Classification of extensions of $A \mathbb{T}$－algebras

Changguo Wei（魏常果）

Ocean University of China，Qingdao

April 19， 2012 at ECNU

Extension

Let A and B be C^{*}－algebras．Recall that an extension of A by B is a short exact sequence

$$
0 \rightarrow B \xrightarrow{\alpha} E \xrightarrow{\beta} A \rightarrow 0 .
$$

Denote this extension by e or (E, α, β) and the set of all such extensions by $\mathcal{E} \times t(A, B)$ ．

The extension (E, α, β) is called trivial，if the above sequence splits，i．e．if there is a homomorphism $\gamma: A \rightarrow E$ such that $\beta \circ \gamma=i d_{A}$ ．

We call (E, α, β) essential，if $\alpha(B)$ is an essential ideal in E ．We denote the set of all essential extensions by $\mathcal{E} \operatorname{xt}^{e}(A, B)$ ．

Extension

Let A and B be C^{*}－algebras．Recall that an extension of A by B is a short exact sequence

$$
0 \rightarrow B \xrightarrow{\alpha} E \xrightarrow{\beta} A \rightarrow 0 .
$$

Denote this extension by e or (E, α, β) and the set of all such extensions by $\mathcal{E} \times t(A, B)$ ．

The extension (E, α, β) is called trivial，if the above sequence splits，i．e．if there is a homomorphism $\gamma: A \rightarrow E$ such that $\beta \circ \gamma=i d_{A}$ ．

We call（ Σ, α, β ）essential，if $\alpha(B)$ is an essential ideal in Σ ．We denote the set of all essential extensions by $\mathcal{E x t}{ }^{e}(A, B)$ ．

Extension

Let A and B be C^{*}－algebras．Recall that an extension of A by B is a short exact sequence

$$
0 \rightarrow B \xrightarrow{\alpha} E \xrightarrow{\beta} A \rightarrow 0 .
$$

Denote this extension by e or (E, α, β) and the set of all such extensions by $\mathcal{E} \times t(A, B)$ ．

The extension (E, α, β) is called trivial，if the above sequence splits，i．e．if there is a homomorphism $\gamma: A \rightarrow E$ such that $\beta \circ \gamma=i d_{A}$ ．

We call (E, α, β) essential，if $\alpha(B)$ is an essential ideal in E ．We denote the set of all essential extensions by $\mathcal{E} \mathrm{xt}^{e}(A, B)$ ．

Extension

Let A and B be C^{*}－algebras．Recall that an extension of A by B is a short exact sequence

$$
0 \rightarrow B \xrightarrow{\alpha} E \xrightarrow{\beta} A \rightarrow 0 .
$$

Denote this extension by e or (E, α, β) and the set of all such extensions by $\mathcal{E} \times t(A, B)$ ．

The extension (E, α, β) is called trivial，if the above sequence splits，i．e．if there is a homomorphism $\gamma: A \rightarrow E$ such that $\beta \circ \gamma=i d_{A}$ ．

We call (E, α, β) essential，if $\alpha(B)$ is an essential ideal in E ．We denote the set of all essential extensions by $\mathcal{E} \mathrm{xt}^{e}(A, B)$ ．

The Busby invariant

The Busby invariant of (E, α, β) is a homomorphism τ from A into the corona algebra $\mathcal{Q}(B)=M(B) / B$ defined by $\tau(a)=\pi(\sigma(b))$ for $a \in A$ ， where $\pi: M(B) \rightarrow \mathcal{Q}(B)$ is the quotient map，and $b \in E$ such that $\beta(b)=a$ ．

Hence，we have the commutative diagram：

If A is unital and the Busby invariant is unital，then (E, α, β) is called unital．

The Busby invariant

The Busby invariant of (E, α, β) is a homomorphism τ from A into the corona algebra $\mathcal{Q}(B)=M(B) / B$ defined by $\tau(a)=\pi(\sigma(b))$ for $a \in A$ ， where $\pi: M(B) \rightarrow \mathcal{Q}(B)$ is the quotient map，and $b \in E$ such that $\beta(b)=a$ ．

Hence，we have the commutative diagram：

If A is unital and the Busby invariant is unital，then (E, α, β) is called unital．

The Busby invariant

The Busby invariant of (E, α, β) is a homomorphism τ from A into the corona algebra $\mathcal{Q}(B)=M(B) / B$ defined by $\tau(a)=\pi(\sigma(b))$ for $a \in A$ ， where $\pi: M(B) \rightarrow \mathcal{Q}(B)$ is the quotient map，and $b \in E$ such that $\beta(b)=a$ ．

Hence，we have the commutative diagram：

If A is unital and the Busby invariant is unital，then (E, α, β) is called unital．

The Busby invariant

The Busby invariant of (E, α, β) is a homomorphism τ from A into the corona algebra $\mathcal{Q}(B)=M(B) / B$ defined by $\tau(a)=\pi(\sigma(b))$ for $a \in A$ ， where $\pi: M(B) \rightarrow \mathcal{Q}(B)$ is the quotient map，and $b \in E$ such that $\beta(b)=a$ ．

Hence，we have the commutative diagram：

If A is unital and the Busby invariant is unital，then (E, α, β) is called unital．

Equivalence

Let $e_{i}: 0 \rightarrow B \rightarrow E_{i} \rightarrow A \rightarrow 0$ be two extensions with Busby invariants τ_{i} for $i=1,2$ ．

Definition 1
e_{1} and e_{2} are called congruent，denoted by $e_{1} \equiv e_{2}$ ，if there exists an isomorphism η making the following diagram commute：

Equivalence

Let $e_{i}: 0 \rightarrow B \rightarrow E_{i} \rightarrow A \rightarrow 0$ be two extensions with Busby invariants τ_{i} for $i=1,2$ ．

Definition 1

e_{1} and e_{2} are called congruent，denoted by $e_{1} \equiv e_{2}$ ，if there exists an isomorphism η making the following diagram commute：

Equivalence

Let $e_{i}: 0 \rightarrow B \rightarrow E_{i} \rightarrow A \rightarrow 0$ be two extensions with Busby invariants τ_{i} for $i=1,2$ ．

Definition 1

e_{1} and e_{2} are called congruent，denoted by $e_{1} \equiv e_{2}$ ，if there exists an isomorphism η making the following diagram commute：

Equivalence

Let $e_{i}: 0 \rightarrow B \rightarrow E_{i} \rightarrow A \rightarrow 0$ be two extensions with Busby invariants τ_{i} for $i=1,2$ ．

Definition 1

e_{1} and e_{2} are called congruent，denoted by $e_{1} \equiv e_{2}$ ，if there exists an isomorphism η making the following diagram commute：

Definition 2

e_{1} and e_{2} are called（strongly）unitarily equivalent，denoted by $e_{1} \stackrel{s}{\sim} e_{2}$ ，if there exists a unitary $u \in M(B)$ such that $\tau_{2}(a)=\pi(u) \tau_{1}(a) \pi(u)^{*}$ for all $a \in A$ ．Denote by $\operatorname{Ext}(A, B)$ or $\operatorname{Ext}_{s}(A, B)$ the set of（strongly）unitary equivalence classes of extensions of A by B ．

Definition 3

Weakly unitarily equivalent，denoted by $e_{1} \stackrel{w}{\sim} e_{2}$ ，if there exists a unitary $u \in \mathcal{Q}(B)$ such that $\tau_{2}(a)=u \tau_{1}(a) u^{*}$ for all $a \in A$ ．Denote by $\operatorname{Ext}_{w}(A, B)$ the set of weakly unitary equivalence classes of extensions of A by B ．

Definition 4

e_{1} and e_{2} are called isomorphic，denoted by $e_{1} \cong e_{2}$ ，if there exist isomorphisms β, η, α making the following diagram commute：

Denote the morphism of extensions by $(\beta, \eta, \alpha): e_{1} \rightarrow e_{2}$ ．Denote by $\operatorname{Ext}_{l}(A, B)$ the set of equivalence classes of extensions up to isomorphism．

Sum of extensions

```
Suppose that B is a stable C}\mp@subsup{C}{}{*}\mathrm{ -algebra. Then the sum of two extensions }\mp@subsup{\tau}{1}{
and }\mp@subsup{\tau}{2}{}\mathrm{ is defined to be the homomorphism }\mp@subsup{\tau}{1}{}\oplus\mp@subsup{\tau}{2}{}\mathrm{ , where
\tau}\oplus\oplus\mp@subsup{\tau}{2}{}:A->\mathcal{Q}(B)\oplus\mathcal{Q}(B)\subseteq\mp@subsup{M}{2}{}(\mathcal{Q}(B))\cong\mathcal{Q}(B)
```

－ $\operatorname{Ext}_{s}(A, B)$ and $\operatorname{Ext}_{w}(A, B)$ are semigroups
－Trivial extensions construct subsemigrouns of Exts (A, B) and $\operatorname{Ext}_{w}(A, B)$ ，respectively

Sum of extensions

```
Suppose that \(B\) is a stable \(C^{*}\)－algebra．Then the sum of two extensions \(\tau_{1}\) and \(\tau_{2}\) is defined to be the homomorphism \(\tau_{1} \oplus \tau_{2}\) ，where \(\tau_{1} \oplus \tau_{2}: A \rightarrow \mathcal{Q}(B) \oplus \mathcal{Q}(B) \subseteq M_{2}(\mathcal{Q}(B)) \cong \mathcal{Q}(B)\) ．
```

－ $\operatorname{Ext}_{s}(A, B)$ and $\operatorname{Ext}_{w}(A, B)$ are semigroups
－Trivial extensions construct subsemigroups of $\mathrm{Ext}(\mathrm{A}, B)$ and $\operatorname{Ext}_{w}(A, B)$ ，respectively

Sum of extensions

Suppose that B is a stable C^{*}－algebra．Then the sum of two extensions τ_{1} and τ_{2} is defined to be the homomorphism $\tau_{1} \oplus \tau_{2}$ ，where $\tau_{1} \oplus \tau_{2}: A \rightarrow \mathcal{Q}(B) \oplus \mathcal{Q}(B) \subseteq M_{2}(\mathcal{Q}(B)) \cong \mathcal{Q}(B)$ ．
－ $\operatorname{Ext}_{s}(A, B)$ and $\operatorname{Ext}_{w}(A, B)$ are semigroups
－Trivial extensions construct subsemigroups of $\operatorname{Ext}_{s}(A, B)$ and $\operatorname{Ext}_{w}(A, B)$ ，respectively

Ext－group

The stable Ext－group $\operatorname{Ext}(A, B)$ is the quotient of $\operatorname{Ext}_{s}(A, B)$ by the subsemigroup of trivial extensions．The equivalence class of an extension τ in $\operatorname{Ext}(A, B)$ is denoted by $[\tau]$ ．

Ext－group

The stable Ext－group $\operatorname{Ext}(A, B)$ is the quotient of $\operatorname{Ext}_{s}(A, B)$ by the subsemigroup of trivial extensions．The equivalence class of an extension τ in $\operatorname{Ext}(A, B)$ is denoted by $[\tau]$ ．

If $\left[\tau_{1}\right]=\left[\tau_{2}\right]$ in $\operatorname{Ext}(A, B)$ ，then τ_{1} and τ_{2} are called stably unitarily equivalent，denoted by $\tau_{1} \stackrel{s s}{\sim} \tau_{2}$ ．
－$\left[\tau_{1}\right]=\left[\tau_{2}\right]$ iff there are trivial extensions σ_{i} such that
－If A is a separable nuclear C^{*}－algebra and B is a σ－unital C^{*}－algebra， then $\operatorname{Ext}(A, B)$ is an abelian group
－ $\operatorname{Ext}(A, B) \cong K K^{1}(A, B)$

Ext－group

The stable Ext－group $\operatorname{Ext}(A, B)$ is the quotient of $\operatorname{Ext}_{s}(A, B)$ by the subsemigroup of trivial extensions．The equivalence class of an extension τ in $\operatorname{Ext}(A, B)$ is denoted by $[\tau]$ ．

If $\left[\tau_{1}\right]=\left[\tau_{2}\right]$ in $\operatorname{Ext}(A, B)$ ，then τ_{1} and τ_{2} are called stably unitarily equivalent，denoted by $\tau_{1} \stackrel{s s}{\sim} \tau_{2}$ ．
－$\left[\tau_{1}\right]=\left[\tau_{2}\right]$ iff there are trivial extensions σ_{i} such that $\tau_{1} \oplus \sigma_{1} \stackrel{s}{\sim} \tau_{2} \oplus \sigma_{2}$
－If A is a separable nuclear C^{*}－algebra and B is a σ－unital C^{*}－algebra， then $\operatorname{Ext}(A, B)$ is an abelian group

Ext－group

The stable Ext－group $\operatorname{Ext}(A, B)$ is the quotient of $\operatorname{Ext}_{s}(A, B)$ by the subsemigroup of trivial extensions．The equivalence class of an extension τ in $\operatorname{Ext}(A, B)$ is denoted by $[\tau]$ ．

If $\left[\tau_{1}\right]=\left[\tau_{2}\right]$ in $\operatorname{Ext}(A, B)$ ，then τ_{1} and τ_{2} are called stably unitarily equivalent，denoted by $\tau_{1} \stackrel{S s}{\sim} \tau_{2}$ ．
－$\left[\tau_{1}\right]=\left[\tau_{2}\right]$ iff there are trivial extensions σ_{i} such that $\tau_{1} \oplus \sigma_{1} \stackrel{s}{\sim} \tau_{2} \oplus \sigma_{2}$
－If A is a separable nuclear C^{*}－algebra and B is a σ－unital C^{*}－algebra， then $\operatorname{Ext}(A, B)$ is an abelian group

Ext－group

The stable Ext－group $\operatorname{Ext}(A, B)$ is the quotient of $\operatorname{Ext}_{s}(A, B)$ by the subsemigroup of trivial extensions．The equivalence class of an extension τ in $\operatorname{Ext}(A, B)$ is denoted by $[\tau]$ ．

If $\left[\tau_{1}\right]=\left[\tau_{2}\right]$ in $\operatorname{Ext}(A, B)$ ，then τ_{1} and τ_{2} are called stably unitarily equivalent，denoted by $\tau_{1} \stackrel{S s}{\sim} \tau_{2}$ ．
－$\left[\tau_{1}\right]=\left[\tau_{2}\right]$ iff there are trivial extensions σ_{i} such that $\tau_{1} \oplus \sigma_{1} \stackrel{s}{\sim} \tau_{2} \oplus \sigma_{2}$
－If A is a separable nuclear C^{*}－algebra and B is a σ－unital C^{*}－algebra， then $\operatorname{Ext}(A, B)$ is an abelian group
－ $\operatorname{Ext}(A, B) \cong K K^{1}(A, B)$

Ext－group

The stable Ext－group $\operatorname{Ext}(A, B)$ is the quotient of $\operatorname{Ext}_{s}(A, B)$ by the subsemigroup of trivial extensions．The equivalence class of an extension τ in $\operatorname{Ext}(A, B)$ is denoted by $[\tau]$ ．

If $\left[\tau_{1}\right]=\left[\tau_{2}\right]$ in $\operatorname{Ext}(A, B)$ ，then τ_{1} and τ_{2} are called stably unitarily equivalent，denoted by $\tau_{1} \stackrel{S s}{\sim} \tau_{2}$ ．
－$\left[\tau_{1}\right]=\left[\tau_{2}\right]$ iff there are trivial extensions σ_{i} such that $\tau_{1} \oplus \sigma_{1} \stackrel{s}{\sim} \tau_{2} \oplus \sigma_{2}$
－If A is a separable nuclear C^{*}－algebra and B is a σ－unital C^{*}－algebra， then $\operatorname{Ext}(A, B)$ is an abelian group
－ $\operatorname{Ext}(A, B) \cong K K^{1}(A, B)$

Relations of equivalences

－$\equiv \Longrightarrow \stackrel{s}{\sim} \Longrightarrow \stackrel{w}{\sim} \Longrightarrow \stackrel{s s}{\sim}$ ．Conversely，they do not hold．
－$\stackrel{s}{\sim} \Longrightarrow \cong \nRightarrow \stackrel{\sim}{\sim}$
－$\stackrel{\sim}{\sim} \nRightarrow \cong$

Note：In general， $\operatorname{Ext}_{l}(A, B)$ is not a semigroup since the isomorphism equivalence can not preserve the addition．

Relations of equivalences

－$\equiv \Longrightarrow \stackrel{s}{\sim} \Longrightarrow \stackrel{w}{\sim} \Longrightarrow \stackrel{s s}{\sim}$ ．Conversely，they do not hold．
－$\stackrel{s}{\sim} \Longrightarrow \cong \not \approx \stackrel{w}{\sim}$
－$\stackrel{\sim}{\sim} \nRightarrow \cong$

Note：In general， $\operatorname{Ext}_{l}(A, B)$ is not a semigroup since the isomorphism equivalence can not preserve the addition．

Invariant

Suppose that A is a unital C^{*}－algebra．Denote by $T(A)$ the tracial state space of A and denote by $\operatorname{Aff}(T(A))$ the space of all real affine continuous functions on $T(A)$ ．

Define $\rho_{A}: K_{0}(A) \rightarrow \operatorname{Aff}(T(A))$ to be the positive homomorphism defined
by $\rho_{A}([p])(\tau)=\tau(p)$ for each projection p in $M_{k}(A)$ ．
Let A be a unital simple separable C^{*}－algebra．Recall that the Elliott invariant of A is the 6－tuple：$\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A), T(A), r_{A}\right)$ ．We denote it by $\operatorname{EII}(A)$

When A is non－unital，let $\mathcal{T}(A)$ be the set of lower－semicontinuous densely defined traces on A equipped with the weakest topology such that the functional $\tau \rightarrow \tau(a)$ is continuous for any $a \in A^{+}$dominated by a projection．Let $\operatorname{Inv}(A)=\left(K_{0}(A), K_{0}(A)^{+}, \Sigma(A), K_{1}(A), \mathcal{T}(A), r_{A}\right)$ ，where $\Sigma(A)=\{[p]: p \in P(A)\}$ is the scale and $P(A)$ is the set of projections in A．

Invariant

Suppose that A is a unital C^{*}－algebra．Denote by $T(A)$ the tracial state space of A and denote by $\operatorname{Aff}(T(A))$ the space of all real affine continuous functions on $T(A)$ ．

Define $\rho_{A}: K_{0}(A) \rightarrow \operatorname{Aff}(T(A))$ to be the positive homomorphism defined by $\rho_{A}([p])(\tau)=\tau(p)$ for each projection p in $M_{k}(A)$ ．
 A．

Invariant

Suppose that A is a unital C^{*}－algebra．Denote by $T(A)$ the tracial state space of A and denote by $\operatorname{Aff}(T(A))$ the space of all real affine continuous functions on $T(A)$ ．

Define $\rho_{A}: K_{0}(A) \rightarrow \operatorname{Aff}(T(A))$ to be the positive homomorphism defined by $\rho_{A}([p])(\tau)=\tau(p)$ for each projection p in $M_{k}(A)$ ．

Let A be a unital simple separable C^{*}－algebra．Recall that the Elliott invariant of A is the 6 －tuple：$\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A), T(A), r_{A}\right)$ ．We denote it by $E I I(A)$ ．

When A is non－unital，let $\mathcal{T}(A)$ be the set of lower－semicontinuous densely defined traces on A equipped with the weakest topology such that the functional τ
projection．
$\Sigma(A)=\{[p]$ A．

Invariant

Suppose that A is a unital C^{*}－algebra．Denote by $T(A)$ the tracial state space of A and denote by $\operatorname{Aff}(T(A))$ the space of all real affine continuous functions on $T(A)$ ．

Define $\rho_{A}: K_{0}(A) \rightarrow \operatorname{Aff}(T(A))$ to be the positive homomorphism defined by $\rho_{A}([p])(\tau)=\tau(p)$ for each projection p in $M_{k}(A)$ ．

Let A be a unital simple separable C^{*}－algebra．Recall that the Elliott invariant of A is the 6 －tuple：$\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A), T(A), r_{A}\right)$ ．We denote it by $E / I(A)$ ．

When A is non－unital，let $\mathcal{T}(A)$ be the set of lower－semicontinuous densely defined traces on A equipped with the weakest topology such that the functional $\tau \rightarrow \tau(a)$ is continuous for any $a \in A^{+}$dominated by a projection．Let $\operatorname{Inv}(A)=\left(K_{0}(A), K_{0}(A)^{+}, \Sigma(A), K_{1}(A), \mathcal{T}(A), r_{A}\right)$ ，where $\Sigma(A)=\{[p]: p \in P(A)\}$ is the scale and $P(A)$ is the set of projections in A ．

Invariant

Suppose that A is a unital C^{*}－algebra．Denote by $T(A)$ the tracial state space of A and denote by $\operatorname{Aff}(T(A))$ the space of all real affine continuous functions on $T(A)$ ．

Define $\rho_{A}: K_{0}(A) \rightarrow \operatorname{Aff}(T(A))$ to be the positive homomorphism defined by $\rho_{A}([p])(\tau)=\tau(p)$ for each projection p in $M_{k}(A)$ ．

Let A be a unital simple separable C^{*}－algebra．Recall that the Elliott invariant of A is the 6 －tuple：$\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A), T(A), r_{A}\right)$ ．We denote it by $E / I(A)$ ．

When A is non－unital，let $\mathcal{T}(A)$ be the set of lower－semicontinuous densely defined traces on A equipped with the weakest topology such that the functional $\tau \rightarrow \tau(a)$ is continuous for any $a \in A^{+}$dominated by a projection．Let $\operatorname{Inv}(A)=\left(K_{0}(A), K_{0}(A)^{+}, \Sigma(A), K_{1}(A), \mathcal{T}(A), r_{A}\right)$ ，where $\Sigma(A)=\{[p]: p \in P(A)\}$ is the scale and $P(A)$ is the set of projections in A ．

Let A and B be two unital simple separable amenable C^{*}－algebras with stable rank one．We write $E I(A) \cong E I(B)$ if

$$
\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A), T(A), r_{A}\right) \cong\left(K_{0}(B), K_{0}(B)^{+},\left[1_{B}\right], K_{1}(B), T(B)\right.
$$

that is，if there are an isomorphism $\alpha_{1}: K_{1}(A) \rightarrow K_{1}(B)$ ，an order isomorphism $\alpha_{0}: K_{0}(A) \rightarrow K_{0}(B)$ such that $\alpha_{0}\left(\left[1_{A}\right]\right)=\left[1_{B}\right]$ and an affine homeomorphism $\gamma: T(B) \rightarrow T(A)$ such that

commutes．
Similarly，one can define an isomorphism $\operatorname{Inv}(A) \cong \operatorname{Inv}(B)$ when A and B
are non－unital

Let A and B be two unital simple separable amenable C^{*}－algebras with stable rank one．We write $E I(A) \cong E I(B)$ if

$$
\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A), T(A), r_{A}\right) \cong\left(K_{0}(B), K_{0}(B)^{+},\left[1_{B}\right], K_{1}(B), T(B)\right.
$$

that is，if there are an isomorphism $\alpha_{1}: K_{1}(A) \rightarrow K_{1}(B)$ ，an order isomorphism $\alpha_{0}: K_{0}(A) \rightarrow K_{0}(B)$ such that $\alpha_{0}\left(\left[1_{A}\right]\right)=\left[1_{B}\right]$ and an affine homeomorphism $\gamma: T(B) \rightarrow T(A)$ such that

$$
\begin{array}{ccc}
T(B) & \xrightarrow{\gamma} & T(A) \\
\downarrow^{r_{A}} & & \downarrow_{B} \\
S\left(K_{0}(B)\right) & \xrightarrow{\alpha_{0}^{*}} & \\
S\left(K_{0}(A)\right)
\end{array}
$$

commutes．
Similarly，one can define an isomorphism $\operatorname{Inv}(A) \cong \operatorname{Inv}(B)$ when A and B are non－unital

Let A and B be two unital simple separable amenable C^{*}－algebras with stable rank one．We write $E I(A) \cong E I(B)$ if

$$
\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A), T(A), r_{A}\right) \cong\left(K_{0}(B), K_{0}(B)^{+},\left[1_{B}\right], K_{1}(B), T(B)\right.
$$

that is，if there are an isomorphism $\alpha_{1}: K_{1}(A) \rightarrow K_{1}(B)$ ，an order isomorphism $\alpha_{0}: K_{0}(A) \rightarrow K_{0}(B)$ such that $\alpha_{0}\left(\left[1_{A}\right]\right)=\left[1_{B}\right]$ and an affine homeomorphism $\gamma: T(B) \rightarrow T(A)$ such that

commutes．
Similarly，one can define an isomorphism $\operatorname{Inv}(A) \cong \operatorname{Inv}(B)$ when A and B are non－unital．

Let A and B be two unital simple separable amenable C^{*}－algebras with stable rank one．We write $E I(A) \cong E I(B)$ if

$$
\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A), T(A), r_{A}\right) \cong\left(K_{0}(B), K_{0}(B)^{+},\left[1_{B}\right], K_{1}(B), T(B)\right.
$$

that is，if there are an isomorphism $\alpha_{1}: K_{1}(A) \rightarrow K_{1}(B)$ ，an order isomorphism $\alpha_{0}: K_{0}(A) \rightarrow K_{0}(B)$ such that $\alpha_{0}\left(\left[1_{A}\right]\right)=\left[1_{B}\right]$ and an affine homeomorphism $\gamma: T(B) \rightarrow T(A)$ such that

commutes．
Similarly，one can define an isomorphism $\operatorname{Inv}(A) \cong \operatorname{Inv}(B)$ when A and B are non－unital．

Let $e: 0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ be an extension of A by B ．Denote by $K(e)$ the six term exact sequence of e in K－theory：

Denote by $\mathcal{H e x t}(A, B)$ all such $K(e)$ of extensions of A by B ．

Let $e: 0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ be an extension of A by B ．Denote by $K(e)$ the six term exact sequence of e in K－theory：

Denote by $\mathcal{H e x t}(A, B)$ all such $K(e)$ of extensions of A by B ．

Let $e_{i} \in \mathcal{E} \operatorname{xt}\left(A_{i}, B_{i}\right)(i=1,2)$ ．We call $\left(\alpha_{*}, \beta_{*}, \lambda_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ a morphism if there are homomorphisms $\alpha_{*}: K_{*}\left(A_{1}\right) \rightarrow K_{*}\left(A_{2}\right)$ ， $\beta_{*}: K_{*}\left(B_{1}\right) \rightarrow K_{*}\left(B_{2}\right)$ ，and $\lambda_{*}: K_{*}\left(E_{1}\right) \rightarrow K_{*}\left(E_{2}\right)$ making the obvious diagram commutative．

If α_{*}, β_{*} and λ_{*} are isomorphisms，then $K\left(e_{1}\right)$ and $K\left(e_{2}\right)$ are called isomorphic，written $K\left(e_{1}\right) \cong K\left(e_{2}\right)$ ．If $A_{1}=A_{2}=A, B_{1}=B_{2}=B$ and there is an isomorphism $\left(i d_{K_{*}(A)}, i d_{K_{*}(B)}, \lambda_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ ，then they are called congruent，written $K\left(e_{1}\right) \equiv K\left(e_{2}\right)$

Let $\operatorname{Hext}(A, B)$ denote the set of congruent classes of six term exact sequences in $\mathcal{H e x t}(A, B)$ ．

Let $e_{i} \in \mathcal{E} \operatorname{xt}\left(A_{i}, B_{i}\right)(i=1,2)$ ．We call $\left(\alpha_{*}, \beta_{*}, \lambda_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ a morphism if there are homomorphisms $\alpha_{*}: K_{*}\left(A_{1}\right) \rightarrow K_{*}\left(A_{2}\right)$ ， $\beta_{*}: K_{*}\left(B_{1}\right) \rightarrow K_{*}\left(B_{2}\right)$ ，and $\lambda_{*}: K_{*}\left(E_{1}\right) \rightarrow K_{*}\left(E_{2}\right)$ making the obvious diagram commutative．

If α_{*}, β_{*} and λ_{*} are isomorphisms，then $K\left(e_{1}\right)$ and $K\left(e_{2}\right)$ are called isomorphic，written $K\left(e_{1}\right) \cong K\left(e_{2}\right)$ ．If $A_{1}=A_{2}=A, B_{1}=B_{2}=B$ and there is an isomorphism $\left(i d_{K_{*}(A)}, i d_{K_{*}(B)}, \lambda_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ ，then they are called congruent，written $K\left(e_{1}\right) \equiv K\left(e_{2}\right)$ ．

Let $\operatorname{Hext}(A, B)$ denote the set of congruent classes of six term exact sequences in $\mathcal{H e x t}(A, B)$ ．

Let $e_{i} \in \mathcal{E} \operatorname{xt}\left(A_{i}, B_{i}\right)(i=1,2)$ ．We call $\left(\alpha_{*}, \beta_{*}, \lambda_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ a morphism if there are homomorphisms $\alpha_{*}: K_{*}\left(A_{1}\right) \rightarrow K_{*}\left(A_{2}\right)$ ， $\beta_{*}: K_{*}\left(B_{1}\right) \rightarrow K_{*}\left(B_{2}\right)$ ，and $\lambda_{*}: K_{*}\left(E_{1}\right) \rightarrow K_{*}\left(E_{2}\right)$ making the obvious diagram commutative．

If α_{*}, β_{*} and λ_{*} are isomorphisms，then $K\left(e_{1}\right)$ and $K\left(e_{2}\right)$ are called isomorphic，written $K\left(e_{1}\right) \cong K\left(e_{2}\right)$ ．If $A_{1}=A_{2}=A, B_{1}=B_{2}=B$ and there is an isomorphism $\left(i d_{K_{*}(A)}, i d_{K_{*}(B)}, \lambda_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ ，then they are called congruent，written $K\left(e_{1}\right) \equiv K\left(e_{2}\right)$ ．

Let $\operatorname{Hext}(A, B)$ denote the set of congruent classes of six term exact sequences in $\mathcal{H e x t}(A, B)$ ．

Let $e_{i} \in \mathcal{E} \operatorname{xt}\left(A_{i}, B_{i}\right)(i=1,2)$ ．We call $\left(\alpha_{*}, \beta_{*}, \lambda_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ a morphism if there are homomorphisms $\alpha_{*}: K_{*}\left(A_{1}\right) \rightarrow K_{*}\left(A_{2}\right)$ ， $\beta_{*}: K_{*}\left(B_{1}\right) \rightarrow K_{*}\left(B_{2}\right)$ ，and $\lambda_{*}: K_{*}\left(E_{1}\right) \rightarrow K_{*}\left(E_{2}\right)$ making the obvious diagram commutative．

If α_{*}, β_{*} and λ_{*} are isomorphisms，then $K\left(e_{1}\right)$ and $K\left(e_{2}\right)$ are called isomorphic，written $K\left(e_{1}\right) \cong K\left(e_{2}\right)$ ．If $A_{1}=A_{2}=A, B_{1}=B_{2}=B$ and there is an isomorphism $\left(i d_{K_{*}(A)}, i d_{K_{*}(B)}, \lambda_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ ，then they are called congruent，written $K\left(e_{1}\right) \equiv K\left(e_{2}\right)$ ．

Let $\operatorname{Hext}(A, B)$ denote the set of congruent classes of six term exact sequences in $\mathcal{H e x t}(A, B)$ ．

Denote by $K K(A, B)^{++}$those elements $x \in K K(A, B)$ such that

$$
K_{0}(x)\left(K_{0}(A)_{+} \backslash\{0\}\right) \subset K_{0}(B)_{+} \backslash\{0\} .
$$

Suppose that both A and B are unital．Denote by $K K_{e}(A, B)^{++}$the set of those elements x in $K K(A, B)^{++}$such that $K_{0}(x)\left(\left[1_{A}\right]\right)=\left[1_{B}\right]$ ．

Denote by $K K(A, B)^{++}$those elements $x \in K K(A, B)$ such that

$$
K_{0}(x)\left(K_{0}(A)_{+} \backslash\{0\}\right) \subset K_{0}(B)_{+} \backslash\{0\} .
$$

Suppose that both A and B are unital．Denote by $K K_{e}(A, B)^{++}$the set of those elements x in $K K(A, B)^{++}$such that $K_{0}(x)\left(\left[1_{A}\right]\right)=\left[1_{B}\right]$ ．

Classification－－nonunital case

Some Results

Consider the extension $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$
－Rordam，1997：When A, B are stable Kirchberg algebras，then $K(e)$ is a complete invariant for extensions up to stable isomorphism
－Eilers－Restorff－Ruiz，2009：Suppose that A, B are in a certain class of C^{*}－algebras which are classified by $K_{*}^{+}(A)=\left(K_{0}(A), K_{0}(A)_{+}, K_{1}(A)\right)$ and B has CFP，then $K_{*}^{+}(A)+K(e)$ is a complete invariant for full extensions being stably isomorphic．

Classification－－nonunital case

Some Results

Consider the extension $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$
－Rordam，1997：When A, B are stable Kirchberg algebras，then $K(e)$ is a complete invariant for extensions up to stable isomorphism
－Eilers－Restorff－Ruiz，2009：Suppose that A, B are in a certain class of C^{*}－algebras which are classified by $K_{*}^{+}(A)=\left(K_{0}(A), K_{0}(A)_{+}, K_{1}(A)\right)$ and B has CFP，then $K_{*}^{+}(A)+K(e)$ is a complete invariant for full extensions being stably isomorphic．

Classification－－nonunital case

Some Results

Consider the extension $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$
－Rordam，1997：When A, B are stable Kirchberg algebras，then $K(e)$ is a complete invariant for extensions up to stable isomorphism
－Eilers－Restorff－Ruiz，2009：Suppose that A, B are in a certain class of C^{*}－algebras which are classified by $K_{*}^{+}(A)=\left(K_{0}(A), K_{0}(A)_{+}, K_{1}(A)\right)$ and B has CFP，then $K_{*}^{+}(A)+K(e)$ is a complete invariant for full extensions being stably isomorphic．

Definition

Let B be separable stable C^{*}－algebra．Then B is said to have the Corona Factorization Property（CFP）if every full projection in $M(B)$ is $\mathrm{M}-\mathrm{v}$ equivalent to $1_{M(B)}$ ．

If B has CFP，then
－Note：every nonunital full extension is absorbing，and every unital full extension is unital－absorbing．
－Lin－Kucerovsky－Ng：$K^{1}(A, B)=\left\{[\tau]_{u}: \tau\right.$ is nonunital，full $\}$ for separable nuclear C^{*}－algebra A ．

Definition

Let B be separable stable C^{*}－algebra．Then B is said to have the Corona Factorization Property（CFP）if every full projection in $M(B)$ is $\mathrm{M}-\mathrm{v}$ equivalent to $1_{M(B)}$ ．

If B has CFP，then
－Note：every nonunital full extension is absorbing，and every unital full extension is unital－absorbing．
－Lin－Kucerovsky－ Ng ：$K^{1}(A, B)=\left\{[\tau]_{u}: \tau\right.$ is nonunital，full $\}$ for separable nuclear C^{*}－algebra A ．

Definition

Let B be separable stable C^{*}－algebra．Then B is said to have the Corona Factorization Property（CFP）if every full projection in $M(B)$ is $\mathrm{M}-\mathrm{v}$ equivalent to $1_{M(B)}$ ．

If B has CFP，then
－Note：every nonunital full extension is absorbing，and every unital full extension is unital－absorbing．
－Lin－Kucerovsky－ Ng ：$K^{1}(A, B)=\left\{[\tau]_{u}: \tau\right.$ is nonunital，full $\}$ for separable nuclear C^{*}－algebra A ．

Lemma（Ortega－Perera－Rordam）

Let B be a separable，unital C^{*}－algebra with finite decomposition rank． Then $B \otimes \mathcal{K}$ has the corona factorization property．

Lemma（Ortega－Perera－Rordam）

Let B be a separable，unital C^{*}－algebra with finite decomposition rank． Then $B \otimes \mathcal{K}$ has the corona factorization property．

```
Corollary
Let \(B\) be a unital \(A \mathbb{T}\)－algebra，then \(B \otimes \mathcal{K}\) has CFP．
```


Theorem

Let A be a simple $A \mathbb{T}$－algebra with unit．Suppose that $a \in K K_{e}(A, A)^{++}$ and $\gamma: T(A) \rightarrow T(A)$ is an affine homeomorphism such that

$$
K_{*}(a):\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A)\right) \rightarrow\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], K_{1}(A)\right)
$$

is an isomorphism and γ is compatible with $K_{0}(a)$ ．
It follows that there is an automorphism $\phi: A \rightarrow A$ such that $K K(\phi)=a$ in $K K(A, A)$ and $\phi_{T}=\gamma$ ．

Lemma（Rordam）

Let A and B be separable nuclear C^{*}－algebras in \mathcal{N} with B stable，and let $x_{1}, x_{2} \in \operatorname{Ext}(A, B)$ ．Then $K\left(x_{1}\right)=K\left(x_{2}\right)$ in $\operatorname{Hext}(A, B)$ if and only if there exist elements a in $K K(A, A)$ and b in $K K(B, B)$ with $K_{*}(a)=K_{*}\left(i d_{A}\right)$ and $K_{*}(b)=K_{*}\left(i d_{B}\right)$ such that $x_{1} b=a x_{2}$.

Lemma

Let A and B be simple $A \mathbb{T}$－algebras with A unital and B stable．Assume that $a \in K K(A, A), b \in K K(B, B)$ such that $K_{*}(a)=i d_{K_{*}(A)}$ and $K_{*}(b)=i d_{K_{*}(B)}$ ．Then there are isomorphisms $\alpha: A \rightarrow A, \beta: B \rightarrow B$ such that $K K(\alpha)=a$ and $K K(\beta)=b$ ．

Theorem

Let A_{i} and B_{i} be simple $A \mathbb{T}$－algebras with A unital and B stable．Suppose that $e_{i}: 0 \rightarrow B_{i} \rightarrow E_{i} \rightarrow A_{i} \rightarrow 0$ are non－unital full extensions．Then the following are equivalent：
（1）E_{1} is isomorphic to E_{2} ．
（2）There is an extension isomorphism $(\beta, \eta, \alpha): e_{1} \rightarrow e_{2}$ ，i．e．$e_{1} \cong e_{2}$ ．
（3）The six term exact sequences associated to e_{1} and e_{2} are isomorphic， i．e．there are isomorphisms $\beta_{\sharp}: \operatorname{Inv}\left(B_{1}\right) \rightarrow \operatorname{Inv}\left(B_{2}\right), \eta_{*}: K_{*}\left(E_{1}\right) \rightarrow K_{*}\left(E_{2}\right)$ and $\alpha_{\sharp}: E I I\left(A_{1}\right) \rightarrow E \|\left(A_{2}\right)$ such that $\left(\beta_{*}, \eta_{*}, \alpha_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ is an isomorphism．

Theorem

Suppose that A_{i} are simple $A \mathbb{T}$－algebras with units，and B_{i} are stabilizations of unital $A F$－algebras．Let $e_{i}: 0 \rightarrow B_{i} \rightarrow E_{i} \rightarrow A_{i} \rightarrow 0$ be non－unital full extensions．Then the following are equivalent：
（1）$E_{1} \cong E_{2}$ ．
（2）$e_{1} \cong e_{2}$ ．
（3）The six term exact sequences associated to e_{1} and e_{2} are isomorphic， i．e．there is an isomorphism $\left(\beta_{*}, \eta_{*}, \alpha_{*}\right): K\left(e_{1}\right) \rightarrow K\left(e_{2}\right)$ for some isomorphisms $\beta_{*}:\left(K_{0}\left(B_{1}\right), K_{0}\left(B_{1}\right)^{+}\right) \rightarrow\left(K_{0}\left(B_{2}\right), K_{0}\left(B_{2}\right)^{+}\right)$and $\alpha_{\sharp}: \operatorname{El}\left(A_{1}\right) \rightarrow E / I\left(A_{2}\right)$.

When is an extension an $A \mathbb{T}$－algebra？

Given an extension $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$

Question：Let A, B be in a class \mathcal{A} of C^{*}－algebras．Which condition will make E be in \mathcal{A} ？

Brown－Effros－Elliott，1980s
$\mathcal{A}=\{$ AF－algebras $\} \Longrightarrow E \in \mathcal{A}$ ．

When is an extension an $A \mathbb{T}$－algebra？

Given an extension $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$

Question：Let A, B be in a class \mathcal{A} of C^{*}－algebras．Which condition will make E be in \mathcal{A} ？

Brown－Effros－Elliott，1980s

$$
\mathcal{A}=\{\text { AF-algebras }\} \Longrightarrow E \in \mathcal{A} .
$$

Lin－Rordam， 1992

Let A and B be $A \mathbb{T}$－algebras with real rank zero and let e be an extension $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ ．Then the following three conditions are equivalent： （1） E is an $A \mathbb{T}$－algebra of real rank zero．
（2） E has real rank zero and stable rank one．
（3）The index maps $\delta_{i}: K_{i}(A) \rightarrow K_{1-i}(B), i=0,1$ are both trivial．

Dadarlat－Loring， 1993

Assume that A, B are $A D$－algebras with real rank zero，$K_{1}(B)=0$ or $K_{1}(A)$ torsion free．TFAE：
（1） E is an $A D$－algebra of real rank zero．
（2）$R R(E)=0, \operatorname{st}(E)=1$ ．
（3）$\delta_{i}=0$

Theorem

Suppose that A is an $A \mathbb{T}$－algebra and B is the stabilization of a unital $A \mathbb{T}$－algebra．Let $e: 0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ be a non－unital full extension of A by B ．Then the following are equivalent．
（1）E is an $A \mathbb{T}$－algebra．
（2）The index maps of e are zero．
（3）The extension e is quasidiagonal．

Proof：

$(2) \Longleftrightarrow(3)$ and $(1) \Longrightarrow(3)$ are immediate．
We only need to show that $(3) \Longrightarrow(1)$ ．
Lemma 1
Suppose that A and B are $A \mathbb{T}$－algebras with B stable．Then there is an absorbing trivial extension which is also quasidiagonal．

```
Lemma 2
Sunnose that }A\mathrm{ and B are AT-algebras with B stable. Let
e: 0->B->E H}A->0\mathrm{ be an essential trivial extension of A by B. If e
is quasidiagonal, then E is an A\mathbb{T}\mathrm{ -algebra.}
```


Proof：

$(2) \Longleftrightarrow(3)$ and $(1) \Longrightarrow(3)$ are immediate．
We only need to show that $(3) \Longrightarrow(1)$ ．

Lemma 1

Suppose that A and B are $A \mathbb{T}$－algebras with B stable．Then there is an absorbing trivial extension which is also quasidiagonal．

Proof：

$(2) \Longleftrightarrow(3)$ and $(1) \Longrightarrow(3)$ are immediate．
We only need to show that $(3) \Longrightarrow(1)$ ．

Lemma 1

Suppose that A and B are $A \mathbb{T}$－algebras with B stable．Then there is an absorbing trivial extension which is also quasidiagonal．

Lemma 2

Suppose that A and B are $A \mathbb{T}$－algebras with B stable．Let $e: 0 \rightarrow B \rightarrow E \xrightarrow{\psi} A \rightarrow 0$ be an essential trivial extension of A by B ．If e is quasidiagonal，then E is an $A \mathbb{T}$－algebra．

Suppose that e is a quasidiagonal extension. Let $A=\lim _{n \rightarrow \infty}\left(A_{n}, \iota_{n}\right)$, where A_{n} is isomorphic to a quotient of a circle algebra and ι_{n} are the inclusion maps. Set $\tau_{n}=\tau \circ \iota_{n}$ and $E_{n}=\pi^{-1}\left(\tau_{n}\left(A_{n}\right)\right)$, where τ is the Busby invariant associated to e. Then we have an essential extension e_{n} of A_{n} by B

$$
0 \rightarrow B \rightarrow E_{n} \rightarrow A_{n} \rightarrow 0
$$

for every $n \in \mathbb{N}$. Hence, there is a commutative diagram

Since $A=\lim _{n \rightarrow \infty}\left(A_{n}, \iota_{n}\right)$, it follows that $\tau(A)=\overline{\cup_{n=1}^{\infty} \tau_{n}\left(A_{n}\right)}$.
Therefore, it follows that

$$
E=\overline{\bigcup_{n=1}^{\infty} E_{n}}=\lim _{n \rightarrow \infty} E_{n} .
$$

For each A_{n} ，there is an increasing sequence $\left\{A_{n, k}\right\}$ of C^{*}－subalgebras of A_{n} such that each $A_{n, k}$ is isomorphic to a finite direct sum of C^{*}－algebras of the form $M_{m}(C(X))$ and $\cup_{k=1}^{\infty} A_{n, k}$ is dense in A_{n} ，where X is a connected compact subset of the unit circle．Set $\tau_{n, k}=\tau \circ \iota_{n, k}$ and $E_{n, k}=\pi^{-1}\left(\tau_{n, k}\left(A_{n, k}\right)\right)$ ，where $\iota_{n, k}: A_{n, k} \rightarrow A$ is the inclusion map．Let $e_{n, k}$ be the essential extension of $A_{n, k}$ by B ：

$$
0 \rightarrow B \rightarrow E_{n, k} \rightarrow A_{n, k} \rightarrow 0
$$

Obviously，there is a commutative diagram

As the above proof，we have

$$
E_{n}=\overline{\bigcup_{k=1}^{\infty} E_{n, k}}=\lim _{k \rightarrow \infty} E_{n, k}
$$

Since e is non－unital and full，then $e_{n, k}$ is a non－unital full extension． Hence $e_{n, k}$ is absorbing．By the above proof，the index maps $\delta_{i}: K_{i}(A) \rightarrow K_{1-i}(B)$ of e are trivial．Since $\tau_{n, k}=\tau \circ \iota_{n, k}$ ，then the index maps of $e_{n, k}$ are also trivial．From Lemma 1，it follows that A is quasidiagonal relative to B ，so the subalgebra $A_{n, k}$ is also quasidiagonal relative to B ．Note that $K_{*}\left(A_{n, k}\right)$ is free．Hence，$e_{n, k}$ is a trivial and quasidiagonal extension．It follows from Lemma 2 that $E_{n, k}$ is an $A \mathbb{T}$－algebra．Therefore，E_{n} is an $A \mathbb{T}$－algebra．Consequently，E is an $A \mathbb{T}$－algebra．

Classification－－unital case

Lemma

Suppose that A and B are C^{*}－algebras with A unital and B stable．Let $e_{i}: 0 \rightarrow B \xrightarrow{I_{i}} E_{i} \rightarrow A \rightarrow 0$ be essential unital extensions．Suppose $\tau_{2}=\operatorname{Ad} u \circ \tau_{1}$ for some unitary u in $\mathcal{Q}(B)$ ．Let v be a partial isometry in $M(B)$ such that $\pi(v)=u$ ，and let $p=v^{*} v$ and $q=v v^{*}$ ．Then

$$
\left(K\left(e_{1}\right),[1]_{0}\right) \equiv\left(K\left(e_{2}\right),[q]_{0}+[1-p]_{0}\right) .
$$

Let $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ be an extension with index maps δ_{0} and δ_{1} in its K－theory．We set $G^{\prime}=\left\{f\left([1]_{0}\right) \mid f \in \operatorname{Hom}\left(\operatorname{Ker} \delta_{0}, \operatorname{Coker} \delta_{1}\right)\right\}$ and let $\pi: K_{0}(B) \rightarrow \operatorname{Coker} \delta_{1}$ be the quotient map．

Lemma

Let e_{i} be essential unital extensions with Busby invariant τ_{i} ．If e_{1} is weakly unitarily equivalent to e_{2} by a unitary $u \in \mathcal{Q}(B)$ ．Then

$$
\left(K\left(e_{1}\right),[1]_{0}\right) \equiv\left(K\left(e_{2}\right),[1]_{0}\right)
$$

if and only if $\pi\left([u]_{1}\right)$ is in G^{\prime} ．

Lemma

Suppose e_{i} are essential unital extensions with Busby invariant τ_{i} and e_{1} is weakly unitarily equivalent to e_{2} ．If the index maps of e_{i} are trivial and

$$
\left(K\left(e_{1}\right),[1]_{0}\right) \equiv\left(K\left(e_{2}\right),[1]_{0}\right),
$$

then $\left[e_{1}\right]=\left[e_{2}\right]$ in $\operatorname{Ext}_{s}^{u}(A, B)$ ．

Theorem

Let A_{i} and B_{i} be simple $A \mathbb{T}$－algebras with A_{i} unital and B_{i} stable． Suppose that $e_{i}: 0 \rightarrow B_{i} \rightarrow E_{i} \rightarrow A_{i} \rightarrow 0$ are unital quasidiagonal extensions．Then the following are equivalent：
（1）$E_{1} \cong E_{2}$ ．
（2）There is an extension isomorphism $(\beta, \eta, \alpha): e_{1} \rightarrow e_{2}$ ．
（3）There are isomorphisms $\beta_{\sharp}: \operatorname{Ell}\left(B_{1}\right) \rightarrow \operatorname{Ell}\left(B_{2}\right)$ ，
$\eta_{*}:\left(K_{*}\left(E_{1}\right),[1]_{0}\right) \rightarrow\left(K_{*}\left(E_{2}\right),[1]_{0}\right)$ and $\alpha_{\sharp}: \operatorname{Ell}\left(A_{1}\right) \rightarrow \operatorname{El}\left(A_{2}\right)$ such that $\left(\beta_{*}, \eta_{*}, \alpha_{*}\right):\left(K\left(e_{1}\right),[1]_{0}\right) \rightarrow\left(K\left(e_{2}\right),[1]_{0}\right)$ is an isomorphism．

Theorem

Let A_{i} and B_{i} be simple $A \mathbb{T}$－algebras with A unital and B stable．Suppose that $e_{i}: 0 \rightarrow B_{i} \rightarrow E_{i} \rightarrow A_{i} \rightarrow 0$ are unital essential extensions．Then the following are equivalent：
（1）$E_{1} \otimes \mathcal{K}$ is isomorphic to $E_{2} \otimes \mathcal{K}$ ．
（2）There is an extension isomorphism $(\beta, \eta, \alpha): S e_{1} \rightarrow S e_{2}$ ．
（3）The six term exact sequences associated to e_{1} and e_{2} are isomorphic， i．e．there are isomorphisms $\beta_{\sharp}: E I I\left(B_{1} \otimes \mathcal{K}\right) \rightarrow E I I\left(B_{2} \otimes \mathcal{K}\right)$ ， $\eta_{*}: K_{*}\left(E_{1} \otimes \mathcal{K}\right) \rightarrow K_{*}\left(E_{2} \otimes \mathcal{K}\right)$ and $\alpha_{\sharp}: E\left\|\left(A_{1} \otimes \mathcal{K}\right) \rightarrow E\right\|\left(A_{2} \otimes \mathcal{K}\right)$ such that $\left(\beta_{*}, \eta_{*}, \alpha_{*}\right): K\left(S e_{1}\right) \rightarrow K\left(S e_{2}\right)$ is an isomorphism．

Question

Suppose that e：0 $\mathrm{O} \rightarrow E \rightarrow A \rightarrow 0$ is essential extension of $A \mathbb{T}$－algebras．
－Without the condition＂absorption or fullness＂，e is trivial $\Longrightarrow e$ is QD or E is an $A \mathbb{T}$－algebra？
－Without the condition＂absorption or fullness＂，e is $Q D \Longrightarrow E$ is an AT－algebra？

Question

Suppose that $e: 0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is essential extension of $A \mathbb{T}$－algebras．
－Without the condition＂absorption or fullness＂，e is trivial $\Longrightarrow e$ is QD or E is an $A \mathbb{T}$－algebra？
－Without the condition＂absorption or fullness＂，e is $\mathrm{QD} \Longrightarrow E$ is an AT1－algebra？

Question

Suppose that e：0 $\mathrm{O} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow 0$ is essential extension of $A \mathbb{T}$－algebras．
－Without the condition＂absorption or fullness＂，e is trivial $\Longrightarrow e$ is QD or E is an $A \mathbb{T}$－algebra？
－Without the condition＂absorption or fullness＂，e is $Q D \Longrightarrow E$ is an AT－algebra？
－Is $\left(K(e),[1]_{0}\right)$ a complete invariant of unital extensions $A \mathbb{T}$－algebras？

Thanks

