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Extension

Let A and B be C ∗-algebras. Recall that an extension of A by B is a short
exact sequence

0→ B
α→ E

β→ A→ 0.

Denote this extension by e or (E , α, β) and the set of all such extensions
by Ext(A,B).

The extension (E , α, β) is called trivial, if the above sequence splits, i.e. if
there is a homomorphism γ : A→ E such that β ◦ γ = idA.

We call (E , α, β) essential, if α(B) is an essential ideal in E . We denote
the set of all essential extensions by Exte(A,B).
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The Busby invariant

The Busby invariant of (E , α, β) is a homomorphism τ from A into the
corona algebra Q(B) = M(B)/B defined by τ(a) = π(σ(b)) for a ∈ A,
where π : M(B)→ Q(B) is the quotient map, and b ∈ E such that
β(b) = a.

Hence, we have the commutative diagram:

0 −−−−→ B −−−−→ E −−−−→ A −−−−→ 0∥∥∥ y yτ
0 −−−−→ B −−−−→ M(B) −−−−→ Q(B) −−−−→ 0.

If A is unital and the Busby invariant is unital, then (E , α, β) is called
unital.
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Equivalence

Let ei : 0→ B → Ei → A→ 0 be two extensions with Busby invariants τi
for i = 1, 2.

Definition 1

e1 and e2 are called congruent, denoted by e1 ≡ e2, if there exists an
isomorphism η making the following diagram commute:

0 −−−−→ B −−−−→ E1 −−−−→ A −−−−→ 0∥∥∥ yη ∥∥∥
0 −−−−→ B −−−−→ E2 −−−−→ A −−−−→ 0.
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Definition 2

e1 and e2 are called (strongly) unitarily equivalent, denoted by e1
s∼ e2, if

there exists a unitary u ∈ M(B) such that τ2(a) = π(u)τ1(a)π(u)∗ for all
a ∈ A. Denote by Ext(A,B) or Exts(A,B) the set of (strongly) unitary
equivalence classes of extensions of A by B.
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Definition 3

Weakly unitarily equivalent, denoted by e1
w∼ e2, if there exists a unitary

u ∈ Q(B) such that τ2(a) = uτ1(a)u∗ for all a ∈ A. Denote by Extw (A,B)
the set of weakly unitary equivalence classes of extensions of A by B.
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Definition 4

e1 and e2 are called isomorphic, denoted by e1
∼= e2, if there exist

isomorphisms β, η, α making the following diagram commute:

0 −−−−→ B −−−−→ E1 −−−−→ A −−−−→ 0yβ yη yα
0 −−−−→ B −−−−→ E2 −−−−→ A −−−−→ 0.

Denote the morphism of extensions by (β, η, α) : e1 → e2. Denote by
ExtI (A,B) the set of equivalence classes of extensions up to isomorphism.
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Sum of extensions

Suppose that B is a stable C ∗-algebra. Then the sum of two extensions τ1

and τ2 is defined to be the homomorphism τ1 ⊕ τ2, where
τ1 ⊕ τ2 : A→ Q(B)⊕Q(B) ⊆ M2(Q(B)) ∼= Q(B).

Exts(A,B) and Extw (A,B) are semigroups

Trivial extensions construct subsemigroups of Exts(A,B) and
Extw (A,B), respectively
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Ext-group

The stable Ext-group Ext(A,B) is the quotient of Exts(A,B) by the
subsemigroup of trivial extensions. The equivalence class of an extension τ
in Ext(A,B) is denoted by [τ ].

If [τ1] = [τ2] in Ext(A,B), then τ1 and τ2 are called stably unitarily
equivalent, denoted by τ1

ss∼ τ2.

[τ1] = [τ2] iff there are trivial extensions σi such that
τ1 ⊕ σ1

s∼ τ2 ⊕ σ2

If A is a separable nuclear C ∗-algebra and B is a σ-unital C ∗-algebra,
then Ext(A,B) is an abelian group

Ext(A,B) ∼= KK 1(A,B)

Changguo Wei (�~J) (Ocean University of China, Qingdao)Classification of extensions of AT-algebras April 19, 2012 at ECNU 9 / 38



bit

Ext-group

The stable Ext-group Ext(A,B) is the quotient of Exts(A,B) by the
subsemigroup of trivial extensions. The equivalence class of an extension τ
in Ext(A,B) is denoted by [τ ].

If [τ1] = [τ2] in Ext(A,B), then τ1 and τ2 are called stably unitarily
equivalent, denoted by τ1

ss∼ τ2.

[τ1] = [τ2] iff there are trivial extensions σi such that
τ1 ⊕ σ1

s∼ τ2 ⊕ σ2

If A is a separable nuclear C ∗-algebra and B is a σ-unital C ∗-algebra,
then Ext(A,B) is an abelian group

Ext(A,B) ∼= KK 1(A,B)

Changguo Wei (�~J) (Ocean University of China, Qingdao)Classification of extensions of AT-algebras April 19, 2012 at ECNU 9 / 38



bit

Ext-group

The stable Ext-group Ext(A,B) is the quotient of Exts(A,B) by the
subsemigroup of trivial extensions. The equivalence class of an extension τ
in Ext(A,B) is denoted by [τ ].

If [τ1] = [τ2] in Ext(A,B), then τ1 and τ2 are called stably unitarily
equivalent, denoted by τ1

ss∼ τ2.

[τ1] = [τ2] iff there are trivial extensions σi such that
τ1 ⊕ σ1

s∼ τ2 ⊕ σ2

If A is a separable nuclear C ∗-algebra and B is a σ-unital C ∗-algebra,
then Ext(A,B) is an abelian group

Ext(A,B) ∼= KK 1(A,B)

Changguo Wei (�~J) (Ocean University of China, Qingdao)Classification of extensions of AT-algebras April 19, 2012 at ECNU 9 / 38



bit

Ext-group

The stable Ext-group Ext(A,B) is the quotient of Exts(A,B) by the
subsemigroup of trivial extensions. The equivalence class of an extension τ
in Ext(A,B) is denoted by [τ ].

If [τ1] = [τ2] in Ext(A,B), then τ1 and τ2 are called stably unitarily
equivalent, denoted by τ1

ss∼ τ2.

[τ1] = [τ2] iff there are trivial extensions σi such that
τ1 ⊕ σ1

s∼ τ2 ⊕ σ2

If A is a separable nuclear C ∗-algebra and B is a σ-unital C ∗-algebra,
then Ext(A,B) is an abelian group

Ext(A,B) ∼= KK 1(A,B)

Changguo Wei (�~J) (Ocean University of China, Qingdao)Classification of extensions of AT-algebras April 19, 2012 at ECNU 9 / 38



bit

Ext-group

The stable Ext-group Ext(A,B) is the quotient of Exts(A,B) by the
subsemigroup of trivial extensions. The equivalence class of an extension τ
in Ext(A,B) is denoted by [τ ].

If [τ1] = [τ2] in Ext(A,B), then τ1 and τ2 are called stably unitarily
equivalent, denoted by τ1

ss∼ τ2.

[τ1] = [τ2] iff there are trivial extensions σi such that
τ1 ⊕ σ1

s∼ τ2 ⊕ σ2

If A is a separable nuclear C ∗-algebra and B is a σ-unital C ∗-algebra,
then Ext(A,B) is an abelian group

Ext(A,B) ∼= KK 1(A,B)

Changguo Wei (�~J) (Ocean University of China, Qingdao)Classification of extensions of AT-algebras April 19, 2012 at ECNU 9 / 38



bit

Ext-group

The stable Ext-group Ext(A,B) is the quotient of Exts(A,B) by the
subsemigroup of trivial extensions. The equivalence class of an extension τ
in Ext(A,B) is denoted by [τ ].

If [τ1] = [τ2] in Ext(A,B), then τ1 and τ2 are called stably unitarily
equivalent, denoted by τ1

ss∼ τ2.

[τ1] = [τ2] iff there are trivial extensions σi such that
τ1 ⊕ σ1

s∼ τ2 ⊕ σ2

If A is a separable nuclear C ∗-algebra and B is a σ-unital C ∗-algebra,
then Ext(A,B) is an abelian group

Ext(A,B) ∼= KK 1(A,B)

Changguo Wei (�~J) (Ocean University of China, Qingdao)Classification of extensions of AT-algebras April 19, 2012 at ECNU 9 / 38



bit

Relations of equivalences

≡ =⇒ s∼=⇒ w∼=⇒ ss∼. Conversely, they do not hold.
s∼=⇒ ∼= ; w∼
w∼;∼=

Note: In general, ExtI (A,B) is not a semigroup since the isomorphism
equivalence can not preserve the addition.
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Invariant

Suppose that A is a unital C ∗-algebra. Denote by T (A) the tracial state
space of A and denote by Aff (T (A)) the space of all real affine continuous
functions on T (A).

Define ρA : K0(A)→ Aff (T (A)) to be the positive homomorphism defined
by ρA([p])(τ) = τ(p) for each projection p in Mk(A).

Let A be a unital simple separable C ∗-algebra. Recall that the Elliott
invariant of A is the 6-tuple: (K0(A),K0(A)+, [1A],K1(A),T (A), rA). We
denote it by Ell(A).

When A is non-unital, let T (A) be the set of lower-semicontinuous densely
defined traces on A equipped with the weakest topology such that the
functional τ → τ(a) is continuous for any a ∈ A+ dominated by a
projection. Let Inv(A) = (K0(A),K0(A)+,Σ(A),K1(A), T (A), rA), where
Σ(A) = {[p] : p ∈ P(A)} is the scale and P(A) is the set of projections in
A.
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Let A and B be two unital simple separable amenable C ∗-algebras with
stable rank one. We write Ell(A) ∼= Ell(B) if

(K0(A),K0(A)+, [1A],K1(A),T (A), rA) ∼= (K0(B),K0(B)+, [1B ],K1(B),T (B), rB),

that is, if there are an isomorphism α1 : K1(A)→ K1(B), an order
isomorphism α0 : K0(A)→ K0(B) such that α0([1A]) = [1B ] and an affine
homeomorphism γ : T (B)→ T (A) such that

T (B)
γ−−−−→ T (A)yrA

yrB

S(K0(B))
α0

∗
−−−−→ S(K0(A))

commutes.

Similarly, one can define an isomorphism Inv(A) ∼= Inv(B) when A and B
are non-unital.
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bit

Let e : 0→ B → E → A→ 0 be an extension of A by B. Denote by K (e)
the six term exact sequence of e in K -theory:

K0(B) −−−−→ K0(E ) −−−−→ K0(A)

δ1

x yδ0

K1(A) ←−−−− K1(E ) ←−−−− K1(B)

Denote by Hext(A,B) all such K (e) of extensions of A by B.
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bit

Let ei ∈ Ext(Ai ,Bi )(i = 1, 2). We call (α∗, β∗, λ∗) : K (e1)→ K (e2) a
morphism if there are homomorphisms α∗ : K∗(A1)→ K∗(A2),
β∗ : K∗(B1)→ K∗(B2), and λ∗ : K∗(E1)→ K∗(E2) making the obvious
diagram commutative.

If α∗, β∗ and λ∗ are isomorphisms, then K (e1) and K (e2) are called
isomorphic, written K (e1) ∼= K (e2). If A1 = A2 = A, B1 = B2 = B and
there is an isomorphism (idK∗(A), idK∗(B), λ∗) : K (e1)→ K (e2), then they
are called congruent, written K (e1) ≡ K (e2).

Let Hext(A,B) denote the set of congruent classes of six term exact
sequences in Hext(A,B).
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Denote by KK (A,B)++ those elements x ∈ KK (A,B) such that

K0(x)(K0(A)+\{0}) ⊂ K0(B)+\{0}.

Suppose that both A and B are unital. Denote by KKe(A,B)++ the set of
those elements x in KK (A,B)++ such that K0(x)([1A]) = [1B ].
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Classification))nonunital case

Some Results

Consider the extension 0→ B → E → A→ 0

Rordam, 1997: When A,B are stable Kirchberg algebras, then K (e)
is a complete invariant for extensions up to stable isomorphism

Eilers-Restorff-Ruiz, 2009: Suppose that A,B are in a certain class of
C ∗-algebras which are classified by K +

∗ (A) = (K0(A),K0(A)+,K1(A))
and B has CFP, then K +

∗ (A) + K (e) is a complete invariant for full
extensions being stably isomorphic.
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Definition

Let B be separable stable C ∗-algebra. Then B is said to have the Corona
Factorization Property (CFP) if every full projection in M(B) is M-v
equivalent to 1M(B).

If B has CFP, then

Note: every nonunital full extension is absorbing, and every unital full
extension is unital-absorbing.

Lin-Kucerovsky-Ng: KK 1(A,B) = {[τ ]u : τ is nonunital, full} for
separable nuclear C ∗-algebra A.
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Lemma (Ortega-Perera-Rordam)

Let B be a separable, unital C ∗-algebra with finite decomposition rank.
Then B ⊗K has the corona factorization property.

Corollary

Let B be a unital AT-algebra, then B ⊗K has CFP.
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Theorem

Let A be a simple AT-algebra with unit. Suppose that a ∈ KKe(A,A)++

and γ : T (A)→ T (A) is an affine homeomorphism such that

K∗(a) : (K0(A),K0(A)+, [1A],K1(A))→ (K0(A),K0(A)+, [1A],K1(A))

is an isomorphism and γ is compatible with K0(a).
It follows that there is an automorphism φ : A→ A such that KK (φ) = a
in KK (A,A) and φT = γ.
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Lemma (Rordam)

Let A and B be separable nuclear C ∗-algebras in N with B stable, and let
x1, x2 ∈ Ext(A,B). Then K (x1) = K (x2) in Hext(A,B) if and only if
there exist elements a in KK (A,A) and b in KK (B,B) with
K∗(a) = K∗(idA) and K∗(b) = K∗(idB) such that x1b = ax2.
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Lemma

Let A and B be simple AT-algebras with A unital and B stable. Assume
that a ∈ KK (A,A), b ∈ KK (B,B) such that K∗(a) = idK∗(A) and
K∗(b) = idK∗(B). Then there are isomorphisms α : A→ A, β : B → B
such that KK (α) = a and KK (β) = b.
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Theorem

Let Ai and Bi be simple AT-algebras with A unital and B stable. Suppose
that ei : 0→ Bi → Ei → Ai → 0 are non-unital full extensions. Then the
following are equivalent:
(1) E1 is isomorphic to E2.
(2) There is an extension isomorphism (β, η, α) : e1 → e2, i.e. e1

∼= e2.
(3) The six term exact sequences associated to e1 and e2 are isomorphic,
i.e. there are isomorphisms β] : Inv(B1)→ Inv(B2), η∗ : K∗(E1)→ K∗(E2)
and α] : Ell(A1)→ Ell(A2) such that (β∗, η∗, α∗) : K (e1)→ K (e2) is an
isomorphism.
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Theorem

Suppose that Ai are simple AT-algebras with units, and Bi are
stabilizations of unital AF -algebras. Let ei : 0→ Bi → Ei → Ai → 0 be
non-unital full extensions. Then the following are equivalent:
(1) E1

∼= E2.
(2) e1

∼= e2.
(3) The six term exact sequences associated to e1 and e2 are isomorphic,
i.e. there is an isomorphism (β∗, η∗, α∗) : K (e1)→ K (e2) for some
isomorphisms β∗ : (K0(B1),K0(B1)+)→ (K0(B2),K0(B2)+) and
α] : Ell(A1)→ Ell(A2).
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When is an extension an AT-algebra?

Given an extension 0→ B → E → A→ 0

Question: Let A,B be in a class A of C ∗-algebras. Which condition will
make E be in A?

Brown-Effros-Elliott, 1980s

A = {AF-algebras} =⇒ E ∈ A.
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Lin-Rordam, 1992

Let A and B be AT-algebras with real rank zero and let e be an extension
0→ B → E → A→ 0. Then the following three conditions are equivalent:
(1) E is an AT-algebra of real rank zero.
(2) E has real rank zero and stable rank one.
(3) The index maps δi : Ki (A)→ K1−i (B), i = 0, 1 are both trivial.
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Dadarlat-Loring, 1993

Assume that A,B are AD-algebras with real rank zero, K1(B) = 0 or
K1(A) torsion free. TFAE:
(1) E is an AD-algebra of real rank zero.
(2) RR(E ) = 0, st(E ) = 1.
(3) δi = 0
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Theorem

Suppose that A is an AT-algebra and B is the stabilization of a unital
AT-algebra. Let e : 0→ B → E → A→ 0 be a non-unital full extension
of A by B. Then the following are equivalent.
(1) E is an AT-algebra.
(2) The index maps of e are zero.
(3) The extension e is quasidiagonal.
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Proof:

(2)⇐⇒ (3) and (1) =⇒ (3) are immediate.

We only need to show that (3) =⇒ (1).

Lemma 1

Suppose that A and B are AT-algebras with B stable. Then there is an
absorbing trivial extension which is also quasidiagonal.

Lemma 2

Suppose that A and B are AT-algebras with B stable. Let

e : 0→ B → E
ψ→ A→ 0 be an essential trivial extension of A by B. If e

is quasidiagonal, then E is an AT-algebra.
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Suppose that e is a quasidiagonal extension. Let A = limn→∞(An, ιn),
where An is isomorphic to a quotient of a circle algebra and ιn are the
inclusion maps. Set τn = τ ◦ ιn and En = π−1(τn(An)), where τ is the
Busby invariant associated to e. Then we have an essential extension en of
An by B

0→ B → En → An → 0

for every n ∈ N. Hence, there is a commutative diagram

0 −−−−→ B −−−−→ En −−−−→ An −−−−→ 0∥∥∥ y y
0 −−−−→ B −−−−→ E −−−−→ A −−−−→ 0.

Since A = limn→∞(An, ιn), it follows that τ(A) = ∪∞n=1τn(An).

Therefore, it follows that

E =
∞⋃
n=1

En = lim
n→∞

En.
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For each An, there is an increasing sequence {An,k} of C ∗-subalgebras of
An such that each An,k is isomorphic to a finite direct sum of C ∗-algebras
of the form Mm(C (X )) and ∪∞k=1An,k is dense in An, where X is a
connected compact subset of the unit circle. Set τn,k = τ ◦ ιn,k and
En,k = π−1(τn,k(An,k)), where ιn,k : An,k → A is the inclusion map. Let
en,k be the essential extension of An,k by B:

0→ B → En,k → An,k → 0.

Obviously, there is a commutative diagram

0 −−−−→ B −−−−→ En,k −−−−→ An,k −−−−→ 0∥∥∥ y y
0 −−−−→ B −−−−→ En −−−−→ An −−−−→ 0.
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As the above proof, we have

En =
∞⋃
k=1

En,k = lim
k→∞

En,k .

Since e is non-unital and full, then en,k is a non-unital full extension.
Hence en,k is absorbing. By the above proof, the index maps
δi : Ki (A)→ K1−i (B) of e are trivial. Since τn,k = τ ◦ ιn,k , then the index
maps of en,k are also trivial. From Lemma 1, it follows that A is
quasidiagonal relative to B, so the subalgebra An,k is also quasidiagonal
relative to B. Note that K∗(An,k) is free. Hence, en,k is a trivial and
quasidiagonal extension. It follows from Lemma 2 that En,k is an
AT-algebra. Therefore, En is an AT-algebra. Consequently, E is an
AT-algebra.
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Classification))unital case

Lemma

Suppose that A and B are C ∗-algebras with A unital and B stable. Let

ei : 0→ B
li→ Ei → A→ 0 be essential unital extensions. Suppose

τ2 = Adu ◦ τ1 for some unitary u in Q(B). Let v be a partial isometry in
M(B) such that π(v) = u, and let p = v∗v and q = vv∗. Then

(K (e1), [1]0) ≡ (K (e2), [q]0 + [1− p]0).
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Let 0→ B → E → A→ 0 be an extension with index maps δ0 and δ1 in
its K -theory. We set G ′ = {f ([1]0)|f ∈ Hom(Kerδ0,Cokerδ1)} and let
π : K0(B)→ Cokerδ1 be the quotient map.

Lemma

Let ei be essential unital extensions with Busby invariant τi . If e1 is weakly
unitarily equivalent to e2 by a unitary u ∈ Q(B). Then

(K (e1), [1]0) ≡ (K (e2), [1]0)

if and only if π([u]1) is in G ′.
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Lemma

Suppose ei are essential unital extensions with Busby invariant τi and e1 is
weakly unitarily equivalent to e2. If the index maps of ei are trivial and

(K (e1), [1]0) ≡ (K (e2), [1]0),

then [e1] = [e2] in Extus (A,B).
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Theorem

Let Ai and Bi be simple AT-algebras with Ai unital and Bi stable.
Suppose that ei : 0→ Bi → Ei → Ai → 0 are unital quasidiagonal
extensions. Then the following are equivalent:
(1) E1

∼= E2.
(2) There is an extension isomorphism (β, η, α) : e1 → e2.
(3) There are isomorphisms β] : Ell(B1)→ Ell(B2),
η∗ : (K∗(E1), [1]0)→ (K∗(E2), [1]0) and α] : Ell(A1)→ Ell(A2) such that
(β∗, η∗, α∗) : (K (e1), [1]0)→ (K (e2), [1]0) is an isomorphism.
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Theorem

Let Ai and Bi be simple AT-algebras with A unital and B stable. Suppose
that ei : 0→ Bi → Ei → Ai → 0 are unital essential extensions. Then the
following are equivalent:
(1) E1 ⊗K is isomorphic to E2 ⊗K.
(2) There is an extension isomorphism (β, η, α) : Se1 → Se2.
(3) The six term exact sequences associated to e1 and e2 are isomorphic,
i.e. there are isomorphisms β] : Ell(B1 ⊗K)→ Ell(B2 ⊗K),
η∗ : K∗(E1 ⊗K)→ K∗(E2 ⊗K) and α] : Ell(A1 ⊗K)→ Ell(A2 ⊗K) such
that (β∗, η∗, α∗) : K (Se1)→ K (Se2) is an isomorphism.
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Question

Suppose that e : 0→ B → E → A→ 0 is essential extension of
AT-algebras.

Without the condition ”absorption or fullness”, e is trivial =⇒ e is
QD or E is an AT-algebra?

Without the condition ”absorption or fullness”, e is QD =⇒ E is an
AT-algebra?

Is (K (e), [1]0) a complete invariant of unital extensions AT-algebras?
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Without the condition ”absorption or fullness”, e is QD =⇒ E is an
AT-algebra?

Is (K (e), [1]0) a complete invariant of unital extensions AT-algebras?
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Thanks
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