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1 Questions

1.1 Trace formula for Toeplitz operators on the unit disk

D, unit disk in C.

H, Bergman space L2
a(D) ⊂ L2(D) or Hardy space H2(∂D) ⊂ L2(∂D), and

P : L2 → H the orthogonal projection.

Tf = PMfP , Hf = (I − P )MfP , Toeplitz and Hankel operator on H with

symbol f .

Trace formula: The commutator [T ∗f , Tf ] is of trace class,

tr[T ∗f , Tf ] = |Hf̄ |22 =

∫
D

|f ′(z)|2 dm(z) = Areaf (D),
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for holomorphic f with appropriate growth condition (say continuous on the

boundary)

1.2 Unit ball

B = Bd unit ball in Cd, d ≥ 2.

[T ∗f , Tf ] = H∗
f̄
Hf̄ is never trace class. Trace Formula above does not make sense.

Precise statement: Let Lp be the Schatten - von Neumann class of p-summable

operators. The commutator [T ∗f , Tf ], for holomorphic f , on the Hardy or Bergman

is in



4

Lp iff f ∈ Bp (holomorphic Besov space)

for p > d,

Lp iff f = const. (i.e.Hf̄ = 0)

for p ≤ d.

(Arazy-Fisher-Janson-Peetre, Rochberg, Zhu, Zhang ...),

Remark: Different behaviour in dimension d = 1. The Hankel operator Hf̄ on

the Bergman space is in the Schatten class Lp for smooth f for p > 1. On

Hardy space Hf can be of finite rank and thus in any Lp, p > 0. [Peller,

Arazy-Fisher-Peetre, ...])
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Variation of the Trace formula due to Helton and Howe.

Take smooth functions f1, · · · , f2d on the closed unit ball. Consider the anti-

symmetrization [Tf1, Tf2, · · ·Tf2d
] of the 2d operators Tf1, Tf2, · · ·Tf2d

. It is of

trace class

tr[Tf1, Tf2, · · ·Tf2d
] =

∫
B

df1 ∧ df2 · · · ∧ df2d.

1.3 Dixmier Trace

Refined statement on the Schatten - von Neumann properties of the Toeplitz:

Let L1,∞ be the weak trace class. (E.g. the diagonal operator with eigenvalues

{1/n} is in L1,∞.) The commutator [T ∗f , Tf ]d is in L1,∞ (but not L1,∞)
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Dixmier trace on L1,∞: Consider (as an motivating example) the following spaces

l1 ⊂ l1,∞ ⊂ l∞

of sequences {an}. By Hahn-Banach theorem there exist linear functionals on

l∞ which vanish on l1 but not on l1,∞. (A kind of summation method.)

Recall the Macaev (or Dixmier) class L1,∞, consists of all compact operators T

such that the eigenvalues µ1 ≥ µ2 ≥ . . . of |T | satisfy
N∑
n=1

µn = O(logN).

Dixmier traces trw is a linear functional on L1,∞ (depending on a linear functional

ω on Cb(R+)).

Example: d
dθ the differential operator on L2(∂D). The eigenvalues of | ddθ| are
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|n|, | ddθ|e
inθ = |n|einθ. The Dixmier trace

trw |
d

dθ
|−1 = 1

Theorem 1.1. (Connes) Let Q = p(x, ∂) be a differential pseudo-differential

operator of order −n on a compact manifold M . Then p(x, ∂) is in the weak

trace class and

trωQ =

∫
S

p

where S in the unit sphere bundle in the cotangent bundle of M . (S =

{x, ξ); ξ ∈ T ∗x (M), |ξ|x = 1}).
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1.4 Questions.

• Study Dixmier trace formulas on a strongly pseudo-convex smooth domain in

Cd.

Motivation: Find CR-invariants of the boundary ∂Ω.

2 Results

2.1 Hardy space on the unit ball

Let

∂bj = ∂j − z̄jR, ∂̄bj = ∂̄j − zjR̄,
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be the boundary Cauchy-Riemann operators, where R =
∑d

j=1 zj∂j is the holo-

morphic radial derivative.

Definition 2.1. Let f and g be smooth functions on S. The function

{f, g}b :=

d∑
j=1

(∂bjf ∂̄
b
jg − ∂̄bjf ∂bjg)

is called the boundary Poisson bracket.

Theorem 2.2. (Englis-Guo-Zhang, 2009) Let f1, g1, · · · , fd, gd be smooth

functions on S, f̃1, g̃1, · · · , f̃d, g̃d their smooth extensions toB and Tf̃1
, Tg̃1, · · · , Tf̃d, Tg̃d

the associated Toeplitz operators onHν for ν ≥ d. Then the product
∏d

j=1[Tf̃j, Tg̃j ]
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is in the Macaev class and its Dixmier trace is given by

trω

d∏
j=1

[Tf̃j, Tg̃j ] =

∫
S

d∏
j=1

{fj, gj}b.

The result is proved by using Howe’s trick realizing Toeplitz operators on Hardy

and Bergman spaces as pseudo-Toeplitz operators on the Fock space F(Cn) with

homogeneous symbols on Cn.

Theorem 2.3. (Englis-Rochberg, 2009) n = 1.

trω |Hf | =
∫
∂D

|∂̄f |dσ

In particular, if f is holomorphic

trω |Hf | = length of f (∂D)
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Similar results expressing the Haussdorff measure of f (∂D) in terms traces stud-

ied by Connes.

3 Teoplitz operators and Hardy on SPCXS domains in Cn

3.1 Psudo-differential operators

On Rd: A linear partial differential operator is a linear combination of

f (x)→ m(x)∂n1
1 · · · ∂

nd
d f (x)

which can be written as

f (x)→ F−1
ξ→x(m(x)ξn1

1 · · · ξ
nd
d Fx→ξf )
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with symbol

m(x)ξn1
1 · · · ξ

nd
d .

A pseudo-differential operator is of the form

p(x, ∂) : f (x)→ F−1
ξ→x(p(x, ξ)Fx→ξ)

with symbol p(x, ξ). (There are various classes of symbol functions, e.g., the

Hörmander class Sm.)

Pseudo-differential operator on Compact manifold M . Given a function p(x, ξ)

on the cotangent bundle of M of class Sm. M locally given by a coordinate chart

U ∈ Rn. Can define an operator p(x, ∂) for functions f with compact support

on U . On whole M can define an operator (up to operator of lower order) on

C∞(M).
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3.2 Boutet de Monvel theory of Toeplitz operator on Hardy spaces with

pseudo-differential symbols on the boundary of a pseudo-convex domain

Let r be a defining function for Ω, that is, r ∈ C∞(Ω̄), r < 0 on Ω, and r = 0,

‖∂r‖ > 0 on ∂Ω.

Ω is called strongly pseudo-convex if (r can be chosen so that) the Hessian

(
∂2r

∂zj∂̄zk
)jk

is positive definite for z ∈ ∂Ω.

η: the restriction to ∂Ω of the 1-form Im(∂r) = (∂r − ∂r)/2i.

Strict pseudoconvexity: η is a contact form, i.e. the half-line bundle

Σ := {(x, ξ) ∈ T ∗(∂Ω) : ξ = tηx, t > 0}
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is a symplectic submanifold of T ∗(∂Ω).

Equip ∂Ω with a measure with smooth positive density, and let L2(∂Ω) be the

Lebesgue space with respect to this measure. The Hardy space H2(∂Ω) is the

subspace in L2(∂Ω) of functions whose Poisson extension is holomorphic in Ω;

For Q ∈ Sm, the generalized Toeplitz operator TQ : Wm
hol(∂Ω) → H2(∂Ω) is

defined as

TQ = ΠQ,

where Π : L2(∂Ω) → H2(∂Ω) is the orthogonal projection (the Szegö projec-

tion). Alternatively, one may view TQ as the operator

TQ = ΠQΠ

on all of Wm(∂Ω). Actually, TQ maps continuously W s(∂Ω) into W s−m
hol (∂Ω),
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for each s ∈, because Π is bounded on W s(∂Ω) for any s ∈ (see []).

Example: Ω = B unit ball in C2. Q = z̄1∂2 − z̄2∂1. The Toeplitz operator

T = PQP is a (unbounded) shift operator:

zm1 z
n
2 7→ α(m,n)zm−1

1 zn−1
2

General Properties of Pseudo-Toeplitz calculus:

• ”(P1)” They form an algebra which is, modulo smoothing operators, locally

isomorphic to the algebra of classical pseudo differential operators on n.

• ”(P2)” If P,Q are of the same order and TP = TQ, then the principal symbols

σ(P ) and σ(Q) coincide on Σ. One can thus define unambiguously the order

of a generalized Toeplitz operator as (TQ) := min{(P ) : TP = TQ}, and
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its principal symbol (or just “symbol”) as σ(TQ) := σ(Q)|Σ if (Q) = (TQ).

(The symbol is undefined if (TQ) = −∞.)

• ”(P3)” If (TQ) ≤ 0, then TQ is a bounded operator on L2(∂Ω); if (TQ) < 0,

then it is even compact.

Hankel operator on Hardy or Bergman space:

HQ = (I − P )QP

3.3 Dixmier trace of Toeplitz operator on Hardy spaces

Let T be a positive self-adjoint generalized Toeplitz operator on ∂Ω of order 1

with σ(T ) > 0. Let 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . be the points of its spectrum
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(counting multiplicities) and let N(λ) denote the number of λj’s less than λ.

Weyl type theorem on spectral distribution (Guillemin and Boutet de Monvel):

As λ→ +∞,

N(λ) =
vol(ΣT )

(2π)n
λn + O(λn−1),

where ΣT is the subset of Σ where σ(T ) ≤ 1, and vol(ΣT ) is its symplectic

volume.

Formula for the Dixmier trace:

Theorem 3.1. Let T be a generalized Toeplitz operator on H2(∂Ω) of or-

der −n. Then T ∈ L1,∞, and

trw(T ) =
1

n!(2π)n
σ(T )(x, ηx) η ∧ (dη)n−1.
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In particular, T is measurable.

4 Toeplitz operator on Bergman spaces via the Poisson operator

Difficulty with the Toeplitz operators on Bergman space on Ω: Ω is a Non-

Compact manifold. Generally Pseudo-differntial operators of negative powers on

L2(Ω) are not compact operators.

Let K denote the Poisson extension operator on Ω, i.e. K solves the Dirichlet

problem

∆Ku = 0 on Ω, Ku|∂Ω = u.

(Thus K acts from functions on ∂Ω into functions on Ω. Here ∆ is the ordinary

Laplace operator.)
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Standard elliptic regularity theory: K acts continuously from W s(∂Ω) onto the

subspace W s+1/2(Ω) of all harmonic functions in W s+1/2(Ω).

The composition

K∗K =: Λ

is an elliptic positive pseudo differential operator on ∂Ω of order −1.

We have

Λ−1K∗K = IL2(∂Ω),

while

KΛ−1K∗ = Πharm,

the orthogonal projection in onto the subspace L2(Ω) of all harmonic functions.
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The restriction

γ := Λ−1K∗|L2(Ω)

is the operator of “taking the boundary values” of a harmonic function. γ extends

to a continuous operator from W s(Ω) onto W s−1/2(∂Ω), for any s ∈ R, which

is the inverse of K.

Polar decomposition of K:

K = U(K∗K)1/2 = UΛ1/2,

U is a unitary operator from L2(∂Ω) onto L2
harm(Ω).

Proposition 4.1. Let w ∈ C∞() be of the form

w = rmg, m = 0, 1, 2, . . . , g ∈ C∞().
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Then

U ∗TwU = W−1/2−1/2W ∗ = WTQwW
∗,

where Qw is a pseudo differential operator on ∂Ω of order −m with

σ(Qw)(x, ξ)|Σ =
(−1)mm!

|ξ|m
g(x) ‖ηx‖m.

Thus trace formula for Teoplitz operators can be computed using the Hardy space

case.

Typical case of Toeplitz operators Tf of Dixmier class on Bergman space: f on

Ω vanishes of order n at ∂Ω,

f (x) ∼ rn(x), x→ ∂Ω

Theorem 4.2. Assume that f ∈ C∞(Ω) vanishes at ∂Ω to order n. Then Tf
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belongs to the Dixmier class, is measurable, and

trw(Tf) =
1

n!(4π)n
Nnf

η ∧ (dη)n−1

‖η‖n
,

where N denotes the interior unit normal derivative.

4.1 Hankel type operators on Hardy and Bergman spaces

Symbols of commutators of two generalized Toeplitz operators

σ([TP , TQ]) = 1
i{σ(TP ), σ(TQ)}Σ

are given by the Poisson bracket (with respect to the symplectic structure of Σ)

of their symbols:
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Goal: Product of Hankel operators

H∗g1
Hf1H

∗
g2
Hf2 . . . H

∗
gn
Hfn

Have to study semi-commutator TPQ − TPTQ of two generalized Toeplitz oper-

ators. It will be given, roughly speaking, by an appropriate “half” of the Poisson

bracket.

T ′′: the anti-holomorphic complex tangent space to ∂Ω.

E :=

n∑
j=1

∂r

∂zj

∂

∂j
− ∂r

∂j

∂

∂zj

(the “complex normal” direction).

The boundary d-bar operator ∂b : C∞(∂Ω)→ C∞(∂Ω, T ′′∗):

∂bf := df |T ′′,
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Levi form L′ is the Hermitian form on T ′ defined by

L′(X, Y ) :=

n∑
j,k=1

∂2r

∂zj∂k
XjY k if X =

∑
j

Xj
∂

∂zj
, Y =

∑
k

Yk
∂

∂zk
.

Levi form L′′ on T ′′ defined by

L′′(X, Y ) :=

n∑
j,k=1

∂2r

∂zk∂j
XjY k if X =

∑
j

Xj
∂

∂j
, Y =

∑
k

Yk
∂

∂k
.

L′′(X, Y ) = L′(Y ,X) ∀X, Y ∈ T ′′.

L′′ induces a positive definite Hermitian form on the dual space T ′′∗ of T ′′.

Hf the Hankel operator on L2
a(Ω), the Bergman space on Ω.
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Theorem 4.3. (Englis-Z.) Let f1, g1, . . . , fd, gd ∈ C∞(Ω). Then the operator

H = H∗g1
Hf1H

∗
g2
Hf2 . . . H

∗
gd
Hfd

on L2
a(Ω) belongs to the Dixmier class, and

trω(H) =
1

d!(2π)d

∫
∂Ω

L(∂bf1, ∂bg1) . . .L(∂bfd, ∂bgd) η ∧ (dη)d−1.

Remark: η ∧ (dη)d−1 is a multiple of the area form on ∂Ω, (depending on η).

However the whole integration
∫
∂Ω ω is biholomorphic invariant, i.e. if F : Ω→

Ω1 is a bihomorphic mapping, then
∫
∂Ω ω =

∫
∂Ω1

ω1 with ω = F ∗ω1.

Corollary 4.4. Let f be holomorphic on Ω and C∞ on . Then |H2n
| is in the

Dixmier class, measurable, and

trw(|Hf |2n) =
1

n!(2π)n

∫
(∂bf, ∂bf )n η ∧ (dη)n−1.


