, \ldots, Y_{k}, and the edges are labelled by the vertices in V_{o}^{n}. For each $v \in V_{o}^{n}$, the edge v starts from Y_{i} and ends at Y_{j} if and only if

$$
m_{-}(v)=i \quad \text { and } \quad m_{+}(v)=j
$$

Example

Considering the previous example of 2-simple Bratteli diagram, its transition graph at level n is

Example

Considering the previous example of 2-simple Bratteli diagram, its transition graph at level n is

Lemma

Let $B=(V, E, \geq)$ be k-simple non-elementary ordered Bratteli diagram with $k \geq 2$, and let L_{n} denotes the transition graph of B at level n. Then, if there is an edge v_{1} has the vertex Y_{i} as the source point, then there is a closed walk $\left(v_{1}, \ldots, v_{n}\left(=v_{1}\right)\right)$ in L_{n}.

Index map and transition graph

Recall that the index map

$$
\bigoplus_{i=1}^{k} \mathbb{Z} \cong \bigoplus_{i=1}^{k} \mathrm{~K}_{1}\left(\mathrm{C}\left(Y_{i}\right)\right) \rightarrow \mathrm{K}_{0}(I)
$$

is nonzero if $k \geq 2$. Denote by d_{i} the the image of i-th copy of \mathbb{Z}.

Index map and transition graph

Recall that the index map

$$
\bigoplus_{i=1}^{k} \mathbb{Z} \cong \bigoplus_{i=1}^{k} \mathrm{~K}_{1}\left(\mathrm{C}\left(Y_{i}\right)\right) \rightarrow \mathrm{K}_{0}(I)
$$

is nonzero if $k \geq 2$. Denote by d_{i} the the image of i-th copy of \mathbb{Z}.
Let Y_{i} be a minimal component of $\left(X_{B}, \sigma\right)$, and let L_{n} be the transition graph of B at level n. Denote by

$$
E_{+}\left(Y_{i}\right)=\left\{v_{1}^{+}, \ldots, v_{s}^{+}\right\}
$$

the the set of edges of L_{n} which have Y_{i} as source, and denote by

$$
E_{-}\left(Y_{i}\right)=\left\{v_{1}^{-}, \ldots, v_{t}^{-}\right\}
$$

the the set of edges of L_{n} which have Y_{i} as range.

That is,

Theorem
The element d_{i} is given by

$$
\left(e_{v_{1}^{+}}+\cdots+e_{v_{s}^{+}}\right)-\left(e_{v_{1}^{-}}+\cdots+e_{v_{t}^{-}}\right),
$$

where e_{V} stands for $\left.(0, \ldots, 0,1,0, \ldots, 0)\right) \in \bigoplus_{V_{o}^{n}} \mathbb{Z}$ with entry 1 at the position v.

Some consequences

Corollary
Let $B=(V, E, \geq)$ be a k-simple ordered Bratteli diagram with $k \geq 2$. Then each transition graph L_{n} is connected.

Some consequences

Corollary

Let $B=(V, E, \geq)$ be a k-simple ordered Bratteli diagram with $k \geq 2$. Then each transition graph L_{n} is connected.

Proof.
The only relation between d_{1}, \ldots, d_{k} is $d_{1}+\cdots+d_{k}=0$.

Corollary

Assume B is non-elementary. The transition graph L_{n} has at least k edges. In particular, one has that

$$
\left|V_{o}^{n}\right|=\left|V_{n} \backslash \bigcup_{i=1}^{k} V_{i}^{n}\right| \geq k
$$

for all n.

Corollary

If B is a non-elementary ordered Bratteli diagram, then

$$
\text { Image }(\text { Ind }) \cap K_{0}^{+}\left(I_{B}\right)=\{0\}
$$

Moreover, if B is assume to be strongly k-simple (so the ideal I_{B} is simple), then the image of the index map is in subgroup of I_{B} which consists of infinitesimal elements.

Corollary

If B is a non-elementary ordered Bratteli diagram, then

$$
\text { Image }(\text { Ind }) \cap K_{0}^{+}\left(I_{B}\right)=\{0\}
$$

Moreover, if B is assume to be strongly k-simple (so the ideal I_{B} is simple), then the image of the index map is in subgroup of I_{B} which consists of infinitesimal elements.

Corollary
Denote by r the \mathbb{Q}-rank of I_{B}. Then $r \geq k$ and the cone of positive linear maps from I_{B} to \mathbb{R} has dimension at most $r-k+1$.

Corollary

If B is a non-elementary ordered Bratteli diagram, then

$$
\text { Image(Ind) } \cap K_{0}^{+}\left(I_{B}\right)=\{0\}
$$

Moreover, if B is assume to be strongly k-simple (so the ideal I_{B} is simple), then the image of the index map is in subgroup of I_{B} which consists of infinitesimal elements.

Corollary

Denote by r the \mathbb{Q}-rank of I_{B}. Then $r \geq k$ and the cone of positive linear maps from I_{B} to \mathbb{R} has dimension at most $r-k+1$.

Corollary

Let (X, σ) be a indecomposible Cantor system with k minimal subsets. Then the C^{*}-algebra $\mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}$ is stably finite.
Therefore, if $k \geq 2$, it is a stably finite C^{*}-algebra with stable rank 2 and real rank 0.

Which unordered Bratteli diagram carries such an order?
Consider the k-simple ordered Bratteli diagram (V, E, \geq). The transition graphs $\left\{L_{n} ; n=2, \ldots\right\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense:

Which unordered Bratteli diagram carries such an order?

Consider the k-simple ordered Bratteli diagram (V, E, \geq). The transition graphs $\left\{L_{n} ; n=2, \ldots\right\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1}, there is a path $\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ in L_{n}

Which unordered Bratteli diagram carries such an order?

Consider the k-simple ordered Bratteli diagram (V, E, \geq). The transition graphs $\left\{L_{n} ; n=2, \ldots\right\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1}, there is a path $\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ in L_{n} such that

1. the edge w and the path $\left(v_{1}, \ldots, v_{l}\right)$ have the same range and source,

Which unordered Bratteli diagram carries such an order?

Consider the k-simple ordered Bratteli diagram (V, E, \geq). The transition graphs $\left\{L_{n} ; n=2, \ldots\right\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1}, there is a path $\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ in L_{n} such that

1. the edge w and the path $\left(v_{1}, \ldots, v_{l}\right)$ have the same range and source,
2. for any $v \in V_{o}^{n}$, the number of times v (as an edge of L_{n}) appears in $\left(v_{1}, \ldots, v_{l}\right)$ is the same as the multiplicity of the edges in the Bratteli diagram (V, E) between v and w (as vertices of (V, E)),

Which unordered Bratteli diagram carries such an order?

Consider the k-simple ordered Bratteli diagram (V, E, \geq). The transition graphs $\left\{L_{n} ; n=2, \ldots\right\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1}, there is a path $\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ in L_{n} such that

1. the edge w and the path $\left(v_{1}, \ldots, v_{l}\right)$ have the same range and source,
2. for any $v \in V_{o}^{n}$, the number of times v (as an edge of L_{n}) appears in $\left(v_{1}, \ldots, v_{l}\right)$ is the same as the multiplicity of the edges in the Bratteli diagram (V, E) between v and w (as vertices of (V, E)),
3. if w (as a vertex in V_{o}^{n+1}) is connected to some vertex in V_{i}^{n} for some $1 \leq i \leq k$, then $\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ passes through Y_{i},

Which unordered Bratteli diagram carries such an order?

Consider the k-simple ordered Bratteli diagram (V, E, \geq). The transition graphs $\left\{L_{n} ; n=2, \ldots\right\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1}, there is a path $\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ in L_{n} such that

1. the edge w and the path $\left(v_{1}, \ldots, v_{l}\right)$ have the same range and source,
2. for any $v \in V_{o}^{n}$, the number of times v (as an edge of L_{n}) appears in $\left(v_{1}, \ldots, v_{l}\right)$ is the same as the multiplicity of the edges in the Bratteli diagram (V, E) between v and w (as vertices of (V, E)),
3. if w (as a vertex in V_{o}^{n+1}) is connected to some vertex in V_{i}^{n} for some $1 \leq i \leq k$, then $\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ passes through Y_{i}, and
4. for any edge v of L_{n}, the vertex v (as a vertex in the Bratteli diagram) is connected to some vertex in $V_{\min (v)}^{n-1}$ and is also connected to some vertex in $V_{\max (v)}^{n-1}$.

Theorem
If there is a sequence of directed graphs $\left\{L_{n} ; n=2,3, \ldots\right\}$ such that the vertices of each L_{n} are $\left\{Y_{1}, \ldots, Y_{k}\right\}$, the edges of each L_{n} are labelled by the vertices in V_{o}^{n}, and $\left(L_{n}\right)$ are compatible with (V, E) in the sense above, then there is an order on (V, E) so that it is a k-simple ordered Bratteli diagram.

The elements d_{1}, \ldots, d_{k} in I_{B} satisfy

1. $c_{1} d_{1}+\cdots+c_{n} d_{n}=0$ if and only if $c_{1}=c_{2}=\cdots=c_{n}$;

The elements d_{1}, \ldots, d_{k} in I_{B} satisfy

1. $c_{1} d_{1}+\cdots+c_{n} d_{n}=0$ if and only if $c_{1}=c_{2}=\cdots=c_{n}$;
2. for each level n and each $v \in V_{o}^{n}$, one has that $d_{i}(v) \in\{0, \pm 1\}, 1 \leq i \leq k ;$

The elements d_{1}, \ldots, d_{k} in I_{B} satisfy

1. $c_{1} d_{1}+\cdots+c_{n} d_{n}=0$ if and only if $c_{1}=c_{2}=\cdots=c_{n}$;
2. for each level n and each $v \in V_{o}^{n}$, one has that $d_{i}(v) \in\{0, \pm 1\}, 1 \leq i \leq k ;$
3. for each $v \in V_{o}^{n}$, one has that

$$
\left|\left\{1 \leq i \leq k ; d_{i}(v) \neq 0\right\}\right|=0 \text { or } 2
$$

and if

$$
\left\{1 \leq i \leq k ; d_{i}(v) \neq 0\right\}=\left\{i_{1}, i_{2}\right\}
$$

then $\left(d_{i_{1}}(v), d_{i_{2}}(v)\right)$ is either $(+1,-1)$ or $(-1,+1)$;

Theorem

Let $B=(V, E)$ be an unordered strongly k-simple Bratteli diagram satisfying the condition that any vertex in V_{o}^{n+1} is connected to all vertices in V^{n}.
Suppose that there are element $d_{1}, \ldots, d_{k} \in I_{B} \subseteq K_{0}(B)$ satisfying the previous conditions. Then there is an order \geq such that (V, E, \geq) is an ordered (strongly) k-simple Bratteli diagram.

