Noncommutative Geometry and
 Kadison-Singer Algebras

joint work with Wei Yuan

Chinese Academy of Sciences

June 21, 2011(ECNU, Shanghai)

What is Noncommutative Geometry?

Geometrical:

Classification of group actions on a manifold M / G, e.g., \mathbb{Z} acts on S^{1} by rotations: $n: e^{2 \pi i t} \rightarrow e^{2 \pi i(t+n \theta)}$; to classify $S^{1} / \theta \mathbb{Z}$.

What is Noncommutative Geometry?

Geometrical:

Classification of group actions on a manifold M / G, e.g., \mathbb{Z} acts on S^{1} by rotations: $n: e^{2 \pi i t} \rightarrow e^{2 \pi i(t+n \theta)}$; to classify $S^{1} / \theta \mathbb{Z}$.

Algebraic:

Geometrical and topological invariants of the algebra $C(M) \times G$, $C^{\infty}(M) \times G$ or $L^{\infty}(M) \times G$, e.g., dimension, K-theory, (co)homology groups, etc.

Classical geometry:

$$
S^{1}=\mathbb{R} / \mathbb{Z} \text { and } \mathbb{R}=\tilde{S}^{1}
$$

$$
\begin{aligned}
& \mathbb{Z}=\hat{S}^{1} \\
& S^{1}=\hat{\mathbb{Z}}
\end{aligned}
$$

Classical geometry:

$$
S^{1}=\mathbb{R} / \mathbb{Z} \text { and } \mathbb{R}=\tilde{S}^{1}
$$

$$
\begin{array}{ll}
\mathbb{Z}=\hat{S}^{1} & \rightarrow \mathbb{C}[\mathbb{Z}] \\
& \hat{\mathbb{1}} \\
S^{1}=\hat{\mathbb{Z}} & \rightarrow \mathscr{P}\left(S^{1}\right) \\
& \text { alg. geo. }
\end{array}
$$

Classical geometry:

$$
S^{1}=\mathbb{R} / \mathbb{Z} \text { and } \mathbb{R}=\tilde{S}^{1}
$$

\[

\]

Classical geometry:

$$
S^{1}=\mathbb{R} / \mathbb{Z} \text { and } \mathbb{R}=\tilde{S}^{1}
$$

$$
\begin{array}{cccc}
\mathbb{Z}=\hat{S}^{1} & \rightarrow \mathbb{C}[\mathbb{Z}] & \rightarrow C^{*}(\mathbb{Z}) & \rightarrow \mathscr{L}_{\mathbb{Z}} \\
& \mathbb{y} & \mathbb{\sharp} & \mathbb{y} \\
S^{1}=\hat{\mathbb{Z}} & \rightarrow \mathscr{\mathscr { P }}\left(S^{1}\right) & \rightarrow C\left(S^{1}\right) & \rightarrow L^{\infty}\left(S^{1}\right) \\
& \text { alg. geo. } & C^{*} \text {-alg } & \mathrm{vN} \text { alg }
\end{array}
$$

Classical geometry:
$S^{1}=\mathbb{R} / \mathbb{Z}$ and $\mathbb{R}=\tilde{S}^{1}$

$$
\begin{array}{lcccc}
\mathbb{Z}=\hat{S}^{1} & \rightarrow \mathbb{C}[\mathbb{Z}] & \rightarrow C^{*}(\mathbb{Z}) & \rightarrow \mathscr{L}_{\mathbb{Z}} & \rightarrow I^{2}(\mathbb{Z}) \\
& \hat{\mathbb{1}} & \Uparrow \mathbb{\sharp} & \mathbb{\Downarrow} & \mathbb{\sharp} \\
S^{1}=\hat{\mathbb{Z}} & \rightarrow \mathscr{P}\left(S^{1}\right) & \rightarrow C\left(S^{1}\right) & \rightarrow L^{\infty}\left(S^{1}\right) & \rightarrow L^{2}\left(S^{1}\right) \\
\text { geometry } & \text { alg. geo. } & C^{*} \text {-alg } & \text { vN alg } & \text { analysis }
\end{array}
$$

Basic facts:
$S^{1}=$ maximal ideal space of $C\left(S^{1}\right) ; C\left(S^{1}\right)=<U=e^{2 \pi i t}: U^{*} U=1>$;
$C\left(S^{1} \times S^{1}\right)=<U, V: U^{*} U=V^{*} V=1, U V=V U>$

Definition

Suppose G is a group (discrete or not) and π a unitary representation of G on a Hilbert space \mathscr{F} (e.g., $I^{2}(\mathbb{Z})$). Then $\operatorname{span}\{\pi(G)\}^{-}$is called a C^{*}-algebra; the commutant of $\pi(G)$ (or linear span of all intertwiners) is called a von Neumann algebra.

Theorem (Gelfand-Naimark, 1943)

If \mathfrak{A} is an abelian C^{*}-algebra, then $\mathfrak{A} \cong C(\hat{\mathfrak{A}})$ where $\hat{\mathfrak{A}}$ is the maximal ideal space.

Definition

Suppose G is a group (discrete or not) and π a unitary representation of G on a Hilbert space \mathscr{F} (e.g., $I^{2}(\mathbb{Z})$). Then $\operatorname{span}\{\pi(G)\}^{-}$is called a C^{*}-algebra; the commutant of $\pi(G)$ (or linear span of all intertwiners) is called a von Neumann algebra.

Theorem (Gelfand-Naimark, 1943)

If \mathfrak{A} is an abelian C^{*}-algebra, then $\mathfrak{A} \cong C(\hat{\mathfrak{A}})$ where $\hat{\mathfrak{A}}$ is the maximal ideal space.

Theorem (von Neumann, 1929)

If \mathfrak{A} is an abelian von Neumann algebra, then $\mathfrak{A} \cong L^{\infty}([0,1], \mu)$.
noncommutative operator algebras=noncommutative topology or probability theory

Examples

Classical one point:

Classical n points:

NC one point
 $M_{n}(\mathbb{C})$

NC points

Noncommutative torus $S^{1} \times{ }_{\theta} S^{1}\left(=S^{1} \times{ }_{\theta} \mathbb{Z}\right)$

Algebra:
$\mathfrak{A}=C^{*}\left\langle U, V: V^{-1} U V=e^{2 \pi i \theta} U\right\rangle$
θ is rational

$$
\mathfrak{A} \cong M_{n}\left(C\left(S^{1} \times S^{1}\right)\right), K_{0}(\mathfrak{A})=\mathbb{Z}
$$

θ is irrational
$K_{0}(\mathfrak{A})=\mathbb{Z}+\theta \mathbb{Z}$ (not connected), $K_{1}(\mathfrak{A})=\mathbb{Z}+\mathbb{Z}$

$\mathbb{A}_{\mathbb{Q}} / C_{\mathbb{Q}}$

Adele ring : $\mathbb{A}_{\mathbb{Q}}=\prod_{p \in \mathscr{P}} \mathbb{Q}_{p} \quad d x$: Haar measure on $\mathbb{A}_{\mathbb{Q}}$ Idele class group: $C_{\mathbb{Q}}=\mathbb{A}_{\mathbb{Q}}^{*} / \mathbb{Q}^{*} d^{*} x$: Haar measure on $C_{\mathbb{Q}}$

$$
d x=\lim _{\epsilon \rightarrow 0} \epsilon|x|^{1+\epsilon} d^{*} x
$$

$\mathbb{A}_{\mathbb{Q}} / C_{\mathbb{Q}}$

Adele ring : $\mathbb{A}_{\mathbb{Q}}=\prod_{p \in \mathscr{P}} \mathbb{Q}_{p} \quad d x$: Haar measure on $\mathbb{A}_{\mathbb{Q}}$ Idele class group: $C_{\mathbb{Q}}=\mathbb{A}_{\mathbb{Q}}^{*} / \mathbb{Q}^{*} \quad d^{*} x$: Haar measure on $C_{\mathbb{Q}}$

$$
d x=\lim _{\epsilon \rightarrow 0} \epsilon|x|^{1+\epsilon} d^{*} x
$$

For $h \in S\left(C_{\mathbb{Q}}\right)$ and $f \in S(\mathbb{A})$, define

$$
(U(h) f)(x)=\int_{C_{\mathbb{Q}}} f\left(g^{-1} x\right) h(g) d^{*} g .
$$

Let $R_{\lambda}=\hat{\chi}_{[-\lambda, \lambda]} \chi_{[-\lambda, \lambda]}$.

$\mathbb{A}_{\mathbb{Q}} / C_{\mathbb{Q}}$

Adele ring : $\mathbb{A}_{\mathbb{Q}}=\prod_{p \in \mathscr{P}} \mathbb{Q}_{p} \quad d x$: Haar measure on $\mathbb{A}_{\mathbb{Q}}$ Idele class group: $C_{\mathbb{Q}}=\mathbb{A}_{\mathbb{Q}}^{*} / \mathbb{Q}^{*} d^{*} x$: Haar measure on $C_{\mathbb{Q}}$

$$
d x=\lim _{\epsilon \rightarrow 0} \epsilon|x|^{1+\epsilon} d^{*} x
$$

For $h \in S\left(C_{\mathbb{Q}}\right)$ and $f \in S(\mathbb{A})$, define

$$
(U(h) f)(x)=\int_{C_{\mathbb{Q}}} f\left(g^{-1} x\right) h(g) d^{*} g
$$

Let $R_{\lambda}=\hat{\chi}_{[-\lambda, \lambda]} \chi_{[-\lambda, \lambda]}$.

Conjecture

$\operatorname{Trace}\left(R_{\lambda} U(h)\right)=2 h(1) \log ^{\prime} \lambda+\sum_{p \in \mathscr{P}} \int_{Q_{p}} \frac{h\left(g^{-1}\right)}{|1-g|_{p}} d^{*} g+o(1)$.

Central Questions

Basic Questions: classification and representation.

Noncommutative euclidean spaces

$\mathbb{C}\left\langle x_{1}, \ldots, x_{n}\right\rangle, x_{1}, \ldots, x_{n}$ are non commuting variables; or $\mathbb{C}\left[F_{n}\right]$

C* (or topological) level von Neumann(measure space) level

$$
\begin{array}{cc}
C^{*}\left(F_{n}\right) & \mathscr{L}_{F_{n}} \\
K_{0}\left(C^{*}\left(F_{n}\right)\right)=\mathbb{Z} & K_{0}\left(\mathscr{L}_{F_{n}}\right)=\mathbb{R} \\
K_{1}\left(C^{*}\left(F_{n}\right)\right)=\mathbb{Z}^{n} & K_{1}\left(\mathscr{L}_{F_{n}}\right)=\{0\}
\end{array}
$$

Central Questions

Basic Questions: classification and representation.

Noncommutative euclidean spaces

$\mathbb{C}\left\langle x_{1}, \ldots, x_{n}\right\rangle, x_{1}, \ldots, x_{n}$ are non commuting variables; or $\mathbb{C}\left[F_{n}\right]$

C* (or topological) level von Neumann(measure space) level

$$
\begin{array}{cc}
C^{*}\left(F_{n}\right) & \mathscr{L}_{F_{n}} \\
K_{0}\left(C^{*}\left(F_{n}\right)\right)=\mathbb{Z} & K_{0}\left(\mathscr{L}_{F_{n}}\right)=\mathbb{R} \quad(n>1) \\
K_{1}\left(C^{*}\left(F_{n}\right)\right)=\mathbb{Z}^{n} & K_{1}\left(\mathscr{L}_{F_{n}}\right)=\{0\}
\end{array}
$$

Classification

Is " n " an invariant of the algebra? Can $\mathscr{L}_{F_{n}}$ be generated by fewer than n elements?

Approximate embedding problem

Can any algebra be approximated by finite dimensional matrix algebra (in terms of a measurement)? i.e., Suppose \mathfrak{A} is an algebra with a linear functional ρ (or a trace). Suppose \mathfrak{A} is generated by X_{1}, \ldots, X_{d}. For any $\epsilon>0$ and $N>0$, is there a large matrix algebra $M_{k}(\mathbb{C})$ with functional ρ, A_{1}, \ldots, A_{d} in $M_{k}(\mathbb{C})$ such that

$$
\left|\rho\left(X_{i_{1}} \cdots X_{i_{s}}\right)-\rho\left(A_{i_{1}} \cdots A_{i_{s}}\right)\right|<\epsilon, \quad \forall s \leq N ?
$$

Approximate embedding problem

Can any algebra be approximated by finite dimensional matrix algebra (in terms of a measurement)? i.e., Suppose \mathfrak{A} is an algebra with a linear functional ρ (or a trace). Suppose \mathfrak{A} is generated by X_{1}, \ldots, X_{d}. For any $\epsilon>0$ and $N>0$, is there a large matrix algebra $M_{k}(\mathbb{C})$ with functional ρ, A_{1}, \ldots, A_{d} in $M_{k}(\mathbb{C})$ such that

$$
\left|\rho\left(X_{i_{1}} \cdots X_{i_{s}}\right)-\rho\left(A_{i_{1}} \cdots A_{i_{s}}\right)\right|<\epsilon, \quad \forall s \leq N ?
$$

Connes's Embedding: ρ is a trace, \mathfrak{A} is a (separable) factor of type II_{1}.

Some Known Results

1) Jones Index:
$H \leq G$ a subgroup:

$$
H \leq G
$$

$$
[G: H] \in \mathbb{N} \cup\{\infty\}
$$

$v N(G)$ the commutant of the left regular representation of $G, \mathfrak{M} \subset v N(G)$ is a von Neumann subalgebra (weakly closed subalgebra):
$\mathfrak{M} \subset v N(G)$

$$
[v N(G): \mathfrak{M}] \in\left\{4 \cos ^{2} \frac{\pi}{n}: n \in \mathbb{N}\right\} \cup[4, \infty]
$$

2) Voiculescu's free dimension:

With (\mathfrak{A}, ρ) given, $X_{1}, \ldots, X_{d} \in \mathfrak{A}$, define

$$
\Gamma\left(X_{1}, \ldots, X_{d} ; \epsilon, k, N\right)=\left\{\left(A_{1}, \ldots, A_{d}\right)\right\} \subset M_{k}(\mathbb{C})^{d} \cong \mathbb{R}^{4 d k^{2}}
$$

$\operatorname{fdim}\left(X_{1}, \ldots, X_{d}\right)=\liminf _{\epsilon, k, N} \frac{1}{k^{2}} \log \frac{\operatorname{vol}\left(\Gamma\left(X_{1}, \ldots, X_{d} ; \epsilon, k, N\right)\right.}{\operatorname{vol}(\operatorname{ball}(\rho(I))}+d$.

Theorem 1 (Voiculescu)

fdim is an algebraic invariant, i.e.,

$$
f \operatorname{dim}\left(X_{1}, \ldots, X_{d}\right)=\operatorname{fdim}\left(Y_{1}, \ldots, Y_{c}\right)
$$

if two sets generate the same algebra.

Theorem 1 (Voiculescu)

fdim is an algebraic invariant, i.e.,

$$
f \operatorname{dim}\left(X_{1}, \ldots, X_{d}\right)=f \operatorname{dim}\left(Y_{1}, \ldots, Y_{c}\right)
$$

if two sets generate the same algebra.

Theorem 2

$\operatorname{fdim}\left(M_{n}(\mathbb{C})\right)=1-\frac{1}{n^{2}} ;$
$f \operatorname{dim}\left(S L_{2}(\mathbb{Z})\right)=\frac{7}{6} ;$
$f \operatorname{dim}\left(F_{n}\right)=n$;
$f \operatorname{dim}\left(\mathscr{L}_{G \times H}\right)=1$, or $-\infty$, when G and H are infinite;
($\mathscr{L}_{F_{n}}$ are prime factors)
$\operatorname{fdim}\left(\mathscr{L}_{S L_{n}(\mathbb{Z})}\right)=1, n \geq 3$. (Shen-Ge)

Other viewpoints

All above is "real" noncommutative geometry.

What is a complex noncommutative geometry?

Motivations

- When we replace \mathbb{Z} by \mathbb{N}, the above $I^{2}(\mathbb{Z}) \cong L^{2}\left(S^{1}\right)$ becomes $I^{2}(\mathbb{N}) \cong H^{2}(\mathbb{D})$, the Hardy space.

Motivations

- When we replace \mathbb{Z} by \mathbb{N}, the above $I^{2}(\mathbb{Z}) \cong L^{2}\left(S^{1}\right)$ becomes $I^{2}(\mathbb{N}) \cong H^{2}(\mathbb{D})$, the Hardy space.
- Algebraic geometry: \mathscr{T} is an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, $\operatorname{Var}(\mathscr{T})=\{x: p(x)=0, \forall p \in \mathscr{T}\}$. One can replace $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by any noncommutative ring.

Motivations

- When we replace \mathbb{Z} by \mathbb{N}, the above $I^{2}(\mathbb{Z}) \cong L^{2}\left(S^{1}\right)$ becomes $I^{2}(\mathbb{N}) \cong H^{2}(\mathbb{D})$, the Hardy space.
- Algebraic geometry: \mathscr{T} is an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, $\operatorname{Var}(\mathscr{T})=\{x: p(x)=0, \forall p \in \mathscr{T}\}$. One can replace $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by any noncommutative ring.
- The need to study $\mathbb{R} / \mathbb{N}^{*}$. For $f \in S(0, \infty)$,

$$
\zeta(s)=\frac{\int_{0}^{\infty} \sum_{n} f(n x) x^{s-1} d x}{\int_{0}^{\infty} f(x) x^{s-1} d x}
$$

Motivations

- When we replace \mathbb{Z} by \mathbb{N}, the above $I^{2}(\mathbb{Z}) \cong L^{2}\left(S^{1}\right)$ becomes $I^{2}(\mathbb{N}) \cong H^{2}(\mathbb{D})$, the Hardy space.
- Algebraic geometry: \mathscr{T} is an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, $\operatorname{Var}(\mathscr{T})=\{x: p(x)=0, \forall p \in \mathscr{G}\}$. One can replace $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by any noncommutative ring.
- The need to study $\mathbb{R} / \mathbb{N}^{*}$. For $f \in S(0, \infty)$,

$$
\zeta(s)=\frac{\int_{0}^{\infty} \sum_{n} f(n x) x^{s-1} d x}{\int_{0}^{\infty} f(x) x^{s-1} d x}
$$

- Kadison and Singer (1960): \mathscr{T} is a triangular algebra if $\mathscr{T} \cap \mathscr{T}^{*}$ (the diagonal of $\mathscr{T})$ is abelian-a generalization of $H^{\infty}(\mathbb{D})$.

Natural generalization: $\mathfrak{A}\left\langle X_{1}, \ldots, X_{d}\right\rangle, \mathfrak{A}$ a noncommutative coefficient ring; \mathcal{G} a "base" space given by $\mathfrak{A} ; \phi_{i} \in \mathfrak{A}\left\langle X_{1}, \ldots, X_{d}\right\rangle$ are noncommutative polynomials. Define

$$
\operatorname{Var}\left(\left\{\phi_{i}\right\}_{i}\right)=\left\{\left(P_{1}, \ldots, P_{d}\right) \in \mathcal{G}^{d}: \phi_{i}\left(P_{1}, \ldots, P_{d}\right)=0\right\}
$$

Von Neumann's (continuous) geometry:
Points: projections in $\mathscr{B}(\mathscr{H})$.
Manifold: all projections in a von Neumann algebra.

Suppose \mathfrak{A} is a ${ }^{*}$-subalgebra of $\mathscr{B}(\mathscr{F})$. Then

$$
\operatorname{Lat}(\mathfrak{A})=\{P \in \mathscr{B}(\mathscr{F}):(I-P) A P=0, A \in \mathfrak{A}\}
$$

is called a (von Neumann) manifold.
In commutative geometry, $(1-x) x=0$ when $x^{2}=0$. Thus $(I-P) A P$ are zero polynomials.
In von Neumann's continuous geometry, a von Neumann algebra \mathfrak{A} is a coefficient ring, $\mathcal{G}=\{$ all projections in $\mathfrak{A}\}$ (Grassmann manifold) is the base (point) space for \mathfrak{A}.
Von Neumann's "manifolds" are lattices of projections in a von Neumann algebra.
-they are "extremely" disconnected since both P and $I-P$ are in a manifold.

Generalizing this idea, one may consider any $\mathfrak{A} \subset M_{n}(\mathbb{C}), \mathcal{G}=\mathcal{G}(\mathfrak{A})\left(\phi_{i}\right.$ are all degree zero polynomials) and define

$$
\begin{aligned}
\operatorname{Lat}(\mathfrak{A}) & =\{P \in \mathcal{G} \mid A: P \rightarrow P, \forall A \in \mathfrak{A}\} \\
& =\{P \mid(1-P) A P=0, \forall A \in \mathfrak{A}\} .
\end{aligned}
$$

$\operatorname{Lat}(\mathfrak{A})$ is always a lattice: $P \wedge Q, P \vee Q \in \operatorname{Lat}(\mathfrak{A}), \forall P, Q \in \operatorname{Lat}(\mathfrak{A})$.

Generalizing this idea, one may consider any $\mathfrak{A} \subset M_{n}(\mathbb{C}), \mathcal{G}=\mathcal{G}(\mathfrak{A})\left(\phi_{i}\right.$ are all degree zero polynomials) and define

$$
\begin{aligned}
\operatorname{Lat}(\mathfrak{A}) & =\{P \in \mathcal{G} \mid A: P \rightarrow P, \forall A \in \mathfrak{A}\} \\
& =\{P \mid(1-P) A P=0, \forall A \in \mathfrak{A}\} .
\end{aligned}
$$

$\operatorname{Lat}(\mathfrak{A})$ is always a lattice: $P \wedge Q, P \vee Q \in \operatorname{Lat}(\mathfrak{A}), \forall P, Q \in \operatorname{Lat}(\mathfrak{A})$.
If $\mathscr{V} \subset \mathcal{G}$ is a sublattice or any subset, then we define

$$
\begin{aligned}
\operatorname{Alg}(\mathcal{T})) & =\{A \in \mathfrak{A} \mid A: P \rightarrow P, \forall P \in \mathscr{V}\}\} \\
& =\{A \mid(1-P) A P=0, \forall P \in \mathscr{V}\} .
\end{aligned}
$$

$\operatorname{Alg}(\mathscr{T})$ is always an algebra.

Definition

Suppose $\mathfrak{A}=\mathscr{G}(\mathscr{H})=M_{\infty}(\mathbb{C})$ and \mathscr{P} a set of projections in $\mathscr{B}(\mathscr{F})$. We call $\operatorname{Alg}(\mathscr{P})$ a Kadison-Singer algebra and LatAlg (\mathscr{P}) a Kadison-Singer lattice (or KS-manifold) if LatAlg($\mathscr{P})$ is a "minimal" generating reflexive lattice for the von Neumann algebra generated by \mathscr{P}.

In this case, we denote $\operatorname{Alg}(\mathscr{P})$ by $\operatorname{Naf}(\mathscr{P})$ and $\operatorname{Lat}(\cdot)$ by $\operatorname{Var}(\cdot)$. Then $\operatorname{Alg}(\mathscr{P})$ is a maximal reflexive algebra with respect to its diagonal subalgebra.

Conjecture: If $P \in \operatorname{Var}(\mathfrak{A})$ and $P \neq 0, I$, then $I-P \notin \operatorname{Var}(\mathfrak{A})$.
If there is a minimal KS-manifold containing $\mathscr{P} \subset \mathcal{G}$, then we call $\operatorname{Var}(\mathscr{P})$ the "Zariski closure" of \mathscr{P}.

Examples: $\mathfrak{A}=M_{n}(\mathbb{C})$.

- If $\mathscr{P}=\{P\}$, then $\operatorname{VarNaf}(\mathscr{P})=\mathscr{P} \cup\{0, I\}$.

Examples: $\mathfrak{A}=M_{n}(\mathbb{C})$.

- If $\mathscr{P}=\{P\}$, then $\operatorname{VarNaf}(\mathscr{P})=\mathscr{P} \cup\{0, I\}$.
- If $\mathscr{P}=\{P, Q\}$ is a lattice in \mathfrak{A}, then $\operatorname{VarNaf}(\mathscr{P})=\mathscr{P} \cup\{0, I\}$. (P . Halmos, 1972).

Examples: $\mathfrak{A}=M_{n}(\mathbb{C})$.

- If $\mathscr{P}=\{P\}$, then $\operatorname{VarNaf}(\mathscr{P})=\mathscr{P} \cup\{0, I\}$.
- If $\mathscr{P}=\{P, Q\}$ is a lattice in \mathfrak{A}, then $\operatorname{VarNaf}(\mathscr{P})=\mathscr{P} \cup\{0, I\}$. (P. Halmos, 1972).
- If $\mathscr{P}=\{P, Q, R\}$ is a lattice in \mathfrak{A}, then is
$\operatorname{VarNaf}(\mathscr{P})=\mathscr{P} \cup\{0, I\}$? -Answer: no!
This is the simplest non trivial case. The lattice is called a double triangle lattice:

Examples: $\mathfrak{A}=M_{n}(\mathbb{C})$.

- If $\mathscr{P}=\{P\}$, then $\operatorname{VarNaf}(\mathscr{P})=\mathscr{P} \cup\{0, I\}$.
- If $\mathscr{P}=\{P, Q\}$ is a lattice in \mathfrak{A}, then $\operatorname{VarNaf}(\mathscr{P})=\mathscr{P} \cup\{0, I\}$. (P. Halmos, 1972).
- If $\mathscr{P}=\{P, Q, R\}$ is a lattice in \mathfrak{A}, then is
$\operatorname{VarNaf}(\mathscr{P})=\mathscr{P} \cup\{0, I\}$? -Answer: no!
This is the simplest non trivial case. The lattice is called a double triangle lattice:

- If $\mathscr{P}=\left\{P_{1}, \ldots, P_{n}\right\}$, then what is $\operatorname{VarNaf}(\mathscr{P})$?

The closure of three points

1) Finite-dimensional case

Let $\mathcal{G}(r, n)$ be the Grassmann manifold consisting all r-dimensional subspaces of \mathbb{C}^{n}, which can be identified with all rank r projections in $M_{n}(\mathbb{C})$.
Suppose P, Q, R are three elements in $\mathcal{G}=U_{r} \mathcal{G}(r, n)$ such that they generate a double triangle lattice (as above).

Theorem (Yuan-Ge)

The KS-manifold generated by a double triangle lattice is homeomorphic to S^{2}. Zariski closure of any three points in S^{2} is S^{2}.

When n is even, randomly picked three projections in $M_{n}(\mathbb{C})$ form a double triangle lattice with probability one.
2) The limit case as $n \rightarrow \infty$

As $n \rightarrow \infty, P, Q, R$ converges in distribution, i.e.,

$$
\int_{\mathcal{G}^{3}} \frac{1}{n} \operatorname{trace}(\phi(P, Q, R)) d P d Q d R
$$

has a limit for any polynomial ϕ.
Because P, Q, R are non commuting variables, they can be modeled by the following elements:
$G_{3}=\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$: the free product of \mathbb{Z}_{2} with itself 3 times (or n times, in general).

Let $\mathscr{L}_{G_{3}}$ be the group von Neumann algebra acting on $I^{2}\left(G_{3}\right)$.
If U_{1}, U_{2}, U_{3} are canonical generators for $G_{3}\left(\right.$ or $\mathcal{L}_{G_{3}}$), then $P_{j}=\frac{1-U_{j}}{2}$, $j=1,2,3$, are projections.
\mathscr{F}_{3} : the lattice consisting of P_{1}, P_{2}, P_{3} and 0,1 .

Theorem (Yuan-Ge)

$\operatorname{Var}\left(\operatorname{Naf}\left(\mathcal{F}_{3}\right)\right) \backslash\{0,1\}$ is homeomorphic to S^{2}. Zariski closure of any three elements in S^{2} generate S^{2}.

Theorem (Yuan)

The automorphism group of $\mathscr{L}_{G_{3}}$ that preserve S^{2} is isomorphic to S_{3}.

Theorem (Hou-Yuan)

The KS-manifold generated by a double triangle lattice in any von Neumann algebra with a trace is homeomorphic to S^{2}. The only connected KS-manifold in $M_{n}(\mathbb{C})$ is homeomorphic to S^{2}.
(to appear in Math. Ann.)

Questions: 1. How does the geometry of S^{2} determine \mathfrak{A} ? (S^{2} "minimally" generates the coefficient ring \mathfrak{A}.)
2. What is $\operatorname{VarNaf}\left(\mathcal{F}_{4}\right)$? Is it finite-dimensional?
3. Are there (nontrivial) abelian KS-algebras?

Product KS-manifolds

Suppose \mathscr{P}, Q are KS-manifolds. There is a natural way to associate $\mathscr{P} \times Q$ with KS-algebra $\operatorname{Naf}(\mathscr{P}) * \operatorname{Naf}(Q)$-the free product. IT SHOULD BE RIGHT
But even with the simplest case $\mathscr{P}=\mathcal{Q}=\{0, P, 1\}$, we do not have a proof.

Thanks!

