Strongly self-absorbing property for inclusions of C^* -algebras with a finite Watatani index

Hiroyuki Osaka (Ritsumeikan University, Japan)

Joint work with Tamotsu Teruya

Special Week in Operator Algebras 2010 East China Normal University June 21 - June 25, 2010

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Motivation

In Elliott program to classify nuclear C*-algebras by K-theory data the systematic use of strongly self-absorbing C*-algebras plays a central role. In the purely infinite case the Cuntz algebra \mathcal{O}_{∞} is a cornerstone of the Kirchberg- Phillips classification of simple purely infinite C*-algebras [17] [25]. In the stably finite case the Jiang-Su algebra \mathcal{Z} plays a role similar to that of \mathcal{O}_{∞} . In fact Jiang-Su proved in [12] that simple, infinite dimensional AF algebras and Kirchberg algebras (simple, nuclear, purely infinite and satisfying the Universal Coefficient Theorem) are \mathcal{Z} -stable, that is, for any such an algebra A one has an isomorphism $\alpha \colon A \to A \otimes \mathcal{Z}$. Gong, Jiang, and Su proved in [5] that $(K_0(A), K_0(A)^+)$ is isomorphic to $(K_0(A \otimes \mathcal{Z}), K_0(A \otimes \mathcal{Z})_+)$ if and only if $K_0(A)$ is weakly unperforated as an ordered group, when Ais a simple C*-algebra. Hence A and $A \otimes \mathcal{Z}$ have isomorphic Elliott invariant if A is simple with weakly unperforated K_0 -group, that is, $A \cong A \otimes \mathcal{Z}$ whenever A is classifiable. On the contrary, Rørdam and Toms in [31] and [33] presented examples which have the same Elliott invariant as, but are not isomorphic to, and not \mathcal{Z} -absorbing. So it appears plausible that the

Elliott conjecture, which is formulated in [30], holds for all simple, unital, nuclear, separable \mathcal{Z} -absorbing C*-algebras.

In this talk we reconsider the \mathcal{D} -absorbing property for crossed product of a C*-algebra A with \mathcal{D} -absorbing by a finite group action with the Rokhlin property in the framework of inclusion of unital C*algebras $P \subset A$ of Watatani index finite ([36]) and show that if a faithfule conditional expectation Efrom A to P has the Rokhlin property in the sense of Kodaka-Osaka-Teruya [18], then P is \mathcal{D} -absorbing.

Stronly self-absorbing property

Definition 1. A separable, unital C*-algebra Dis called *strongly self-absorbing* if it is infinitedimensional and the map $\mathrm{id}_{\mathcal{D}} \otimes 1_{\mathcal{D}} \colon \mathcal{D} \to \mathcal{D} \otimes \mathcal{D}$ given by $d \mapsto d \otimes 1$ is approximately unitarily equivalent to an isomorphism $\varphi \colon \mathcal{D} \to \mathcal{D} \otimes \mathcal{D}$, that is, there is a suquence $(v_n)_{n \in \mathbb{N}}$ of unitaries in D satisfying

$$||v_n^*(\mathrm{id}_\mathcal{D}\otimes 1_\mathcal{D}(d))v_n - \varphi(d)|| \to 0 \ (n \to \infty) \ \forall d \in \mathcal{D}.$$

A C*-algebra A is called \mathcal{D} -absorbing if $A \otimes \mathcal{D} \cong A$.

- **Example 2.** 1. (Jiang-Su '99) The Jiang-Su algebra \mathcal{Z} is a direct limits of prime dimension drop algebras $I_{p,q} = \{f \in C([0,1], M_{pq}) \mid f(0) \in 1_p \otimes M_q, f(1) \in M_p \otimes 1_q\}$ for relative prime integers $p,q \geq 2$. Then \mathcal{Z} is strongly selfabored absorbing.
- 2. (Toms-Winter '07) UHF algebras of infinite type (for example, an universal UHF algebra $\mathcal{U}_{\infty} = \Pi_p M_{p^{\infty}}$), Cuntz algebras \mathcal{O}_2 , \mathcal{O}_{∞} , $B \otimes \mathcal{O}_{\infty}$ (with B UHF of infinite type) are strongly self-absorbing property.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Question 3. Let $P \subset A$ be an inclusion of unital C*-algebras and $E: A \to P$ be a conditional expectation of index finite type. That is, there is a quasi-basis $\{(w_i, w_i^*)\}_{i=1}^n \subset A \times A$ such that $x = \sum_{i=1}^n E(xw_i)w_i^* = \sum_{i=1}^n w_i E(w_i^*x)$ for any $x \in A$.

- (1) If A is strongly self-absorbing, when P is strongly self-absorbing ?
- (2) Let \mathcal{D} is strongly self-absorbing and A \mathcal{D} -absorbing. When P is \mathcal{D} -absorbing ?

In this talk we introduce the **finitely saturated property** for a class C of separable unital C*-algebras and **local** C-property for a unital C*-algebra.

- **Answer 4**(1) Let A be a unital C*-algebra which is a local C-algebra and an an action α of a finite group G. Suppose that α has the Rokhlin property, then the crossed product algebra $A \rtimes_{\alpha} G$ is a unital local C-algebra.
- (2) Moreover, we introduce the Rokhlin property for a conditional expectation for a pair of unital C*-algebras $A \supset P$ and show that
 - (a) if A is strongly self-absorbing and semiprojective, then P is strongly self-absorbing.
 - (b) if A is a unital local C-algebra, then so is P.

Note that if C is the set of all separable, unital, D-absorbing C*-algebras, then C is finitely saturated.

Local C-property

Definition 5. (Osaka-Phillips 07) Let C be a class of separable unital C*-algebras. Then C is *finitely saturated* if the following closure conditions hold:

- 1. If $A \in \mathcal{C}$ and $B \cong A$, then $B \in \mathcal{C}$.
- 2. If $A_1, A_2, \ldots, A_n \in \mathcal{C}$ then $\bigoplus_{k=1}^n A_k \in \mathcal{C}$.
- 3. If $A \in \mathcal{C}$ and $n \in \mathbb{N}$, then $M_n(A) \in \mathcal{C}$.
- 4. If $A \in \mathcal{C}$ and $p \in A$ is a nonzero projection, then $pAp \in \mathcal{C}$.

Moreover, the *finite saturation* of a class C is the smallest finitely saturated class which contains C.

- **Example 6.1.** Let C be the set of all unital C*algebras such as $\bigoplus_{i=1}^{n} P_i M_{n_i}(C(X_i)) P_i$, where P_1 is a projection in $M_{n_i}(C(X_i))$. If all X_i is a point $\{\cdot\}$, or an interval [0, 1], or a torus S^1 . Then C is finitely saturated.
- 2. Let C be the set of unital C*-algebras with stable rank one. Then C is finitely saturated.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

- 3. Let C be the set of unital C*-algebras with real rank zero. Then C is finitely saturated.
- 4. Let C be the set of all separable, unital, \mathcal{D} -absorbing C*-algebras. Then C is finitely saturated.

Definition 7. (Osaka-Phillips 07) Let C be a class of separable unital C*-algebras. A *unital local* C*algebra* is a separable unital C*-algebra A such that for every finite set $S \subset A$ and every $\varepsilon > 0$, there is a C*-algebra B in the finite saturation of C and a unital *-homomorphism $\varphi \colon B \to A$ (not necessarily injective) such that $\operatorname{dist}(a, \varphi(B)) < \varepsilon$ for all $a \in S$.

Rokhlin property for an inclusion of unital C*-algebras

Let A be a C*-algebra. Then we define

$$c_0(A) = \{(a_n) \in \ell^{\infty}(\mathbf{N}, A) \mid \lim_{n \to \infty} ||a_n|| = 0\}$$

and
$$A^{\infty} = \ell^{\infty}(\mathbf{N}, A) / c_0(A).$$

Definition 8 (Izumi 04). Let A be a unital C*algebra, and let $\alpha: G \to \operatorname{Aut}(A)$ be an action of a finite group G on A. We say that α has the *Rokhlin* property if there are mutually orthogonal projections $e_g \in A^{\infty}$ for $g \in G$ such that:

1.
$$\alpha_q^{\infty}(e_h) = e_{gh}$$
 for all $g, h \in G$.

2.
$$e_g a = a e_g$$
 for all $g \in G$ and all $a \in A$.

3. $\sum_{g \in G} e_g = 1.$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Example 9. Let $\mathbb{M}_{n^{\infty}} = \otimes_{k=1}^{\infty} \mathbb{M}_{n}(\mathbf{C})$ and

$$\alpha = \bigotimes_{k=1}^{\infty} \operatorname{Ad} \begin{pmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & 0 & \cdots & 0 & \vdots \\ \vdots & \cdots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & \lambda_n \end{pmatrix},$$

where $\{\lambda_i\}_{i=1}^n$ is the root of the unit. Then α be the automorphism of order n on $\mathbb{M}_{n^{\infty}}$, and α has the Rokhlin property.

More general, let G be a finite group, λ be the left regular representation of G. We identify $B(\ell^2(G))$ with $M_{|G|}$ and consider an action of G on $M_{|G|^{\infty}}$ by

$$\mu_g^G = \otimes_{n=1}^{\infty} \mathrm{Ad}(\lambda(g)), \ g \in G.$$

Then μ^G has the Rokhlin property.

Proposition 10 (Phillips 06). Let D be an infinite tensor product C*-algebra and let $\alpha \in Aut(D)$ be an automorphism of oreder 2, of the form

$$D = \otimes_{n=1}^{\infty} \mathbb{M}_{k(n)}(\mathbf{C}) \text{ and } \alpha = \otimes_{n=1}^{\infty} \mathrm{Ad}(p_n - q_n),$$

with $k(n) \in \mathbf{N}$ and where $p_n, q_n \in \mathbb{M}_{k(n)}(\mathbf{C})$ are projections with $p_n + q_n = 1$ and $\operatorname{rank}(p_n) \geq \operatorname{rank}(q_n)$ for all $n \in \mathbf{N}$. Set

$$\lambda_n = \frac{\operatorname{rank}(p_n) - \operatorname{rank}(q_n)}{\operatorname{rank}(p_n) + \operatorname{rank}(q_n)}$$

for $n \in \mathbb{N}$ and, for $m \leq n \quad \Lambda(m,n) = \lambda_{m+1}\lambda_{m+2}\cdots\lambda_n$ and $\Lambda(m,\infty) = \lim_{n\to\infty} \Lambda(m,n)$. Then the followings are equivalent:

- (1) The action α has the Roklin property.
- (2) There are infinitely many $n \in \mathbf{N}$ such that $\operatorname{rank}(p_n) = \operatorname{rank}(q_n)$, i.e. $\lambda_n = 0$.
- (3) $D \rtimes_{\alpha} \mathbb{Z}_2$ is a UHF algebra.

Remark 11. A crossed product algebra $M_{|G|^{\infty}} \rtimes_{\mu^{G}} G$ is also an UHF algebra.

We also could construct an action which does not have the Rokhlin property.

Proposition 12 (Phillips 06). Let $\alpha \in Aut(D)$ be a product type automorphism of order 2 as in Proposition 10. Then the followings are equivalent:

(1) The action α has the tracial Rokhlin property.

(2) $\Lambda(m,\infty) = 0$ for all m.

The following observation is our motivation to introduce the Rokhlin property for the inclusion of unital C*-algebras with a finite C*-index.

Proposition 13. (Kodaka-Osaka-Teruya 08) Let α be an action of a finite group G on a unital C^* -algebra A and E the canonical conditional expectation from A onto the fixed point algebra $P = A^{\alpha}$ defined by

$$E(x) = \frac{1}{|G|} \sum_{g \in G} \alpha_g(x) \quad \text{for } x \in A,$$

where |G| is the order of G. Then α has the Rokhlin property if and only if there is a projection $e \in A' \cap A^{\infty}$ such that $E^{\infty}(e) = \frac{1}{|G|} \cdot 1$, where E^{∞} is the conditional expectation from A^{∞} onto P^{∞} induced by E.

Definition 14. (Kodaka-Osaka-Teruya 08) A conditional expectation E of a unital C^* -algebra A with a finite index is said to have the *Rokhlin* property if there exists a projection $e \in A' \cap A^{\infty}$ satisfying

$$E^{\infty}(e) = (\text{Index}E)^{-1} \cdot 1$$

and a map $A \ni x \mapsto xe$ is injective. We call e a Rokhlin projection.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

When α is an action of a finite group G on A and is satrated (i.e. $A \rtimes G = \operatorname{span}\{xey \mid x, y \in A\}$), let P denotes the fixed point algebra A^{α} . We know that the canonical conditional expectation $E: A \to A^{\alpha}$ is of a finite index and we have the following basic construction :

$$A^{\alpha} \subset A \subset A \rtimes_{\alpha} G.$$

Remark 15. Let α be an action of a finite group G on a unital C^* -algebra A and E the canonical conditional expectation from A onto the fixed point algebra $P = A^{\alpha}$. Then α is outer. Hence E is of a finite index with $\operatorname{Index} E = |G|$. That is, there is a quasi-basis $\{(w_i, w_i^*)\}_{i=1}^n \subset A \times A$ such that

1. for any $x \in A$

$$x = \sum_{i=1}^{n} E(xw_i)w_i^* = \sum_{i=1}^{n} w_i E(w_i^*x)$$

2.
$$\sum_{i=1}^{n} w_i w_i^* = |G| = \text{Index}E.$$

The following is a key lemma to prove the main theorem

Lemma 16. (Kodaka-Osaka-Teruya 08)

Let $P \subset A$ be an inclusion of unital C*-algebras and E a conditional expectation from A onto P with a finite index. If E has the Rokhlin property with a Rokhlin projection $e \in A' \cap A^{\infty}$, then there is a unital linear map $\beta \colon A^{\infty} \to P^{\infty}$ such that for any $x \in A^{\infty}$ there exists the unique element y of P^{∞} such that $xe = ye = \beta(x)e$ and $\beta(A' \cap A^{\infty}) \subset P' \cap P^{\infty}$. In particular, $\beta_{|A}$ is a unital injective *-homomorphism and $\beta(x) = x$ for all $x \in P$.

We have

$$A \hookrightarrow A^{\infty} \stackrel{\beta}{\hookrightarrow} P^{\infty}.$$

Theorem 17. (Kodaka-Osaka-Teruya 08) Let C be any saturated class of semiprojective, separable unital C^* -algebras. Let $A \supset P$ be a finite index inclusion with the Rokhlin property. If A is a unital local C-algebra, then P is also a unital local C-algebra.

idea for the proof

Since A is a unital local C-algebra, for finite set $S \subset P \subset A$ and $\varepsilon > 0$, there is a C*-algebra Q in the finite saturation of C and a unital *-homomorphism $\rho: Q \to A$ such that S is within ε of an element of $\rho(Q)$.

$$l^{\infty}(\mathbf{N}, P)/I_{n}$$

$$\stackrel{\bar{\beta}}{\nearrow} \qquad \downarrow$$

$$Q(\stackrel{\rho}{\hookrightarrow} A) \qquad \stackrel{\beta}{\longrightarrow} \qquad P^{\infty} = l^{\infty}(\mathbf{N}, P)/\overline{\cup_{n}I_{n}}$$

Using the semiprojectivity of Q, we can lift the *-homomorphism β to a *-homomorphism $\overline{\beta}: Q \rightarrow \ell^{\infty}(\mathbf{N}, P)/I_n$ for some n. (Note that $c_o(P) = \overline{\bigcup_n I_n}$)

Take sufficient large $k \in \mathbb{N}$ such that $\beta_k \colon Q \to P$ is a *-homomorphism such that $S \subset_{\varepsilon} \beta_k(Q)$, where $\bar{\beta} = (\beta_k)_{k \in \mathbb{N}} + I_n$. **Corollary 18.** Let $A \supset P$ be an inclusion of separable unital C^* -algebras with the Rokhlin property.

- 1. If A is a unital AF algebra, then P is a unital AF algebra.
- 2. If A is a unital AI algebra, then P is a unital AI algebra.
- 3. If A is a unital AT algebra, then P is a unital AT algebra.
- 4. If A is a unital AD algebra, then P is a unital AD algebra.

Rokhlin property and strongly self-absorbing

Proposition 19. Let $P \subset A$ be an inclusion of separable unital C*-algebras with index finite and A have approximately inner half flip. Suppose that E has the Rokhlin property and A is semiprojective. Then P has approximately inner half flip.

- **Remark 20.** 1. Under the same condition for an inclusion of separable unital C*-algebras $P \subset A$ in Proposition 19 since P has approximately inner half flip map we know that P is nuclear and simple.
- 2. To deduce the simplicity of P we need only the simplicity of A and the Rokhlin condition for $E: A \rightarrow P$.
- 3. If D is a strongly self-absorbing inductive limit of recursive subhomogeneous algebras in the sense of Phillips [26], then D is either projectionless (i.e. the Jiang-Su algebra Z) or a UHF algebra of infinite type by Toms and Winter [34, Corollary 5.10]. On the contrary, if D is a separable purely infinite strongly self-absorbing C*-algebra which satisfies the Universal Coefficients Theorem

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

(We write \mathcal{D} is in the UCT class N.). Then \mathcal{D} is either \mathcal{O}_2 , \mathcal{O}_∞ or a tensor product of \mathcal{O}_∞ with a UHF algebra of infinite type by Toms and Winter [34, Corollary 5.2].

Definition 21. (Phillips 01) The class of *recursive* subhomogeneous algebras is the smallest class \mathcal{R} of C*-algebras which is closed under isomorphism and such that

- 1. If X is a compact Husdorff space and $n \ge 1$, then $C(X, M_n) \in \mathcal{R}$.
- 2. \mathcal{R} is closed under the following pull back construction: If $A \in \mathcal{R}$, if X is a compact Hausdorff space, if $X^{(0)} \subset X$ is closed, $\phi: A \to C(X^{(0)}, M_n)$ any unital homomorphism and $\rho: C(X, M_n) \to C(X^{(0)}, M_n)$ is the restrict homomorphism, then the pullback

$$A \oplus_{C(X^{(0)}, M_n)} C(X, M_n)$$
$$= \{ (a, f) \in A \oplus C(X, M_n) \colon \phi(a) = \rho(f) \}$$

is in \mathcal{R} .

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Theorem 22. Let \mathcal{D} be \mathcal{U}_{∞} and let α be an action of a finite group G on \mathcal{D} . Suppose that α has the Rokhlin property. Then the crossed prodct $\mathcal{U}_{\infty} \rtimes_{\alpha} G$ is isomorphic to \mathcal{U}_{∞} . The following example implies that the Rokhlin property is essential in Theorem 22.

Example 23. Let \mathcal{U}_{∞} be the universal UHF algebra and $A = M_{2^{\infty}}$. Then $A \otimes \mathcal{U}_{\infty} \cong \mathcal{U}_{\infty}$.

Let α be an symmetry by Blackadar [1, Proposition 5.1.2]. Then $A \rtimes_{\alpha} \mathbb{Z}/2\mathbb{Z}$ is not a AF algebra. We note that α has the tracial Rokhlin property by Phillips [28, Proposition 3.4], but does not have the Rokhlin property, since the crossed product algebra $A \rtimes_{\alpha} \mathbb{Z}/2\mathbb{Z}$ is not AF algebra by Phillips [27, Theorem 2.2].

Then $\alpha \otimes id$ is a symmetry with the tracial Rokhlin property on $A \otimes \mathcal{U}_{\infty} (\cong A)$, and the crossed product algebra

$$(A \otimes \mathcal{U}_{\infty}) \rtimes_{\alpha \otimes id} \mathbf{Z}/2\mathbf{Z} \cong (A \rtimes_{\alpha} \mathbf{Z}/2\mathbf{Z}) \otimes \mathcal{U}_{\infty}$$
$$\cong B \otimes \mathcal{U}_{\infty},$$

where B is the Bunce-Dedens algebras of type 2^{∞} by [1, Proposition 5.4.1]. Note that $K_1(B \otimes \mathcal{U}_{\infty}) \neq 0$, that is, $B \otimes \mathcal{U}_{\infty}$ is not a AF algebra. Since a strongly self-absorbing inductive limit of type I with real rank zero C*-algebra is a UHF algebra of infinite type by Toms and Winter [34, Corollary 5.9], $B \otimes \mathcal{U}_{\infty}$ is not a strongly self-absorbing algebra. Hence there is a symmetry β with the tracial Rokhlin property on \mathcal{U}_{∞} such that $\mathcal{U}_{\infty} \rtimes_{\beta} \mathbf{Z}/2\mathbf{Z}$ is not strongly self-absorbing.

Theorem 24. Let $P \subset A$ be an inclusion of unital separable C*-algebras with index finite. Suppose that a conditional expectation $E: A \to P$ has the Rokhlin property and A is semiprojective and strongly self-absorbing. Then P is strongly self-absorbing.

Corollary 25. Let $P \subset A$ be an inclusion of unital separable C*-algebras with index finite. Suppose that a conditional expectation $E: A \to P$ has the Rokhlin property. Suppose that A is O_2 or O_∞ . Then $P \cong A$.

Corollary 26. (Izumi 2002 [9, Theorem 4.2]) Let α be an action of a finite group G on \mathcal{O}_2 . Suppose that α has the Rohklin property. Then we have

1. $\mathcal{O}_2^G \cong \mathcal{O}_2$.

2. The crossed product algebra $O_2 \rtimes_{\alpha} G \cong O_2$.

Remark 27. (Izumi 2004) From [10, Theorem 3.6] there is no non-trivial finite group action with the Rokhlin property on \mathcal{O}_{∞}

Rokhlin property and \mathcal{D} -absorbing

We use the following characterization of the $\mathcal{D}\mathchar{-}$ absorbing.

Theorem 28. (Rordam 02)Let \mathcal{D} be a strongly selfabsorbing and A be any separable C*-algebra. A is \mathcal{D} -absorbing (i.e. $A \otimes \mathcal{D} \cong A$) if and only if \mathcal{D} admits a unital *-homomorphism to $A' \cap M(A)^{\infty}$.

Using the above characterization and a basic Lemma 16 we have the following:

Theorem 29. Let $P \subset A$ be an inclusion of unital C*-algebras and E a conditional expectation from A onto P with a finite index. Suppose that \mathcal{D} is a separable unital self-absorbing C*-algebra, A is a separable \mathcal{D} -absorbing, and E has the Rokhlin property. Then P is \mathcal{D} -absorbing.

Remark 30. If we replace the Rokhlin property by the tracail Rokhlin property, which is weaker than the Rokhlin property, then the \mathcal{D} -absorbing property fails. Indeed, Phillips constructed an symmetry α on a strongly self-absorbing UHF algebra \mathcal{D} with the tracial Rokhlin property in the sense of Phillips such that $\mathcal{D} \rtimes_{\alpha} \mathbb{Z}/2\mathbb{Z}$ is not \mathcal{D} -absorbing. (See Example 4.11 of [28].)

Intermediate fixed point algebras

In this section we present an inclusion of unital C*-algebras $P \subset A$ which does not come from an action of finite group on A.

Proposition 31. Let A be a separable unital C*algebra, α an action of a finite group G on A and $E: A \rightarrow A^G$ a canonical conditional expectation. Suppose that α has the Rokhlin property. Then we have

- 1. For any subgroup H of G the restricted E to A^H , which is a conditional expectation from A^H onto A^G , has the Rokhlin property.
- 2. If A is a unital local C-algebra, then for any subgroup H of $G A^H$ is a unital local C-algebra.
- 3. Let \mathcal{D} be a strongly self-absorbing C*-algebra and A be \mathcal{D} -absorbing. Then for any subgroup H of $G A^H$ is \mathcal{D} -absorbing.
- 4. If $A = \mathcal{O}_2$, then for any subgroup H of $G A^H \cong \mathcal{O}_2$.

Remark 32. Let A be a unital C*-algebra and α be an action from a finite group G on A. Let H be a subgroup of G. Then the condition that an inclusion $A^G \subset A^H$ is isomorphic to $B^K \subset B$ for some C*algebra B and an action from a finite group K on B implies that H is a normal subgroup of G (c.f. [32]). Hence from Proposition 31 we have examples of conditional expectations for inclusions of unital C*-algebras with the Rokhlin property which do not come from finite group actions.

References

- B. Blackadar, Symmetries of the CAR algebras, Annals of Math. 131(1990), 589 623.
- [2] B. Blackadar, A. Alexander, and M. Rørdam, Approximately central matric units and the structure of noncommutative tori, K-theory, 6(1992), 267 - 284.
- [3] L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99(1991), 131–149.
- [4] J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318–340.
- [5] G. Gong, X. Jiang and H. Su, Obstructions to Z-stability for unital simple C*-algebras, Canad. Math. Bull. 43(4) (2000), 418–426.
- [6] R. H. Herman and V. F. R. Jones, *Period two* automorphisms of UHF C*-algebras, J. Funct. Anal. 45(1982), 169–176.

- [7] R. H. Herman and V. F. R. Jones, Models of finite group actions, Math. Scand. 52(1983), 312–320.
- [8] M. Izumi, Inclusions of simple C*-algebras, J. reine angew. Math. 547(2002), 97–138.
- [9] M. Izumi, Finite group actions on C*-algebras with the Rohlin property-I, Duke Math. J. 122(2004), 233-280.
- [10] M. Izumi, Finite group actions on C*-algebras with the Rohlin property-II, Adv. Math. 184(2004), 119–160.
- [11] J. A. Jeong and G. H. Park, Saturated actions by finite dimensional Hopf *-algebras on C*algebras Intern. J. Math 19(2008), 125–144.
- [12] X. Jiang and H. Sue, On a simple unital projectionless C*-algebras Amer. J. Math 121(1999), 359–413.
- [13] J. F. R. Jones, *Index for subfactors*, Inventiones Math. **72**(1983), 1–25.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

- [14] A. Kishimoto, Outer automorphisms and reduced crossed products of simple C*algebras, Commun. Math. Phys. 81(1981), 429 - 435..
- [15] A. Kishimoto, Automorphisms of AT algebras with Rohlin property, J. Operator Theory 40(1998), 277–294.
- [16] A. Kishimoto, Unbouded derivations in AT algebras, J. Funct. Anal. **160**(1998), 270–311.
- [17] E. Kirchberg and N. C. Phillips, Embedding of exact C*-algebras in the Cuntz algebra O₂, J. reine angew. Math. 525(2000), 17 - 53.
- [18] K. Kodaka, H. Osaka, and T. Teruya, The Rohlin property for inclusions of C*-algebras with a finite Watatani Index, Contemporary Mathematics 503(2009), 177 - 195.
- [19] H. Lin, An Introduction to the Classification of Amenable C*-algebras, World Scientific, River Edge NJ, 2001.

[20] H. Lin and H. Osaka, The Rokhlin property

and the tracial topological rank, J. Funct. Anal. **218**(2005), 475–494.

- [21] T. A. Loring, Lifting Solutions to Perturbing Problems in C*-algebras, Fields Institute Monographs no. 8, American Mathematical Society, Providence RI, 1997.
- [22] H. Nakamura, Aperiodic automorphisms of nuclear purely infinite simple C*-algebras, Ergodic Theory Dynam. Systems 20(2000), 1749–1765.
- [23] H. Osaka and N. C. Phillips, Crossed products by finite group actions with the Rokhlin property, To appear in Math. Z. (arXiv:math.OA/0704.3651).
- [24] H. Osaka and T. Teruya, Strongly selfabsorbing property for inclusions of C*algebras with a finite Watatani index, preprint 2009 (arXiv:1002.4233).
- [25] N. C. Phillips, A classification theorem for nuclear purely infinite simple C^* -algebras, Doc. Math. **5**(2000), 49–114.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

- [26] N. C. Phillips, Recursive subhomogeneous algebras, Trans. Amer. Math. Soc. 359(2007), no. 10, 4595–4623.
- [27] N. C. Phillips, *The tracial Rokhlin property* for actions of finite groups on C*-algebras arXiv:math.OA/0609782.
- [28] N. C. Phillips, Finite cyclic group actions with the tracial Rokhlin property, preprint (arXiv: math.OA/0609785).
- [29] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46(1983), 301–333.
- [30] M. Rørdam, Classification of nuclear, simple C*-algebras, Encyclopaedia Math. Sci., 126, Springer, Berlin, 2002.
- [31] M. Rørdam, A simple C*-algebra with a finite and an infinite projection, Acta Math. 191(2003), 109–142.
- [32] T. Teruya, Normal intermediate subfactors, J. Math. Soc. Japan **50** (1998), no. 2, 469–490.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

- [33] A. S. Toms, On the independence of K-theory and stable rank for simple C*-algebras, J. Reine Angew. Math. 578(2005), 185–199.
- [34] A. S. Toms and W. Winter, Strongly selfabsorbing C*-algebras, Trans. Amer. Math. Soc. 359(2007), 3999 - 4029.
- [35] A. S. Toms and W. Winter, *Z*-stable ASH algebras, Canad. J. Math. **60**(2008), no. 3, 703–720.
- [36] Y. Watatani, Index for C*-subalgebras, Mem. Amer. Math. Soc. 424, Amer. Math. Soc., Providence, R. I., (1990).